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Abstract—Volumetric media has the potential to provide the
six degrees of freedom (6DoF) required by truly immersive
media. However, achieving 6DoF requires ultra-high bandwidth
transmissions, which real-world wide area networks cannot
provide today. Therefore, recent efforts have started to target
efficient delivery of volumetric media, using a combination of
compression and adaptive streaming techniques. It remains,
however, unclear how the effects of such techniques on the user
perceived quality can be accurately evaluated. In this paper, we
present the results of an extensive objective and subjective quality
of experience (QoE) evaluation of volumetric 6DoF streaming.
We use PCC-DASH, a standards-compliant means for HTTP
adaptive streaming of scenes comprising multiple dynamic point
cloud objects. By means of a thorough analysis, we investigate
the perceived quality impact of the available bandwidth, rate
adaptation algorithm, viewport prediction strategy and user’s
motion within the scene. We determine which of these aspects
has more impact on the user’s QoE, and to what extent subjective
and objective assessments are aligned.

Index Terms—Volumetric media, HTTP adaptive streaming,
6DoF, MPEG V-PCC, QoE assessment, objective metrics.

I. INTRODUCTION

Six degrees of freedom (6DoF) allows an immersive media
user to move freely within the virtual environment. Enabling
volumetric 6DoF, however, requires sophisticated methods for
media representation and delivery. One plausible solution is
to combine point cloud compression (PCC) with adaptive
streaming techniques that are accustomed to two-dimensional
and 360° video content. PCC significantly reduces the storage
amount at the expense of complex preprocessing and rendering
at the client. HTTP adaptive streaming (HAS) copes with
dynamic network conditions while attempting to deliver the
highest quality possible under the given circumstances.

Even though various approaches have already proposed
to apply HAS to point clouds, this is still a niche area of
research. Notable studies include the ones by Hosseini and
Timmerer [1] and van der Hooft et al. [2]. While these studies
agree on the advantages of using HAS to nicely trade off the
streaming quality with the bandwidth consumption, the impact
of this trade-off on the user perception, i.e., on the quality of
experience (QoE), is yet to be thoroughly examined. Thus, a
subjective QoE study is necessary in order to shed light on to
the initial findings, which is our primary goal in this paper.

This paper presents an analysis of the effects of PCC and
HAS on the perceived quality. Starting from the state of the

art, we assess the quality by means of both subjective and
objective evaluations. Our three primary contributions are as
follows: (i) we perform a subjective quality assessment study
on 6DoF adaptive point cloud streaming (PCS), (ii) we analyze
the impact of different network conditions and configurations
on the QoE, and (iii) we provide a benchmark for objective
quality metrics. Before we get to the details of the study and
results, we provide background on point cloud compression
and streaming, and review related work.

II. BACKGROUND AND RELATED WORK

A. Point Cloud Compression and Streaming

HAS allows the client to adapt the video quality based
on the network conditions, playback buffer status, user
preferences and the considered video content. When it comes
to point clouds, several PCC techniques exist to compress the
original data (e.g., the encoder by Mekuria et al. [3] and
the recent V-PCC encoder [4]). Changing the quantization
parameters results in multiple representations, each of which
comes with a different bit rate and quality. These compressed
objects can then be retrieved by a client and used to render a
three-dimensional scene with 6DoF.

Hosseini and Timmerer are the first to propose a standards-
compliant approach for on-demand PCS of a single object [1].
The authors sample different points to generate versions
of lower quality, and request objects on a per-frame basis.
He et al. consider view-dependent single PCS, using a cubic
projection to create six two-dimensional images that are
then compressed using traditional compression techniques [5].
The proposed approach relies on a (hybrid) broadband and
broadcast network and in-network optimizations such as
caching. Li et al. introduce a framework for PCS, balancing
communication and computational resources to maximize a
proprietary QoE metric [6]. Simulation results are promising,
but do not consider important factors such as latency. Van der
Hooft et al. present PCC-DASH, a framework for streaming
scenes consisting of multiple point cloud objects [2]. PCC is
used to prepare multiple quality versions of the objects, and
several rate adaptation heuristics that take into account the
user’s position and viewing angle are proposed.



