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A B S T R A C T

Mercury contamination in soil, water and air is associated with potential toxicity to humans and ecosystems.
Industrial activities such as coal combustion have led to increased mercury (Hg) concentrations in different
environmental media. This review critically evaluates recent developments in technological approaches for the
remediation of Hg contaminated soil, water and air, with a focus on emerging materials and innovative tech-
nologies. Extensive research on various nanomaterials, such as carbon nanotubes (CNTs), nanosheets and
magnetic nanocomposites, for mercury removal are investigated. This paper also examines other emerging
materials and their characteristics, including graphene, biochar, metal organic frameworks (MOFs), covalent
organic frameworks (COFs), layered double hydroxides (LDHs) as well as other materials such as clay minerals
and manganese oxides. Based on approaches including adsorption/desorption, oxidation/reduction and stabi-
lization/containment, the performances of innovative technologies with the aid of these materials were ex-
amined. In addition, technologies involving organisms, such as phytoremediation, algae-based mercury removal,
microbial reduction and constructed wetlands, were also reviewed, and the role of organisms, especially mi-
croorganisms, in these techniques are illustrated.

1. Introduction

Mercury (Hg) is a toxic heavy metal that has been regarded as one of
the “ten leading chemicals of concern” (WHO, 2017). According to the
United Nations Environment Programme (UNEP) report (UNEP, 2018),
it is estimated that global mercury emissions to air from anthropogenic
sources in 2015 were about 2220 tons. Among the anthropogenic
sources, stationary combustion of fossil fuels accounts for 24% of the
estimated emissions, primarily from coal-burning (21%) (UNEP, 2018).
Other anthropogenic sources include cement production (Wang et al.,
2016b), iron and steel production (Wang et al., 2016a), nonferrous
metal smelting (Wu et al., 2017b), gold production (Wu et al., 2018b),
chlor-alkali industry (Busto et al., 2011; Busto et al., 2013; Kakareka
and Kukharchyk, 2012), waste disposal (Pehnec et al., 2010) as well as
direct production of mercury. Mercury contamination is of significant
concern worldwide owing to its toxic effect on human health (Beckers

and Rinklebe, 2017). Among the forms of inorganic mercury, the
mercuric cation, Hg2+, has proven to be a predominant toxic agent that
can cause damage to kidney and lung (Clarkson and Magos, 2006).
Once transformed into its organomercuric forms such as methylmercury
(MeHg), Hg acts as a potent neurotoxin which impairs brain function.
Apart from the high toxicity of this form of mercury, it has raised
particular concern for its capability to biomagnify up the food chain (He
et al., 2015; O'Connor et al., 2019; Selin, 2009).

Once emitted to the atmosphere, Hg can be transported and thor-
oughly mixed in its elemental form [Hg(0)]. The major sink of ele-
mental mercury is deposition to soil or water bodies after oxidation to
divalent mercury [Hg(II)] (Fig. 1) (O'Connor et al., 2019; Selin, 2009).
Aside from deposition, point sources of mercury contamination are the
predominant cause of Hg pollution in soil and water. Like other heavy
metals, mercury cannot be degraded in ecosystems, and therefore re-
mediation should be based on removal or immobilization processes
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(Fig. 2). Removal technologies involve the mechanism of adsorption,
desorption, oxidation and reduction. The major aim of these technol-
ogies is to separate mercury from the contaminated media or transform
toxic mercury species into less toxic ones (Lewis et al., 2016). The most
widely adopted immobilization techniques are stabilization and con-
tainment, which prevent mercury migration by chemical complexation
or physical trapping, respectively (He et al., 2015).

More recent research have been ongoing to develop novel materials
and technologies for Hg remediation (Ali et al., 2018; Chen et al.,
2018c; Huang et al., 2019b; Moharem et al., 2019; Wang et al., 2019b;
Xu et al., 2019). Novel materials, especially materials possessing high
surface area, large porosity as well as active sites for adsorption, have
been examined extensively in recent studies (Gusain et al., 2019; Kumar
et al., 2019). Apart from adsorption capacity which is the key de-
terminant of these materials, other issues such as generation method,
stability and reusability should be seriously considered as well
(Abraham et al., 2018; Ke et al., 2017; Ram and Chauhan, 2018; Tack
et al., 2019). Compared to conventional remediation technologies such
as thermal desorption or activated carbon adsorption, innovative

methods have proved to be more cost-efficient and environmentally
friendly. Interestingly, most of these technologies treating Hg con-
taminated soil, water and air can either be based on emerging materials
or the metabolism of organisms, namely plants, algae and bacteria.

The aim of this work is to review current knowledge on emerging
materials as well as innovative technologies for mercury remediation in
soil, water and air. This review discusses the synthesis method, mor-
phology, adsorption behavior, reusability, stability as well as other
characteristics of emerging materials. The review also focuses on the
remediation mechanisms and remediation efficacy of novel technolo-
gies and proposes critical future research directions in this field.

2. Mechanisms involved in mercury remediation

2.1. Adsorption and desorption

Among various methods aiming to remove Hg(II) from water solu-
tion, adsorption is the most commonly utilized approach (Fig. 2) (Abbas
et al., 2018; Bao et al., 2017; Kyzas and Kostoglou, 2015; Rocha et al.,

Fig. 1. Inter-phase transfer and transport of mercury in soil, water and air. Acronyms: Hg(0), elemental mercury; Hg(II), divalent mercury; MeHg, methylmercury.

Fig. 2. Major mechanisms involved in Hg remediation. Acronyms: WFGD, wet flue gas desulfurization; ESP, electrostatic precipitation.
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2016). The adsorbents usually possess high surface area as well as high
porosity and the formation of chelates is the major sorption mechanism
(Kyzas and Kostoglou, 2015; Rocha et al., 2016). Mondal et al. (2019b)
synthesized thioether-functionalized covalent triazine nanospheres to
adsorb Hg2+ and Hg(0) from water. Excellent adsorption capability was
observed (1253 and 813mg/g for Hg2+ and Hg(0), respectively), and
the results of the kinetic study reveal a fast adsorption rate (9 times
faster than that of TAPB-BMTTPA-COF and 7 times than PAF-1-SH).
Another study by Abbas et al. (2018) synthesized a novel mesoporous
conjugate adsorbent based on pentasil zeolite (type ZSM-5) to adsorb
Hg(II) in aqueous solution, and the maximum adsorption capacity
reached 172.6mg/g. Bao et al. (2017) utilized silica-coated magnetic
nanoparticles to extract Hg(II) from wastewater, and the adsorption of
mercury ions onto the imine (C-NH-) groups on the surface of nano-
particles was discovered. Another example used chitosan derivatives as
adsorbents. The chelation between Hg(II) and the nitrogen atoms of
chitosan is the dominant mechanism of adsorption (Kyzas and
Kostoglou, 2015). The mechanism of adsorption is also commonly used
for the removal of gas-phase elemental mercury [Hg(0)] (Abraham
et al., 2018; Reddy et al., 2015). According to the “hard and soft acid-
base” (HSAB) theory, Hg preferentially forms complexes with soft li-
gands such as sulfur to form insoluble and steady compounds (He et al.,
2015). A high sulfur content of an adsorbent was found to promote the
adsorption capacity for Hg(0) (Abraham et al., 2018). While using ad-
sorbents for Hg removal, it is of note that stability and reusability
should be seriously considered, and more detailed discussion on this
issue is provided in Section 3.

When it comes to the remediation of Hg contaminated soil, Hg-
containing waste or sludge, thermal desorption has been established as
an effective approach (Busto et al., 2011; He et al., 2015; Hung et al.,
2016; Lee et al., 2017; Sierra et al., 2016; Wang et al., 2016c; Zhao
et al., 2018b). In situ thermal desorption is encouraged, as there is no
need to dig up the contaminated environmental media, especially the
soil. In this process thermal conductive heating (TCH) elements are
inserted into the soil in order to directly transfer heat. (He et al., 2015).
During the heating process, the increase of the volatility of mercury
results in the separation of mercury from the soil. Various species of
mercury exist in soils, such as HgO, HgS, HgCl2, and mercury associated
with organic matter (Selin, 2009; Wang et al., 2012). These mercury
species are volatilized when the heating temperature is above 600 °C,
and the treatment can achieve an acceptable decontamination level (Ma
et al., 2015; Wang et al., 2012; Zhao et al., 2018b). The major dis-
advantage of conventional thermal desorption is the high energy cost,
warranting the need for further studies to find low-temperature deso-
rption methods. Many full-scale and pilot-scale applications of thermal
desorption have been summarized in other literature (Dermont et al.,
2008; He et al., 2015; USEPA, 2007; Wang et al., 2012), and the cost of
this technology is estimated to be 480 USD/t soil (He et al., 2015;
USEPA, 2007).

2.2. Oxidation and reduction

Coal-fired power plants continued to be the predominant sources of
anthropogenic mercury emission to the atmosphere (Bourtsalas and
Themelis, 2019; Pirrone et al., 2010). In typical coal combustion flue
gas, mercury exist in three forms: elemental mercury [Hg(0)], divalent
mercury [Hg(II)] and particulate bounded mercury [Hg(P)]. Among
these forms, elemental mercury was recognized to be the hardest to be
removed by conventional air pollution control devices owing to its
volatility and low water solubility. The oxidation of Hg(0) has proven to
be an effective way to decrease mercury emission (Chen et al., 2016; He
et al., 2016; Krzyzynska et al., 2018; Liu and Wang, 2018). In most
cases, Hg(0) was oxidized to Hg2+, which can be easily captured by an
electrostatic precipitator (ESP) or wet flue gas desulfurization scrubbers
(WFGD) due to its high solubility and sorption on particulate matter (Li
et al., 2012; Liu et al., 2011; Qi et al., 2016; Wang et al., 2010a).

