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Summary
This paper presents a Bayesian extension of the vector fitting (VF) procedure for rational approx-
imation of frequency-domain responses. The proposed method treats the linear part of VF in a
Bayesian way, while propagating distributions through the nonlinear part by sampling. As such,
it is capable of providing data-driven uncertainty information along with the rational fit. The
Bayesian VF technique is applied to two realistic design examples, a double folded stub filter and
a RAM memory channel, demonstrating its validity and highlighting three potential applications
of this novel framework.
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1 INTRODUCTION
Black-box macromodeling is a popular tool to approximate the dynamic behavior of complex systems in terms of low complexity models. The most
accomplished approaches to black-box macromodeling are the Löwner matrix method 1,2, and the Vector Fitting (VF) algorithm 3,4,5,6. By virtue of
its robustness andmodeling power, several macromodeling techniques based on the VF algorithm have been developed in recent years, in order to
characterize the behavior of distributed elements 7,8,9.
As any measurement of an electronic device is affected by a modicum of noise, and due to discrete sampling of the frequency response, macro-

models are subject to model uncertainty. Most macromodeling techniques, including VF, however, consist of a deterministic interpolation of the
response, basedon those samples. Thesemodels displaynomeasureofmodel uncertaintywith regard to thevalueof their interpolation.A statistical
treatment of thesemethods would be an efficient means to assess this model uncertainty.
In this paper, such a statistical treatment is presented, based on Bayesian linear regression combinedwith sampling-based propagation ofmodel

uncertainty. Two insightful examples demonstrate that the novel Bayesian version of VF gives sharp bounds of the model uncertainty.With the aid
of these examples, it is shown that such uncertainty information can be used for various purposes, such as characterizing device responses in the
presence of noisy or missing data, to verify functionality and compliance, or for adaptive sampling. Note that in 10, the idea of using Bayesian VF for
adaptive samplingwas introduced first, but only for a simple one-port example of an antenna. In this work, the linear Bayesian vector fitting (LB-VF)
framework is fully developed and tested on twomultiport systems (a microwave filter and a RAMmemory channel) for various applications.
The remainder of this paper is structured as follows. In section 2, the VF algorithm is briefly explained. Then, the proposed Bayesian extension is

detailed in section 3. In section 4, the LB-VF framework is applied to two realistic examples. Finally, in section 5, the paper is concluded.
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2 VECTOR FITTING
TheVector Fitting (VF) algorithm is awell-known technique tobuild a rationalmacromodel that approximates a transfer function 3,4,5,6. This transfer
function or (for multiport S-parameters) transfer matrixS (s) is approximated by a functionF (s) as a sum of partial fractions:

S (s) ≈ F (s) =

N∑
i=1

R i

s− ai
+D + sE . (1)

Here the ai and R i are the poles and the corresponding residue matrices, respectively. These poles and residue matrices can either be real or
constitute complex conjugate pairs. Furthermore, using a suitable pole-flipping scheme 3, stability can be enforced by keeping the real part of the
poles negative. The Laplace variable is denoted by s.D and E are optional constant and linear terms, describing the asymptotic behavior of the
transfer function.

2.1 Sanathanan-Koerner iteration
An established way to obtain such a fit is by iteratively relocating a set of starting poles until convergence, using Sanathanan-Koerner (SK) itera-
tions 11. This technique fits a function F (s) to data samples of S (s) by first choosing a set of “starting” poles {a0

i } and introducing a numerator
function (matrix) p (s) and a denominator function q(s) such that:

S (s) ≈ F (s) =
p (s)

q(s)
=

∑N
i=1

r i
s−a0i

+ d + se∑N
i=1

r̃i
s−a0i

+ d̃
. (2)

In the original VF implementation 3, d̃ = 1, while for relaxed VF d̃ is a free variable, but an extra equation is added to avoid trivial solutions (see 4 for
more details).
The initial poles can then be relocated by solving the linear least squares problem q(s)S (s) ≈ p (s) for {r i}, {r̃i}, d , e and d̃. If samples of S (s),

denoted as {S j}, are known atNs frequency points {sj}, j = 1, . . . , Ns, this can be summarized in the complex-valuedmatrix equation:
Ax = b. (3)

For example, for non-relaxed VF and a scalarS(s), this results in:

A =


1

s1−a01
. . . 1

s1−a0N
1 s1

−S1

s1−a01
. . . −S1

s1−a0N... ... ... ... ... ...
1

sNs−a
0
1
. . . 1

sNs−a
0
N

1 sNs
−SNs
sNs−a

0
1
. . .