B. Objective Metrics for Point Cloud Streaming

Multiple objective metrics have been used to represent
the quality of point clouds in the past. In this regard, a
distinction must be made between the quality of a point
cloud object compared to a derived version of the same
object, and the quality of the rendered field of view (i.e.,
what a user observes when looking through a head-mounted
display). To compare the quality of derived point clouds,
two Peak Signal-to-Noise Ratio (PSNR)-based metrics have
been proposed by MPEG, referred to as point-to-point and
point-to-plane geometry distortion metrics [7]. The former
calculates the mean square error (MSE) between the reference
and reconstructed points (both for geometry in terms of x, y
and z, and for color in terms of Y UV ). The latter calculates
the MSE between the surface plane and reconstructed points.
PSNR values are obtained based on the volume resolution for
geometry and on the color depths for each color channel.

Although relevant to assess the performance of compression
techniques for volumetric media, these metrics give no
indication of how the user visually perceives the corresponding
point cloud object(s) from a given viewpoint or angle.
Recently, well-known metrics for traditional video streaming
have been applied to assess the visual quality of the rendered
point cloud content, compared to a given benchmark (e.g.,
uncompressed point cloud objects). These metrics include the
PSNR, the structured similarity index (SSIM) [8] and the
multiscale SSIM [9], to name a few. Although these metrics
give an indication of the visual quality of the rendered content,
it should be noted that they take the background of the
consumed scenes into account. This background contributes
less to the perceived quality, since it is expected that users
mainly focus on the objects in the front. One work has
considered background removal for images generated from
point cloud content, using a MATLAB-based tool for assisted
removal [10]. Although useful, this feature comes with a
significant computational overhead when video is considered.

C. Subjective Evaluation of Point Cloud Quality

Subjective assessment of the quality of point cloud
rendering has been performed in a number of settings
and configurations featuring different attributes (colored,
colorless), rendering types (raw points, cube, mesh) and
degradation types (compression, noise, octree-pruning), see
[11], [12] for a comprehensive overview. The majority of
studies so far has focused on static models (except, e.g., [3]),
using a passive evaluation protocol (except, e.g., [11], [13])
and double-stimulus testing (except, e.g., [3]). Recent work
has confirmed the viability of using pre-rendered 2D imagery
for point cloud subjective quality testing (cf., [11], [14]) and
investigated alternatives to double-stimulus testing (cf., [15]).

In short, two common key aspects are found in the literature:
encoding evaluation and double-stimulus assessment. First,
almost all studies so far have focused on the quality
degradation due to the encoding. However, this degradation
does not cover the effect of networks on the perceived quality,
which will be fundamental given the bandwidth required

TABLE I: Parameter configurations considered in this work.
Parameter Configurations
Point cloud objects loot, redandblack, soldier, longdress
Quality representations R1, R2, R3, R4, R5
Segment duration 1 second
Scene / camera path 1, 2, 3
Bandwidth 20, 60, 100 Mb/s
Latency 37 ms (reference for 4G)
Buffer size 4 seconds
Object priority Avis

Bit rate allocation uniform, view-focused
Prediction most recent, clairvoyant

by PCS. Second, subjective evaluations were predominantly
performed using double-stimulus testing, where the users rate
the degradation of one video comparing to the unimpaired
source. While double-stimulus provides the means to assess
the perceived degradation of the content, it comes short to
assess the overall perceived quality. The aim of this work
is thus to provide an experimental subjective and objective
evaluation of the effects of adaptive PCS on the user’s QoE.

III. EXPERIMENTAL APPROACH

To address aforementioned gaps in the existing research,
we conducted a subjective and objective evaluation of the
QoE of adaptive PCS. Our aim was to assess the QoE impact
of relevant settings and parameters in a setup that considers
the dynamic nature of PCS (animated models and moving
camera). Further, we wanted to benchmark common objective
metrics against subjective results in order to identify their
alignment with human perception. In particular, the purpose
of this research is to answer the following two questions:

RQ1: What is the impact of available network bandwidth,
viewport prediction, bit rate allocation, and 3D scene
type on adaptive PCS quality perception?

RQ2: How do objective image-based metrics correlate with
the subjective quality for different adaptive PCS
delivery settings and scenarios?