Compared to the adsorption method (i.e. activated carbon injection,
around 3–4 USD/kW)(Marczak et al., 2019), oxidation is more cost-
effective. A number of studies have focused on a novel oxidation
method, i.e., catalytic oxidation of elemental mercury from the flue gas,
which will be elaborated in Section 4.3.1. Apart from the catalytic
oxidation method, free radical advanced oxidation of Hg(0) is also
utilized sometimes (Liu and Wang, 2018; Wang et al., 2010b; Wu et al.,
2017a), but Hg(0) removal capacity using this technology remains
limited thus far.

Reduction is often applied in order to prevent the formation of
methylmercury (MeHg). Methylmercury is the most bioavailable form
of mercury. Redox conditions in wetland sediments promote the for-
mation of MeHg (Devai et al., 2005; Frohne et al., 2012; Lewis et al.,
2016). A high concentration of Hg(II) species results in the production
of MeHg. Therefore, an effective way to control methylmercury pro-
duction is to decrease the concentration of Hg(II) (Benoit et al., 2001;
Hsu-Kim et al., 2013). Zero-valent iron (ZVI) or Fe(II) are often em-
ployed to reduce Hg(II) to Hg(0), thus inhibiting MeHg production
(Amirbahman et al., 2013; Lewis et al., 2016). Several studies also
examined whether adsorbents could provide inhibition of MeHg pro-
duction. A study by Muller and Brooks (2019) observed that biochar
was ineffective at decreasing the total MeHg production in the aqueous
phase. Another study by Zhang et al. (2019a) found that particulate-
bound Hg(II) is crucial to methylation. In aquatic environments, mi-
crobial methylation of particulate-bound Hg(II) should be considered.

2.3. Stabilization and containment

Stabilization approaches immobilize mercury in contaminated sites
through chemical complexation to decrease solubility in order to
minimize exposure of mercury to the environment (He et al., 2015;
Wang et al., 2019a; Wang et al., 2012). During the chemical stabiliza-
tion process, sulfur-containing reagents such as elemental sulfur, pyrite
(FeS2) or thiosulfate are commonly used to react with Hg(0) in con-
taminated soil to form HgS, which is very insoluble (solubility product
2.0× 10−49) (He et al., 2015; Piao and Bishop, 2006). Soil can be
treated either in situ or ex situ, the former requiring less energy and
labor cost. However, thorough mixing remains very difficult in in situ
stabilization (Mulligan et al., 2001). A fundamental drawback of sta-
bilization is that mercury is not removed from the contaminated media,
thus requiring perpetual future monitoring of the contaminant on site.

Similar to stabilization, contamination is left on site during the
containment treatment. Low-permeability physical barriers (e.g. slurry
walls, caps or grout curtains) are installed around the contaminated soil
to isolate and contain the soil, and thus prevent the migration of mer-
cury to the surrounding environment (Khan et al., 2004). These phy-
sical barriers can be divided into three types: capping, vertical barriers
and horizontal barriers (Mulligan et al., 2001). The advantages of
containment treatment are its relatively low cost (5–15 USD per square
foot as vertical barriers)(He et al., 2015) as well as its simplicity, as no
excavation and treatment of hazardous waste are involved. The dis-
advantages of containment are similar to stabilization, and monitoring
is also required.

3. Emerging remediation materials

3.1. Nanomaterials

Nanomaterials are gaining more and more attention in mercury
remediation of soil, water and flue gas, owing to their high adsorption
capacity, small dimension and other unique electrical, mechanical and
chemical properties (Alijani and Shariatinia, 2018; Moghaddam and
Pakizeh, 2015; Wang et al., 2019d). A range of nanomaterials have
been tested for Hg remediation. They can be divided into three types:
nanoparticles, nanosheets and nanocomposites (Table 1). The mor-
phology of these materials can vary greatly, as illustrated in Table 2.
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Among these types, nanosheets are less frequently used than nano-
particles and nanocomposites, while MoS2 nanosheets can achieve a
high adsorption capacity of both Hg(0) (Zhao et al., 2018a; Zhao et al.,
2016a) and Hg2+ (Ai et al., 2016; Song et al., 2018).

There are several major types of nanoparticles and nanocomposites.
Carbon-based nanomaterials such as carbon nanotubes (CNT) are
gaining much interest, and in order to improve their interactivity,
amine or thiol groups are introduced through chemical functionaliza-
tion (Alimohammady et al., 2018; Hadavifar et al., 2016; Singha Deb
et al., 2017). Ferroferric oxide (Fe3O4) nanoparticles are another
emerging material for Hg remediation. They possess some outstanding
properties, such as ease of recovery, superparamagnetism and large
surface area (Bao et al., 2017; Ghasemi et al., 2017; Zarei et al., 2018).
Without further isolation procedures such as centrifugation or filtra-
tion, the magnetic nanomaterials can be easily isolated from solutions
by an external magnet. Mesoporous silica is also frequently applied
owing to a significantly higher surface area-to-volume ratio, but it is
rarely used alone without modification (Awual et al., 2016; Kenawy

et al., 2018; Shafiabadi et al., 2016). After functionalization of different
kinds of nanomaterials, the Hg adsorption ability increases sig-
nificantly.

The most widely used functional groups to modify the nanomater-
ials are sulfur, oxygen and nitrogen-containing functional groups such
as thiol (eSH), carbonyl (C]O), amino (eNH2) and cyan (eCN). This is
because mercury is a soft acid according to the “hard and soft acid-
base” (HSAB) theory, with a high tendency to form strong bonds with
these groups (Hadavifar et al., 2016; Li et al., 2017; Maia et al., 2019;
Moharem et al., 2019; Singha Deb et al., 2017; Song et al., 2018). The
interactions between mercury and these functional groups include
electrostatic attraction (Anirudhan and Shainy, 2015), chelation (Bao
et al., 2017), ion exchange (Shafiabadi et al., 2016) and chemisorption
(Moharem et al., 2019; Singha Deb et al., 2017). Apart from adsorption,
oxidation also is an effective approach to treat elemental mercury-
containing flue gas. Cerium (Ce) containing nanomaterials are an
emerging catalyst for Hg(0) oxidation because of the high standard
reduction potential of Ce4+/Ce3+ (1.61 V) as well as large oxygen

Table 1
Characteristics of nanomaterials used in remediation of mercury.

Type Active constituents Support
material

Size (nm) Target
media

Treated mercury
species

Surface area
(m2/g)

Adsorption
capacity (mg/g)

Reference

C ZrP Fe3O4 6–10 W Hg2+ 236.62 181.8 (Ahamad et al., 2017)
S Sulfur atoms MoS2 0.94 W Hg2+ n.a. 2563 (Ai et al., 2016)
C CoS SWCNT 70 W Hg2+ n.a. 1666 (Alijani and Shariatinia,

2018)
C 3-aminopyrazole MWCNT 24.78 W Hg2+ 166.2 112 (Alimohammady et al.,

2018)
C Oxygen containing groups MWCNT 12.734 W Hg2+ 199.37 186.97 (AlOmar et al., 2017)
C Ionized carboxyl and sulfhydryl groups NC n.a. W Hg2+ 116.32 240.0 (Anirudhan and Shainy,

2015)
P Organic ligand of ammonium MS 7.2 W Hg2+ 514 164.22 (Awual et al., 2016)
C Amine and thiol groups Si-Fe 13.6 W Hg2+ 71.9 355 (Bao et al., 2017)
C Dithiocarbamate functional group Si-Fe 93 W Hg2+ n.a. 82 (Behjati et al., 2018)
C Nitrogen and amide Fe3O4 17 W Hg2+ n.a. 86.8 (Bhatti et al., 2018)
P Gold FP 13 W Hg2+ n.a. 99%* (Chen et al., 2017)
P Thiol functional group NC 9.4 W Hg2+ 43.51 718.5 (Geng et al., 2017)
P EDTA Fe3O4 35 S Hg2+ n.a. 112 (Ghasemi et al., 2017)
C Amino and functional groups MWCNT 9.84 W Hg2+ 234.89 204.64 (Hadavifar et al., 2016)
P Mn and Fe CeO2 7.02 G Hg(0) 108.5 86.5%* (Jampaiah et al., 2015)
P Thioglycolic acid MS 2.35 W Hg2+ 980 42.8 (Kenawy et al., 2018)
P ZnS ZnS 6 G Hg(0) 196.1 0.50 (Li et al., 2016)
C UiO-66-NH2 Pt 2.48 W Hg2+ 1111.2 206.25 (Li et al., 2017)
C Fe-Ce mixed oxides MWCNT 3–5 G Hg(0) n.a. 69.4%* (Ma et al., 2018)
P L-cysteine FeOOH 14 W Hg2+ 34 217 (Maia et al., 2019)
P Sulfur atoms GO 40–80 W Hg2+ 449.43 829.27 (Manna and Raj, 2018)
C MnO2 MWCNT 2.7 W Hg2+ 110.38 58.8 (Moghaddam and Pakizeh,

2015)
P OH and Al-O-Si group WTR 45–96 S Hg2(OH)2,

Hg2CO3

129.0 93.89%** (Moharem et al., 2019)

P Chitosan Fe3O4 10 W Hg2+ n.a. 10 (Nasirimoghaddam et al.,
2015)

P 3-mercaptopropionic acid NC 45–75 W Hg2+ 404.95 98.6 (Ram and Chauhan, 2018)
C Polypyrrole MS 3.1 W Hg2+ 97.6 200 (Shafiabadi et al., 2016)
C Poly(1-vinylimidazole) oligomer Si-Fe 10–20 W Hg2+ n.a. 346 (Shan et al., 2015)
C Amidoamine MWCNT 33–42 W Hg2+ n.a. 101.35 (Singha Deb et al., 2017)
S Sulfur atoms MoS2 0.7–2.4 W Hg2+ n.a. 425.5 (Song et al., 2018)
P FeS NC n.a. W Hg2+ n.a. 1989 (Sun et al., 2018)
P 3,4-dihydroxyphenethylcarbamodithioate Fe3O4 5–20 W Hg2+ n.a. 52.1 (Venkateswarlu and Yoon,

