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Abstract—In investigation of boundary-value problems for certain partial differential equations
arising in applied mathematics, we often need to study the solution of system of partial dif-
ferential equations satisfied by hypergeometric functions and find explicit linearly independent
solutions for the system. In this investigation, we build private solutions for a certain class of
degenerating differential equations of parabolic type of a high order. These special solutions
are expressed in terms of hypergeometric functions of one variable.
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1. INTRODUCTION AND PRELIMINARIES
A great interest in the theory of hypergeometric functions (that is, hypergeometric functions of

one and several variables) is motivated essentially by the fact that the solutions of many applied
problems involving (for example) partial differential equations are obtainable with the help of such
hypergeometric functions (see, for details, [? , p. 47 et seq., Section 1.7]). For instance, the energy
absorbed by some nonferromagnetic conductor sphere included in an internal magnetic field can be
calculated with the help of such functions [? ]. Hypergeometric functions of several variables are
used in physical and quantum chemical applications as well (cf. [? ? ]). Especially, many problems
in gas dynamics lead to solutions of degenerate second-order partial differential equations which
are then solvable in terms of multiple hypergeometric functions. Among examples, we can cite the
problem of adiabatic flat-parallel gas flow without whirlwind, the flow problem of supersonic current
from vessel with flat walls, and a number of other problems connected with gas flow [? ]. We note
that RiemannпїЅs functions [? ] and the fundamental solutions [? ? ? ? ] of the degenerate second
order partial differential equations are expressible by means of hypergeometric functions of several
variables [? ].

Further, many problems of modern mathematics and theoretical physics lead to the investigation
of hypergeometric functions of one and several variables. In particular, problems of super-string
theory [? ], analytical continuations of Mellin–Barnes integrals [? ] and algebraic geometry
[? ]. Systems of hypergeometric type differential equations have numerous applications as
nontrivial model examples in realization of algorithms for symbolic calculations, which are used
in modern systems of computer algebra [? ]. Hypergeometric functions of many variables appear
in quantum field theory as solutions of Knizhnik–Zamolodchikov equation [? ]. These equations
can be considered as generalized hypergeometric type equations and their solutions have integral
representations, which generalize classic Euler integrals for hypergeometric functions of one variable.
This approach allows us to link the special functions of hypergeometric type and challenges the
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theory of representations of Lie algebras and quantum groups [? ]. Initially hypergeometric functions
introduced by many authors with different methods, which are not related with each other. Their
occurrence is determined, as a rule, by the need to solve problems, that led to a differential equation
(or system of equations), insoluble in the class of elementary functions. Many problems of gas
dynamics are reduced to boundary value problems for degenerate equations of mixed type.

We define the generalized hypergeometric series 1F2 [? , p.182, (1)] with one numerator parameter
and two denominator parameters by

1F 2(a; b, c;x) =

∞∑
n=0

(a)n
(b)n(c)n

xn

n!
, (1)

where (λ)m is the Pochhammer symbol defined (for λ ∈ C) by

(λ)m =
Γ(λ+m)

Γ(λ)
,

Γ being the well-known Gamma function. For a = b, equation (??) reduces to the hypergeometric
function

0F 1(−; c;x) =
∞∑
n=0

1

(c)n

xn

n!
. (2)

An alternative representation for the function 1F 2 is given by the following integral formula:

1F 2(a; b, c;x) =
Γ(b)

Γ(a)Γ(b− a)

∫ 1

0
ξa−1(1− ξ)b−a−10F 1(−; c;xξ)dξ,<(b) > <(a) > 0.

In view of the operator H(α, β) [? ], it is easily seen that

1F 2(a; b, c;x) =

∞∑
n=0

(−1)n(b− a)nx
n

(b)n(c)nn!
0F 1(−; c+ n;x),

and the inverse is given by the following formula:

0F 1(−; c;x) =
∞∑
n=0

(b− a)nx
n

(b)n(c)nn!
1F 2(a; b+ n, c+ n;x).

Motivated by the important role of the degenerating model parabolic equations of the third order
and the hypergeometric functions, this work aims at finding and than expanding the solutions of
the following degenerating model parabolic equations of the third order

Lu ≡ xnut − tkuxxx = 0, (3)

in the domain D = {(x, t) : x > 0, t > 0}, where n > 0 and k > 0 are constants.
In Section 2 we construct the differential equation of the hypergeometric function 1F2 and then

find the linearly independent solutions of the differential equation of 1F2. Section 3 aims at finding
the solutions of the degenerating model parabolic equations of the third order defined in (??) and
then based upon the solutions of the differential equation of 1F2, we expand the solutions of (??)
in terms of 1F 2.

2. LINEARLY INDEPENDENT SOLUTIONS OF THE DIFFERENTIAL EQUATION OF
1F2

According to the theory of hypergeometric functions (see [? ? ]), the differential equation for the
hypergeometric function 1F 2(a; b, c;x) is readily seen to be given as follows:(

b+ x
d

dx

)(
c+ x

d

dx

)(
x
d

dx
+ 1

)(ν
x

)
−
(
a+ x

d

dx

)
ν = 0, (4)
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where ν(x) = 1F 2(a; b, c;x). Now, by making use of some elementary calculations, we find that

x2ν ′′′(x) + (b+ c+ 1)xν ′′(x) + (bc− x)ν ′(x)− aν(x) = 0.