The remainder of this section presents the required steps and
approaches used to answer these research questions.

A. Evaluation Space and Content Generation

We implemented the setup and algorithms proposed by van
der Hooft et al. [2] and deployed them on a dedicated network
testbed1. This allowed us to replicate their experiments and
analyze the observed results ourselves. Multiple parameters
are defined by the authors, of which the ones in Table I were
considered in this work.

First, the four point cloud objects from the 8i dataset [16]
were encoded using the V-PCC encoder with MPEG’s five
reference quality representations [4]. As an example, Fig. 2
shows the lowest and highest quality representation of one of
the frames of the soldier object, which has an uncompressed
bit rate of 5.7Gb/s. The original content comes with 300
frames per object, at a frame rate of 30 frames per second. A
segment duration of one second (corresponding to 30 frames)
is considered in this work.

1https://doc.ilabt.imec.be/ilabt/virtualwall/



Fig. 1: Screenshot of an example field of view.

TABLE II: Selected parameter configurations for each SRC.

Bandwidth [Mb/s] Content Allocation Prediction
20 compressed view-focused most recent
60 compressed view-focused most recent
100 compressed view-focused most recent
20 compressed view-focused clairvoyant
60 compressed view-focused clairvoyant
100 compressed view-focused clairvoyant
60 compressed uniform most recent
∞ original N/A N/A

Second, the point cloud objects were merged together to
form different scenes. We considered two different types of
scenes: one in which the objects (humans) are positioned in
a line, and one in which they are placed on a semi-circle. To
allow the evaluation of a larger number of conditions, three
excerpts of the original content (120 s, playing out the 300
frames forward and backward six times each) were extracted.
For the remainder of this paper, these excerpts are referred to
as Reference Source Sequences (SRC). The first SRC, with a
duration of 24 s, belongs to the first scene and pans the four
objects. The other two, with a duration of 18 s, are taken from
the second scene and zoom in and out of two different objects
(loot and redandblack in SRC 2, soldier and longdress in SRC
3). With regard to the user’s movement and focus, it is worth
noting that the same programmatically generated traces were
used as the ones in [2]. This allowed us to generate and render
the field of view of different videos using the MPEG point
cloud compression renderer2. An example screenshot can be
found in Fig. 1. The three resulting videos (with the original
point cloud objects) have been made available online3.

Third, a network was emulated in which a single client was
connected to an HTTP server. Using traffic control (tc) on
a shared network link, the available bandwidth was fixed to
discrete values (20, 60 and 100Mb/s). The latency was set to
37ms, a reference value for 4G networks. The server contained
all point cloud objects at different quality representations, and
offered a manifest file containing all the metadata required
during streaming. The client used a Python-based player,
which allowed to set multiple configurations. In this work, the

2http://mpegx.int-evry.fr/software/MPEG/PCC/mpeg-pcc-renderer/
3https://users.ugent.be/~jvdrhoof/pcc-dash/

Fig. 2: Two representations of the soldier object: R1 at
4.5Mb/s (left) and R5 at 40.4Mb/s (right).

buffer size was set to four seconds, while the size of the visual
area (defined as Avis in [2]) was used to prioritize objects
within the scene. Once these objects were ranked according
to their priority, the available bandwidth was allocated to the
four point cloud objects in a uniform way (i.e., increase the
quality of all objects one by one, starting with the object of
the highest priority), or in a view-focused way (i.e., increase
the quality of the visible objects first, before considering the
objects outside of the field of view). Finally, there was an
option to use either the most recent information on the user’s
position and focus at the time of buffering, or use clairvoyant
prediction (i.e., the client assumes perfect prediction on the
user’s position and focus when the content is being played
out). Once all configurations had been set, the client started
a streaming session by retrieving the different point cloud
segments one by one, adapting the video quality based on the
observed throughput and the configurations above. Decisions
on the quality representation for each of the point cloud objects
were logged on a per-segment basis, so that the resulting field
of view of the entire streaming session could be generated
once the experiment had finished.

For evaluation purposes, eight configurations were selected
for each SRC (see Table II). This results in a total number of
24 processed video sequences (PVS).