−SNs
sNs−a

0
N

 ,
x =

[
r1 . . . rN d e r̃1 . . . r̃N

]T
,

b =
[
S1 . . . SNs

]T
. (4)

In the case of relaxed VF, d̃ is included in x and an additional condition

<

 Ns∑
k=1

(
N∑
i=1

r̃i

sk − a0
i

+ d̃

) = Ns (5)

is added to avoid a zero solution 4.
In the case of a complex conjugate pair ri and ri+1 = r∗i , ri + ri+1 and =(ri − ri+1) are considered instead. Likewise, Ai + Ai+1 and

=
(
Ai −Ai+1

) replaceAi andAi+1 as the corresponding columns ofA . WhenS itself is complex, the system
A′ x = b′ (6)

with
A′ =

<
(
A
)

=
(
A
)
 and b′ =

<
(
b
)

=
(
b
)
 (7)

is solved instead. In this way, the linear system (6) is always real-valued.
When dealingwith ann bymmatrix-variateS (s), it is vectorized and for each independent element l amatrixA l and vector bl of the same form

asA′ and b′ are constructed. Each suchA l is QR-decomposed asA l = Ql Pl , and the lower right parts of each Pl are vertically stacked:A′′ =[
P
T

1,LR . . . P
T

nm,LR

]T . Likewise, a stacked vector b′′ is constructed from the lower part of eachQ l and bl: b′′ =
[
b
T
1 Q i,L . . . b

T
nmQnm,L

]T .
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The coefficients of q(s) in x, denoted xL, are then computed by solving

A′′ xL = b′′ , (8)
yielding a common form for q(s). For more details, see 5.
Using the initial poles {a0

i } and the newly obtained {r̃i} and d̃, the zeros of q(s) are then calculated. As both q(s) and p (s) share the same poles
{a0
i }, these poles cancel out, and the zeros of q(s) are the relocated poles {ai} of F (s). These are found by solving an eigenvalue problem, based

on theminimal LTI state-space realization of q(s) 12:
{ai} = eig

(
Aq −BqD−1

q Cq
)
, (9)

whereAq is a matrix with the starting poles {a0
i } as diagonal elements,Bq is a column vector of ones,Cq is a row vector containing the {r̃i}, and

Dq equals d̃. Thus, a relocated set of poles is obtained. In order to enforce stability, poles whose real part is positive are flipped to the left half of the
complex plane 3. The procedure is then iterated by replacing the initial starting poles with the relocated poles.

2.2 Residue identification
Once the poles are relocated to their final position, identifying the residuesR i comes down to solving a linear system for each element in (1):

AX = B , (10)
where

A =


1

s1−a1
· · · 1

s1−aN
1 s1

... ... ... ...
1

sNs−a1
· · · 1

sNs−aN
1 sNs

 ,

X =



R1,1 · · · R1,nm

... ...
RN,1 · · · RN,nm
D1 · · · Dnm

E1 · · · Enm


,

B =


S1,1 · · · S1,nm

... ...
SNs,1 · · · SNs,nm

 . (11)

Similarly as for (4), both the sum of, and (the imaginary part of) the difference between complex conjugate pairs of residues are considered in stead
of those residues themselves. When S itself is complex, the real and imaginary parts ofA andB are vertically stacked. As such, the system (10) is
ensured to be real-valued.

