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Abstract. For primes p ≡ 3 mod 4, we show that setting up CSIDH on
the surface, i.e., using supersingular elliptic curves with endomorphism
ring Z[(1 +

√
−p)/2], amounts to just a few sign switches in the under-

lying arithmetic. If p ≡ 7 mod 8 then horizontal 2-isogenies can be used
to help compute the class group action. The formulas we derive for these
2-isogenies are very efficient (they basically amount to a single expo-
nentiation in Fp) and allow for a noticeable speed-up, e.g., our resulting
CSURF-512 protocol runs about 5.68% faster than CSIDH-512. This im-
provement is completely orthogonal to all previous speed-ups, constant-
time measures and construction of cryptographic primitives that have
appeared in the literature so far. At the same time, moving to the sur-
face gets rid of the redundant factor Z3 of the acting ideal-class group,
which is present in the case of CSIDH and offers no extra security.

Keywords: isogeny-based cryptography, hard homogeneous spaces, CSIDH,
Montgomery curves

1 Introduction

A hard homogeneous space [10] is an efficiently computable free and transitive
action ? : G × S → S of a finite commutative group G on a set S, for which
the parallelization problem is hard: given s0, s1, s2 ∈ S, it should be infeasible
to find g1g2 ? s0, where g1, g2 ∈ G are such that s1 = g1 ? s0 and s2 = g2 ? s0.
This generalizes the notion of a cyclic group C in which the Diffie–Hellman
problem is hard, as can be seen by considering the set S of generators of C,
acted upon by G = (Z|C|)

× through exponentiation. The main appeal of hard
homogeneous spaces lies in their potential for post-quantum cryptography: while
exponentiation-based Diffie–Hellman succumbs to Shor’s polynomial-time quan-
tum algorithm [22], in this more general setting the best attack available is
Kuperberg’s subexponential-time algorithm for finding hidden shifts [16]. This
line of research has led to a number of efficient post-quantum cryptographic
primitives, such as non-interactive key exchange [7] and digital signatures [4],
which stand out in terms of bandwidth requirements, and verifiable delay func-
tions [11].

Unfortunately, we only know of one source of candidate hard homogeneous
spaces that are not based on exponentiation. They descend from CM theory,
which yields a family of isogeny-wise actions by ideal-class groups on sets of
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elliptic curves over finite fields, whose use in cryptography was proposed inde-
pendently by Couveignes [10] and Rostovtsev–Stolbunov [20,23,24]. The current
paper revisits CSIDH [7], which is an incarnation of this idea, using supersingu-
lar elliptic curves rather than ordinary elliptic curves (as originally suggested),
thereby speeding up the resulting protocols by several orders of magnitude.

Concretely, we focus on the following design choice of CSIDH: as put forward
in [7], it works over a large finite prime field Fp with p ≡ 3 mod 8, and it acts
by G = C`(Z[

√
−p]) on the set S of Fp-isomorphism classes of elliptic curves

with endomorphism ring Z[
√
−p] — such curves are said to live on the floor.

The motivation for this choice comes from [7, Prop. 8], which identifies S with

S+
p = { a ∈ Fp | y2 = x3 + ax2 + x is supersingular },

i.e., every curve on the floor has a unique representative in Montgomery form
and, conversely, every supersingular Montgomery curve over Fp has endomor-
phism ring Z[

√
−p]. This convenient fact allows for compact and easily verifiable

public keys. Furthermore 0 ∈ S+
p makes for a natural choice of s0.

Contributions

The main contributions of this paper are as follows.

(a) One of our main observations is that for p ≡ 7 mod 8, a very similar state-
ment applies to the surface, consisting of Fp-isomorphism classes of elliptic
curves with endomorphism ring Z[(1 +

√
−p)/2]. Concretely, we show that

this set can be identified with

S−p = {A ∈ Fp | y2 = x3 +Ax2 − x is supersingular }, (1)

which again contains 0 as a convenient instance of s0. The tweaked Mont-
gomery form y2 = x3 +Ax2 − x does not seem to have been studied before.
From the viewpoint of efficient arithmetic, it is equivalent with the standard
Montgomery form: we will show that the required adaptations to the Mont-
gomery ladder and to Vélu’s isogeny formulae (in the version of Renes [19])
just amount to a few sign flips, with the exception of 2-isogenies, which re-
quire a separate treatment. Therefore, the protocols built from the action of
C`(Z[(1 +

√
−p)/2]) on S−p are near-copies of those built from CSIDH.1

(b) If p ≡ 7 mod 8 then the prime 2 splits in Q(
√
−p), which allows for the use

of horizontal 2-isogenies. We show that computing 2-isogenies is an order
of magnitude faster than computing `-isogenies for odd `. The cost of a
2-isogeny is dominated by a single exponentiation over Fp, leading to a
noticeable speed-up (e.g., our CSURF-512 protocol below performs about
5.68% faster than CSIDH-512). We stress that this improvement is totally
orthogonal to all previous speed-ups, constant-time measures (see e.g. [9,15])
and cryptographic applications (see e.g. [7,4,11]) that have appeared in the
literature so far.

