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PARTIAL FOURIER SERIES ON COMPACT LIE GROUPS

ALEXANDRE KIRILOV, WAGNER A. A. DE MORAES, AND MICHAEL RUZHANSKY

Abstract. In this note we investigate the partial Fourier series on a product of two compact Lie

groups. We give necessary and sufficient conditions for a sequence of partial Fourier coefficients to

define a smooth function or a distribution. As applications, we will study conditions for the global

solvability of an evolution equation defined on T1
× S3 and we will show that some properties of this

evolution equation can be obtained from a constant coefficient equation.

Contents

1. Introduction 1

2. Fourier analysis on compact Lie groups 2

3. Partial Fourier series 5

4. Example: Global solvability of a vector field on T1 × S3 13

4.1. Normal form 18

Acknowledgments 20

References 20

1. Introduction

The study of global properties for vector fields and systems of vector fields defined on closed manifolds

has made a great advance in the last decades, especially in the case where the manifold is a torus

or a product of a torus by another closed manifold. See, for example, the impressive list of articles

[2, 3, 7, 14–18, 20–22] and references therein, discussing problems related to the global solvability and

global hypoellipticity in the smooth, analytical and ultradifferentiable senses.

One of the main tools in these references is the characterization of the functional environments via the

asymptotic behavior of its Fourier coefficients, especially of the partial Fourier coefficients with respect

to one or more variables.

For example, in the case of evolution equations, the use of partial Fourier series in the spatial variable

can reduce the problem to find solutions to a sequence of ordinary differential equations depending on the

time, for which the methods of control of asymptotic behavior are much more developed and understood.

This technique is used in [1, 4, 5, 9–11,19] and several others references.
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A natural step in the development of the theory is to extend such techniques to the study of global

properties of vector fields in compact Lie Groups. For instance, consider the operator P : C∞(T1×S3) →
C∞(T1 × S3) defined by

(1.1) Pu(t, x) := ∂tu(t, x) + a(t)Xu(t, x),

where X is a left-invariant vector field on S3 and a ∈ C∞(T1) is a real-valued function.

Taking the Fourier series with respect to the second variable, we obtain a system of ordinary differential

equations on t, which can be easily solved. The analysis of the behavior of these solutions at infinity

will allow us to say if the corresponding Fourier partial series converges to a smooth (or distributional)

solution of the problem.

In this work we define precisely the partial Fourier coefficients of functions and distributions, and we

obtain the characterization of functions and distributions by its partial Fourier series on a product of

compact Lie groups.

The paper is organized as follows. In Section 2 we present some classical results about Fourier

analysis on compact Lie groups and fixed the notation that will be used henceforth. In Section 3 first

we establish the relation of the Fourier analysis of a product of two compact Lie groups with the Fourier

analysis of each compact Lie group. Then we define the partial Fourier coefficients and we give necessary

and sufficient conditions for a sequence of partial Fourier coefficients to define a smooth function or a

distribution. In section 4 we present two applications of the theory developed in the previous section.

First we will study the global C∞-solvability of the operator (1.1) through its partial Fourier coefficients.

Then, we present a conjugation that transform the operator (1.1) in a constant coefficient operator.

2. Fourier analysis on compact Lie groups

In this section we introduce most of the notations and preliminary results necessary for the develop-

ment of this work. A very careful presentation of these concepts and the demonstration of all the results

presented here can be found in the references [12] and [23].

Let G be a compact Lie group and let Rep(G) be the set of continuous irreducible unitary representa-

tions of G. Since G is compact, every continuous irreducible unitary representation φ is finite dimensional

and it can be viewed as a matrix-valued function φ : G→ Cdφ×dφ , where dφ = dimφ. We say that φ ∼ ψ

if there exists an unitary matrix A ∈ Cdφ×dφ such that Aφ(x) = ψ(x)A, for all x ∈ G. We will denote

by Ĝ the quotient of Rep(G) by this equivalence relation.

For f ∈ L1(G) we define the group Fourier transform of f at φ as

(2.1) f̂(φ) =

∫

G

f(x)φ(x)∗ dx,

where dx is the normalized Haar measure on G. By the Peter-Weyl theorem, we have that

(2.2) B :=
{√

dimφφij ; φ = (φij)
dφ

i,j=1, [φ] ∈ Ĝ
}
,
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is an orthonormal basis for L2(G), where we pick only one matrix unitary representation in each class

of equivalence, and we may write

f(x) =
∑

[φ]∈Ĝ

dφTr(φ(x)f̂ (φ)).

Moreover, the Plancherel formula holds:

(2.3) ‖f‖L2(G) =


∑

[φ]∈Ĝ

dφ ‖f̂(φ)‖2HS




1/2

=: ‖f̂‖ℓ2(Ĝ),

where

‖f̂(φ)‖2HS = Tr(f̂(φ)f̂ (φ)∗) =

dφ∑

i,j=1

∣∣f̂(φ)ij
∣∣2.

Let LG be the Laplace-Beltrami operator of G. For each [φ] ∈ Ĝ, its matrix elements are eigenfunctions

of LG correspondent to the same eigenvalue that we will denote by −ν[φ], where ν[φ] ≥ 0. Thus

−LGφij(x) = ν[φ]φij(x), for all 1 ≤ i, j ≤ dφ,

and we will denote by

〈φ〉 :=
(
1 + ν[φ]

)1/2

the eigenvalues of (I−LG)
1/2.We have the following estimate for the dimension of φ (Proposition 10.3.19

of [23]): there exists C > 0 such that for all [ξ] ∈ Ĝ it holds

(2.4) dφ ≤ C〈φ〉
dim G

2 .

For x ∈ G, X ∈ g and f ∈ C∞(G), define

LXf(x) :=
d

dt
f(x exp(tX))

∣∣∣∣
t=0

.

Notice that the operator LX is left-invariant. Indeed,

πL(y)LXf(x) = LXf(y
−1x) =

d

dt
f(y−1x exp(tX))

∣∣∣∣
t=0

=
d

dt
πL(y)f(x exp(tX))

∣∣∣∣
t=0

= LXπL(y)f(x),

for all x, y ∈ G.

When there is no possibility of ambiguous meaning, we will write only Xf instead of LXf .

Let G be a compact Lie group of dimension n and let {Xi}ni=1 be a basis of its Lie algebra. For a

multi-index α = (α1, · · ·αn) ∈ Nn
0 , we define the left-invariant differential operator of order |α|

∂α := Y1 · · ·Y|α|,

with Yj ∈ {Xi}ni=1, 1 ≤ j ≤ |α| and ∑
j:Yj=Xk

1 = αk for every 1 ≤ k ≤ n. It means that ∂α is a

composition of left-invariant derivatives with respect to vectors X1, . . . , Xn such that each Xk enters ∂α

exactly αk times. We do not specify in the notation ∂α the order of vectors X1, . . . , Xn, but this will

not be relevant in the arguments that we will use in this work.
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We equipped C∞(G) with the usual Frchet space topology defined by seminorms pα(f) = max
x∈G

|∂αf(x)|.
Thus, the convergence on C∞(G) is just the uniform convergence of functions and all their derivatives:

fk → f in C∞(G) if ∂αfk(x) → ∂αf(x), for all x ∈ G, due to the compactness of G. We define the

space of distributions D′(G) as the space of all continuous linear functional on C∞(G). For u ∈ D′(G),

we define the distribution ∂αu as

〈∂αu, ψ〉 := (−1)|α|〈u, ∂αψ〉,

for all ψ ∈ C∞(G).