3 LINEARBAYESIANVECTOR FITTING (LB-VF)
3.1 Sampling {r̃i} and d̃
Revisiting (8) with the final, converged VF poles as the starting poles {a0

i }, b′′ is modeled by a Gaussian distribution:
b′′ ∼ N

(
b′′
∣∣∣∣A′′ x, σ2I

)
(12)

This allows one to treat the linear system (8) in a Bayesianmanner when the samples {Sj} are subject to uncertainty, solving for the distribution of
x, rather than for the optimal value. A conjugate prior for x and σ2 is the following:

P
(
x, σ2

)
∼ N

(
x

∣∣∣∣x0, σ
2Λ0

−1
)

IG
(
σ2
∣∣α0, β0

)
, (13)

which is a σ2-dependent Gaussian distribution for x, and an inverse-gamma distribution for σ2. The parameters x0,Λ0 ,α0 and β0 define this prior.
They can either be set by prior knowledge, or chosen to represent the least informative distribution of the form (13). In the latter case, used in this
paper as well, the uninformative (Jeffrey’s) prior is set to

P
(
x, σ2

)
∼
(
σ2
)−1

. (14)
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Using Bayes’ theorem, some calculations (see Appendix A) now yield a posterior distribution of x having the same form:

P
(
x, σ2

∣∣∣b′′) ∼ N (x∣∣∣∣xf , σ2Λf
−1
)

IG
(
σ2
∣∣αf , βf ) . (15)

The parameters xf ,Λf ,αf and βf can be obtained using the update rules:
xf =Λf

−1
(

Λ0 x0 +A′′
T

b′′
)

(16)

Λf =Λ0 +A′′
T

A (17)
αf =α0 +

Nb

2
(18)

βf =β0 +
b′′

T
b′′ − xfTΛf xf + x0

TΛ0 x0

2
, (19)

whereNb is the length of b′′ . It is easily verified that, when using (14) as a prior, the results in (15)-(19) still hold, and they are the same as if onewere
to choose x0 = 0,Λ0 = 0 andα0 = β0 = 0.
Since σ2 is still unknown, it can and should bemarginalized out, in order to derive amarginal posterior for x (see Appendix B):

P
(
x
∣∣∣b′′) =

∫
P
(
x, σ2

∣∣∣b′′) d (σ2
)

= t2αf

(
x

∣∣∣∣∣xf ,
(
αf

βf
Λf

)−1
)
. (20)

This is a multivariate t-distribution.
Themarginal likelihoodP

(
b′′
) can be readily derived by integrating the product of the likelihood (12) and the prior (13) (see Appendix C):

P
(
b′′
)

=

∫∫
P
(
b′′
∣∣∣x, σ2

)
P
(
x, σ2

)
dxd

(
σ2
)

= (2π)−
Nb
2

√√√√√
∣∣∣Λ0

∣∣∣∣∣∣Λf ∣∣∣
βα0

0

β
αf
f

Γ
(
αf
)

Γ(α0)
(21)

The only dependency on b′′ in this expression stems from the posterior parameters (16)-(19). This quantity is useful because it is ameasure of how
well themodel fits the data, for any value of its parameters. Hence, (21) can be used to evaluate the quality of the starting poles, or their number.

3.2 Pole distribution
Since the nonlinear step in (9) precludes an analytic propagation of the posterior distribution of {r̃i} and d̃ in (20) to the relocated poles {ai}, the
distribution of the latter must be approximated. This is done by drawing samples from the posterior distribution in (20) and solving (9) for each of
these samples. The real part of any unstable sampled pole is inverted to ensure stability.

3.3 Sampling the residues
Similarly to the system described in Section 3.1, the solution to (10) can also be treated in a Bayesian way. In this case, the stochastic variability is
modeled by amatrix normal distribution:

B ∼MNNs,nm
(
B
∣∣∣AX , I ,Σ

)
. (22)

The conjugate prior is now of the form:
P
(
X ,Σ

)
∼MNN,nm

(
X

∣∣∣∣X0 ,Λ0

−1
,Σ

)
W−1

(
Σ
∣∣∣V0 , ν0

)
, (23)

which is aΣ -dependent matrix normal distribution times an inverse-Wishart distribution forΣ itself. After very similar calculations to the ones in
Section 3.1, the posterior is shown to become:

P
(
X ,Σ

∣∣∣B) ∼MNN,nm (X ∣∣∣∣Xf ,Λf −1
,Σ

)
W−1

(
Σ
∣∣∣Vf , νf) , (24)

whereX is anN × nmmatrix, andwhere the parameters can be calculated as:
Xf =Λf

−1
(

Λ0 X0 +A
T
B

)
(25)

Λf =

(
Λ0 +A

T
A

)
(26)

Vf =V0 +B
T
B −Xf

T
Λf Xf +X0

T
Λ0 X0 (27)

νf =ν0 +NB , (28)
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withNB the number of rows inB .
In this case, the uninformative priorP

(
X ,Σ

)
∝
∣∣∣Σ ∣∣∣−nm yields a posterior of the same formwhereX0 = Λ0 = V = 0 and ν0 = nm− 1

(or
ν0 = 0 for the Jeffrey’s priorP

(
X ,Σ

)
∝
∣∣∣Σ ∣∣∣−nm+1

2
).

The unknown parameterΣ can again bemarginalized out to obtain:
P
(
X
∣∣∣B) =

∫
P
(
X ,Σ

∣∣∣B) d(Σ
)

=TNx,nm

(
X

∣∣∣∣νf − nm+ 1, Xf ,Λf
−1
, Vf

)
, (29)

whereNx is the number of rows inX . This is thematrix-variate t-distribution.

3.4 Sampling pole-residuemodels
VF models (1) can now be sampled for a given transfer function using the scheme outlined in Fig. 1. First, according to Section 3.1, {r̃i} and d̃ are
sampledNp times from their posterior distribution (20). Then, for each such sample, a set of new poles are calculated by finding the zeros of (this
sample of) q(s) (Section 3.2). Next, for each pole set,Nr residue sets are sampled as described in Section 3.3. Each pole-residue set now forms a
different rational model that is drawn from the space of probable models given the data and the prior information.

S a0

r̃i, d̃i

ai

R i,j

Mi,j

i = 1 : Np

j = 1 : NR

FIGURE 1 LB-VF framework: Graph of the sampling of VFmodels (Mi,j ), whereNp pole sets are sampled, andNR residuematrix sets are sampled
for each of these pole sets.

4 APPLICATION EXAMPLES ANDNUMERICAL RESULTS
4.1 Double Folded Stub Filter
The statistical framework introduced above is now applied to a double folded stub filter, shown in Fig. 2 13. This design is a standard example in
Keysight’s AdvancedDesign System (ADS) 14. As a realistic design example, it is used in the following to highlight some potential applications of the
novel LB-VF framework.
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FIGURE 2Geometry of the double folded stub filter 13.
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FIGURE 3 The sampled distribution of the poles as a result of LB-VF applied to the S11 parameter of the double folded stub filter. The 500 samples
for each pole are shown as blue dots, while the poles obtained with regular VF are plotted in red. The locations of all relocated poles is shown in (a),
while a closer look at the samples around on of the poles (indicated by the box) is shown in (b).

4.1.1 Uncertainty arising from additive noise
As mentioned before, an amount (even if minimal) of noise is always present in measurement data. It can be very insightful for a designer to know
in what range the actual transfer function could fall, given the noisy measurement data. To this end, the frequency response – specifically, the S-
parameter matrix – of the stub was simulated using ADS in 101 points over a frequency range from 1 to 30GHz. In order to emulate noise (e.g.,
stemming frommeasurement errors), uncorrelated Gaussian noise with zero mean and a standard deviation of 0.01 was added on top of the simu-
lated S-parameters. Note that, because σ2 was marginalized out of (20) (and likewiseΣ out of (29)), and because uninformative priors were used,
no knowledge of themagnitude of the noise is neededwhen applying LB-VF.
After a few iterations with regular VF to relocate the 15 starting poles, LB-VF was applied to the data, starting from those relocated poles. An

uninformative prior was used to sampleNp = 500 pole sets, and for each pole set,Nr = 20 residue sets were sampled, for a total of 10 000models.
The sampled poles are shown in Fig. 3, while Figs. 4 and 5 show the S11 and S21 parameters, respectively. As can be seen in these figures, the

99.73% (3σ) confidence bound encompasses most of the original data. It ought to be noted that these bounds are overconfident, as they are still
conditioned on the locations of the (relocated) starting poles, their number, and the rational form of the model. If the magnitude of the noise in the
original data increases, the posterior distributions (20) and (29) widen, the spread of the samples increases, and the confidence bounds widen.