2015)
P Magnetic iron-manganese binary oxide CNF 0.84 G Hg(0) n.a. 90%* (Yang et al., 2018a)
P CuS CuS n.a. G Hg(0) 33.06 122.4 (Yang et al., 2018d)
C Nanocellulose Fe3O4 21 W Hg2+ n.a. 926.3 (Zarei et al., 2018)
P Ce4+/Ce3+ T-A-C 5 G Hg(0) 238.49 80.54%* (Zhang et al., 2017b)
S MoS2 γ-Al2O3 10.3 G Hg(0) 177 18.95 (Zhao et al., 2016a)
S MoS2 γ-Al2O3 0.27 G Hg(0) n.a. 98%* (Zhao et al., 2018a)

Acronyms: (1) Type: S= nanosheet; P=nanoparticle; C= nanocomposite; (2) Support material: SWCNT= single-walled carbon nanotubes; MWCNT=multi-
walled carbon nanotubes; NC=nanocellulose; MS=mesoporous silica; FP= filter paper; GO=graphene oxide; T-A-C=TiO2-Al2O3-CeO2; Si-Fe= silica-coated
Fe3O4 nanoparticles; WTR=water treatment residual nanoparticles; CNF= carbon nanofiber; (3) Target media: S= soil; W=water; G= flue gas.
*Removal efficiency.
**Residual fraction of mercury increased from 69.27% to 93.89%.
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storage capacity (Ma et al., 2018; Zhang et al., 2017b).
To assure the cost-efficiency, the potential for regeneration of the

nanomaterials is a factor of major importance. In most studies re-
viewed, the adsorbent was regenerated using hydrochloric acid (HCl)
(Anirudhan and Shainy, 2015; Behjati et al., 2018; Ghasemi et al.,
2017), while other reagents such as EDTA (Singha Deb et al., 2017),
thiourea (Kenawy et al., 2018) and H2SO4 (Nasirimoghaddam et al.,
2015) can be utilized as well. After Hg desorption by these eluents,
nanomaterials can be regenerated by successive washing with deio-
nized water. The adsorbents were dried and reused, but in most cases,
the adsorption ability decreased with the increased number of adsorp-
tion-desorption cycles (Nasirimoghaddam et al., 2015; Singha Deb
et al., 2017).

3.2. Polymers

Polymers have been studied as promising adsorbents for Hg(0) and

Hg2+ with high surface area, chemical stability, tunable pore size as
well as chemical stability (Aguila et al., 2017). Most of the polymers
used certain organic molecules which are easy to functionalize
(Table 3). Among these support materials, pillar[5]arene is gaining
much attention, for its rich host-guest chemistry with different guests
(Cheng et al., 2017; Lin et al., 2017). There are several major genera-
tion methods for polymers. Inverse vulcanization is specially employed
to make sulfur polymers (Abraham et al., 2018; Parker et al., 2017).
Pillar[5]arene based polymers can be formed by self-assembly pro-
cesses (Cheng et al., 2017; Lin et al., 2017). Free radical polymerization
is a more commonly used mechanism and can be applied to form dif-
ferent kinds of polymers, including hydrogel (Karmakar et al., 2019)
and porous organic polymers (Aguila et al., 2017). Hydrogel is a kind of
3-D polymeric network which demonstrates kaleidoscopic swelling
owing to inherent cross-links (Mondal et al., 2019a). After grafting
certain functional groups, hydrogel can adsorb Hg effectively. For in-
stance, a study by Saraydin et al. (2018) used radiation-synthesized

Table 2
Morphology of the major types of nanomaterials utilized for mercury remediation.

Type Image Synthesis process Surface area
(m2/g)

Pore size
(nm)

Adsorption
capacity (mg/g)

Hg removal
capacity

Reference

MoS2 nanosheet One-step hydrothermal
method

n.a. 0.94 2563 99.8% (initial
10mg/L Hg2+)

(Ai et al., 2016)

Carbon nanotubes
(CNT)

Simple hydrothermal
synthesis

110.38 2.70 58.8 91.7% (initial
10mg/L Hg2+)

(Moghaddam and
Pakizeh, 2015)

Fe3O4 nanoparticle Simple
hydrothermalsynthesis

n.a. 5–20 52.1 97.8% (initial
60mg/L Hg2+)

(Venkateswarlu and
Yoon, 2015)

Mesoporous silica Sol-gel method 980 2.35 42.8 95% (initial
10mg/L Hg2+)

(Kenawy et al., 2018)

Ti-Al-Ce nanoparticle Sol-gel method 238.49 5 n.a. 80.5% (initial
80 μg/m3 Hg(0))

(Zhang et al., 2017b)

Nanocellulose Acid hydrolysis 404.95 45–75 98.6 98.6% (initial
100mg/L Hg2+)

(Ram and Chauhan,
2018)

L. Wang, et al. Environment International 134 (2020) 105281

5



acrylamide/crotonic acid hydrogel to remove Hg(II) from water. The
adsorption isotherm was found to fit the Langmuir model best, in-
dicating the binding sites were homogeneous. Another study by
Karmakar et al. (2019) adopted pectin-grafted terpolymer super-
adsorbent via N-H activated strategic protrusion of monomer, and the
adsorption was also found to be monolayer adsorption on homogeneous
sites. Porous organic polymers are a burgeoning class of porous material
with structural diversity, tunable pore size, high specific surface area
and chemical stability (Cheng et al., 2019). However, traditional
synthesis of polymers, especially porous organic polymers are en-
vironmentally unfriendly, as it involves toxic organic solvents, harsh
synthetic conditions and noble metal catalysts. In order to diminish the
environmental impact, catalyst-free synthesis is recommended. A study
by Peng et al. (2019) synthesized triazine-based porous organic poly-
mers by one-pot amidation polycondensation reaction under mild
conditions (atmospheric pressure, 180 °C, catalyst-free). The adsorption
capacity of Hg2+ reached 229.9 mg/g.

On most occasions, sulfur-containing groups such as thiol and sulfur
atoms largely contribute to the adsorption efficiency of mercury.
Abraham et al. (2018) prepared a porous sulfur polymer with an ad-
sorption capacity of Hg(0) of approximately 151 μg/g at 60 °C. Aguila
et al. (2017) utilized a thiol functionalized porous organic polymer
(POP-SH) for the removal of Hg2+, and found that in spite of the high
sulfur content of POP-SH, cation-π interactions between Hg2+ and the
benzene rings of POP-SH also enhanced the adsorption. Apart from
increasing the adsorption capability, cation-π interactions can also be
employed for the fluorescence detection of Hg2+ in water. Lin et al.
(2017) generated a supramolecular polymer gel based on naphthali-
mide functionalized-pillar[5]arene, and found that after adding Hg2+,
the polymer gel emitted bright blue fluorescence emission. Other ca-
tions cannot induce such fluorescence changes, indicating the ability of
this gel to detect Hg2+ in water, and the detection limit is 1.65×10−9

mol L−1 (Lin et al., 2017).

3.3. Biomass and industrial waste-derived materials

In recent years, waste-derived materials have received much at-
tention for their cost-efficiency. Applying these materials to the re-
mediation process is considered a more attractive and environmentally
friendly method compared to landfill or incineration (Li et al., 2015c).
In general, these materials can be divided into two categories according
to the feedstock: industrial waste-derived materials and biomass-de-
rived materials.

Biomass-derived materials include biochar and activated carbon
derived from biomass (Table 4). Biochar is a black carbon derived from
the pyrolysis of biomass. It is a novel porous material with high surface
area, which is beneficial to mercury adsorption and immobilization
(Beckers et al., 2019; O'Connor et al., 2018; Tang et al., 2015). The role
of biochar in Hg remediation technologies will be discussed in Sections
4.1.2, 4.2.2 and 4.3.4. Activated carbon (AC) is an effective adsorbent
removing various inorganic and organic contaminants from different
media (e.g. wastewater or flue gas), but its high cost restricts large-scale
use (approximately 135,000 USD/t) (Sajjadi et al., 2018). For instance,
in flue gas treatment, the annual costs of activated carbon for a 250MW
boiler range from 796,000 to 2,562,000 USD/year, depending on the
ESP type, and the annual costs of AC injection were estimated to be in
the range of 420,674–20,225,000 USD/kgHg (EPPSA, 2015; Marczak
et al., 2019). Generation of AC using waste feedstock therefore is pro-
mising. Kazemi et al. (2016) produced activated carbon through che-
mical activation of wood sawdust, and the surface area of AC reached
1789m2/g. Another study by Sajjadi et al. (2018) used pistachio wood
waste to synthesize AC, with surface area and pore volume 1448m2/g
and 0.901 cm3/g, respectively.

Industrial waste is gaining much concern owing to the large amount
of annual production. For example, coal fly ash (CFA) is a by-product of
coal combustion of power plants, and the amount of its production isTa
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estimated to be 750 million tons worldwide (Attari et al., 2017; Yang
et al., 2017a). Attari et al. (2017) synthesized zeolite from CFA, and the
average efficiency of Hg2+ removal reached 94% with 10mg/L initial
concentration. Apart from CFA, red mud is a by-product of the Bayer
Process for alumina production, and the global annual amount of pro-
duction has reached 160 million tons (Yang et al., 2018b). After im-
pregnation with potassium halides, modified red mud can be used for
elemental mercury removal from flue gas. The halides (i.e. KI, KBr)
promote the oxidation of captured Hg(0). Waste derived materials have
significant potential for use in Hg remediation, but they may contain
toxic metals and other contaminants (Bhattacharyya and Reddy, 2012;
Hua et al., 2017), and further research should examine the potential
risks associated with their application.