Let α ∈ Nn
0 . The symbol of ∂α at x ∈ G and ξ ∈ Rep(G) is

(2.5) σ∂α(x, φ) := φ(x)∗(∂αφ)(x) ∈ Cdφ×dφ .

Notice that the symbol of ∂α does not depends of x ∈ G because ∂α is a left-invariant operator. There

exists C0 > 0 such that

(2.6) ‖σ∂α(φ)‖op ≤ C
|α|
0 〈φ〉|α|,

for all α ∈ Nn
0 and [φ] ∈ Ĝ (see [8], Proposition 3.4), where ‖ · ‖op stands for the usual operator norm

and, from Chapter 2 of [13], we have

(2.7) ‖σ∂α(φ)‖op ≤ ‖σ∂α(φ)‖HS ≤
√
dφ‖σ∂α(φ)‖op.

For every integer M ≥ dimG
2 there exists CM > 0 such that

(2.8) ‖φij‖L∞(G) ≤ CM 〈φ〉M ,

for all [φ] ∈ Ĝ, 1 ≤ i, j ≤ dφ (see [8], Lemma 3.3).

Smooth functions on G can be characterized in terms of their Fourier coefficients comparing with

powers of the eigenvalues of (I − LG)
1/2. Precisely, the following statements are equivalent:

(i) f ∈ C∞(G);

(ii) for each N > 0, there exists CN > 0 such that

‖f̂(φ)‖HS ≤ CN 〈φ〉−N
,

for all [φ] ∈ Ĝ;

(iii) for each N > 0, there exists CN > 0 such that

|f̂(φ)ij | ≤ CN 〈φ〉−N
,

for all [φ] ∈ Ĝ, 1 ≤ i, j ≤ dφ.

By duality, we have a similar result for distributions on G, where we define

û(φ)ij := u(φji).

This definition agrees with (2.1) when the distribution comes from a L1(G) function. The following

statements are equivalent:

(i) u ∈ D′(G);
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(ii) there exist C, N > 0 such that

‖û(φ)‖HS ≤ C〈φ〉N ,

for all [φ] ∈ Ĝ;

(iii) there exist C, N > 0 such that

|û(φ)ij | ≤ C〈φ〉N ,

for all [φ] ∈ Ĝ, 1 ≤ i, j ≤ dφ.

3. Partial Fourier series

Let G1 and G2 be compact Lie groups, and set G = G1 × G2. Let ξ ∈ Hom(G1,Aut(V1)) and

η ∈ Hom(G2,Aut(V2)). The external tensor product representation ξ ⊗ η of G on V1 ⊗ V2 is defined by

ξ ⊗ η : G1 ×G2 → Aut(V1 ⊗ V2)

(x1, x2) 7→ (ξ ⊗ η)(x1, x2) : V1 ⊗ V2 → V1 ⊗ V2

(v1, v2) 7→ ξ(x1)(v1)⊗ η(x2)(v2)

We point out that the external tensor product of unitary representation is also unitary. More-

over, if ξ ∈ Hom(G,U(dξ)) and η ∈ Hom(G,U(dη)) are matrix unitary representations, then ξ ⊗ η ∈
Hom(G,U(dξdη)) is also a matrix unitary representation and

ξ ⊗ η(x1, x2) = ξ(x1)⊗ η(x2) ∈ Cdξdη×dξdη ,

where ξ(x1)⊗ η(x2) is the Kronecker product of these matrices, that is,

ξ(x1)⊗ η(x2) =




ξ(x1)11η(x2) · · · ξ(x1)1dξ
η(x2)

...
. . .

...

ξ(x1)dξ1η(x2) · · · ξ(x1)dξdξ
η(x2)


 .

It is enough to study continuous irreducible unitary representations of G1 and G2 to obtain the

elements of Ĝ, since for every [φ] ∈ Ĝ, there exist [ξ] ∈ Ĝ1 and [η] ∈ Ĝ2 such that φ ∼ ξ ⊗ η, that

is, [φ] = [ξ ⊗ η] ∈ Ĝ and dφ = dξ · dη. Moreover, [ξ1 ⊗ η1] = [ξ2 ⊗ η2] if and only if [ξ1] = [ξ2] and

[η1] = [η2]. The proof of this fact can be found on [6] (Chapter II, Proposition 4.14). Therefore, the map

[ξ ⊗ η] 7→ ([ξ], [η]) is a bijection from Ĝ to Ĝ1 × Ĝ2.

It is easy to see that LG = LG1
+ LG2

, so ν[ξ⊗η] = ν[ξ] + ν[η]. Therefore we have

(3.1)
1

2
(〈ξ〉+ 〈η〉) ≤ 〈ξ ⊗ η〉 ≤ 〈ξ〉+ 〈η〉,

for all [ξ] ∈ Ĝ1 and [η] ∈ Ĝ2.

Let f ∈ L1(G) and [φ] ∈ Ĝ. Let [ξ] ∈ Ĝ1 and [η] ∈ Ĝ2 such that [φ] = [ξ ⊗ η]. Notice that

f̂(ξ ⊗ η) =

∫

G

f(x)(ξ ⊗ η)(x)∗ dx

=

∫

G2

∫

G1

f(x1, x2)(ξ(x1)⊗ η(x2))
∗ dx1dx2

=

∫

G2

∫

G1

f(x1, x2)ξ(x1)
∗ ⊗ η(x2)

∗ dx1dx2.
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Thus f̂(ξ ⊗ η) ∈ Cdξdη×dξdη with elements

f̂(ξ ⊗ η)ij =

∫

G2

∫

G1

f(x1, x2)(ξ(x1)
∗ ⊗ η(x2)

∗)ij dx1dx2

=

∫

G2

∫

G1

f(x1, x2)ξ(x1)nm η(x2)sr dx1dx2

where 1 ≤ m,n ≤ dξ, 1 ≤ r, s ≤ dη are given by

m =
⌊
i−1
dη

⌋
+ 1,

n =
⌊
j−1
dη

⌋
+ 1,

r = i−
⌊
i−1
dη

⌋
dη,

s = j −
⌊
j−1
dη

⌋
dη.

Similarly for u ∈ D′(G), we have

û(ξ ⊗ η)ij =
〈
u, (ξ ⊗ η)ji

〉
=
〈
u, ξnm × ηsr

〉
,

where (ξnm × ηsr)(x1, x2) := ξ(x1)nmη(x2)sr .