1 Moreover, if p ≡ 3 mod 4 then x3 + Ax2 − x is automatically square-free, allowing
for a marginally simpler key validation. But this deserves a footnote, at most.
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We note along the way that, by working on the surface, we naturally get rid
of the factor Z3 that is present in C`(Z[

√
−p]) when p ≡ 3 mod 8. Because of

the interplay between floor and surface, this factor does not give extra security
(see Remark 2). Furthermore, it provides a possible hindrance for isogeny-based
threshold schemes: when using more than two parties one must map the prob-
lem into C`(Z[

√
−p])3, which comes at a small cost if the group structure is

unknown [12].
Apart from these benefits, given the limited pool of hard homogeneous spaces

available, having the complete supersingular picture at our disposal adds freedom
to the parameter selection and leads to a better understanding of the interplay
between floor and surface. This being said, primes p ≡ 1 mod 4 are omitted from
our discussion, the main reason being Lemma 1 below: for such p, supersingular
elliptic curves over Fp never admit a model of the form y2 = x3 +Ax2±x. This
complicates comparison with [7]. It is possible that other elliptic curve models
can fill this gap, but we leave that for future research.
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2 Background, and formulation of our main theorem

Consider a prime number p > 3 and a supersingular elliptic curve E/Fp. Its
Frobenius endomorphism πE satisfies πE ◦ πE = −p, hence Z[

√
−p] can be

viewed as a subring of the ring Endp(E) of Fp-rational endomorphisms of E. If
p ≡ 1 mod 4 then this leaves us with one option for Endp(E), namely Z[

√
−p]

itself. If p ≡ 3 mod 4, which is our main case of interest, then we are left with
two options for Endp(E), namely Z[

√
−p] and Z[(1 +

√
−p)/2].

For each such option O, we let E``p(O) denote the set of Fp-isomorphism
classes of elliptic curves E/Fp for which Endp(E) ∼= O. If p ≡ 3 mod 4 then
E``p(Z[

√
−p]) is called the floor, whereas E``p(Z[(1 +

√
−p)/2]) is called the

surface; this terminology stems from the structure of the 2-isogeny graph of
supersingular elliptic curves over Fp, see Delfs–Galbraith [13].

Remark 1. If p ≡ 3 mod 4 then it is easy to decide whether a given supersingular
elliptic curve E/Fp is located on the floor or on the surface: in the former case
|E(Fp)[2]| = 2 while in the latter case |E(Fp)[2]| = 4. If p ≡ 3 mod 8 then
the 3 outgoing 2-isogenies from a curve on the surface all go down, that is,
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the codomain curves all live on the floor. If p ≡ 7 mod 8 then only one of the
codomain curves is located on the floor.

Recall that S−p denotes the set of all coefficients A ∈ Fp such that E−A : y2 =
x3 +Ax2 − x is a supersingular elliptic curve. The elements of S−p will be called
Montgomery− coefficients and the corresponding elliptic curves Montgomery−

curves. As we will see below, such curves are always located on the surface.
Mutatis mutandis, the set S+

p contains the Montgomery+ coefficients a ∈ Fp \
{±2} such that the Montgomery+ curve E+

a : y2 = x3 +ax2 +x is supersingular.
If p ≡ 3 mod 8 then such curves are necessarily located on the floor. However,
this is not true if p ≡ 7 mod 8, in which case we will occasionally write S+

p,O to

denote the subset of S+
p corresponding to curves with endomorphism ring O.

To every E ∈ E``p(O) and every a ⊆ O we can associate the subgroup

E[a] =
⋂
φ∈a

{P ∈ E |φ(P ) =∞} ⊆ E,

where, of course, φ should be viewed as an endomorphism of E through the
isomorphism Endp(E) ∼= O identifying πE with

√
−p. We then have:

Theorem 1. The map ρ : C`(O) × E``p(O) → E``p(O) sending ([a], E) to a ?
E := E/E[a] is a well-defined free and transitive group action.

Proof. See [21, Thm. 4.5] and its proof.

Here C`(O) denotes the ideal-class group of O, and [a] denotes the class of an
invertible ideal a ⊆ O.

The assumption underlying CSIDH is that this is a hard homogeneous space,
as soon as p is large enough. From a constructive point of view, the following
version of Theorem 1, obtained by incorporating [7, Prop. 8] and Vélu’s isogeny
formulas (in the version of [19, Prop. 1]), forms its backbone.

Theorem 2. If p ≡ 3 mod 8 then the map ρ+ : C`(Z[
√
−p])×S+

p → S+
p sending

([a], a) to

[a] ? a :=

a− 3
∑

P∈E+
a [a]

P 6=∞

(
x(P )− 1

x(P )

) · ∏
P∈E+

a [a]
P 6=∞

x(P )

is a well-defined free and transitive group action. Here we assume (0, 0) /∈ E+
a [a].

The assumption (0, 0) /∈ E+
a [a] is not a restriction since C`(Z[

√
−p]) is generated

by ideals of odd norm, and by design CSIDH acts by such ideals only.2

Our main theoretical tool is the following variant of Theorem 2, on which
our CSURF-512 protocol from Section 6 relies:

2 It has been pointed out, e.g. in [17,8], that allowing for the action of (4,
√
−p − 1)

could lead to a minor improvement. See also Remark 2.
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Theorem 3. If p ≡ 3 mod 4 then the maps

ρ− :

{
C`(Z[

√
−p]) × S−p → S−p if p ≡ 3 mod 8,

C`(Z[(1 +
√
−p)/2]) × S−p → S−p if p ≡ 7 mod 8

sending ([a], A) to

[a] ? A :=

A− 3
∑

P∈E−A [a]
P 6=∞

(
x(P ) +

1

x(P )

) · ∏
P∈E−A [a]
P 6=∞

x(P )

are well-defined free and transitive group actions. Here, we assume that the ideal
a representing [a] has odd norm.