3.4. Metal organic frameworks (MOFs)

Made up of metal centers and organic ligands, metal organic fra-
meworks (MOFs) are considered as novel porous crystalline materials
possessing high surface areas, tunable porosity as well as availability of
in-pore functionality and outer-space modification (Chen et al., 2018a;
Huang et al., 2016; Huang et al., 2015b). A variety of generation
methods can be utilized for the synthesis of MOFs including hydro-
thermal synthesis (Chen et al., 2018a; Luo et al., 2015), self-template
method (Huang et al., 2015b), one-step carbonization strategy (Huang
et al., 2017a) and solvent-assisted linker exchange (Huang et al., 2016),
whose basic rule is to simplify the generation procedure to render the
use of MOFs more cost-efficient. In order to improve the mercury ad-
sorption capability of MOFs, chemical modification and functionaliza-
tion in a postsynthetic modification (PSM) strategy is widely operated
according to the literature reviewed (Huang et al., 2016; Ke et al.,
2017). Sulfur-containing groups are the most frequently used functional
groups added to MOFs (Ke et al., 2017; Liang et al., 2018), whose ad-
sorption mechanism is the HSAB rule (see Sections 2.1 and 3.1). Besides
adsorption of Hg2+ in water bodies, MOFs can also remove Hg(0) in the
gas phase by catalytic reactions. Chen et al. (2018a) synthesized a
copper based MOF (Cu-BTC) and employed it for the removal of Hg(0)
from the sintering gas. It was found that Cu acted as a catalyst for
oxidation of elemental mercury: with the existence of HCl, intermediate
of CuCl or CuCl2 was formed. After the oxidation of Hg(0) with the aid
of chemisorbed O2, Hg2+ reacts with CuCl or CuCl2 and HgCl2 is formed
(Chen et al., 2018a). Additionally, the ability of MOFs to remove Hg2+

from ultra-low concentration solution (Hg2+ concentrations in the ppb
magnitude) has gained much interest (Luo et al., 2015; Mon et al.,
2016; Xiong et al., 2017). However, recovery of MOFs from water re-
mains a tough challenge (Huang et al., 2015b; Ke et al., 2017; Liang
et al., 2016). Besides, stability of MOFs may also be affected by pH and
exposure time. A study by Huang et al. (2015a) employed PXRD to
examine the stability of a novel MOF, Bi-I-functionalized Fe3O4@SiO2@
HKUST-1 under different pH. With the exposure time increasing, some
unknown phases were observed with the intensity of PXRD patterns

decreasing, indicating that this MOF material transformed into other
phases. In addition, if the solution pH was < 2, this phenomenon was
also observed. Owing to the poor stability with time increasing, the
large scale use of MOFs is restricted.

3.5. Covalent organic frameworks (COFs)

Covalent organic frameworks (COFs) are novel crystalline porous
materials in which building blocks are linked by strong covalent bonds
(Ding and Wang, 2013; Song et al., 2019). This type of material is
purely constructed with organic building blocks solely from light ele-
ments (H, B, C, N and O) (Cote et al., 2005). The rational design of
skeletons and pores makes it possible for COFs to combine large por-
osity, high stability and various functional sites (Ding and Wang, 2013;
Huang et al., 2017b). Due to their stability, COFs can act as ideal host
materials for other emerging remediation materials. For example, Leus
et al. (2018) encapsulated γ-Fe2O3 nanoparticles in covalent triazine
frameworks, and the adsorption capacity of Hg2+ was 165.8 mg/g;
apart from high adsorption capacity, chemical stability under ambient
conditions increased compared to pristine iron oxide nanoparticles.
Another study by Huang et al. (2017b) found that high crystallinity of
COFs was retained under harsh conditions such as boiling water, and
acidic (6M HCl) or alkaline conditions (6M NaOH). In addition to the
chemical stability of COFs, it has been discovered that instead of merely
being the scaffold, the COF host is able to interact with Hg2+ by Hg2+-π
interaction, thus promoting the adsorption effect of functional groups
(Merí-Bofí et al., 2017; Sun et al., 2017). COFs can also be reused after
desorption of Hg. For instance, Leus et al. (2018) washed the adsorbent
γ-Fe2O3@CTF-1 with 0.1M thiouria in 0.001% HCl. The adsorption
capability of Hg retained in the second sorption test. Another study by
Merí-Bofí et al. (2017) used 6M HCl to remove Hg from the adsorbent
(thiol grafted imine-based COFs). Both BET surface area (265 vs
291m2/g) and pore volume (0.34 vs 0.41 cm3/g) decreased, but the
reasons for this phenomenon were unclear. In general, COFs are
emerging materials with high chemical stability, and further environ-
mental applications of COFs need to be investigated.

3.6. Graphene

Since the discovery of graphene in 2004, this two-dimensional
carbon-based material has received much attention owing to its unique
structural, mechanical, electrical and adsorption capabilities (Cui et al.,
2015a; Kabiri et al., 2015; Novoselov et al., 2004). This material is
oxidized to graphene oxide (GO), which can be employed for the ad-
sorption of Hg2+ in water solutions. The most widely used generation
approach is the modified Hummers’ method, which involves chemical
oxidation of graphene in H2SO4 and KMnO4 (Fu and Huang, 2018;
Hummers and Offeman, 1958; Marcano et al., 2010; Tadjarodi et al.,
2016). Graphene oxide can act as a nonporous adsorbent, which means
adsorption only occurs on its outside surface, thus diminishing the

Table 4
A summary of feedstock and generation methods of various waste-derived materials utilized for mercury remediation.

Material Feedstock Generation method Treated mercury species (target media) Reference

Zeolite Linde Type A Coal fly ash Microwave irradiation Hg2+ (W) (Attari et al., 2017)
Bioelastomeric foam Coffee waste Sugar leaching Hg2+ (W) (Chavan et al., 2016)
Drinking water treatment residuals – – HgCl2 (S) (Deliz Quiñones et al., 2016)
Drinking water treatment residuals – – Hg(OH)2 (S) (Elkhatib et al., 2017)
Biochar Pine sawdust Pyrolysis Hg2+, CH3Hg+ (W) (Huang et al., 2019b)
Activated carbon Fir wood sawdust Chemical activation Hg2+ (W) (Kazemi et al., 2016)
Biochar Medicine residue Pyrolysis Hg(0) (G) (Li et al., 2015b)
Char Waste tire Pyrolysis Hg(0) (G) (Li et al., 2015c)
Activated carbon Wood waste Chemical activation Hg2+ (W) (Sajjadi et al., 2018)
Coal fly ash – – Hg(0) (G) (Yang et al., 2017a)
Halides modified red mud Red mud Potassium halides impregnation Hg(0) (G) (Yang et al., 2018b)

Acronyms: S= soil; W=water; G= flue gas.
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control of internal diffusion (Esfandiyari et al., 2017). Apart from its
high mechanical strength (> 1060 GPa) and theoretical surface area
(2630m2 g−1) (Diagboya et al., 2015), GO has various oxygen-con-
taining functional groups such as hydroxyl, carbonyl and carboxyl on
its surface, rendering the possibility of covalent modifications with
certain chelating groups which have strong tendency of binding with
Hg2+ (Awad et al., 2017; Chen et al., 2018c). As is mentioned in
Section 3.1, adding Fe3O4 nanoparticles to GO will facilitate subsequent
separation of adsorbent and target media (water) after adsorption, and
the utilization of magnetic graphene oxide (MGO) is based on this idea
(see Table 5). The magnetic graphene oxide can be produced through
co-precipitation (Chen et al., 2018c; Cui et al., 2015a; Diagboya et al.,
2015) and other modification chemicals can be added to GO or MGO by
sol-gel methods (Chen et al., 2018c; Esfandiyari et al., 2017).

Due to the special single atomic sheet structure of sp2-hybridized
carbon atoms, the mercury adsorption isotherms of GO and MGO are
mostly Langmuir-type, which may suggest a monolayer adsorption on
homogeneous sites (see Table 5). However, several studies have found
that experimental adsorption data fit the Freundlich (Cui et al., 2015b;
Qu et al., 2017), BET (Huang et al., 2019a) or Sips (Tang et al., 2016)
models best, pointing to a multilayer adsorption on a heterogeneous
surface. This is probably because the modification chemicals changed
the adsorption behavior of graphene oxides, making the surface more
complex and heterogeneous. The adsorption kinetics of those GO or
MGO materials follow the pseudo-second-order model, indicating a
chemisorption process, rather than physical adsorption (Li et al., 2017;
Qu et al., 2017). This finding can be confirmed by changing the pH of
the solution. The optimum pH mostly falls between 5.0 and 7.0
(Table 5). At lower pH values, the presence of H+ will cause compe-
titive adsorption (preferential protonation), reducing the amount of
Hg2+ adsorbed on the surface of graphene oxide (Cui et al., 2015b;
Henriques et al., 2016). Under more alkaline conditions, Hg2+ is in-
creasingly converted to Hg(OH)+ or Hg(OH)2, which are less prone to
chemisorption (Qu et al., 2017).

Apart from conventional regeneration methods using eluents such
as EDTA (Chen et al., 2018c; Liu et al., 2017), thiourea (Huang et al.,
2019a) and HCl (Cui et al., 2015b; Fu and Huang, 2018), a study by Qu
et al. (2017) adopted a thermal decomposition method under 100 °C for
100min. The released Hg was detected by CVASS. Six cycles of ad-
sorption/desorption tests were conducted, with the Hg2+ removal ef-
ficiency remaining higher than 95% (initial Hg2+ concentration
100mg/L).