B. Subjective Quality Experiments

For the test setup and procedure, we used ITU-R BT.500-
13 and ITU-T P.913 as general guidelines. A screen with 2K
resolution was used to passively show the content to the user,
who was sitting at a distance of approximately four times the
height of the screen. The applied test protocol was as follows:
1) Welcome (3min): Briefing and informed consent.
2) Setup (2min): Screening and demographic data.
3) Training (1min): Evaluation of a single video example not

related to point clouds.
4) Evaluation (16min): 24 PVSs, post-stimulus questionnaire.
5) Debriefing (2min): Feedback and remarks.

Prior to the experiment, subjects were screened for correct
visual acuity using Snellen charts (20/20) and for color
vision using Ishihara charts. A short training was performed
at the beginning of each test session to familiarize the
subjects with the test procedure. During the evaluation



Fig. 3: MOS scores for the 24 PVSs. MOS is normalized
to 1-100, with 1-20 equating “bad” and 81-100 equating
“excellent” quality. (MOS CI = 0.95). Each color designates an
SRC, with conditions further grouped by viewport prediction
and ordered by increasing network bandwidth. Infinite
bandwidth designates reference conditions. Condition code:
SRC, prediction [0: most recent, 1: clairvoyant], bandwidth
[Mb/s], rate allocation [V: view-focused, U: uniform].

sessions, 24 PVSs were shown, corresponding to the three
SRCs with different configurations. The post-stimulus rating
questionnaire prompted participants to rate the quality of each
PVS on an ACR-7 continuous scale.

C. Objective Quality Evaluation

To objectively evaluate the generated fields of view, the
considered PVSs were compared with the SRCs containing
the original, non-compressed point cloud objects. Three full-
reference video metrics were considered in this paper:

• Weighted PSNR [17]: Using reference weights of 0.75,
0.125 and 0.125 to the YUV components, respectively;

• SSIM [8]: Averaged over all frames in the video;
• VQM [18]: The standardized NTIA General Model, using

full-reference calibration.
Results for these metrics were compared with those of

the subjective evaluation procedure. Note that the distortion
metrics, specifically developed for point clouds, cannot be
applied, because the considered scenes consist of multiple
point clouds, which are shown either sequentially or in parallel
throughout the considered SRCs.

IV. EVALUATION RESULTS

In this section, we first answer RQ1 discussing the results
of the subjective study and the objective evaluation. We then
address RQ2 via a comparative analysis of both result sets.

A. Impact of Content/Streaming-Related Factors (RQ1)

1) Subjective Results: A total of 30 subjects participated
in our subjective experiment: 7 subjects were female and 23
were male, while 19, 10 and 1 subjects were between 20-
29, 30-39 and 40-49 years old, respectively. Subjects were
recruited from Ghent University, offering participants a chance
of winning a movie ticket in a raffle as incentive. As the result
of our outlier removal procedure, according to ITU-R BT.1788
Annex 2 [19], we eliminated four subjects from the study
dataset resulting in a final subject count of N = 26.

Fig. 4: CDF plots of subjective quality ratings grouped by SRC
(top left), available bandwidth [Mb/s] (top right), viewport
prediction (bottom left) and bit rate allocation (bottom right).

Fig. 3 shows the normalized MOS scores (0-100) for each
test condition. An important observation is that the range of
the average MOS scores for all configurations is limited to an
interval between 23.8 and 61.3. Even though the subjects were
shown the uncompressed content, the majority of the people
rated the videos on the lower end of the quality spectrum.
This shows that the considered content, which was captured
using 42 cameras and requires 19.7Gb/s, was not to the
subjects’ standards. This was also clear from the debriefing
interviews with feedback and remarks, where the subjects
often mentioned that their expectations of the visual content
were higher because of their familiarity with full-HD and 4K
resolutions for traditional video.

