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Abstract. We consider a set of comparative probability judgements over
a finite possibility space and study the structure of the set of probability
measures that are compatible with them. We relate the existence of
some compatible probability measure to Walley’s behavioural theory of
imprecise probabilities, and introduce a graphical representation that
allows us to bound, and in some cases determine, the extreme points of
the set of compatible measures. In doing this, we generalise some earlier
work by Miranda and Destercke on elementary comparisons.
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1 Introduction

The elicitation of probability measures can be cumbersome in situations of
imprecise or ambiguous information. To deal with this problem, a number of
approaches have been put forward in the literature: we may work for instance
with sets of probability measures, or credal sets; consider lower and/or upper
bounds of the ‘true’ probability measure, representing the information in terms
of non-additive measures; or model the information in terms of its behavioural
implications. These different models are often referred to with the common term
imprecise probabilities [1].

On the other hand, when the available information comes from expert judge-
ments it may be easier to model it in terms of comparative assessments of the
form ‘event A is at least as probable as event B.’ This leads to comparative
probabilities, that were studied first by de Finetti [5] and later by other authors
such as Koopman [9], Good [7] or Savage [15]. For a recent thorough overview,
as well as an extensive philosophical justification and a summary of the most
important results, we refer to [8].

In this paper, we consider a collection of comparative probability judgements
over a finite possibility space and study the structure of the set of compatible
probability measures. Specifically, we shall investigate in which cases this set is
non-empty, the number of its extreme points and their features, and the properties
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of its associated lower probability. While most earlier work on comparative
probabilities has mainly focused on the complete case—that is, the case where
any two events are compared—ours is not the first study of the incomplete one;
in this respect, the most influential works for this paper are those of Walley [17,
Section 4.5] and Miranda and Destercke [11]. Our present contribution has the
same goals as that of Miranda and Destercke, but our setting is more general:
where they exclusively focused on the specific case of comparisons between
elementary events, we generalise some of their results to the case of comparisons
between arbitrary events.

The paper is organised as follows. We start with a formal introduction of
comparative assessments in Section 2, and subsequently discuss the compatibility
problem and show that it can be easily tackled using Walley’s theory of lower
previsions. From Section 3 on, we study the set of extreme points of the associated
credal set. To that end, we introduce a graphical representation in Section 4; this
representation allows us to determine the number of extreme points in a number
of special cases in Section 5, where we also argue that this approach cannot be
extended to the general case. We conclude in Section 6 with some additional
comments and remarks. Due to space constraints, proofs have been omitted.

2 Comparative assessments and compatibility

Consider a finite possibility space X with cardinality n, and a (finite) number m
of comparative judgements of the form ‘event A is at least as likely as event B.’
For ease of notation, we will represent the i-th judgement as a pair (Ai, Bi) of
events—that is, subsets of the possibility space X . Finally, we collect all m
judgements in the comparative assessment

C := {(Ai, Bi) : i ∈ {1, . . . ,m}, Ai, Bi ⊆X }.

Equivalently, the comparative judgements can be represented in terms of a (pos-
sibly partial) binary relation � on 2X , the power set of the possibility space X ,
with A � B being equivalent to (A,B) ∈ C . Miranda and Destercke [11] exclu-
sively dealt with comparative assessments that consist of comparative judgements
that concern singletons, or equivalently, are a subset of {({x}, {y}) : x, y ∈X }.
We follow them in calling such comparative assessments elementary.

Throughout this contribution we will use a running example to illustrate
much of the introduced concepts.

Running example. Let X := {1, 2, 3, 4} and

C := {({1}, {2}), ({1, 2}, {3}), ({1, 3}, {4}), ({1, 2}, {4})}.

Clearly, the corresponding partial binary relation � is given by {1} � {2},
{1, 2} � {3}, {1, 3} � {4} and {1, 2} � {4}. �

Let ΣX denote the set of all probability mass functions on X . We follow the
authors of [8, 11, 13, 17] in considering the set

MC :=

{
p ∈ ΣX : (∀(A,B) ∈ C )

∑
x∈A

p(x) ≥
∑
x∈B

p(x)

}
(1)
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of all probability mass functions that are compatible with the comparative
judgements. Following Levi [10], we call MC the comparative credal set.

Given a set C of comparative judgements, we should first of all determine
whether or not there is at least one compatible probability measure—that is, if the
comparative credal set MC is non-empty. In the case of elementary judgements
[11], this is trivial because the uniform probability distribution is compatible with
any elementary comparative assessment. Unfortunately, when more elaborate
judgements are allowed this is no longer the case, as is demonstrated by the
following example.

Example 1. Consider the possibility space X := {1, 2, 3} and the comparative
assessment C := {({1}, {2, 3}), ({2}, {1, 3}), ({3}, {1, 2})}. It follows immediately
from these judgements that any compatible probability mass function p should
satisfy p(1) ≥ 1/2, p(2) ≥ 1/2 and p(3) ≥ 1/2. However, this is clearly impossible,
whence MC = ∅. �

2.1 Connection with sets of desirable gambles

The existence of a compatible probability measure was characterized in [16,
Theorem 4.1] in the case of complete comparative assessments and in [14, Propo-
sition 4] and [13, Section 2] in the case of partial comparative assessments; see
also [17, Section 4.5.2]. In this section, we use Walley’s result to establish a
connection with the theory of sets of desirable gambles, from which we shall
derive a number of additional results. We refer to [17] for a detailed account of
the theory.