3.7. Layered double hydroxides (LDHs)

Layered double hydroxides (LDHs), also known as hydrotalcite, are
a class of two-dimensional (2D) ionic lamellar compounds (Zubair
et al., 2017). These materials consist of positively charged metal hy-
droxide layers as well as exchangeable anions in the interlayer space for
charge neutrality (Ma et al., 2017a; Zubair et al., 2017). By inter-
calating MoS42− into the interlayer of LDH, this novel material can be
utilized for Hg2+ removal from an aqueous phase (Ali et al., 2018; Ma
et al., 2017a; Ma et al., 2016). Ali et al. (2018) discovered that the LDH
layers protected the inserted MoS42− from oxidation, and after inter-
calation, the structure of LDH was not distorted. The adsorption iso-
therm best fitted the Langmuir model. Hg2+-S linkages forming a layer
between the metallic layers of LDH correspond to the monolayer ad-
sorption assumption of the Langmuir model. This can be proved by
other studies, in which a homogeneous monolayer chemisorption me-
chanism was also investigated (Ma et al., 2017a; Ma et al., 2016).
Another study by Yuan et al. (2019) used elemental sulfur to modify
LDH, and the result revealed that the unique structure of LDH made it
possible to accommodate more polysulfides, indicating an enhanced
resistance to SO2. Owing to the excellent ion-exchange ability as well as
the large surface area, this emerging material has received much focus
in recent years.Ta
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3.8. Minerals

Pyrite (FeS2) has emerged as a cost-effective adsorbent for Hg(0)
and Hg2+ (Duan et al., 2016; Yang et al., 2018c). Duan et al. (2016)
synthesized nano-scale pyrite particles for the removal of Hg2+ in
water, and found surface precipitation together with adsorption of di-
valent mercury occurs on the surface of pyrite. Another study by Yang
et al. (2018c) used natural pyrite for Hg(0) removal from flue gas.
Reactions between adsorbed Hg(0) and S2− monomer on the surface
was observed, and the formation as well as the desorption of HgS
proved to be the mechanism for Hg(0) removal.

Apart from sulfur-rich minerals, other minerals, especially silicate
minerals such as zeolite, vermiculite and clay minerals can also be
applied for mercury adsorption. Although raw minerals show poor
mercury adsorption capacity, chemically modified minerals have been
reported to possess great adsorption abilities (Shao et al., 2016).
Compared to other adsorbents such as activated carbon, this kind of
material is a low-cost adsorbent, implying possible large-scale appli-
cations (Saleh et al., 2018). The major adsorption mechanism of clay
minerals (i.e. montmorillonite, vermiculite and palygorskite) is ion
exchange (Chen et al., 2015; Tran et al., 2015), while precipitation also
plays a vital role in the case of Na-montmorillonite (Chen et al., 2015).
Other minerals, such as zeolite and diatomite, possess a highly porous
structure, which is beneficial for adsorption after functionalization with
certain groups like hexadecyltrimethylammonium bromide (Shirzadi
and Nezamzadeh-Ejhieh, 2017), CuBr2 (Liu et al., 2019a) and thiose-
micarbazones (Abbas et al., 2018). Removal efficacy of these porous
materials depends largely on these groups, and minerals function as the
supporting structure of the composite.

3.9. Other materials

Manganese oxides have been reported to possess high Hg(0) re-
moval efficiency from flue gas based on catalytic oxidation of elemental
mercury (Scala and Cimino, 2015). The gaseous Hg(0) first is physically
sorbed on the surface of Mn-based oxides. After sorption, Hg(0) is
oxidized to Hg(II) while Mn is reduced. Finally, the oxidized mercury
bind with surface oxygen to form HgO (Ma et al., 2017b). Due to this
mechanism, the higher Mn valence species MnO2 has a better oxidation
performance than Mn2O3 or Mn3O4 (Ma et al., 2017b). Widely available
in the environment, manganese oxides have a low cost, and the en-
vironmental friendliness of this material makes it attractive for further
applications. Based on the mechanism of oxidation, MnO2 amendments
such as birnessite and pyrolusite can be applied in in situ remediation of
Hg-contaminated sediments (Leven et al., 2018; Vlassopoulos et al.,
2018). Microbial sulfate reduction is a fundamental pathway to form
MeHg, and manganese oxide amendments can regulate this process
through redox manipulation (Vlassopoulos et al., 2018). In hetero-
trophic microbial metabolism, Mn(IV) reduction was confirmed to be
the predominant biogeochemical redox process, and sulfate reduction
was suppressed. As a result, MeHg concentrations in pore water de-
creased by 1–2 orders of magnitude, compared with the control. Apart
from Mn oxides, MoSx chalcogenide aerogels can also be utilized for Hg
(0) capture from gaseous phase, where Hg chemically reacted with
MoSx to form HgS. A study by Subrahmanyam et al. (2015) found that
Hg atom can be inserted to SeS bonding sites in the aerogel structure to
form SeHgeS units, leading to the high adsorption capacity of chal-
cogenide aerogels.

Chelating resin can adsorb Hg2+ in the aqueous phase through ion
exchange, which is the rate-limiting step of adsorption. Xiong et al.
(2015) synthesized a novel chelating resin, polyacrylonitrile-2-amino-
1,3,4-thiadiazole through a one-step reaction, and the adsorption ca-
pacity reached 526.9 mg/g. Additionally, the resin can be regenerated
and reused easily by HCl and HNO3. Modified microfiltration mem-
branes can also remove Hg2+ from water. A study by Zhang et al.
(2018b) fabricated a thiol covered polyamide (nylon 66) microfiltration

membrane for the simultaneous removal of oil and Hg2+ from waste-
water, and discovered that chemisorption between thiol groups and
mercury ions according to the HSAB rule was the predominant me-
chanism for mercury removal. Compared to other thiol-modified ma-
terials such as nanomaterials or polymers (Sections 3.1 and 3.2),
membranes can be easily separated from water and regenerated using
HNO3 solution (Zhang et al., 2018b).

4. Innovative remediation technologies

4.1. Soil and solid waste

4.1.1. Phytoremediation with and without microbial assistance
Compared with other technologies, phytoremediation is a cost-ef-

fective and environmentally friendly approach for the remediation of
mercury contaminated soil (Lv et al., 2018). Phytoremediation can be
conducted at large scale in practical applications, and this technique
can also be adopted for hydraulic control (e.g. Superfund Site in Nassau
County, New York)(USEPA, 2017). The cost is estimated to be 37–202
USD/m3 (He et al., 2015; USEPA, 2000b; Wan et al., 2016), which
depends greatly on the contaminant removal efficiency, remediation
duration and treatment of harvested biomass (Linacre et al., 2005).
Phytoremediation involves the use of plants to degrade, extract, vola-
tize or immobilize contaminants from soils, and certain plant species,
known as hyperaccumulators, are the essential parts of the remediation
process (Chamba et al., 2017; Fernández et al., 2017; Liu et al., 2018a).
Hyperaccumulation refers to the ability of a plant to accumulate high
concentrations of metals in the above-ground parts (Rascio and Navari-
Izzo, 2011). It can either be natural owing to intrinsic features of plants
or assisted by microorganisms (Anderson et al., 2005; Franchi et al.,
2017).

A number of plant species have been categorized as mercury hy-
peraccumulators (Chamba et al., 2017). Xun et al. (2017) conducted a
pot experiment to examine the capability of the plant species Cyrtomium
macrophyllum to extract mercury from a mercury contaminated mining
area, and found that the mercury concentration reached 36mg kg−1

with the translocation factor of 2.62, and the leaf tissue of Cyrtomium
macrophyllum showed high resistance to mercury stress. Fernández
et al. (2017) conducted a field study using native plant species (Festuca
rubra L., Leontodon taraxacoides, Equisetum telmateya) for the phytoex-
traction of mercury in a Hg-As mining area, and discovered that mer-
cury mainly accumulated to higher concentrations in the leaves of the
plants, the highest concentration of which reached 84, 78 and
77mg kg−1, respectively. Concentrations of Hg in different tissues may
vary greatly. Typically, the plant accumulates the most Hg in the roots,
followed by the leaves and stems (Marrugo-Negrete et al., 2015;
Marrugo-Negrete et al., 2016; Molina et al., 2006; Wang and Greger,
2004). Marrugo-Negrete et al. (2016) found that the Hg concentrations
in leaves were 2-fold higher than that in stems. This is because the
transport function of stems cannot accumulate Hg, and the Hg is
transported to the leaves for permanent storage (Marrugo-Negrete
et al., 2016).

Sometimes microorganisms play an important role in the phytor-
emediation process, and among the microorganisms involved in phy-
toremediation, rhizosphere bacteria has received much attention
(Gadd, 2000; Liu et al., 2018a). The rhizosphere bacteria can increase
the metal bioavailability in various ways, including altering soil pH,
releasing chelators and oxidation/reduction reactions (Franchi et al.,
2017; Gadd, 2000). According to Franchi et al. (2017), the efficacy of
phytoextraction of Hg was increased up to 45% after the supple-
mentation of plant-associated growth-promoting bacteria (PGPB). By
altering metal mobility and bioavailability, the use of PGPB greatly
facilitates the phytoremediation process (Glick, 2010).

In general, phytoremediation of mercury contaminated sites is a
promising approach because of the low environmental impacts as well
as the simplicity of operation. However, phytoremediation will take a
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long time in most cases, and the remediation efficiency is limited by the
depth of the root as well as the bioavailability of the heavy metal. After
harvest, how to deal with the biomass containing mercury is a tough
problem and may cause health risks if not properly treated.

4.1.2. Immobilization with biochar and other amendments
A few studies investigated the effect of biochars on immobilizing Hg

in soil (Table 6). For instance, a fully-crossed small plot study by
Gilmour et al. (2018) applied pine dust biochar in immobilizing MeHg
in a salt marsh, and found that the application of biochar did not reduce
total Hg, and that the removal efficiency of MeHg was not satisfactory.
However, the application of sulfur-modified biochar proved to be an
ideal approach to reducing Hg2+ in contaminated soil (O'Connor et al.,
2018). Rice husk was modified with non-toxic elemental S, which in-
creased the biochar’s Hg2+ adsorptive capacity by 73%, to 67mg/g,
and the treatment dosage of 5% (dry wt.) reduced 99.3% of freely
available mercury in TCLP leachates compared to untreated soil
(O'Connor et al., 2018). Apart from biochar, other immobilization
amendments were also utilized for the remediation of methylmercury,
such as activated carbon (Gilmour et al., 2018) and activated clay (Yin
et al., 2016). When it comes to the immobilization of Hg(0), selenium
nanoparticles turned out to be effective (Wang et al., 2019c; Wang
et al., 2017b). Under aerobic and anaerobic conditions, selenium na-
noparticles converted 45.8–57.1% and 39.1–48.6% of the Hg(0) in the
soil to the insoluble mercuric selenide (HgSe), respectively (Wang et al.,
2017b). The addition of biochar and other immobilization amendments
is innovative, and mechanisms of Hg-immobilization are still not fully
understood. In addition, we argue that field studies be conducted to
examine the feasibility of these immobilization amendments in real
occurrences.