Fig. 4 shows the cumulative distribution function (CDF)
of the MOS scores given by the 26 subjects, for different
configurations. Results show that SRC 1 (line-up of the
objects, zoomed out) is rated higher than SRC 2 and 3
(zoom in on a specific object). This can be related to the
visual size and area of the considered point cloud objects,
which is significantly lower in SRC 1. Also the texture of
the point cloud objects turned out to be an important factor
to the subjects. Multiple subjects indicated to have given
higher scores to SRC 2 than to SRC 3, because the loot and
redandblack objects show less contrast differences than the
soldier and longdress objects in SRC 3. This explains the
higher range of MOS scores for the latter content. We also
observe that higher bandwidth values result in higher MOS
scores, which was to be expected. Viewport prediction leads
to better results as well, which can be explained by the lack
of quality switches when shifting the focus from one object to
the other (the client was able to anticipate this change during
buffering). The bit rate allocation scheme also has an impact
on the subjects’ perception of the clip, with a preference
toward uniform bandwidth allocation. Finally, the results show
that even the uncompressed content is rated less than 60 almost
half of the time. This again indicates that the subjects were
generally underwhelmed by the provided video sequences.

The above observations are confirmed by our mixed
model ANOVA results, which identify all factors except the



Fig. 5: Scatter plots for the different objective metrics (PSNR, SSIM, VQM) with MOS scores as the ground truth. Each dot
represents a test condition, each color a video sequence. Lines are fitted via linear regression using ordinary least squares.

TABLE III: Mixed-model ANOVA results for fixed (F-Test)
and random effects (likelihood-ratio test). Asterisks indicate
levels of significance.

Fixed Effects F p
Bandwidth 73.177 <0.001 ***
Prediction 4.830 0.035 *
Allocation 2.844 0.092

SRC 12.472 <0.001 ***
Random Effects ChiSq p
Bandwidth:User 6.499 0.011 *
Prediction:User 3.937 0.047 *
Allocation:User 0.000 0.998

SRC:User 12.644 <0.001 ***
User 32.494 <0.001 ***

*** p < 0.001, ** p < 0.01, * p < 0.05

bandwidth allocation strategy as exerting significant influence
on the MOS (see Table III), with the prediction component
being on the borderline (p=0.035). In addition, we also tested
for user-related influences by analyzing the random effects
part of our mixed-effects model. Indeed, the model suggests
the presence of significant “assessor effects” on quality ratings
(p<0.001). In particular, the influence of the shown SRC on
quality rating behavior varied significantly across participants
(p<0.001). However, we could not detect any systematic
influence of subject variables such as age or gender.

2) Objective Results: Table IV shows the results obtained
for the objective metrics. Three observations can be made.
First, even though the configurations are significantly different
(especially regarding the available bandwidth), differences in
terms of metrics are limited. Looking at the obtained PSNR
values, for instance, the range among all PVSs equals 4.97,
while the highest range among the three SRCs merely equals
2.38. This can mostly be attributed to the fact that the
considered metrics are calculated based on the whole field
of view, which includes the (static) background. A different
point cloud representation thus affects these metrics in a less
pronounced manner than is the case for traditional video.

Second, although differences are small, the observed trends
are evident: (i) with increasing network bandwidth, better
scores are always observed, (ii) viewport prediction has a
positive effect on the resulting video quality, and (iii) uniform
allocation of the available bandwidth leads to better results
than prioritizing objects visible at the time of buffering. The
latter is related to our prior observation that a change of focus
can result in a negative impact on the observed video quality.

Third, a strong linear correlation between the considered
metrics is observed. As shown in Fig. 6, the highest correlation

TABLE IV: Subjective MOS and objective metrics for the
different test conditions. Condition code: SRC, prediction,
bandwidth, bit rate allocation (see Fig. 3).

Condition MOS PSNR SSIM VQM

1 0 20 V 41.3462 38.9713 0.9846 0.0987
1 0 60 V 44.9365 40.0958 0.9880 0.0795
1 0 100 V 51.4000 40.3799 0.9887 0.0753
1 1 20 V 39.4873 39.1501 0.9852 0.0964
1 1 60 V 49.6907 40.3158 0.9885 0.0768
1 1 100 V 51.6669 40.5320 0.9890 0.0730
1 0 60 U 49.8088 40.1941 0.9883 0.0759
2 0 20 V 31.1538 40.6554 0.9847 0.0879
2 0 60 V 40.6415 42.2854 0.9893 0.0614
2 0 100 V 43.9754 42.6054 0.9901 0.0551
2 1 20 V 35.8327 41.1388 0.9863 0.0783
2 1 60 V 43.5254 42.6909 0.9901 0.0541
2 1 100 V 45.4488 42.6925 0.9901 0.0540
2 0 60 U 42.8208 42.1978 0.9893 0.0602
3 0 20 V 23.7823 37.7223 0.9790 0.1062
3 0 60 V 40.9615 39.2676 0.9848 0.0796
3 0 100 V 49.8077 39.9239 0.9871 0.0551
3 1 20 V 29.6150 38.1217 0.9807 0.0956
3 1 60 V 45.3858 39.8047 0.9869 0.0653
3 1 100 V 48.0119 40.1055 0.9879 0.0612
3 0 60 U 42.9485 39.5652 0.9864 0.0685