We again note that the class group is generated by ideals of odd norm. However,
if p ≡ 7 mod 8 then C`(Z[(1 +

√
−p)/2]) also admits invertible ideals of norm 2,

which can be used to speed up the evaluation of ρ− significantly. These require
a separate treatment, which is outlined in Section 4.

Apart from a striking analogy with Theorem 2, the reader might notice that
Theorem 3 is in seeming conflict with Theorem 1 when p ≡ 3 mod 8. Indeed,
since the curves E−A always have endomorphism ring Z[(1 +

√
−p)/2], it seems

that ρ− is acting by the wrong class group! However, in Section 3 we will see that
every curve on the surface has three representants in S−p , and at the same time
|C`(Z[

√
−p])| = 3|C`(Z[(1 +

√
−p)/2]|. It turns out that, somewhat surprisingly,

Vélu’s formulas consistently link both factors 3 to each other.
We note that Theorem 2 can be extended to cover p ≡ 7 mod 8 as well, by

merely adding a subscript Z[
√
−p] to S+

p . But for such p there is also a surface
version of Theorem 2, which is more subtle and will be discussed in Section 5.

Further notation and terminology

The identity element of an elliptic curve E will be denoted by ∞ and context
will make it clear to which curve it belongs. An important convention is that
if p ≡ 3 mod 4, then for a a square in Fp we denote by

√
a the unique square root

which is again a square; this can be computed as a(p+1)/4. Finally, for B ∈ Z>0

we write [−B;B] for the set of integers [−B,B] ∩ Z.

3 Properties of Montgomery− curves

3.1 Montgomery− arithmetic: just a few sign flips

One of the advantages of Montgomery+ curves is that arithmetic on them can
be done very efficiently. Fortunately, this can easily be adjusted to work for
Montgomery− curves. E.g., the formulas for point doubling and differential ad-
dition, for use in the Montgomery ladder, take the following form.
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Proposition 1. Let E−A : y2 = x3 +Ax2 − x be an elliptic curve over a field K
of characteristic different from two, with P,Q ∈ E−A (K).

1. If P =∞ or x(P )3 +Ax(P )2 − x(P ) = 0, then 2P =∞. Else

x(2P ) =
(x(P )2 + 1)2

4(x(P )3 +Ax(P )2 − x(P ))
.

2. If {P,Q, P +Q,P −Q} ∩ {∞} = ∅, then

x(P +Q)x(P −Q) =
(x(P )x(Q) + 1)2

(x(P )− x(Q))2
.

Proof. This is almost a copy of the corresponding proofs in [2].

Likewise, computing odd degree isogenies between Montgomery− curves just
amounts to a few sign changes with respect to the formulas from [19, Prop. 1],
leading to the following statement (we will treat 2-isogenies separately in Sec-
tion 4).

Proposition 2. Let E−A : y2 = x3 +Ax2 − x be an elliptic curve over a field of
characteristic not two. Let G ⊆ E−A (K) be a finite subgroup such that |G| is odd,
and let φ be a separable isogeny such that ker(φ) = G. Then there exists a curve
E−B : y2 = x3 +Bx2 − x such that, up to composition with an isomorphism,

φ : E−A → E−B
(x, y) 7→ (f(x), c0yf

′(x)),

where

f(x) = x
∏

T∈G\{∞}

xxT + 1

x− xT
.

Writing

π =
∏

T∈G\{∞}

xT , σ =
∑

T∈G\{∞}

(
xT +

1

xT

)
,

we also have that B = π(A− 3σ), c20 = π.

Proof. Let i, θ ∈ K̄ be such that i2 = −1 and θ2 = i, and let ` = |G|. We will
construct the isogeny φ as the concatenation of φ3 ◦ φ2 ◦ φ1 as illustrated in the
following diagram,

E−A E−B

E+
a E+

b

φ

φ1

φ2

φ3
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where φ2 : E+
a → E+

b is the isogeny from [19, Prop. 1], and the elliptic curves
are given by the Montgomery+ forms E+

a : y2 = x3 + ax2 + x and E+
b : y2 =

x3 + bx2 + x.
The isogenies φ1 and φ3 are in fact isomorphisms (over an extension field)

given by

φ1 : E−A → E+
a

(x, y) 7→ (−ix, θy)

and

φ3 : E+
b → E−B

(x, y) 7→ (ix,−iθy).

It is easy to verify that a = −iA and B = ib. The rest of the proof is just a
straightforward calculation. With the formulas from [19] we can compute the
coefficient b as π̃(a− 3σ̃) = (−i)`π(A− 3σ) where

π̃ =
∏

T∈φ1(G)\{∞}

xT =
∏

T∈G\{∞}

−ixT = (−i)`−1π,

σ̃ =
∑

T∈φ1(G)\{∞}

(
xT −

1

xT

)
=

∑
T∈G\{∞}

(
−ixT +

1

ixT

)
= −iσ.

Similarly if we define

f̃ = x

 ∏
T∈φ1(G)\{∞}

(
xxT − 1

x− xT

) ,

then with c̃0
2 = π̃ = (−i)`−1π, we have

(φ2 ◦ φ1)(x, y) =
(
f̃(−ix), c̃0θyf̃

′(−ix)
)

=

−ix ∏
T∈φ1(G)\{∞}

(
−ixxT − 1

−ix− xT

)
, c̃0θyf̃

′(−ix)


=

−ix ∏
T∈G\{∞}

(
−xxT − 1

−ix+ ixT

)
, c̃0θyf̃

′(−ix)


=
(
−i`f(x), c̃0θyf̃

′(−ix)
)

=
(
−i`f(x), c̃0θy(−i)`−1f ′(x)

)
.