Definition 3.1. Let G1 and G2 be compact Lie groups and, set G = G1 × G2. Let f ∈ L1(G), ξ ∈
Rep(G1), and x2 ∈ G2. The ξ-partial Fourier coefficient of f at x2 is defined by

f̂(ξ, x2) =

∫

G1

f(x1, x2) ξ(x1)
∗ dx1 ∈ Cdξ×dξ ,

with components

f̂(ξ, x2)mn =

∫

G1

f(x1, x2) ξ(x1)nm dx1, 1 ≤ m,n ≤ dξ.

Similarly, for η ∈ Rep(G2) and x1 ∈ G1, we define the η-partial Fourier coefficient of f at x1 as

f̂(x1, η) =

∫

G2

f(x1, x2) η(x2)
∗ dx2 ∈ Cdη×dη ,

with components

f̂(x1, η)rs =

∫

G2

f(x1, x2) η(x2)sr dx1, 1 ≤ r, s ≤ dη.

By the definition, the function

f̂(ξ, · )mn : G2 −→ C

x2 7−→ f̂(ξ, x2)mn

belongs to L1(G2) for all ξ ∈ Rep(G1), 1 ≤ m,n ≤ dξ. Similarly, the function

f̂( · , η)rs : G1 −→ C

x1 7−→ f̂(x1, η)rs

belongs to L1(G1) for all η ∈ Rep(G2), 1 ≤ r, s ≤ dη.

Let ξ ∈ Rep(G1) and η ∈ Rep(G2). Since f̂(ξ, · )mn ∈ L1(G2) for all 1 ≤ m,n ≤ dξ, we can take its

η-coefficient of Fourier:

̂̂f(ξ, η)mn :=

∫

G2

f̂(ξ, x2)mnη(x2)
∗ dx2 ∈ Cdη×dη

with components

̂̂f(ξ, η)mnrs
=

∫

G2

f̂(ξ, x2)mnη(x2)sr dx2

=

∫

G2

∫

G1

f(x1, x2)ξ(x1)nm η(x2)sr dx1dx2,
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for 1 ≤ r, s ≤ dη. Similarly, since f̂( · , η)rs ∈ L1(G1) for all 1 ≤ r, s ≤ dη, we can take its ξ-coefficient of

Fourier:

̂̂f(ξ, η)rs :=
∫

G1

f̂(x1, η)rsξ(x1)
∗ dx1 ∈ Cdξ×dξ

with components

̂̂f(ξ, η)rsmn
=

∫

G1

f̂(x1, η)rsξ(x1)nm dx1

=

∫

G1

∫

G2

f(x1, x2)ξ(x1)nm η(x2)sr dx2dx1,

for 1 ≤ m,n ≤ dξ.

Notice that

̂̂f(ξ, η)mnrs
= ̂̂f(ξ, η)rsmn

= f̂(ξ ⊗ η)ij ,

with

i = dη(m− 1) + r, j = dη(n− 1) + s,

for all 1 ≤ m,n ≤ dξ and 1 ≤ r, s ≤ dη.

Definition 3.2. Let G1 and G2 be compact Lie groups, and set G = G1×G2. Let u ∈ D′(G), ξ ∈ Rep(G1)

and 1 ≤ m,n ≤ dξ. The mn-component of the ξ-partial Fourier coefficient of u is the linear functional

defined by

û(ξ, · )mn : C∞(G2) −→ C

ψ 7−→ 〈û(ξ, · )mn, ψ〉 :=
〈
u, ξnm × ψ

〉
G
.

In a similar way, for η ∈ Rep(G2) and 1 ≤ r, s ≤ dη, we define the rs-component of the η-partial Fourier

coefficient of u as

û( · , η)rs : C∞(G1) −→ C

ϕ 7−→ 〈û( · , η)rs, ϕ〉 := 〈u, ϕ× ηsr〉G.

By definition, û(ξ, · )mn ∈ D′(G2) and û( · , η)rs ∈ D′(G1) for all ξ ∈ Rep(G1), η ∈ Rep(G2),

1 ≤ m,n ≤ dξ and 1 ≤ r, s ≤ dη.

Let ξ ∈ Rep(G1) and η ∈ Rep(G2). Since û(ξ, · )mn ∈ D′(G2) for all 1 ≤ m,n ≤ dξ, we can take its

η-coefficient of Fourier:

̂̂u(ξ, η)mn := 〈û(ξ, · )mn, η
∗〉 ∈ Cdη×dη

with components

̂̂u(ξ, η)mnrs
= 〈û(ξ, · )mn, ηsr〉 =

〈
u, ξnm × ηsr

〉
G
=
〈
u, ξnm × ηsr

〉
G
,

for all 1 ≤ r, s ≤ dη. Now, since û( · , η)rs ∈ D′(G1) for all 1 ≤ r, s ≤ dη we can take its ξ-coefficient of

Fourier:

̂̂u(ξ, η)rs := 〈û( · , η)rs, ξ∗〉 ∈ Cdξ×dξ

with components

̂̂u(ξ, η)rsmn
=
〈
û( · , η)rs, ξmn

〉
=
〈
u, ξnm × ηsr

〉
G
=
〈
u, ξnm × ηsr

〉
G
,
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for all 1 ≤ m,n ≤ dξ. Notice that

̂̂u(ξ, η)mnrs
= ̂̂u(ξ, η)rsmn

= û(ξ ⊗ η)ij ,

with

i = dη(m− 1) + r, j = dη(n− 1) + s,

for all 1 ≤ m,n ≤ dξ and 1 ≤ r, s ≤ dη.

Notice that

(3.2) ‖û(ξ ⊗ η)‖2
HS

=

dξdη∑

i,j=1

|û(ξ ⊗ η)ij |2 =

dξ∑

m,n=1

dη∑

r,s=1

∣∣∣ ̂̂u(ξ, η)mnrs

∣∣∣
2

=:
∥∥∥ ̂̂u(ξ, η)

∥∥∥
2

HS
,

for all [ξ] ∈ Ĝ1 and [η] ∈ Ĝ2 whenever u ∈ L1(G) or u ∈ D′(G).

It follows from the (3.1) and (3.2) that we have the following characterization of smooth functions and

distributions using the method of taking the partial Fourier coefficients twice that was discussed above.

Theorem 3.3. Let G1 and G2 be compact Lie groups, and set G = G1 ×G2 . The following statements

are equivalent:

(i) f ∈ C∞(G);

(ii) For every N > 0, there exists CN > 0 such that

‖ ̂̂f(ξ, η)‖HS ≤ CN (〈ξ〉+ 〈η〉)−N ,

for all [ξ] ∈ Ĝ1 and [η] ∈ Ĝ2;

(iii) For every N > 0, there exists CN > 0 such that

∣∣∣ ̂̂f(ξ, η)mnrs

∣∣∣ ≤ CN (〈ξ〉+ 〈η〉)−N ,

for all [ξ] ∈ Ĝ1, [η] ∈ Ĝ2, 1 ≤ m,n ≤ dξ, and 1 ≤ r, s ≤ dη.