4.1.3. Microbial reduction and volatilization
Because Hg2+ in soil could be converted to the most toxic form

methylmercury, reducing Hg2+ to elemental mercury Hg(0) is con-
sidered to be detoxification (Wagner-Dobler, 2003). Mercury resistant
bacteria are used in this microbial reduction and volatilization process,
because they possess the mer operon (Nascimento and Chartone-Souza,
2003). The mer operon carries a number of genes and gene products
closely related to the mercury tolerance and reduction mechanism of
these bacteria (Mahbub et al., 2016; Mahbub et al., 2017; Mathema
et al., 2011; McCarthy et al., 2017). As is shown in Fig. 3, merP and
merT genes express transporter proteins which enable Hg to enter the
cytoplasm. Then the mercuric reductase enzyme encoded by merA re-
duces Hg2+ to Hg(0), which diffuses passively out of the cell (Chen

et al., 2018d; Quinones et al., 2013). In some bacteria merB gene ex-
presses organomercury lyase enzyme, which can break the CeHg bound
in organic compounds, making the mercury ion available for the re-
duction (Barkay et al., 2003). Mahbub et al. (2016) used a highly Hg
resistant strain Sphingobium SA2 for reduction and volatilization of
mercury, and 79% of mercury was volatilized in 6 h. Another research
conducted by Mahbub et al. (2017) found 44% removal rate within 6 h
dominated by Sphingopyxis sp. SE2. In order to improve the bioavail-
ability of mercury, Chen et al. (2018d) utilized a chemical extraction
procedure before bacteria reduction. Ten hours of ammonium thio-
sulfate (0.5M) extraction was used to extract mercury from the soil to
the water phase. Then reduction of Hg2+ was conducted and the re-
moval rate reached 81%. Compared to a one-stage method that only
involves bacterial reduction and volatilization, the two-stage approach
is not a cost-effective and green method for remediation. How to in-
crease the removal rate of mercury using simpler methods deserves
further investigation.

4.1.4. Electrokinetic removal
Electrokinetic remediation is frequently employed to remove

Table 6
A list of production parameters and properties of biochar used for Hg removal in different media.

Feedstock Pyrolysis temperature
(°C)

Heating rate (°C/
min)

Residence time
(min)

Surface area (m2/
g)

Pore volume (mL/
g)

Treated media Reference

pine cone 200, 500 7 120 192.97 10.2 soil (Beckers et al., 2019)
pine sawdust 500 10 120 44 0.051 soil (Chen et al., 2018b)
rice husk 550 15 120 143 0.042 soil (O'Connor et al.,

2018)
pine sawdust 700 10 180 335.40 0.152 water (Huang et al., 2019b)
pine sawdust 500 10 180 52.25 0.026 water (Huang et al., 2019b)
wheat straw 600 n.a. 60 4.5 0.0092 water (Tang et al., 2015)
pine sawdust 400 5 60 80.35 0.18 water (Wang et al., 2018a)
cotton straw 600 n.a. 60 203.7 0.162 flue gas (Li et al., 2015d)
municipal solid waste 600 n.a. 120 12.4 0.040 flue gas (Li et al., 2015a)
herb medicine residue 600 20 60 24.92 0.0375 flue gas (Li et al., 2015b)
seaweed 800 20 20 26.20 0.034 flue gas (Liu et al., 2018b)
herb medicine residue 600 20 60 24.9 0.0375 flue gas (Shen et al., 2015)
waste tea 500 n.a. 120 142.05 0.086 flue gas (Shen et al., 2017)
tobacco straw 600 10 60 8.2 n.a. flue gas (Wang et al., 2018b)
rice straw 600 n.a. 20 26.66 0.121 flue gas (Xu et al., 2018)
seaweed 800 n.a. 20 21.15 0.466 flue gas (Xu et al., 2019)
wheat straw 600 n.a. 20 65.151 0.184 flue gas (Yang et al., 2017b)

Fig. 3. A conceptual figure for microbial reduction and volatilization of mer-
cury. MerA: the mercuric reductase enzyme encoded by merA gene.
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mercury from low permeability clay soils or sediments (Wang et al.,
2012). Electrodes are directly inserted into the contaminated soil and
low-intensity direct current is applied. Under this electric field (voltage
gradient< 100 V/m), cations will migrate towards the cathode, while
anions will move to the anode through three mechanisms: electro-
osmosis, electromigration and electrophoresis (Essa et al., 2015). On
most occasions, electrodes are placed in specifically constructed com-
partments containing an electronic solution, and by ionic migration the
dissolved mercury species accumulate in the compartment. The mer-
cury subsequently can be removed by extracting the solution in the
compartment or by precipitation (Rosestolato et al., 2015). Electro-
kinetic removal efficiency is strongly hampered by the low solubility of
mercury in soil. Attempts to enhance the removal efficiency have in-
volved adding chemicals that improve the solubility of mercury. Robles
et al. (2015) added EDTA as an enhancing solution, and the formation
of a strong Hg-EDTA complex ([Hg–EDTA]2−) contributed to the mi-
gration of mercury to the anode. After entering the anode compartment,
a second treatment to remove Hg(II) from the aqueous phase was ap-
plied using a permeable reactive barrier (PRB). Sometimes electro-
kinetic remediation can be combined with adsorption using adsorbents
like granular active carbon (GAC) (Essa et al., 2015; Mu'azu et al.,
2016). By inserting chambers filled with adsorbents between the two
electrodes, mercury can be adsorbed when migrating, thus promoting
the removal efficiency (Essa et al., 2015). However, the relatively high
energy cost, the acidic conditions required for this technology as well as
the interfering effect of other ions during the remediation process has
restricted its field-scale application (Wang et al., 2012). The cost of this
process is estimated to be 177 USD/m3 (USEPA, 2007).

4.1.5. Constructed wetlands
Owing to the low cost of maintenance and operation (48–67 USD/

m2) (Gunes et al., 2011; USEPA, 2000a), constructed wetlands are a
feasible way for mercury remediation. The mechanisms for mercury
removal in constructed wetlands are complex. Major mechanisms in-
clude binding to soils and sediments (through coagulation and floccu-
lation, ion exchange, adsorption oxidation and reduction), precipita-
tion, phytoremediation by macrophytes, and microbial metabolism
(Bachand et al., 2019; Gomes et al., 2014; Marrugo-Negrete et al.,
2017). For example, a study by Bachand et al. (2019) examined the Hg
removal efficiency from surface waters using constructed wetlands
enhanced by Al and Fe coagulation treatments (i.e. polyaluminum
chloride and ferric sulfate), which indicated that floc formation and
methylation suppression was responsible for the Al and Fe treatment
behavior, respectively. Another study conducted by Gomes et al. (2014)
utilized an aquatic macrophyte, Typha domingensis for phytoremedia-
tion of water contaminated with mercury in a constructed wetland with
subsurface flow, whose transfer coefficient reached 7751 L kg−1.

However, it is of note that wetlands are hotspots for Hg methylation,
as has been discussed in Section 2.2. For instance, Feng et al. (2014)
observed that if the sulfate concentration in inflow water is high
(59.9 mg/L), the activity of sulfate-reducing bacteria will be stimulated
and subsequently lead to MeHg formation in the wetland ecosystem.
Another study by Zheng et al. (2013) found that dryout and rewetting
events also promoted Hg methylation and the release of both THg and
MeHg from the soil to surface water. Moreover, the uncertainty of this
technology cannot be neglected and constructed wetlands are time-
consuming compared to other technologies. The plants in the wetland
ecosystem constructed by García-Mercadoa et al. (2017) died before the
end of the treatment for unknown causes and the removal efficiency of
mercury from contaminated soil was not satisfactory (55–71% removed
over 36 weeks). Further research may focus on the mercury transfor-
mation and fate in the constructed wetland to better understand the
remediation mechanism, and the role of microorganisms (as mentioned
in Section 4.1.3) in this ecosystem should be examined (especially
sulfate-reducing bacteria involved in MeHg processes), instead of
merely relying on macrophytes or chemical treatment.

4.1.6. Enhanced thermal desorption and soil washing
As is mentioned in Section 2.1, thermal desorption of mercury can

attain an acceptable decontamination level when the heating tem-
perature is above 600 °C. With the aim of reducing the energy cost,
thermal desorption can be enhanced by chemicals that can react with
hardly volatile mercury species. Citric acid, a natural low-molecular-
weight organic acid, was shown to allow reducing the heating tem-
perature to 400 °C (Ma et al., 2015). This is explained by the acidic
environment provided by citric acid, which facilitated desorption of
mercury cations from the surface of soil particles. Treating con-
taminated soil (initial concentration 134mg/kg) for 60min reduced the
mercury concentration to 1.1 mg/kg. Also using FeCl3 the heating
temperature can be reduced, which is attributed to the formation of
mercury chlorides with low boiling points (Ma et al., 2014). Moreover,
both citric acid and FeCl3 treated soils retained most of the physico-
chemical properties, indicating the possibility for agricultural reuse (Ma
et al., 2015; Ma et al., 2014).