If we assume ` ≡ 1 mod 4 then (−i)`−1 = 1 such that c̃0 is just a square root
of π. Composing this with φ3(x, y) = (ix,−iθy) we get that

φ(x, y) = (f(x), c̃0yf
′(x)),
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as well as B = π(A− 3σ). In this case we let c0 = c̃0.
If ` ≡ 3 mod 4 then c̃0

2 = −π and the isogeny may not be defined over K.
Post-composing it with the isomorphism τ : (x, y) 7→ (−x, iy) fixes this if needed.
In this case we find

φ(x, y) = (f(x),−ic̃0yf ′(x)),

and again B = π(A− 3σ). Defining c0 = −ic̃0 finishes the proof.

As usual, it is better to use projective coordinates to avoid costly field inver-
sions, i.e., to represent the x-coordinate of a projective point P = (X : Y : Z)
as x(P ) = X/Z; the required adaptations are straightforward.

3.2 Locating supersingular Montgomery± curves

We now switch to curves over finite prime fields Fp. The lemma below shows that
supersingular Montgomery− curves over Fp are always located on the surface.

Lemma 1. Let p > 3 be a prime number and let A ∈ Fp be such that E−A : y2 =
x3 + Ax2 − x is supersingular. Then p ≡ 3 mod 4, and there is no P ∈ E−A (Fp)
such that 2P = (0, 0); in particular, Endp(E

−
A ) ∼= Z[(1 +

√
−p)/2].

Proof. Let P be a point doubling to (0, 0); note that, necessarily, both coordi-
nates are non-zero. The tangent line at P has slope

3x(P )2 + 2Ax(P )− 1

2y(P )
.

But, since the line should pass through (0, 0), a simpler expression for this slope
is y(P )/x(P ). Equating both expressions leads to x(P )2 + 1 = 0. Now:

– If p ≡ 1 mod 4 then we conclude x(P ) = ±i ∈ Fp and hence y(P )2 = −A∓2i.
If both expressions on the right-hand side are non-squares then their product
A2 + 4 is a square, but then x3 + Ax2 − x factors completely over Fp. We
conclude that in any case 4 | |E−A (Fp)| = p+ 1, which is a contradiction.

– If p ≡ 3 mod 4 then this shows that such a point P cannot be Fp-rational.
But then E−A (Fp)[2

∞] ∼= Z/(2e) × Z/(2) for some e ≥ 1, since |E−A (Fp)| =
p+ 1 ≡ 0 mod 4. Thus there are 3 outgoing Fp-rational 2-isogenies, hence in
view of [13, Thm. 2.7] our curve must be located on the surface.

The conclusion p ≡ 3 mod 4 also applies to supersingular Montgomery+ curves,
since it is known [2] that these always carry an Fp-rational point of order 4.

So, from now on, let us assume that p ≡ 3 mod 4. Then the above lemma
settles the ‘if’ part of Proposition 4 below, which can be viewed as the surface
version of the following statement:

Proposition 3. Let p > 3 be a prime number such that p ≡ 3 mod 4 and let
E be a supersingular elliptic curve over Fp. If Endp(E) ∼= Z[

√
−p] then there

exists a coefficient a ∈ Fp \ {±2} for which E is Fp-isomorphic to the curve
E+
a : y2 = x3 + ax2 + x. Furthermore,
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– this coefficient is always unique,
– if p ≡ 3 mod 8 then the converse implication holds as well.

Proof. If p ≡ 3 mod 8 then this is [7, Prop. 8]. If p ≡ 7 mod 8 then the relevant
part of the proof of [7, Prop. 8] still applies.

Proposition 4. Let p > 3 be a prime number such that p ≡ 3 mod 4 and let E
be a supersingular elliptic curve over Fp. Then Endp(E) ∼= Z[(1 +

√
−p)/2] if

and only if there exists a coefficient A ∈ Fp for which E is Fp-isomorphic to the
curve E−A : y2 = x3 +Ax2 − x. Furthermore,

– if p ≡ 3 mod 8 then there exist exactly three such coefficients,
– if p ≡ 7 mod 8 then this coefficient is unique.

We will prove this proposition by means of the following convenient tool,
connecting floor and surface:

Lemma 2. Let p > 3 be a prime number such that p ≡ 3 mod 4. Then

τ : S+
p,Z[
√
−p] → S−p : a 7→ −2a/

√
4− a2

is a well-defined bijection.

Proof. For a, b ∈ Fp with a2 − 4b 6= 0 let us write Ea,b for the elliptic curve
y2 = x3 + ax2 + bx, which admits the well-known 2-isogeny

Ea,b → E−2a,a2−4b : P 7→

{(
y(P )2

x(P )2 , y(P )(1− b
x(P )2 )

)
if P 6= (0, 0),∞

∞ if P ∈ {(0, 0),∞}.
(2)

If a ∈ S+
p,Z[
√
−p] then we find that E+

a = Ea,1 is 2-isogenous to the curve

E−2a,a2−4 : y2 = x3 − 2ax2 + (a2 − 4)x,

which is necessarily supersingular. Since E+
a lives on the floor we see that a2− 4

is not a square in Fp, hence 4 − a2 is a square and letting δ =
√

4− a2, the
substitution x ← δx, y ← δ3/2y transforms the above equation into y2 = x3 −
2a/
√

4− a2x2 − x. We conclude that τ is indeed well-defined.
Conversely, if A ∈ S−p then we find that E−A = EA,−1 is 2-isogenous to

E−2A,A2+4 : y2 = x3 − 2Ax2 + (A2 + 4)x.