4.1.2 Effect of missing data
To demonstrate the behaviour of LB-VF when part of the data is missing, the data from 6.8 to 9.7GHz for the double folded stub was discarded
before relocating the initial poles or applying the LB-VFmodel.
With part of the data removed, and with low amount of additive Gaussian noise (a standard deviation of 10−3), the confidence bounds are very

narrow, as shown in Fig. 6. With a higher amount of noise (a standard deviation of 10−2), the confidence bounds increase as well, as illustrated in
Fig. 7. These figures show some overconfidence, due to the conditioning on the starting poles. Nevertheless, the confidence bounds can indicate
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FIGURE 4 The result of LB-VF applied to the S11 parameter of the double folded stub filter. The 10 000 rational models were used to construct
confidence intervals of 68.27%, 95.45% and 99.73% (the 1-, 2- and 3-σ bounds of a Gaussian distribution). These confidence levels are shown in
dark gray, gray and light gray, respectively. The mean LB-VF model, in this case corresponding to the regular VF fit, is shown as a dashed red line.
Simulations of the nominal design (without noise) at 1001 frequency points, produced using ADS 14, are shown as a black line. The noisy data used to
fit themodels is shown as black crosses. The entire frequency range (1 to 30GHz) is shown in (a), while the (18.5 to 20.5GHz) range is shown in (b).
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FIGURE 5 The result of LB-VF applied to theS21 parameter of the double folded stub filter. Colors are as in Fig. 4.

when a design is not robust enough to remain above or below a certain threshold, given the uncertainty. As the classical VF fit (here coinciding with
themean of the LB-VFmodel) is quasi the same in both cases, such information is not present in a deterministic setting.

4.1.3 Adaptive Frequency Sampling (AFS)
If simulating a device at a certain frequency is computationally expensive, a full sweep over the frequency range of interest becomes cumbersome
or even impossible given time constraints. Therefore, it is advisable to fully characterize the devicewith as few simulations as possible. A successful
way to accomplish this is by simulating one frequency sample at a time, andbuild a rationalmodel in theprocess. This is knownas adaptive frequency
sampling or AFS 15,16,17,18.
A distinct advantage of having a measure of model uncertainty, such as LB-VF provides, is that it allows an efficient sequential sampling of the

device responses in function of frequency. An LB-VF model’s intrinsic uncertainty removes the necessity to rely on differences between models of
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FIGURE 6 The result of LB-VF applied to the S11 parameter of the double folded stub filter, with the data from 6.8 to 9.7GHz removed, and noise
with standard deviation 10−3. Colors as in Fig. 4.

1 5 10 15 20 25 30
Frequency [GHz]

80

60

40

20

0

M
ag

ni
tu

de
 [d

B]

S11

noisy data
true data
VF fit
99.7% CI
95.4% CI
68.3% CI

(a) Entire frequency range.

6 7 8 9 10
Frequency [GHz]

40

30

20

10

M
ag

ni
tu

de
 [d

B]
S11

noisy data
true data
VF fit
99.7% CI
95.4% CI
68.3% CI

(b) Zoom of (a).

FIGURE 7 The result of LB-VF applied to the S11 parameter of the double folded stub filter, with the data from 6.8 to 9.7GHz removed, and noise
with standard deviation 10−2. Colors are as in Fig. 6.