Theorem 3.4. Let G1 and G2 be compact Lie groups, and set G = G1 ×G2. The following statements

are equivalent:

(i) u ∈ D′(G);

(ii) There exist C, N > 0 such that

‖ ̂̂u(ξ, η)‖HS ≤ C(〈ξ〉+ 〈η〉)N ,

for all [ξ] ∈ Ĝ1 and [η] ∈ Ĝ2;

(iii) There exist C, N > 0 such that

∣∣∣ ̂̂u(ξ, η)mnrs

∣∣∣ ≤ C(〈ξ〉+ 〈η〉)N ,

for all [ξ] ∈ Ĝ1, [η] ∈ Ĝ2, 1 ≤ m,n ≤ dξ, and 1 ≤ r, s ≤ dη.

In the next results we will investigate when a sequence of partial Fourier coefficients can define a

smooth function or a distribution.
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Theorem 3.5. Let G1 and G2 be compact Lie groups, G = G1 ×G2, and let {f̂( · , η)rs} be a sequence

of functions on G1. Define

f(x1, x2) :=
∑

[η]∈Ĝ2

dη

dη∑

r,s=1

f̂(x1, η)rsηsr(x2).

Then f ∈ C∞(G) if and only if f̂( · , η)rs ∈ C∞(G1), for all [η] ∈ Ĝ2, 1 ≤ r, s ≤ dη and for every β ∈ Nn
0

and ℓ > 0 there exist Cβℓ > 0 such that

∣∣∂β f̂(x1, η)rs
∣∣≤ Cβℓ〈η〉−ℓ, ∀x1 ∈ G1, [η] ∈ Ĝ, 1 ≤ r, s ≤ dη.

Proof. ( ⇐= ) It is sufficient to consider N ∈ N in Theorem 3.3 to conclude that f ∈ C∞(G). Notice

that

L̂G1
g(ξ)mn =

〈
LG1

g, ξnm
〉
=
〈
g,LG1

ξnm
〉
= −ν[ξ]

〈
g, ξnm

〉
= −ν[ξ]ĝ(ξ)mn,

for all g ∈ C∞(G1), [ξ] ∈ Ĝ1, and 1 ≤ m,n ≤ dξ. In particular, for N ∈ N we obtain

νN[ξ]| ̂̂f(ξ, η)rsmn
| =

∣∣∣∣
̂LN
G1
f̂(ξ, η)rsmn

∣∣∣∣

=

∣∣∣∣
∫

G1

LN
G1
f̂(x1, η)rsξ(x1)nm dx1

∣∣∣∣

≤
∫

G1

|LN
G1
f̂(x1, η)rs||ξ(x1)nm| dx1

≤
(∫

G1

|LN
G1
f̂(x1, η)rs|2 dx1

)1/2(∫

G

|ξ(x1)nm|2 dx1
)1/2

≤ 1√
dξ

∑

|β|=2N

max
x1∈G1

|∂β f̂(x1, η)rs|

≤
∑

|β|=2N

max
x1∈G1

|∂β f̂(x1, η)rs|.

Notice that there exists C > 0 such that 〈ξ〉 ≤ Cν[ξ] for all non-trivial [ξ] ∈ Ĝ1. Thus for all ℓ = N

we have

| ̂̂f(ξ, η)rsmn
| ≤ CN 〈ξ〉−N 〈η〉−N ≤ CN2N(〈ξ〉+ 〈η〉)−N .

Therefore f ∈ C∞(G).

( =⇒ ) Let E2 := (I − LG2
)1/2. Since f ∈ C∞(G), for all β ∈ Nn

0 and N ∈ N0 we have ∂βEN
2 f ∈

C∞(G) and then, by the compactness of G, there exists CβN ≥ 0 such that

(3.3) |∂βEN
2 f(x1, x2)| ≤ CβN , ∀(x1, x2) ∈ G1 ×G2.

Fix η ∈ Rep(G2), 1 ≤ r, s ≤ dη. We already know that f̂( · , η)rs ∈ C∞(G1). Moreover
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|〈η〉N∂β f̂(x1, η)rs| = |∂βÊN
2 f(x1, η)rs|

=

∣∣∣∣∂β
∫

G2

EN
2 f(x1, x2)η(x2)sr dx2

∣∣∣∣

≤
∫

G2

|∂βEN
2 f(x1, x2)||η(x2)sr| dx2

≤
(∫

G2

|∂βEN
2 f(x1, x2)|2 dx2

)1/2(∫

G2

|η(x2)sr|2 dx2
)1/2

(3.3)

≤ 1√
dη

CβN .

Therefore,

|∂β f̂(x1, η)rs| ≤ CβN 〈η〉−N
,

for all x1 ∈ G1, [η] ∈ Ĝ2, 1 ≤ r, s ≤ dη. �

Theorem 3.6. Let G1 and G2 be compact Lie groups, set G = G1×G2, and let
{
û(· , η)rs

}
be a sequence

of distributions on G1. Define

u =
∑

[η]∈Ĝ

dη

dη∑

r,s=1

û( · , η)rsηsr.

Then u ∈ D′(G) if and only if there exist K ∈ N and C > 0 such that

(3.4)
∣∣〈û(·, η)rs, ϕ〉

∣∣ ≤ C pK(ϕ)〈η〉K ,

for all ϕ ∈ C∞(G1) and [η] ∈ Ĝ, where pK(ϕ) :=
∑

|β|≤K

‖∂βϕ‖L∞(G1).

Proof. (⇐=) Take ϕ = ξnm, [ξ] ∈ Ĝ1, 1 ≤ m,n ≤ dξ. Let β ∈ Nn
0 , |β| ≤ K, with K as in (3.4). Since

the symbol of ∂β at x1 ∈ G1 and ξ ∈ Rep(G1) is given by

σ∂β (x1, ξ) = ξ(x1)
∗(∂βξ)(x1),

we have

|∂βξnm(x1)| =

∣∣∣∣∣∣

dξ∑

i=1

ξni(x)σ∂β (ξ)im

∣∣∣∣∣∣

≤
dξ∑

i=1

|ξni(x)||σ∂β (ξ)im|

≤




dξ∑

i=1

|ξni(x)2|




1/2


dξ∑

i=1

|σ∂β (ξ)im|2



1/2

Let M ∈ Z satisfying M ≥ dimG1

2 . By (2.8) we have




dξ∑

i=1

|ξni(x)2|




1/2

≤




dξ∑

i=1

‖ξni‖2L∞(G1)




1/2

≤ CM

√
dξ〈ξ〉M

and by (2.4) there exists C > 0 such that

dξ ≤ C〈ξ〉M .
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Moreover, notice that



dξ∑

i=1

|σ∂β (ξ)im|2



1/2

≤ ‖σ∂β (ξ)‖HS ≤
√
dξ‖σ∂β (ξ)‖op ≤

√
dξC

|β|
0 〈ξ〉|β|,

where the last inequalities come from (2.6) and (2.7). Hence

|∂βξnm(x1)| ≤ C〈ξ〉M
√
dξ‖σ∂β (ξ)‖HS

≤ C〈ξ〉Mdξ‖σ∂β (ξ)‖op

≤ CC
|β|
0 〈ξ〉2M+|β|

.