Since E−A lives on the surface by Lemma 1, we have that A2 + 4 is a square

in Fp. Letting δ =
√
A2 + 4, the same substitution transforms our equation

into y2 = x3 − 2A/
√
A2 + 4x2 + x. It is easily checked that this curve has no

Fp-rational points of order 2 besides (0, 0), hence the map

S−p → S+
p,Z[
√
−p] : A 7→ −2A/

√
A2 + 4 (3)

is also well-defined. An easy calculation shows that it is an inverse of τ .
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Proof of Proposition 4. By Proposition 3 each Fp-isomorphism class of elliptic
curves on the floor is represented by a unique Montgomery+ curve. Since such
curves have a unique Fp-rational point of order 2, the proof of Lemma 2 shows
that Fp-rational 2-isogenies give a 1-to-1 correspondence between E``p(Z[

√
−p])

and S−p . But on the level of Fp-isomorphism classes, by [13, Thm. 2.7] this cor-
respondence is 3-to-1 if p ≡ 3 mod 8 and 1-to-1 if p ≡ 7 mod 8.

If p ≡ 7 mod 8 then Proposition 3 leaves open whether or not there exist
a ∈ S+

p such that E+
a is located on the surface. To answer this, we rely on the

following lemma.

Lemma 3. If p ≡ 7 mod 8 then every E ∈ E``p(Z[(1 +
√
−p)/2]) comes with

three distinguished points of order 2:

– P−, the x-coordinates of whose halves are not defined over Fp,
– P+

1 , whose halves are not defined over Fp, but their x-coordinates are,
– P+

2 , whose halves are defined over Fp.

Proof. From the structure of E(Fp)[2
∞] one sees that there is indeed a unique

point P+
2 of order 2 whose halves are Fp-rational. If we position P+

2 at (0, 0) we
find a model y2 = x3 + ax2 + bx, where necessarily b is a square, as can be seen
by mimicking the proof of Lemma 1. When translating the other points of order
2 to the origin we get similar equations, of which the coefficients at x become
δ(δ ± a)/2 with δ =

√
a2 − 4b. The product of these coefficients equals −bδ2,

hence we conclude that one coefficient is a non-square and one coefficient is a
square. So, again as in the proof of Lemma 1, we see that the former translated
point equals P−, while the latter translated point equals P+

1 .

Corollary 1. If p ≡ 7 mod 8 then each E ∈ E``p(Z[(1 +
√
−p)/2]) admits ex-

actly 2 coefficients a ∈ Fp \ {±2} for which E is Fp-isomorphic to the curve
E+
a : y2 = x3 + ax2 + x.

Proof. By Proposition 4, such curves admit a unique Montgomery− model. Note
that, for this model, P− is positioned at (0, 0). The two Montgomery+ models
are obtained by translating P+

1 or P+
2 to (0, 0) and scaling down the resulting

b-coefficient (which is a square) to 1, by means of a coordinate change.

Table 1 summarizes how and with what frequency Montgomery± curves show
up as representatives of Fp-isomorphism classes of supersingular elliptic curves.
Figures 1 and 2 give an accompanying visual representation.

4 2-isogenies between Montgomery− curves

In this section we assume that p ≡ 7 mod 8 and we consider the maximal order
Z[(1 +

√
−p)/2], in which (2) = (2, (

√
−p− 1)/2)(2, (

√
−p+ 1)/2). We describe

a fast method for computing the repeated action of one of the factors as a chain
of 2-isogenies. This relies on the following remarkably precise statement (recall
our convention on square roots!):

10



S−p

E``p(Z
[
1+
√
−p

2

]
)

E``p(Z[
√
−p])

S+
p

Fig. 1. The supersingular isogeny graph over Fp with p ≡ 3 mod 8. The black dots
represent supersingular elliptic curves up to Fp-isomorphism. The yellow lines represent
the 2-isogenies, which are necessarily between the surface and the floor.
The purple lines represent the `-isogenies for some fixed ` such that (`, π−1) generates
C`(Z[

√
−p]). This implies that the `-isogenies on the floor create one big cycle which

we need to depict as spiraling around three times. Indeed, the action of (`, π−1) on the
surface should result in the same Fp-isomorphism class as first computing a vertical
2-isogeny taking us to the floor, then performing the action of (`, π − 1), and finally
computing a vertical 2-isogeny back to the surface.
The red dots and lines represent the Montgomery+ coefficients, which are 1-to-1 with
the isomorphism classes on the floor. This correspondence forms the basis for the
original CSIDH setting described in [7].
The blue dots and lines represent the Montgomery− coefficients, which are 3-to-1 with
the isomorphism classes on the surface.
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(
|S+

p,O| : |E``p(O)|
) (
|S−p | : |E``p(O)|

)
p ≡ 3 mod 8

O = Z
[
1+
√
−p

2

]
0 (3 : 1)

O = Z[
√
−p] (1 : 1) 0

p ≡ 7 mod 8
O = Z

[
1+
√
−p

2

]
(2 : 1) (1 : 1)

O = Z[
√
−p] (1 : 1) 0

p ≡ 1 mod 4 0 0

Table 1. The ratio of the number of Montgomery± coefficients to the number of
Fp-isomorphism classes of supersingular elliptic curves.

S+

p,Z
[
1+
√
−p

2

]

S+

p,Z[
√
−p]

S−p

E``p(Z
[
1+
√
−p

2

]
)

E``p(Z[
√
−p])

Fig. 2. The supersingular isogeny graph over Fp with p ≡ 7 mod 8. The black dots
represent supersingular elliptic curves up to Fp-isomorphism. The yellow lines represent
the 2-isogenies, where we assumed that (2, (

√
−p− 1)/2) generates the class group.