different orders, as heuristic AFS algorithms 15,16,17,18 do. Nevertheless, it is advantageous to consider several LB-VF models, in order to mitigate
the overconfidence stemming from conditioning on the starting poles.
The uncertainty calculated from each of these models by grace of the samples drawn from them, is combined by weighting them by their nor-

malized marginal likelihoods with respect to the pole relocation system (21). These weights are used to obtain a weighted standard deviation of all
samples. In order to increase the spread of sampled points, a small Gaussian-shaped penalty, with an amplitude of half themaximumweighted stan-
dard deviation, and a standard deviation of 10% of the distance between points, is subtracted around the known frequency points. This also adds
an additional exploration focus, which can help to identify previously undetected resonances.
The AFS scheme used is summarized in Fig. 8. After four initial frequency points are evaluated, all of the LB-VF models with highest order N

are built, sampled from, and used to construct the uncertainty. The frequency point with highest uncertainty is determined and a new sample at
this frequency is computed. For matrix-variate S , priority is given to the diagonal elements’ uncertainty, and only the element with the highest
uncertainty determines the next evaluation point. After this, newmodels are built, and so on. Using LB-VFmodels of different orders helpsmitigate
the conditioning on the number of poles, because of the weighted average being taken. In 10, the ten highest order models were used, to maximally
utilise this effect. Naturally, takingmoremodel orders into account increases the computational cost. Because of this, and for the sake of efficiency,
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FIGURE 8 Flowchart of the proposed AFS strategy.

only up to three of the highest order LB-VF models are built in this work, as a compromise. When the uncertainty no longer exceeds an a priori
set threshold over the entire frequency range, convergence is assumed, and the model with the highest marginal likelihood is chosen as a suitable
macromodel for the device response.
We apply the proposed AFS scheme using themeasure of uncertainty described above to the example of the double folded stub filter. Note that

no noise is added in this case. Figs. 9 and 10 show the samples drawn from the LB-VFmodels and how they lead the selection of the next frequency
point. After a total of 17 evaluations, themean of the best fit (withN = 15 in (1)) achieves a total rootmean squared error (RMSE) of−83.3 dBwith
respect to 1001 linearly spaced simulated samples. For comparison, a standard VF fit based on 17 uniformly spaced samples achieves an RMSE of
−53.6 dB.

4.2 RDRAMMemory Channel
The proposed framework is now applied to a Directed Rambus DRAM (RDRAM) memory channel 19,20. The 4-port data in this example was
measured using a vector network analyzer (from 50MHz to 2.5GHz), and shows significant coupling and reflection, and a large delay.

4.2.1 Uncertainty arising from additive noise
In this example, 51 out of the 201measured points, in the frequency range of 0 to 2.5GHz, were uniformly selected. Gaussian noise with zero mean
and a standard deviation of 0.01was again added to the original data points. As for the previous example, an uninformative priorwas used to sample
Np = 500 pole sets, and for each pole set,Nr = 20 residue sets were sampled, for a total of 10 000models.
The application of the proposed LB-VF framework leads to the results shown in Figs. 11-13, obtained for a model with 47 poles. Again, the mean

of the LB-VFmodel, which coincides with a traditional VF fit, differs somewhat from the true data (the 201measured points), but the latter remains
within at least the predicted 99.73% confidence bound.

4.2.2 Effect of missing data
As an additional example to verify the performance of the proposed modeling framework, the data from 1.50 to 1.75GHz of the RDRAMmemory
channel was omitted before relocating the initial poles and applying the LB-VF model. Gaussian noise (with a standard deviation of 10−2) was also
added. The benefit of a stochastic approach over a deterministic one is clear for this example as well. The obtained confidence bounds encompass
most of the true function in the region where data is missing, as shown in Fig. 14.
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FIGURE 9 The eighth iteration in the AFS algorithm, for the S11 parameter of the double folded stub filter. In the lower plot, the known data points
are represented as black dots. Samples drawn from LB-VF models of different orders (500 each) are plotted in various shades of red, proportional
to their log-likelihood. The upper plot shows the overall uncertainty measure in green. An arrow is also shown in the lower plot, at the frequency
where this uncertainty is highest, and thus where the next evaluation will be done.
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FIGURE10As Fig. 9, but for theS21 parameter of the double folded stub filter. Note that the selection of the next sample ismotivated by the higher
uncertainty for theS11 parameter.