is achieved for the PSNR and SSIM metrics, with a Pearson
correlation coefficient of 0.85. Similar results are observed for
other correlation metrics, such as Spearman’s rank correlation.

B. Subjective vs. Objective Results (RQ2)

In this section, we answer RQ2 by comparing subjective
assessment results with objective metrics. To this end, Fig. 5
shows the scatter plots for the considered objective metrics
with the MOS scores as the ground truth. Each dot represents
a test condition, as defined in Table II. Lines are fit through
linear regression, using ordinary least squares. From these
graphs, we observe that there is a clear linear correlation
between the MOS scores and the considered objective metrics.
This corresponds to the results observed for the Pearson
correlation coefficients in Fig. 6, with values of 0.40, 0.82
and -0.59 for PSNR, SSIM and VQM, respectively. Comparing
results with the observed MOS scores, the SSIM metric thus
seems to best reflect the increasing/decreasing trend of the
subjects’ preferences toward the considered content. However,
given the observed offsets between the different videos, it
should be noted that the relation between the subjective scores
and the objective metrics is strongly SRC-dependent. Indeed,
although the MOS scores overlap, objective results for SRC 2
are significantly better than for SRC 1 and 3. Thus, we



Fig. 6: Pearson and Spearman correlation coefficients for the
MOS scores and the three objective metrics, over all 24 PVSs.

conclude that it is not possible to accurately deduce QoE
scores solely from the objective results. We believe this can
be attributed to two factors.

First, the scores for the objective metrics strongly depend
on the properties of the point cloud object(s). Objects that
are smaller, for instance, contribute less to the PSNR of the
field of view. Real users, however, tend to strongly focus on
(the quality of) the objects, without taking the background
into account. Furthermore, it is harder for users to evaluate
(differences between) the quality of the objects that are farther
away, resulting in a lower range of MOS scores.

Second, the objective scores do not reflect the impact of
quality switches within the video. These metrics are based on
(weighted) averages and do not take dynamic behavior into
account. A typical user, however, pays attention to quality
switches and rate the video as such. Psychological factors play
an important role here, in that a subject remembers that what
was bad (e.g., switching to a lower quality when a new object
is being focused on). This shows that accurate prediction
models for 6DoF user movement are important to improve
the QoE in these applications.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we evaluated the impact of adaptive streaming
optimizations on the quality of experience (QoE) of point
clouds. Based on the state of the art, we prepared a set
of 24 impaired volumetric test videos that were analyzed
both subjectively, through a single stimulus approach, and
objectively, through the full reference metrics PSNR, SSIM
and VQM. First, we found out that users are able to provide
accurate and consistent responses when assessing quality
without the presence of the ground truth, even though the
most common point cloud quality assessment approach in the
literature so far has been double stimulus. However, given the
different nature of volumetric media, subjects tend to give
lower ratings than those for traditional HD or 4K videos.
Second, high correlation between objective and subjective
metrics was shown for the case of adaptive point cloud
streaming. Nonetheless, objective metrics need to be rescaled
or adjusted to properly match the human perception. Thus,
there is a need for more representative metrics and QoE models
that more accurately reflect the quality perceived by the user.
In future work, we aim to extend our experimental test set with
additional scenes, conditions as well as a comparative analysis

of the performance of single versus double stimulus testing
for this type of media. Furthermore, we plan to use alternative
video-based point cloud compression techniques that allow for
real-time decoding of the considered point cloud objects. This
way, we can evaluate truly interactive 6DoF video scenarios.
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