Now, in order to find the linearly independent solutions of equation (??), we will search the solutions
in the form ν(x) = xλω(x), where ω(x) is an unknown function, and λ is constant, which are to be
determined. Next, substituting ν(x) = xλω(x) into equation (??), we get

x2ω′′′(x) + (3λ− b− c+ 1)xω′′(x) + [3λ(λ− 1) + 2λ(b+ c+ 1) + bc− x]ω′(x)

−
[
−λ(λ+ b− 1)(λ+ c− 1)x−1 + (λ+ a)

]
ω(x) = 0. (5)

We note that equation (??) is analogical to equation (??), therefore we require that the conditions

λ(λ+ b− 1)(λ+ c− 1) = 0 (6)

should be satisfied. It is evident that equation (??) has the following solutions:

1 2 3

λ 0 1− b 1− c
. (7)

Substituting all solutions (??) into (??), we find the following linearly independent solutions of
equation (??):

ν1 = 1F 2(a; b, c;x), (8)

ν2 = x1−b1F 2(1− b+ a; 2− b, 1− c+ b;x), (9)

ν3 = x1−c1F 2(1− c+ a; 1 + b− c, 2− c;x). (10)

3. SOLUTIONS OF THE DEGENERATING MODEL EQUATION (??)
In this section we establish the solutions of the degenerating model equation (??) in terms of the

hypergeometric function 1F 2(a; b, c;x). First, consider the equation

u(x, t) = Pω(σ), (11)

where

P =

(
1

k + 1
tk+1

)−1
, σ = − 1

(n+ 3)3
xn+3

(
1

k + 1
tk+1

)−1
(0 < x <∞, t > 0 is any fixed point) .

On substituting (??) into (??), we get

Aω′′′(σ) +Bω′′(σ) + Cω′(σ) +Dω(σ) = 0, (12)

where

A = tkPσ3x, B = 3tkσx (Pxσx + Pσxx) ,

C = 3tkPxxσx + 3tkPxσxx + tkPσxxx − xnPσt, D = tkPxxx − xnPt.
After several evaluations, we find that

A = −x
nP (k + 1)

t
σ2, (13)

B = −3
xnP (k + 1)

t

(n+ 2)

n+ 3
σ, (14)
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C = −x
nP (k + 1)

t

(n+ 2)(n+ 1)

(n+ 3)2
+
xnP (k + 1)

t
σ, (15)

D =
xnP (k + 1)

t
. (16)

Upon substituting equalities (??), (??), (??) and (??) into (??), we are led finally to the following
hypergeometric differential equation

σ2ω′′′(σ) +

(
α+ 2

3
+

2α+ 1

3
+ 1

)
σω′′(σ) +

(
2α+ 1

3
+

2α+ 1

3
− σ

)
ω′(σ)− ω(σ) = 0, (17)

where α = n/(n+ 2). Now, if we consider the solutions (??), (??) and (??) of equation (??), we get
from (??) that

ω1 = 1F 2

[
1;
α+ 2

3
,
2α+ 1

3
;σ

]
, (18)

ω2 = σ
1−α
3 1F 2

[
4− α

3
;
4− α

3
,
2 + α

3
;σ

]
= σ

1−α
3 0F 1

[
−;

2 + α

3
;σ

]
, (19)

ω3 = σ
2−2α

3 1F 2

[
5− 2α

3
;
5− 2α

3
,
4 + α

3
;σ

]
= σ

2−2α
3 0F 1

[
−;

4− α
3

;σ

]
.

where 1F 2 and 0F 1 are defined by formulae (??) and (??), respectively.
Finally, substituting (??), (??) and (??) into (??), we find the following linearly independent

solutions of the degenerating model parabolic equation of the third about (??):

u1(x, t) = 1F 2

[
1;
α+ 2

3
,
2α+ 1

3
;− 1

(n+ 3)3
xn+3

(
1

k + 1
tk+1

)−1]
, (20)

u2(x, t) =

(
1

k + 1
tk+1

)−1(
− 1

(n+ 3)3
xn+3

(
1

k + 1
tk+1

)−1) 1−α
3

×0F 1

[
−;

2 + α

3
;− 1

(n+ 3)3
xn+3

(
1

k + 1
tk+1

)−1]
, (21)

u3(x, t) =

(
1

k + 1
tk+1

)−1(
− 1

(n+ 3)3
xn+3

(
1

k + 1
tk+1

)−1) 2−2α
3

×0F 1

[
−;

4− α
3

;− 1

(n+ 3)3
xn+3

(
1

k + 1
tk+1

)−1]
. (22)

According to the series representation of the Bessel functions Jν(z) [? , p.44, (11)]

Jν(z) =
(z/2)ν

Γ(ν + 1)
0F1

[
−; ν + 1;−z2/4

]
,

it may of interest to point out that the solutions in (??) and (??) can be rewritten in forms of
Bessel functions. Also, it is importance to note that the received solutions (??), (??) and (??) of
the degenerating model parabolic equation of the third (??), are very useful for the solution of
boundary value problems.
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Note that, in the indicated way, the fundamental solutions for the generalized Helmholtz equation
were constructed in [? ? ]. Found fundamental solutions are expressed by hypergeometric functions
of many variables.
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