The red dots and lines represent the Montgomery+ coefficients, which are 2-to-1 with
the isomorphism classes on the surface and 1-to-1 with the isomorphism classes on the
floor.
The blue dots and lines represent the Montgomery− coefficients, which are 1-to-1 with
the isomorphism classes on the surface.
Unlike in Figure 2, no `-isogenies for odd ` are depicted here since it is more natural
to draw the cycle of 2-isogenies on the surface.
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Lemma 4 (Addendum to Lemma 3). Assume p ≡ 7 mod 8 and consider an
elliptic curve E : y2 = x3 + ax2 + bx ∈ E``p(Z[(1 +

√
−p)/2]). Let δ =

√
a2 − 4b

and T1 = ((−a+ δ)/2, 0), T2 = ((−a− δ)/2, 0). Then:

1. if (0, 0) = P− then T1 = P+
2 and T1 = P+

1 ,
2. if (0, 0) = P+

1 then T1 = P+
2 and T2 = P−,

3. if (0, 0) = P+
2 then T1 = P− and T2 = P+

1 .

Proof. The change of coordinates x← x+ (−a+ δ)/2 yields

y2 = x

(
x+
−a+ δ

2

)
(x+ δ) = x3 +

−a+ 3δ

2
x2 +

δ(−a+ δ)

2
x (4)

and positions T1 at the origin. As in the proof of Lemma 1 we see that T1 = P+
1

or T1 = P+
2 if and only if the coefficient δ(−a+ δ)/2 is a square, i.e., if and only

if −a+ δ is a square.
In particular, for case 2 it suffices to show that −a + δ is a square. To this

end, note that the 2-isogeny from the proof of Lemma 2 takes our input curve
E : y2 = x3 + ax2 + bx to y2 = x3 − 2ax2 + δ2x, while mapping P+

2 to (0, 0).
But then an Fp-rational half of P+

2 is mapped to an Fp-rational half of (0, 0),

which is necessarily of the form (±δ,
√

2δ2(−a± δ)). We conclude that at least
one of −a + δ or −a − δ is a square, but then both elements are squares since
their product equals the square 4b.

Similarly, for case 3 it suffices to prove that −a+ δ is not a square. We can
consider the same 2-isogeny, which now maps P+

1 to (0, 0). Using that any point
Q ∈ E(Fp2 \ Fp) doubling to P+

1 satisfies πE(Q) = −Q, which is different from
both Q and Q+(0, 0), we conclude that the image of P+

1 cannot be Fp-halvable.
From this the desired conclusion follows.

Finally, to settle case 1, consider the curve (4), whose point (0, 0) is either
P+

1 or P+
2 . Also note that the first non-trivial factor in (4) corresponds to P−.

But using the identity(
−a+ 3δ

2

)2

− 4
δ(−a+ δ)

2
=

(
a+ δ

2

)2

,

we can rewrite (4) as

y2 = x

(
x−
−−a+3δ

2 + a+δ
2

2

)(
x−
−−a+3δ

2 − a+δ
2

2

)
.

Using 2 and the fact that (a+ δ)/2 is a square, we see that if (0, 0) = P+
1 , then

the first non-trivial factor of (4) would instead correspond to P+
2 . We conclude

that (0, 0) = P+
2 , from which the lemma follows.

This will be combined with the following fact:

Lemma 5. Assume that p ≡ 7 mod 8 and let E ∈ E``p(Z[(1 +
√
−p)/2]). Then

E

[(
2,

√
−p− 1

2

)]
= 〈P+

2 〉 and E

[(
2,

√
−p+ 1

2

)]
= 〈P+

1 〉.
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Proof. As in the proof of Lemma 2 one checks that P− takes us down to the floor,
so it suffices to prove the first equality. Let Q ∈ E(Fp) be such that 2Q = P+

2

and let φ denote the endomorphism πE−1
2 , then φ(P+

2 ) = φ(2Q) = 2φ(Q) =
πE(Q)−Q =∞, from which the statement follows.

The formulas to compute 2-isogenies between Montgomery− curves seem
easiest if we perform almost all of them on isomorphic Montgomery+ curves. We
formulate the procedure in the form of an algorithm.

Algorithm 1 Computing the action of (2, (
√
−p − 1)/2)e on A ∈ S−p , with

p ≡ 7 mod 8

1: if e = 0 then return A
2: else
3: A← sign(e) ·A

4: A← 2
A−3
√

A2+4

A+
√

A2+4

5: for i from 2 to e do
6: A← 2(3 +A(

√
A2 − 4−A))

7: A← A+3
√

A2−4√
2
√

A2−4
(
A+
√

A2−4
)

8: return sign(e) ·A

Sketch of the proof of Algorithm 1. Note that quadratic twisting swaps the roles
of P+

1 and P+
2 , so with Lemma 5 in mind, we can simply flip the sign of A at

the start and the end of the algorithm and focus on P+
2 . Line 4 constitutes

a translation x ← x + (−a + δ)/2, which by Lemma 4 positions T1 = P+
2

at the origin, followed by the 2-isogeny from (2) and a rescaling to obtain a
Montgomery+ curve.

Line 6 is immediate from [19, Proposition 2], where it should be noted that,
due to our choice of canonical square root, x(P+

2 ) is always a square so that we
do not need to consider possible twists. Line 7 is just a translation followed by
a rescaling to put everything back in Montgomery− form.