4.2.3 Adaptive Frequency Sampling (AFS)
The AFS algorithm outlined in section 4.1.3 can also be applied to the RDRAMmemory channel example. Again, no noise (apart from that present
in the data) is added in this case. An example of the samples drawn and used in the AFS algorithm is shown in Figs. 15 and 16. Because the available
measured data is a discrete set, the closest known point to the point of maximum uncertainty in each AFS step is added to the set of known points.
After 66 evaluations, the mean of the best fit (N = 63) attains a total root mean squared error (RMSE) of−59.8 dB with respect to all measured
data (201 points) available. For comparison, a standard VF fit based on 66 uniformly spaced samples achieves an RMSE of−43.3556 dB.
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FIGURE11The sampleddistributionof thepoles as a result of LB-VFapplied to theS11 parameter of theRDRAMmemory channel. The500 samples
for each pole are shown as blue dots, while the poles obtainedwith regular VF are plotted in red.
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FIGURE 12 The result of LB-VF applied to the S11 parameter of the RDRAM memory channel. The 10 000 rational models were again used to
construct confidence intervals of 68.27%, 95.45% and 99.73% (the 1-, 2- and 3-σ bounds of a Gaussian distribution). Colors are as in Fig. 4.
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FIGURE 13 The result of LB-VF applied to theS31 parameter of the RDRAMmemory channel. Colors are as in Fig. 4.
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FIGURE 14 The result of LB-VF applied to the S11 parameter of the RDRAMmemory channel, with the data from 1.50 to 1.75GHz removed, and
noise with standard deviation 10−3. Colors are as in Fig. 4.
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FIGURE15The 26th iteration in theAFS algorithm, for theS11 parameter of the RDRAMmemory channel. In the lower plot, the known data points
are represented as black dots. Samples drawn from LB-VF models of different orders (500 each) are plotted in various shades of red, proportional
to their log-likelihood. The upper plot shows the overall uncertainty measure in green. An arrow is also shown in the lower plot, at the frequency
where this uncertainty is highest, and thus where the next evaluation will be done.

5 CONCLUSIONS
In this paper a framework was introduced that expands the traditional VF macromodeling algorithm by extending it with stochastic information in
a Bayesianmanner. This is done by solving VF’s linear systems using Bayesian linear regression, and sampling to propagate uncertainty through the
nonlinear part of the VF algorithm.
The framework is able to provide quantitative information concerning the VF model uncertainty. As such, even without prior knowledge about

the nature of the uncertainty in the data, it can provide insight into how confident a VFmodel is at any given frequency.
The applicability and potential of this framework is showcased by applying it to two realistic designs in three real-world applications: quantifying

model uncertainty in the case of noisy observations, displaying model confidence in the case of missing data, and constructing a rational model
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FIGURE 16As Fig. 15, but forS22.

with a minimal amount of evaluations using adaptive frequency sampling. In each of these examples, the appositeness of the LB-VF framework is
demonstrated.
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APPENDIX
A Derivation of posterior distribution for the σ(s)-residue system (8)
Using Bayes’ theorem, (12) and (13) can bemultiplied to obtain the form of the posterior distribution (withNb the length of b′′ andNx the length of
x):

P
(
x, σ2

∣∣∣b′′) ∝P
(
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With some algebraic manipulation one can show that:(
b′′ −A′′ x

)T (
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)
=
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where
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)−1

A′′
T

b′′ . (A.3)
This is easily verified by substituting (A.3) into the right hand side of (A.2). The second term in the right hand side of (A.2) can now be combinedwith
the argument of the second exponential of (A.1) to obtain:(
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with

Λf =Λ0 +A′′
T

A′′ (A.5)
xf =Λf
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(

Λ0 x0 +A′′
T

b′′
)
. (A.6)

After somemore calculation, we can also write:
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All this then leads to the posterior distribution:
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2
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This posterior is proportional to (15).

B Derivation of themarginal posterior distributionP(x∣∣∣b′′).
Using this result, themarginal posterior distribution can be derived by integrating the posterior with respect to σ2 as follows:
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C Derivation of themarginal likelihoodP(b′′)
As shown in (21), themarginal likelihood can be obtained by integrating the product of the likelihood (12) and the prior (13):
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