Then

pK(ξnm) = pK(ξnm) ≤ C〈ξ〉2M+K
.

Hence

∣∣ ̂̂u(ξ, η)rsmn

∣∣ =
∣∣〈û(·, η)rs, ξnm

〉∣∣ ≤ C pK(ξnm)〈η〉K

≤ C〈ξ〉2M+K〈η〉2M+K

≤ C(〈ξ〉+ 〈η〉)2(2M+K).

Therefore u ∈ D′(G).

(=⇒) Since u ∈ D′(G), then there exist C > 0 and K ∈ N such that

(3.5)
∣∣ ̂̂u(ξ, η)rsmn

∣∣ ≤ C(〈ξ〉 + 〈η〉)K ,

for all [ξ] ∈ Ĝ1, [η] ∈ Ĝ2, 1 ≤ r, s ≤ dη, and 1 ≤ m,n ≤ dξ and

u =
∑

[ξ]∈Ĝ1

∑

[η]∈Ĝ

dξdη

dξ∑

m,n=1

dη∑

r,s=1

̂̂u(ξ, η)rsmn
ξnmηsr.

For ϕ ∈ C∞(G1) we have

|〈û(·, η)rs, ϕ〉| = |(u, ϕ× ηsr)|

=

∣∣∣∣∣∣

∑

[ξ]∈Ĝ1

∑

[η]∈Ĝ

dξdη

dξ∑

m,n=1

dη∑

k,ℓ=1

̂̂u(ξ, η)kℓmn〈ξnm, ϕ〉
G1

〈ηℓk, ηsr〉G2

∣∣∣∣∣∣
.

Notice that 〈ηℓk, ηsr〉G2
= 1

dη
δℓsδkr, since the set B is orthonormal (see (2.2)). Moreover, ϕ̂(ξ)mn =

〈ξnm, ϕ〉G1
. So

|〈û(·, η)rs, ϕ〉|=

∣∣∣∣∣∣
∑

[ξ]∈Ĝ1

dξ

dξ∑

m,n=1

̂̂u(ξ, η)rsmn
ϕ̂(ξ)mn

∣∣∣∣∣∣

≤
∑

[ξ]∈Ĝ1

dξ

dξ∑

m,n=1

∣∣∣ ̂̂u(ξ, η)rsmn

∣∣∣
∣∣ϕ̂(ξ)mn

∣∣

≤ C
∑

[ξ]∈Ĝ1

dξ

dξ∑

m,n=1

(〈ξ〉+ 〈η〉)K
∣∣ϕ̂(ξ)mn

∣∣ ,
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where the last inequality comes from (3.5). Notice that for allK ∈ N we have (〈ξ〉+〈η〉)K ≤ 2K〈ξ〉K〈η〉K .

In addition, we have

dξ∑

m,n=1

|ϕ̂(ξ)mn| ≤


d2ξ

dξ∑

m,n=1

|ϕ̂(ξ)mn|2



1/2

= dξ‖ϕ̂(ξ)‖HS.

Since 〈ξ〉 =
〈
ξ
〉
and the summation is over all Ĝ1, we have

∑

[ξ]∈Ĝ1

dξ〈ξ〉K
dξ∑

m,n=1

|ϕ̂(ξ)mn| =
∑

[ξ]∈Ĝ1

dξ〈ξ〉K
dξ∑

m,n=1

|ϕ̂(ξ)mn|

=
∑

[ξ]∈Ĝ1

dξ〈ξ〉K
dξ∑

m,n=1

|ϕ̂(ξ)mn|.

Thus

|〈û(·, η)rs, ϕ〉| ≤ C〈η〉K
∑

[ξ]∈Ĝ1

dξ〈ξ〉K
dξ∑

m,n=1

|ϕ̂(ξ)mn|

≤ C〈η〉K
∑

[ξ]∈Ĝ1

d2ξ〈ξ〉K‖ϕ̂(ξ)‖HS.

The series
∑

[ξ]∈Ĝ1

d2ξ〈ξ〉−2t converges if and only if t > dimG1

2 (Lemma 3.1 of [8]), which implies that there

exists C > 0 such that dξ ≤ C〈ξ〉dimG1 , for all [ξ] ∈ Ĝ1. Hence,

|〈û(·, η)rs, ϕ〉| = C〈η〉K
∑

[ξ]∈Ĝ1

(
dξ〈ξ〉− dimG1

)(
dξ〈ξ〉K+dimG1‖ϕ̂(ξ)‖HS

)

≤ C〈η〉K

 ∑

[ξ]∈Ĝ1

d2ξ〈ξ〉−2 dimG1




1/2
 ∑

[ξ]∈Ĝ1

d2ξ〈ξ〉
2(K+dimG1)‖ϕ̂(ξ)‖2HS




1/2

≤ C〈η〉K

 ∑

[ξ]∈Ĝ1

dξ〈ξ〉2(K+2 dimG1)‖ϕ̂(ξ)‖2HS




1/2

.

Let L ∈ N0 such that K + 2dimG1 ≤ 2L. So

|〈û(·, η)rs, ϕ〉| ≤ C〈η〉K

 ∑

[ξ]∈Ĝ1

dξ〈ξ〉4L‖ϕ̂(ξ)‖2HS




1/2

= C〈η〉K

 ∑

[ξ]∈Ĝ1

dξ‖Ê2L
1 ϕ(ξ)‖2HS




1/2

= C〈η〉K‖E2L
1 ϕ‖L2(G1)

≤ C‖E2L
1 ϕ‖L2(G1)〈η〉

2L
,

where E1 = (I − LG1
)1/2, and the last equality comes from the Plancherel formula (2.3). Notice that

‖E2L
1 ϕ‖L2(G1) ≤ ‖E2L

1 ϕ‖L∞(G1) = ‖(I − LG1
)Lϕ‖L∞(G1) ≤ Cp2L(φ).



PARTIAL FOURIER SERIES ON COMPACT LIE GROUPS 13

Therefore,

|〈û(·, η)rs, ϕ〉| ≤ Cp2L(φ)〈η〉2L.

�

4. Example: Global solvability of a vector field on T1 × S3

The 3-sphere S3 is a Lie group with respect to the quaternionic product of R4, and it is globally

diffeomorphic and isomorphic to the group SU(2) of unitary 2× 2 matrices of determinant one, with the

usual matrix product.

Let a(t) ∈ R for t ∈ T1. Let X be a normalized left-invariant vector field on S3. We consider the

operator

(4.1) L = ∂t + a(t)X.