Soil washing can permanently remove contaminants from soil via
physical separation or chemical leaching (Wang et al., 2012). In situ soil
washing can avoid the risks associated with contaminant transport
during off-site treatment, but one has to make sure that all leachate is
recovered, and not leached out in neighboring soil and groundwater
(He et al., 2015). Although water alone can be utilized as the washing
solution, chemicals such as HCl, HNO3, EDTA and Na2S2O3 are often
added during the washing process in order to improve the Hg removal
efficiency (Han et al., 2019; Rodriguez et al., 2012). Han et al. (2019)
examined the leaching behavior of sodium thiosulfate treated Hg-con-
taminated soil, and found that more than 90% of weak acid-soluble and
reducible mercury could be extracted based on BCR analysis (initial
total mercury content 1100mg/kg). Generally, soil washing is suitable
for soils with high permeability (i.e. sandy or silty soils). However, the
disadvantages include: (1) not suitable for low permeability soils (e.g.
clay); (2) the high water consumption for the washing process; (3)
extracted mercury enters the washing solution, which requires water
treatment before discharge.

4.2. Water and wastewater

4.2.1. Algae-based Hg removal
The application of marine macroalgae is a cost-effective technology

for mercury removal from saline waters (Henriques et al., 2015).
Marine algae can be divided into three categories: brown algae
(Phaeophyta), red algae (Rhodophyta) and green algae (Chlorophyta),
the differences of which lie in the cell wall, indicating binding pre-
ferences for different metals (Romera et al., 2007). A study by
Henriques et al. (2015) investigated the Hg2+ removal efficiency of
three types of algae, and found that Ulva lactuca, a green macroalgae
which possesses several functional groups such as hydroxyl, amino,
sulfate and carbonyl, performed best. Mercury removal is attributed to
both bioaccumulation by the living organisms and biosorption on the
biomass, either from living or non-living algae. Compared to bioaccu-
mulation, biosorption by dried biomass is a much quicker process, be-
cause only physicochemical mechanisms account for the Hg adsorption.
However, the utilization of living macroalgae showed better removal
efficiency, because the adsorbed mercury was transported into the cells,
freeing the binding sites for subsequent adsorption (Henriques et al.,
2015). Upon accumulation, Hg will bind strongly in macroalgae tissues
without being transferred to more toxic species such as methylmercury,
which was also found in another study (Henriques et al., 2017). In both
studies, the bioconcentration factor of mercury was as high as 2000
(Henriques et al., 2017; Henriques et al., 2015), indicating great mer-
cury accumulation ability of Ulva lactuca. However, discrepancy exists
whether Hg will not be transferred into MeHg by algae. Lei et al. (2019)
found that algal organic matter enhanced the abundance of microbial
methylators, thus raising MeHg concentrations in a eutrophic lake. This
discrepancy may be due to the algal species, and deserves further
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investigations. Besides, this technique can only be applied when the
initial concentration of Hg2+ exerts no critical toxic effect to cells (both
studies adopted an initial concentration of 100 μg/L), which has limited
its application.

4.2.2. Biochar-based Hg removal
Eco-friendly biochars are regarded as promising adsorbents for

mercury removal from water, and biochar based Hg removal is an in-
novative technology due to its excellent removal efficiency as well as
cost-efficiency and environmentally friendliness (Boutsika et al., 2014;
El Hanandeh et al., 2016; Faheem et al., 2018; Jia et al., 2019). The
active sites on the surface of biochar such as eOH, C]O, π bond and
CeO make it possible for chemical modification of biochar by adding
thiol or amino groups with the aim of enhancing the adsorption cap-
ability (Huang et al., 2019b). Chemical binding of Hg2+ and surface
active sites (e.g. eSH, eNH2, eOH, eCOOH) is the major mechanism of
adsorption (Huang et al., 2019b; Liu et al., 2016; Tang et al., 2015). It is
noteworthy that biochars derived from different feedstocks may greatly
influence the adsorption behavior, according to Liu et al. (2016). The
results of X-ray absorption indicate that mercury binds to S in sulfur-
rich biochars, and to O and Cl in biochars with low sulfur content.
Feedstock will not only affect the binding mechanism of biochars, but
also sulfate concentrations in the aqueous phase, which may restrict the
utilization of certain types of biochars for mercury removal. This is
because the raised SO4

2− concentrations released from biochar (up to
1000mg/L) can be used as electron acceptors, thus enhancing the ac-
tivity of sulfate reducing bacteria, which are regarded as major Hg
methylators (Hsu-Kim et al., 2013). It has been reported that biochar
produced from poultry manure or mushroom soil will elevate sulfate
concentrations, so special care must be taken when selecting the feed-
stock of biochars to prevent the release of sulfate when treating mer-
cury contaminated water (Liu et al., 2016). But results of Muller and
Brooks (2019) indicate that SO4

2− concentration (1–65mg/L) did not
influence Hg methylation. It is hypothesized that this discrepancy may
be due to the variance of released SO4

2− concentrations.

4.2.3. Photocatalytic nano-array
When it comes to Hg2+ detection in wastewater, surface enhanced

Raman spectroscopy (SERS) is a simple technique (Chen et al., 2012).
Based on the interaction of Hg2+ ions with SERS active metal nano-
particles, high selectivity towards Hg2+ together with high sensitivity
(order of µg/L) can be achieved. In the light of this mechanism,
Kandjani et al. (2015) synthesized SERS active ZnO/Ag nano-arrays for
both Hg2+ detection and removal from wastewater (Fig. 4). Initially,
the ZnO layer was prepared through sol-gel method, and then ZnO
nano-arrays were grown by soft hydrothermal method. Finally silver
nanoparticles were merged with the nano-arrays via electroless plating.
The intensity variation of the Raman band at 1358 cm−1 and the
photocatalytic reduction of Hg2+ to Hg(0) by ZnO/Ag arrays account
for the detection and the removal mechanism, respectively. The re-
generation of nano-arrays, by heating at 150 °C for 2 h under vacuum, is
rather easy. On the whole, this remediation technology shed light on
the simultaneous detection and removal of Hg2+, and the reusability of
nano-arrays makes this technology cost-effective.

4.3. Air and gas

4.3.1. Catalytic oxidation and removal
As depicted in Section 2.2, removal of elemental mercury from

gaseous phases, especially coal combustion flue gas, can be accom-
plished by oxidation. Chen et al. (2016) synthesized IrO2 modified Ce-
Zr solid solution catalysts to achieve the effective catalytic oxidation of
elemental mercury. It was found that Hg(0) was first oxidized to HgO
with the help of surface chemisorbed oxygen species. After this process,
HgO could either desorb from the catalysts by itself or react with HCl to
be released in the form of gaseous HgCl2 (Chen et al., 2016). Another

study by He et al. (2016) also found that oxidation was enhanced by
HCl as a result of the Deacon mechanism. Recently, photocatalytic
oxidation has gained much concern. Under ultraviolet or visible light
irradiation, a semiconductor is capable of absorbing photons that excite
electrons from the valence band to the conduction band (Qi et al., 2016;
Wu et al., 2018a). During this process, the induced electrons (e−) and
positively charged holes (h+) on the surface of the semiconductor
material can induce more reactive constituents, such as the hydroxyl
radical (%OH) (Jiang et al., 2016; Qi et al., 2016) or superoxide radical
(%O2

−) (Zhang et al., 2017a), which effectuate the oxidation of Hg(0) to
Hg(II). One typical photocatalyst is TiO2 (Wu et al., 2018a). However,
owing to the wide energy band gap (3.2 eV) of TiO2, this catalyst can
only be aroused by UV irradiation. In order to overcome this drawback,
the effect of Bi based photocatalysts which can be activated by visible
light irradiation on Hg(0) oxidation have been examined (Jiang et al.,
2016; Qi et al., 2016). According to Qi et al. (2016), the photo-gener-
ated holes (h+) on the surface of BiOIO3 catalyst were the dominant
oxidation species responsible for Hg(0) removal. Another study by
Jiang et al. (2016) fabricated a BiOI/BiOIO3 composite as the photo-
catalyst, and found that the stability of this catalyst is satisfactory,
which can be used for at least 5 times without obvious change of re-
moval efficiency. Apart from Bi based photocatalysts, Ag based cata-
lysts such as Ag2CO3 (Zhang et al., 2017a), AgCl (Zhang et al., 2018a)
can oxidize Hg(0) under visible light. In general, catalytic oxidation,
especially photocatalytic oxidation induced by visible light, has a broad
application prospect for elemental mercury removal.

4.3.2. Co-removal of NO and Hg
Selective catalytic reduction (SCR) is widely applied in power plants

to remove NOx from the flue gas (Wang et al., 2017a). In addition to the
effective removal of NO, the catalyst used in the SCR process facilitates
the oxidation of elemental mercury [Hg(0)] into divalent mercury [Hg
(II)], which can be consequently separated from the gaseous phase
(Table 7) (Ma et al., 2018). The synergistic conversion process offers a
possibility for simultaneous removal of Hg(0) and NO under relatively
low temperature within the range of 175 °C and 400 °C, which is de-
termined by the characteristics of the commercial catalysts utilized for
the SCR process (Zhang et al., 2015; Zhao et al., 2016b). The traditional
SCR catalysts such as V2O5 or TiO2 can be modified by cerium (Ce),
which is because of the high redox ability of Ce4+/Ce3+ couple
(standard electrode potential 1.61 V) (Chi et al., 2017; Gao et al., 2018;
Wang et al., 2017a). This modification method can also be utilized to
synthesize nanomaterials for mercury removal (see Section 3.1).

According to the literature reviewed, co-existing constituents in the
flue gas will impact the co-removal efficiency. For instance, Hg(0)
oxidation was inhibited with increasing concentration of NH3 (Chi
et al., 2017) or SO2 (Li et al., 2018) but enhanced in the presence of O2

(Liu et al., 2019b; Zhang et al., 2015). This phenomenon can also be
found in other types of flue gas mercury removal technologies like
biochar-based Hg removal (see Section 4.3.4). Notably, the concentra-
tion of NO will also influence the Hg oxidation performance of cata-
lysts, as a high NO concentration will exert toxic effects to the catalysts,
thus reducing the removal efficiency of mercury (Zhang et al., 2017c).
So care must be taken if SCR is used to remove Hg(0), and an optimum
NO concentration as well as temperature will ensure the removal effi-
ciency of elemental mercury.