5 ‘New’ hard homogeneous spaces

For each non-zero entry of Table 1 we obtain a specialization of Theorem 1. For
instance, Theorem 2 corresponds to the entry covering Montgomery+ curves,
primes p ≡ 3 mod 8 and endomorphism ring O = Z[

√
−p]. The main goal of

this section is to prove Theorem 3, which takes care of two further entries,
namely those corresponding to Montgomery− curves, primes p ≡ 3, 7 mod 8 and
endomorphism ring O = Z[(1 +

√
−p)/2]:

14



Proof of Theorem 3. If p ≡ 7 mod 8 then this follows immediately from Theo-
rem 1, along with Proposition 2 and the fact that each Fp-isomorphism class on
the surface is represented by exactly one Montgomery− curve.

If p ≡ 3 mod 8 then consider the bijection τ from Lemma 2, and let ρ+ be
the group action from Theorem 2. We then define

C`(Z[
√
−p])× S−p → S−p : ([a], A) 7→ τ(ρ+([a], τ−1(A))),

which is clearly a well-defined free and transitive group action, simply because τ
is a bijection. So it suffices to show that this matches with ρ−. For this, consider
a Montgomery− coefficient A and an invertible ideal a ⊆ Z[

√
−p] having odd

norm, along with the subgroup of E−A spanned by E−A [a] and (0, 0). We quotient
out this subgroup in the following two ways:

– We first quotient out by E−A [a], using the formulas from Proposition 2, yield-
ing a Montgomery− curve E−B . Let us abusingly denote the corresponding
isogeny by ρ−, and note that it maps (0, 0) to (0, 0). So we can continue
by applying the 2-isogeny from (2), in order to arrive at the Montgomery+

curve E+
τ−1(B) on the floor.

– Conversely, we apply the 2-isogeny from (2), taking us to the Montgomery+

curve E+
τ−1(A). Note that this maps E−A [a] to E+

τ−1(A)[a], which we quotient

out in turn, by means of the formulas from [19, Prop. 1]. By the same abuse
of notation, we denote the latter isogeny by ρ+. Because every curve on the
floor is represented by a unique Montgomery+ coefficient, this necessarily
takes us to E+

τ−1(B).

Thus we obtain the diagram

E−A E−B

E+
τ−1(A) E+

τ−1(B)

ρ−

θA θB

ρ+

with θA and θB denoting the above 2-isogenies, where our reasoning in fact
shows that [±1] ◦ θB ◦ ρ− = ρ+ ◦ θA. This implies that [±2] ◦ ρ− = θ̂B ◦ ρ+ ◦ θA.
Multiplication by ±2 does not change the curve E−B , so we are done.

Remark 2. Here are two examples of how the surface can help in understanding
the floor. We assume p ≡ 3 mod 8.

– Let a, a′ ∈ S+
p be given and let [a] ∈ C`(Z[

√
−p]) be an unknown ideal class

such that a′ = [a]?a (action by ρ+ on the floor). By the foregoing proof this
is equivalent with τ(a′) = [a] ? τ(a) (action by ρ− on the surface), which on
the level of Fp-isomorphism classes implies that

E−τ(a′)
∼= [ã] ? E−τ(a),
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where ã is the ideal of Z[(1 +
√
−p)/2] generated by a. Clearly, in order

to find [a] it suffices to find [ã], and then simply try the 3 corresponding
possibilities for a. This confirms that the factor 3 in |C`(Z[

√
−p])| offers

little extra security to CSIDH.
– If we want a fast evaluation of the action of [(4,

√
−p− 1)] ∈ C`(Z[

√
−p]) on

S+
p , this can be done by composing two 2-isogenies, thereby passing through

the surface using τ and τ−1. We leave it as an exercise to verify that this
leads to the simple formula [(4,

√
−p− 1)] ? a = 2(a− 6)/(a+ 2), which was

first derived in [17, §4.2].

This leaves us with the two entries corresponding to Montgomery+ curves
and primes p ≡ 7 mod 8. This behaves less uniformly since some curves live on
the surface and some live on the floor, and in any case these entries seem of
lesser cryptographic interest.

If p ≡ 7 mod 8 then |C`(Z[
√
−p])| = |C`(Z[(1 +

√
−p)/2])|. Hence in view of

Table 1 there are exactly 3 times as many supersingular Montgomery+ coeffi-
cients a ∈ Fp\{±2} as there are Fp-isomorphism classes of supersingular elliptic
curves:

– Under the map a 7→ E+
a , one third of these are in a 1-to-1 correspondence

with E``p(Z[
√
−p]). In particular, Theorem 2 remains valid for p ≡ 7 mod 8,

provided that we replace S+
p with S+

p,Z[
√
−p].

– According to the proof of Corollary 1, the other two thirds split into

S+
p,Z[(1+

√
−p)/2],1

= { a ∈ S+
p,Z[(1+

√
−p)/2]

| (0, 0) /∈ 2E+
a (Fp) }

and

S+
p,Z[(1+

√
−p)/2],2

= { a ∈ S+
p,Z[(1+

√
−p)/2]

| (0, 0) ∈ 2E+
a (Fp) },

and both sets are in a 1-to-1 correspondence with E``p(Z[(1 +
√
−p)/2]).

Since the instantiated versions of Vélu’s formulae map (0, 0) to (0, 0), in
the statement of Theorem 2 we are equally allowed to replace Z[

√
−p] with

Z[(1 +
√
−p)/2] and S+

p with S+
p,Z[(1+

√
−p)/2],i

, for any choice of i = 1, 2.