We are interested in solvability properties for the vector field L on T1 × S3. Let Ŝ3 be the unitary dual

of S3. It consists of the equivalence classes [tℓ] of the continuous irreducible unitary representations

t
ℓ : S3 → C(2ℓ+1)×(2ℓ+1), ℓ ∈ 1

2N0, of matrix-valued functions satisfying t
ℓ(xy) = t

ℓ(x)tℓ(y) and t
ℓ(x)∗ =

t
ℓ(x)−1 for all x, y ∈ S3. We will use the standard convention of enumerating the matrix elements

t
ℓ
mn of tℓ using indices m,n ranging between −ℓ to ℓ with step one, i.e. we have −ℓ ≤ m,n ≤ ℓ with

ℓ−m, ℓ− n ∈ N0.

For a function f ∈ C∞(S3) we can define its Fourier coefficient at ℓ ∈ 1
2N0 by

f̂(ℓ) :=

∫

S3

f(x)tℓ(x)∗dx ∈ C(2ℓ+1)×(2ℓ+1),

where the integral is (always) taken with respect to the Haar measure on S3, and with a natural extension

to distributions. The Fourier series becomes

f(x) =
∑

ℓ∈ 1

2
N0

(2ℓ+ 1)Tr
(
t
ℓ(x)f̂(ℓ)

)
,

with the Plancherel’s identity taking the form

(4.2) ‖f‖L2(S3) =


 ∑

ℓ∈ 1

2
N0

(2ℓ+ 1)‖f̂(ℓ)‖2HS




1/2

=: ‖f̂‖ℓ2(S3),

which we take as the definition of the norm on the Hilbert space ℓ2(Ŝ3), and where ‖f̂(ℓ)‖2HS = Tr(f̂(ℓ)f̂(ℓ∗))

is the Hilbert–Schmidt norm of the matrix f̂(ℓ).

Smooth functions and distributions on S3 can be characterized in terms of their Fourier coefficients.

Thus, we have

f ∈ C∞(S3) ⇐⇒ ∀N ∃CN such that ‖f̂(ℓ)‖HS ≤ CN (1 + ℓ)−N , ∀ℓ ∈ 1

2
N0.

Also, for distributions, we have

u ∈ D′(S3) ⇐⇒ ∃M ∃C such that ‖û(ℓ)‖HS ≤ C(1 + ℓ)M , ∀ℓ ∈ 1

2
N0.
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Given an operator T : C∞(S3) → C∞(S3) (or even T : C∞(S3) → D′(S3)), we define its matrix

symbol by

σT (x, ℓ) := t
ℓ(x)∗(T tℓ)(x) ∈ C(2ℓ+1)×(2ℓ+1),

where T tℓ means that we apply T to the matrix components of tℓ(x). In this case we can prove that

(4.3) Tf(x) =
∑

ℓ∈ 1

2
N0

(2ℓ+ 1)Tr
(
t
ℓ(x)σT (x, ℓ)f̂(ℓ)

)
.

The correspondence between operators and symbols is one-to-one, and we will write Tσ for the operator

given by (4.3) corresponding to the symbol σ(x, ℓ). The quantization (4.3) has been extensively studied

in [23, 24], to which we refer for its properties and for the corresponding symbolic calculus.

Using rotation on S3, without loss of generality we may assume that the vector field X has the symbol

σX(ℓ)mn = imδmn, −ℓ ≤ m,n ≤ ℓ,

with δmn standing for the Kronecker’s delta. Consequently, taking the Fourier transform of Lu =

∂tu+ a(t)Xu with respect to x, we get

L̂u(t, ℓ) = ∂tû(t, ℓ) + ia(t)X̂u(t, ℓ).

Writing this in terms of matrix coefficients, we obtain

(4.4) L̂u(t, ℓ)mn = ∂tû(t, ℓ)mn + ia(t)mû(t, ℓ)mn, −ℓ ≤ m,n ≤ ℓ.

Consequently, the equation Lu = f , where f ∈ C∞(T1 × S3) is reduced to

(4.5) ∂tû(t, ℓ)mn + ia(t)m û(t, ℓ)mn = f̂(t, ℓ)mn, ℓ ∈ 1

2
N0, −ℓ ≤ m,n ≤ ℓ.

We say that an operator P is global hypoelliptic if the conditions Pu ∈ C∞(T1 × S3) and u ∈
D′(T1 × S3) imply u ∈ C∞(T1 × S3).

We point out that the operator L defined in (4.1) is not globally hypoelliptic for any a ∈ C∞(T1).

Indeed, define u by its partial Fourier coefficients:

(4.6) û(t, ℓ)mn =





1, if ℓ ∈ N0 and m = n = 0;

0, otherwise.

Notice that by Theorem 3.5 we have u /∈ C∞(T1 × S3) and by Theorem 3.6 we have u ∈ D′(T1 × S3).

Moreover, the function defined by (4.6) is a homogeneous solution of (4.5) for all ℓ ∈ 1
2N0, −ℓ ≤ m,n ≤ ℓ.

Thus Lu = 0 ∈ C∞(T1 × S3) which implies that L is not globally hypoelliptic.

Let us turn our attention now to study the solvability of the operator L. Denote by

a0 =
1

2π

∫ 2π

0

a(t) dt

and define

(4.7) A(t) =

∫ t

0

a(s) ds− a0t.

Put

v(t, ℓ)mn := eimA(t)û(t, ℓ)mn.
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In this way v(t, ℓ)mn satisfies the equation

(4.8) ∂tv(t, ℓ)mn + ima0v(t, ℓ)mn = g(t, ℓ)mn := eimA(t)f̂(t, ℓ)mn.

Lemma 4.1. Let λ ∈ C and consider the equation

(4.9)
d

dt
u(t) + λu(t) = f(t),

where f ∈ C∞(T1).

If λ /∈ iZ then the equation (4.9) has a unique solution that can be expressed by

(4.10) u(t) =
1

1− e−2πλ

∫ 2π

0

e−λsf(t− s) ds,

or equivalently,

(4.11) u(t) =
1

e2πλ − 1

∫ 2π

0

eλrf(t+ r) dr.

If λ ∈ iZ and
∫ 2π

0 eλsf(s) ds = 0 then we have that

(4.12) u(t) = e−λt

∫ t

0

eλsf(s) ds

is a solution of the equation (4.9).

To prove this lemma observe that E = (1 − e−2πλ)−1eλt is the fundamental solution of the operator

d
dt + λ, when λ /∈ iZ. The equivalence between (4.10) and (4.11) follows from the change of variable

s 7→ −r + 2π. We point out that the solution (4.12) is not unique.

By Lemma 4.1, if ma0 /∈ Z the equation (4.8) has a unique solution that can be written as

v(t, ℓ)mn =
1

1− e−2πima0

∫ 2π

0

e−ima0sg(t− s, ℓ)mn ds

and then

(4.13) û(t, ℓ)mn =
1

1− e−2πima0

∫ 2π

0

e−imH(t,s)f̂(t− s, ℓ)mn ds,

where H(t, s) :=
∫ t

t−s
a(θ) dθ.