4.3.3. Advanced oxidation
Advanced oxidation has gained much attention for Hg(0) control

and multicomponent flue gas purification. During this process, the
hydroxyl radical (%OH) together with other reactive oxygen species
including superoxide (%O2

−) and hydrogen peroxide (H2O2) are gen-
erated, all of which possess a high oxidation potential (Liu and
Adewuyi, 2016). There are four major types of advanced oxidation
technologies (AOTs), namely, plasma AOTs, TiO2 photocatalytic AOTs,
photochemical AOTs and activated oxidant AOTs (Liu and Adewuyi,
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2016). Of these, activated oxidant AOTs are the most promising owing
to the low energy consumption as well as the high oxidation capability.
A study by Liu et al. (2015) added Fe2+ to H2O2 solution so as to form a
fenton system, and it was found that Hg(0) was oxidized by %OH and
H2O2 in fenton solution. Another research by Liu and Wang (2019) used
vacuum ultraviolet light (VUV) to activate the O3/H2O/O2 system, and
the %OH together with SO4

−% was found to be responsible for Hg(0)
oxidation. This technology is regarded as an environmentally friendly
method for Hg(0) removal. However, there still exist some challenges
for industrial applications.

4.3.4. Biochar-based flue gas treatment
A number of studies investigated the effect of Hg(0) removal in flue

gas based on modified biochars (Table 6). Certain functional groups
(e.g. CeO, CeCl, CeI, C]O) proved to be the activated sites and im-
proved the Hg(0) removal efficiency (Li et al., 2015a; Li et al., 2015b; Li
et al., 2015d; Liu et al., 2018b; Shen et al., 2017; Wang et al., 2018b;
Yang et al., 2016). After pyrolysis of biochars, physical activation such
as microwave (Shen et al., 2015) or non-thermal plasma (Wang et al.,
2018b) can be utilized to increase the number of active sites, improve
pore structure and introduce certain functional groups. However, re-
searchers have found that chemical activation and chemisorption are
much more important for the removal of Hg(0) (Li et al., 2015d).
Modifying the biochar using NH4Cl was found to be an optimal mod-
ification approach because of high efficiency and low price (Li et al.,
2015a; Li et al., 2015b; Li et al., 2015d; Shen et al., 2015; Shen et al.,
2017; Xu et al., 2019; Zhu et al., 2016). The removal of Hg(0) by NH4Cl
impregnated biochars was due to the CeCl generation on the surfaces of
biochars, which may transform Hg(0) to HgCl2 or other HgeCl com-
plexes. XPS analysis proved the theory that most of the combined CeCl
groups on the surface of biochars were changed to ionic Cl during the

chemisorption process (Li et al., 2015a; Li et al., 2015d). Apart from
NH4Cl, other chemicals such as NH4Br, KI, KCl, KBr could also modify
biochars to attain a better capability of removing Hg(0) (Liu et al.,
2018b), and halogen plays an important role in chemisorption. Several
studies also examined the effects of biochars modified by CuOx and
CeO2 (Xu et al., 2018) and Mn-Ce mixed oxides (Yang et al., 2017b),
which are regarded as promising catalysts for the oxidizing of Hg(0). In
recent years, magnetic biochars (MBC) have gained much attention in
flue gas Hg(0) treatment. Yang et al. (2016) discovered that it is the C]
O group that act as electron acceptors, thus promoting the electron
transfer for Hg(0) oxidation. In addition, Fe3O4 in MBC acts as ad-
sorption/oxidation sites for Hg(0) reaction, resulting in the formation of
Hg–Fe3O4.

Biochar-based flue gas treatment is a promising approach to remove
Hg(0), but other constituents in the flue gas will have an effect on the
removal efficiency. It is reported that O2 and NO in the flue gas pro-
moted the Hg(0) removal, while high concentrations of H2O and SO2

inhibited this process (Xu et al., 2018; Xu et al., 2019; Yang et al.,
2017b). Thus a new modification method which can diminish the in-
fluence of other components in the flue gas is needed.

5. Challenges and future research directions

Traditional remediation technologies have been applied widely for
mercury removal, despite some significant disadvantages. Firstly, the
high cost of some methods such as thermal desorption and adsorption
by activated carbon is an obstacle for large-scale applications (Gilmour
et al., 2018; Ma et al., 2015). When it comes to mercury stabilization
and containment in soil using technologies that are suited for applica-
tion on large sites, long-term monitoring of the stability of mercury
should be conducted (Wang et al., 2012).

Fig. 4. Detailed (a) Synthesis and (b) Sensing,
Removal and Regeneration Processes, Starting with
(a1) ZnO Seed Layer synthesis through Sol-Gel
method, (a2) ZnO Hydrothermal Array Growth,
(a3) Decoration of the Nano-Arrays with Palladium
Nanoparticles by Charge Exchange Between Sn2+

and Pd2+ at the Surface of the ZnO Nano-Arrays,
(a4) Performing Silver Electroless Plating
Decorating the ZnO Arrays; Followed by, (b1)
Adsorption of Hg2+ Ions on ZnO/Ag Nano-Arrays
and Subsequent Adsorption of Raman Marker on
the Arrays, (b2) Raman Detection of Marker on
Mercury Contaminated ZnO/Ag Nano-Arrays, (b3)
Photocatalytic Degradation of Marker Dye and
Finally, (b4) Removing Mercury Contamination
from the ZnO/Ag Nano-Arrays by Using Heat
Treatment under Vacuum As the Regeneration
Step. Reprinted with permission from Ref.
(Kandjani et al., 2015). Copyright 2015 American
Chemical Society.
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The major mechanism for Hg removal by emerging remediation
materials is adsorption. Various materials with high specific area, large
porosity and active sites for mercury are explored in numerous studies.
Although features such as specific area, pore size and adsorption ca-
pacity have been thoroughly investigated to reveal the characteristics of
sorbents, it is suggested that future research focus on the partition
coefficient of Hg species to compare the adsorption efficiency of dif-
ferent materials easily. In addition, more studies should be conducted to
examine the adsorption efficacy of these sorbents in environmentally
relevant solutions, as solution chemistry affects their adsorption per-
formance greatly. For instance, dissolved organic matter (DOM)
strongly affects Hg speciation, transformation and reactivity in natural
waters. The complexation of Hg(II)-DOM can make Hg(II) unavailable
for adsorption (Johs et al., 2019). Under sulfidic conditions, microbial
methylation can be enhanced owing to the increased bioavailability of
Hg(II)(Graham et al., 2012). Besides, other co-existing metal ions may
cause competitive adsorption, thus affecting the adsorption perfor-
mance (Leus et al., 2017). In order to reduce the cost, waste-derived
materials are utilized for mercury adsorption. However, other toxic
constituents may exist in these materials, causing potential health risks.
Another pathway to maximize cost-efficiency of emerging materials is
reuse. Some studies have investigated the regeneration of adsorbents,
and most of the emerging materials showed great potential for reuse,
while other materials like MOFs and minerals cannot be regenerated
while maintaining their sorption capacity (Ke et al., 2017).

It is of note that many of these adsorbents are eco-unfriendly. For
instance, the synthesis of nanoparticles may use toxic reagents (e.g.
NaBH4), and H2 can be formed, presenting an occupational safety risk.
Besides, the large energy input during the traditional assembly proce-
dure result in large environmental footprints (Wang et al., 2019d).
During the regeneration process, eluent such as EDTA is regarded as a
major contaminant in surface water (EEA, 1996; WHO, 2011). It is
suggested that life cycle assessment (LCA) should be conducted to ex-
amine the overall environmental impact during the entire process of
raw material acquisition, adsorbent manufacturing, regeneration and
waste management (Yami et al., 2015). In addition, to quantify the
overall greenhouse gas emission of these sorbents, carbon footprint
analysis can be conducted (Kazemi et al., 2019). For practical use of
these emerging materials, further studies should be carried out: (1)
more studies should synthesis “green” sorbents to minimize the en-
vironmental impact of adsorbents; (2) more studies should focus on
improving the stability of these materials, especially MOFs; (3) more
research should examine the reusability of emerging materials to assure
cost-efficiency; (4) more investigations about the fundamental me-
chanisms for mercury adsorption by these adsorbents should be con-
ducted for a better understanding of the adsorption behavior; (5) more
studies should test these materials in real conditions, rather than merely
in controlled laboratory experiments.

Some innovative remediation technologies such as microbial re-
duction and photocatalytic nano-array lack large-scale applications,
and the effectiveness of these innovative technologies in field condi-
tions should be examined. Remediation methods involving the trans-
formation of mercury by organisms such as phytoremediation and
algae-based Hg removal can only be utilized when Hg concentrations
do not exert toxic effect on organisms. Besides, the removal efficiency
of mercury from the flue gas is affected by other components in the flue
gas (e.g. SO2, NOx and H2O). After Hg(0) oxidation, how to properly
handle the oxidized Hg(II) in the fly ash is another problem. The fly ash
should be stabilized to avoid Hg leaching, and feasibility of fly ash
utilization for other purposes should be assessed carefully. For these
innovative methods to be validated, future studies should consider
following aspects: (1) the translation of experimental data to full scale
operation, i.e., the industrial scale or field conditions in the case of soil
remediation; (2) the combination of different remediation technologies
such as combination of phytoremediation and microbial reduction to
create genetically modified plants which can reduce Hg2+ to less toxicTa
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Hg(0); (3) improving the separation efficiency of the adsorbents from
environmental media, especially from water; (4) methods for simulta-
neous detection and removal of mercury from aqueous phase; (5) di-
minishing the impact of other constituents in the flue gas during the
adsorption and oxidation process of elemental mercury.
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