Remark 3. The latter setting again allows for horizontal 2-isogenies, therefore
it should give rise to very similar timings as those reported upon in Section 6.
One minor drawback is that Alice and Bob should agree on the value of i and
validate each other’s public keys as such; moreover 0 can no longer be used as a
starting coefficient.

Remark 4. Alternatively, it is natural to view

S+
p,Z[(1+

√
−p)/2],1

and S+
p,Z[(1+

√
−p)/2],2

as two orbits under the free but non-transitive action

ρ+ : C`(Z[(1 +
√
−p)])× S+

p,Z[(1+
√
−p)/2]

→ S+
p,Z[(1+

√
−p)/2]
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described by the same formulae. Using that the quadratic twisting map E+
a 7→

E+
−a jumps back and forth between the two orbits, along with the fact that

[a] ?Et ∼= ([a]−1 ?E)t (see e.g. [8, Lem. 5]), the two orbits can be glued together
into a single orbit under an action by the dihedral group Dih C`(Z[(1+

√
−p)/2]).

6 Implementation

We assume that the reader is familiar with how CSIDH is being set up in prac-
tice [7]. In this section we use Theorem 3 and Algorithm 1 to design a variant of
CSIDH acting on S−p rather than S+

p . Recall from [7] that CSIDH-512 uses the
prime

p = 4 · (3 · . . . · 373)︸ ︷︷ ︸
73 first odd primes

· 587− 1 ≈ 2510.668,

and then samples exponents from the range [−5; 5]74 to represent an element in
the class group and let it act on 0 ∈ S+

p , for a conjectured 128 bits of classical
security. Concretely, the exponent vector (e1, . . . , e74) in this case represents
the class group element (3,

√
−p − 1)e1 · · · (587,

√
−p − 1)e74 . For the sake of

comparison, we propose CSURF-512 which works over Fp where

p = 23 · 3 · (3 · . . . · 389)︸ ︷︷ ︸
74 consecutive primes,

skip 347 and 359

− 1 ≈ 2512.880.

This prime will speed up the computation of a class group action in multiple
ways. First of all, the largest isogeny we need to compute is of degree 389 instead
of 587. Secondly, p+1 carries an extra factor 3 that can help with sampling points
of order 3 to compute 3-isogenies. Indeed, finding an `-torsion point typically
amounts to sampling a random point P and multiplying it by (p+1)/`, which has
a 1/` chance of failure (i. e. we end up in ∞). For CSURF-512 we can multiply
a random point P by both (p + 1)/9 and (p + 1)/3 to try and find a point of
order 3, improving our chance of failure to only 1/9.

The biggest speed-up however stems from the fact that p ≡ 7 mod 8, so we
now have 2 as a 75th prime to use. Furthermore 2-isogenies are very fast due
to their simple and explicit formulae, see Algorithm 1, so we can sample the
exponent for 2 from a much larger interval. In practice we evaluate these 2-
isogenies first, without pushing through points, and then proceed with the other
primes as in CSIDH.

We implemented both CSIDH-512 and CSURF-512 in Magma [6] to compare
their performance. With the exception of 2-isogenies, both implementations are
totally similar, making use of the (projective) Montgomery ladder, the pushing
through of points, etc., the only differences being the sign switches discussed in
Section 3.1. However, we did not implement any of the constant-time measures
since these are orthogonal to the speed-up we described. Based on experiments,
a near-optimal set to sample exponent vectors from seems to be

I = [−137; 137]× [−4; 4]3 × [−5; 5]46 × [−4; 4]25,
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which results in 275 · 928 · 1146 ≈ 2255.995 distinct secret vectors. As in CSIDH-
512, we heuristically expect that these vectors represent the elements in the
class group quasi-uniformly, by mimicking the reasoning from [7, §7.1]. Note
that for 3-, 5- and 7-isogenies we sample from a smaller interval, since the ease of
computing the isogeny is outweighed by the high failure probability of finding the
needed torsion points. Sampling from this specific set of exponent vectors gives
CSURF-512 a speed-up of about 5.68% compared to CSIDH-512; this estimate
is based on an experiment generating 25 000 public keys in both settings. Our
source code can be found at https://github.com/TDecru/CSURF.

As a final remark, we note that the advantage of working on the surface
is expected to diminish when the underlying prime p becomes larger, since the
relative contribution of 2-isogenies will decrease. This is especially relevant given
the ongoing discussion about the conjectured quantum security of the protocol,
see for example [5,18,3]. However, if p ≡ 7 mod 8 then the surface will always
outperform the floor to some extent. This means that setting up these larger
instantiations of the CSIDH protocol should preferably be done on the surface,
in any case.
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5. Xavier Bonnetain and André Schrottenloher. Submerging CSIDH. IACR Cryptol-
ogy ePrint Archive, page 537, 2018.

6. Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra system.
I. The user language. J. Symbolic Comput., 24(3-4):235–265, 1997. Computational
algebra and number theory (London, 1993).

7. Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and Joost Renes.
CSIDH: An efficient post-quantum commutative group action. In Thomas Peyrin
and Steven Galbraith, editors, Advances in Cryptology – ASIACRYPT 2018, Part
III, pages 395–427, 2018.

8. Wouter Castryck, Lorenz Panny, and Frederik Vercauteren. Rational isogenies from
irrational endomorphisms. IACR Cryptology ePrint Archive, 2019:1202, 2019.

9. Daniel Cervantes-Vázquez, Mathilde Chenu, Jesús-Javier Chi-Domı́nguez, Luca
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