If ma0 ∈ Z, a solution for the equation (4.8) can be expressed as

v(t, ℓ)mn = e−ima0t

∫ t

0

eima0sg(s, ℓ)mn ds

and then

(4.14) û(t, ℓ)mn = e−imH(t,t)

∫ t

0

eimH(s,s)f̂(s, ℓ)mn ds.

Here, one can see a condition on f for the existence of a solution û(t, ℓ)mn on T1. If ma0 ∈ Z, then

(4.15)

∫ 2π

0

eimH(t,t)f̂(t, ℓ)mn dt = 0.

This condition appears in Lemma 4.1 in order to guarantee that the solution is well-defined in T1.

So, if f ∈ C∞(T1 ×S3) does not satisfy the condition above, the equation (4.5) has no solution on T1.

We will denote by K the set of smooth functions on T1 × S3 that satisfy the condition (4.15).
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Definition 4.2. We say that the operator L is globally C∞-solvable if for any f ∈ K, there exists

u ∈ C∞(T1 × S3) such that Lu = f .

Remark 4.3. In the literature it is common to define the global C∞-solvability for f in the set

{h ∈ C∞(T1 × S3); 〈w, h〉 = 0; ∀w ∈ Ker tL},

(e.g. [21], [22]). For the operator L that we are studying in this work, this set coincides with the set K
defined previously.

Let us investigate if the operator L defined in (4.1) is globally C∞-solvable. First, let us prove a

technical result about derivatives of the exponential function.

Lemma 4.4. For any α ∈ N0, there exists Cα such that

|∂αt eimH(t,t)| ≤ Cα|m|α,

for all t ∈ T1.

Proof. By Faà di Bruno’s Formula, we have

∂αt e
imH(t,t) =

∑

γ∈∆(α)

α!

γ!
(im)|γ|eimH(t,t)

α∏

j=1

(
∂jtH(t, t)

j!

)γj

,

where ∆(α) =

{
γ ∈ Nα

0 ;
α∑

j=1

jγj = α

}
.

Notice that H(t, t) =
∫ t

0
a(θ) dθ, so ∂jtH(t, t) = ∂j−1

t a(t), for all j ≥ 1. Hence

|∂αt eimH(t,t)| ≤
∑

γ∈∆(α)

α!

γ!
|m||γ|

γ∏

j=1

(
|∂jtH(t, t)|

j!

)γj

≤ Cα|m|α.

�

Assume that f ∈ C∞(T1 × S3). By Theorem 3.5, for all β ∈ N0 and N > 0 there exists CβN > 0 such

that

(4.16) |∂βt f̂(t, ℓ)mn| ≤ CβN (1 + ℓ)−N ,

for all t ∈ T1, ℓ ∈ 1
2N0, and −ℓ ≤ m,n ≤ ℓ.

Let us determine when u defined by the partial Fourier coefficients (4.13) and (4.14) belongs to

C∞(T1 × S3).

Let α ∈ N0 and N > 0. If ma0 ∈ Z, we have

∂αt û(t, ℓ)mn =
∑

β≤α

(
α

β

)
∂α−β
t {e−imH(t,t)}∂βt

{∫ t

0

eimH(s,s)f̂(s, ℓ)mn ds

}
.

Notice that for β ≥ 1 we have

∂
β
t

{∫ t

0

e
imH(s,s)

f̂(s, ℓ)mn ds

}
= ∂

β−1
t

{
e
imH(t,t)

f̂(t, ℓ)mn

}

=
∑

γ≤β−1

(
β − 1

γ

)
∂
(β−1)−γ
t e

imH(t,t)
∂
γ
t f̂(t, ℓ)mn.
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For each γ, by (4.16) there exists CγαN > 0 such that

|∂γt f̂(t, ℓ)mn| ≤ CγαN (1 + ℓ)−(N+α).

By Lemma 4.4, since |m| ≤ ℓ, we have

|∂(β−1)−γ
t eimH(t,t)| ≤ Cβ |m|(β−1)−γ ≤ Cβ(1 + ℓ)β .

So, there exists CαβN > 0 such that

(4.17)

∣∣∣∣∂
β
t

{∫ t

0

eimH(s,s)f̂(s, ℓ)mn ds

}∣∣∣∣ ≤ CαβN (1 + ℓ)−(N+α)+β .

Again by Lemma 4.4 we have

(4.18) |∂α−β
t {e−imH(t,t)}| ≤ Cαβ(1 + ℓ)α−β

Therefore, from estimates (4.17) and (4.18), we obtain CαN > 0 such that

|∂αt û(t, ℓ)mn| ≤ CαN (1 + ℓ)−N .

Let us assume now that ma0 6∈ Z. With a slight change in the proof of Lemma 4.4 we obtain the

same estimate

|∂αt eimH(t,s)| ≤ Cα|m|α,

for all t, s ∈ T1.

By the same arguments of the previous case we obtain for all α ∈ N0 and N > 0

|∂αt û(t, ℓ)mn| ≤ |1− e−2πima0 |−1CαN (1 + ℓ)−N .

Now, we need to estimate |1 − e−2πima0 |−1 in order to apply Theorem 3.5 to conclude that u ∈
C∞(T1 × S3). In the case where ma0 /∈ Z, there exist C,M > 0 such that

|1− e−2πima0 | ≥ C|m|−M ,

if and only if a0 ∈ Q or a0 is an irrational non-Liouville number (see [4], Lemma 3.4)

This way, for either a0 ∈ Q or a0 an irrational non-Liouville number, we obtain constants C,M > 0

such that

|1− e−2πima0 |−1 ≤ C|m|M ≤ CℓM ,

when ma0 /∈ Z. So, adjusting the constants if necessary, for all α ∈ N0 and N > 0, there exists CαN > 0

such that

|∂αt û(t, ℓ)mn| ≤ CαN (1 + ℓ)−N ,

for all t ∈ T1, ℓ ∈ 1
2N0, and −ℓ ≤ m,n ≤ ℓ. Therefore, by Theorem 3.5 we have u ∈ C∞(T1 × S3) and

by the uniqueness of Fourier coefficients, we conclude that Lu = f .

We have proved the following proposition:

Proposition 4.5. The operator L = ∂t + a(t)X is globally C∞-solvable if a0 ∈ Q or a0 is an irrational

non-Liouville number, where a0 = 1
2π

∫ 2π

0 a(s) ds.
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4.1. Normal form.

Notice that the global solvability of the operator L is strictly related with the number a0. This is not

a coincidence because we can conjugate the operator L to the operator La0
= ∂t + a0X . We say that

the operator La0
is the normal form of L. In this section we will construct this conjugation and show

that the sufficient conditions on Proposition 4.5 for the global C∞–solvability of L are actually necessary

conditions.

Define

Ψau(t, x) :=
∑

ℓ∈ 1

2
N0

(2ℓ+ 1)
2ℓ+1∑

m,n=1

eimA(t)û(t, ℓ)mnt
ℓ(x)nm.

Proposition 4.6. Ψa is an automorphism in D′(T1 × S3) and in C∞(T1 × S3).

Proof. It is easy to see that Ψa is linear and has inverse Ψ−a, therefore we only need to prove that

Ψa(C
∞(T1 × S3)) = C∞(T1 × S3) and Ψa(D′(T1 × S3)) = D′(T1 × S3).

Let β ∈ N0 and u ∈ C∞(T1 ×S3). We will use Theorem 3.5 to show that Ψau ∈ C∞(T1 ×S3). Notice

that Ψ̂au(t, ℓ)mn = eimA(t)û(t, ℓ)mn for all ℓ ∈ 1
2N0, ℓ ≤ m,n ≤ ℓ and t ∈ T1. In this way

|∂βΨ̂au(t, ℓ)mn| = |∂β(eimA(t)û(t, ℓ)mn)|

=

∣∣∣∣∣∣
∑

γ≤β

(
β

γ

)
∂β−γeimA(t)∂γ û(t, η)mn

∣∣∣∣∣∣

≤
∑

γ≤β

(
β

γ

)
|∂β−γeimA(t)||∂γ û(t, η)mn|

≤
∑

γ≤β

Cβ |m|β
∣∣∂β û(t, ℓ)mn

∣∣ ,

where the last inequality comes from an adaptation of Lemma 4.4. Since u ∈ C∞(T1 × S3) and |m| ≤ ℓ,

again by Theorem 3.5, it is easy to see that given N > 0, there exists CβN such that

|∂βΨ̂au(t, ℓ)mn| ≤ CβN (1 + ℓ)−N .

Therefore Ψau ∈ C∞(T1 × S3). The distribution case is analogous.

�

Proposition 4.7. Let La0
= ∂t + a0X. Then

Ψa ◦ L = La0
◦Ψa.

Proof. We will show that for every u ∈ C∞(T1 × S3) we have

Ψ̂a(Lu)(t, ℓ)mn = ̂La0
(Ψau)(t, ℓ)mn,
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for all t ∈ T1, ℓ ∈ 1
2N0 and −ℓ ≤ m,n ≤ ℓ. Indeed, we have

̂La0
(Ψau)(t, ℓ)mn = ∂tΨ̂au(t, ℓ)mn + ia0mΨ̂au(t, ℓ)mn

= ∂t

{
eimA(t)û(t, ℓ)mn

}
+ ia0me

imA(t)û(t, ℓ)mn

= im(a(t)− a0)e
imA(t)û(t, ℓ)mn + eimA(t)∂tû(t, ℓ)mn + ia0me

imA(t)û(t, ℓ)mn

= eimA(t)(∂tû(t, ℓ)mn + ia(t)mû(t, ℓ)mn)

= eimA(t)L̂u(t, ℓ)mn

= Ψ̂a(Lu)(t, ℓ)mn.

Therefore Ψa ◦ L = La0
◦Ψa. The same holds when it is considered u ∈ D′(T1 × S3). �

Let a0 be an irrational Liouville number. The Fourier coefficients of La0
u, for u ∈ D′(T1 × S3) are

expressed by

(4.19) ̂̂La0
u(τ, ℓ)mn = i(τ + a0m)̂̂u(τ, ℓ)mn,

with τ ∈ Z, ℓ ∈ 1
2N0, −ℓ ≤ m,n ≤ ℓ.

Since a0 is an irrational Liouville number, for every N ∈ N, there exists τM ∈ Z and ℓM ∈ N such

that

(4.20) 0 < |τM + a0ℓM | ≤ (|τM |+ |ℓM |)−M .

Define

̂̂f (τ, ℓ)mn =





τM + a0ℓM , if (τ, ℓ) = (τM , ℓM ) for some M ∈ N and m = ℓM ,

0, otherwise.

It is easy to see that (4.20) and Theorem 3.3 imply that f ∈ Ka0
(see Definition 4.2). If La0

u = f for

some u ∈ C∞(T1 × S3), the expression (4.19) gives us

∣∣∣ ̂̂u (τM , ℓM )ℓM ℓM

∣∣∣ = 1,

which contradicts the fact that u is a smooth function. Therefore La0
is not globally C∞–solvable when

a0 is an irrational Liouville number. Notice that u ∈ D′(T1 × S3) (see Theorem 3.4). Since f ∈ Ka0
,

when ma0 ∈ Z we obtain

0 =

∫ 2π

0

eima0tf̂(t, ℓ)mn dt =

∫ 2π

0

eimH(t,t)e−imA(t)f̂(t, ℓ)mn dt

=

∫ 2π

0

eimH(t,t)Ψ̂−af(t, ℓ)mn dt.

So Ψ−af ∈ K. Assume that there exists some u ∈ C∞(T1 × S3) such that Lu = Ψ−af . By Proposition

4.7 we obtain

f = ΨaLu = La0
Ψau.

By what was discussed previously and the fact that Ψa is an automorphism of C∞(T1×S3) and D′(T1×
S3), we conclude that u ∈ D′(T1 × S3) \ C∞(T1 × S3). We have proved the following proposition:

Proposition 4.8. The operator L = ∂t + a(t)X is globally C∞-solvable if and only if a0 ∈ Q or a0 is

an irrational non-Liouville number, where a0 = 1
2π

∫ 2π

0 a(s) ds.



20 ALEXANDRE KIRILOV, WAGNER DE MORAES, AND MICHAEL RUZHANSKY

Acknowledgments

This study was financed in part by the Coordenao de Aperfeioamento de Pessoal de Nvel Superior -

Brasil (CAPES) - Finance Code 001. The last author was also supported by the FWO Odysseus grant,

by the Leverhulme Grant RPG-2017-151, and by EPSRC Grant EP/R003025/1.

References

[1] A. P. Bergamasco. Remarks about global analytic hypoellipticity. Trans. Amer. Math. Soc., 351(10):4113–4126, 1999.

[2] A. P. Bergamasco, P. D. Cordaro, and P. A. Malagutti. Globally hypoelliptic systems of vector fields. J. Funct. Anal.,

114(2):267–285, 1993.

[3] A. P. Bergamasco, P. D. Cordaro, and G. Petronilho. Global solvability for a class of complex vector fields on the

two-torus. Comm. Partial Differential Equations, 29(5-6):785–819, 2004.

[4] A. P. Bergamasco, P. L. Dattori da Silva, R. B. Gonzalez, and A. Kirilov. Global solvability and global hypoellipticity

for a class of complex vector fields on the 3-torus. J. Pseudo-Differ. Oper. Appl., 6(3):341–360, 2015.

[5] A. P. Bergamasco and A. Kirilov. Global solvability for a class of overdetermined systems. J. Funct. Anal., 252(2):603–

629, 2007.
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[10] F. de Ávila Silva, T. Gramchev, and A. Kirilov. Global hypoellipticity for first-order operators on closed smooth

manifolds. J. Anal. Math., 135(2):527–573, 2018.
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