A gamble f is a real-valued map on our finite possibility space X . The set of
all gambles on X is denoted by L, and dominance between gambles is understood
pointwise. Within L we may consider the subset L+ := {f ∈ L : f ≥ 0, f 6= 0} of
non-negative gambles, that in particular includes the indicator IA of some event
A ⊆X , taking value 1 on A and 0 elsewhere.

It is often convenient to think of a gamble f as an uncertain reward expressed
in units of some linear utility scale: in case the outcome of our experiment is x, our
subject receives the—possibly negative—pay-off f(x). With this interpretation,
our subject can specify a set of almost desirable gambles K, being some set of
gambles—or uncertain rewards—that she considers acceptable. Such a set K of
almost desirable gambles can be extended to include gambles that are implied
by rational behaviour; the least-committal of these extensions is the natural
extension of K, which is defined as DK := posi(K ∪ L+), where we consider the
topological closure under the supremum norm and the posi operator is defined
for any set of gambles K′ ⊆ L as

posi(K′) :=

{
k∑
i=1

λifi : k ∈ N, λi > 0, fi ∈ K

}
,

with N the set of natural numbers—that is, not including zero. We say that a set
of almost desirable gambles K avoids sure loss if and only if max f ≥ 0 for all



4 A. Erreygers & E. Miranda

f ∈ DK, and that it is coherent when K = DK. It turns out that DK is coherent
if and only if K avoids sure loss, and that K avoids sure loss if and only if there
exists a probability mass function p such that

∑
x∈X f(x)p(x) ≥ 0 for every

f ∈ K. As a consequence, the compatibility of C is equivalent to verifying that

KC := {IA − IB : (A,B) ∈ C } (2)

avoids sure loss, which immediately leads to the following proposition—see also
[14, Proposition 4], [13, Section 2] or [17, Lemma 3.3.2].

Proposition 1. The comparative credal set MC is non-empty if and only if for
every λ : {1, . . . ,m} → N ∪ {0}, max

∑m
i=1 λ(i)(IAi

− IBi
) ≥ 0.

Any set of gambles K ⊆ L determines a lower prevision PK on L defined as

PK(f) := sup{µ ∈ R : f − µ ∈ K} for all f ∈ L

and a conjugate upper prevision PK defined as PK(f) := −PK(−f) for all f ∈ L.
The lower prevision PK and its conjugate upper prevision PK are coherent if and
only if K is coherent. Throughout this contribution, we let PC and PC denote
the lower and upper previsions determined by DKC . We can use PC to verify
whether or not a comparative judgement is saturated and/or redundant:

Proposition 2. Consider an assessment C such that MC is non-empty. If there
is a comparative judgement (A,B) ∈ C such that IA− IB ∈ posi(KC \{IA− IB}),
then MC = MC\{(A,B)}. If no (A,B) ∈ C satisfies this condition, then PC (IA −
IB) = 0 for every (A,B) ∈ C if and only if for every gamble f ∈ KC , f /∈ DKf

with Kf := KC \ {f}.
This means that we should first analyse if each constraint (Ai, Bi) can be expressed
as a positive linear combination of the other constraints in C ; if this is the case, we
can remove (Ai, Bi) from our set of assessments. Once we have removed all these
redundancies, any constraint that cannot be expressed as a linear combination of
the other constraints together with trivial assessments of the type (A, ∅) with
∅ 6= A ⊆X will be saturated by some p ∈MC when the latter set is non-empty.

3 Bounding the number of extreme points

It follows immediately from the properties of probability mass functions that the
comparative credal set MC defined in Eqn. (1) is a convex polytope as it is the
intersection of n+m+ 1 half spaces. It is well-known that if a convex polytope
is non-empty, it is completely defined by its extreme points. A bound on the
number of extreme points follows from McMullen’s theorem [4]:

|ext(MC )| ≤
(
m+ 1 + bn2 c

m+ 1

)
+

(
m+ dn2 e
m+ 1

)
. (3)

It is also possible to establish an upper bound on the number of extreme points
that is independent on the number of comparative judgements; its proof is a
relatively straightforward modification of the proofs of [3, Theorem 4.4] or [18,
Theorem 5.13].
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Proposition 3. For any assessment C , |ext(MC )| ≤ n! 2n.

To give a sense of the absolute and relative performance of these bounds, we
reconsider our running example.

Running example. One can easily verify that the extreme points of the credal
set MC are

p1 := (1, 0, 0, 0), p2 := (1/2, 1/2, 0, 0), p3 := (1/2, 0, 1/2, 0),

p4 := (1/2, 0, 0, 1/2), p5 := (1/3, 1/3, 0, 1/3), p6 := (1/3, 0, 1/3, 1/3),

p7 := (1/4, 1/4, 1/2, 0), p8 := (1/5, 1/5, 1/5, 2/5), p9 := (1/6, 1/6, 1/3, 1/3).

Hence, |ext(MC )| = 9; the upper bounds on the number of extreme points of
Eqn. (3) and Proposition 3 are 27 and 384, respectively. �

On the other hand, the minimum number of extreme points of a non-empty
comparative credal set MC , regardless of the cardinality of the possibility space,
is 1: if X := {1, . . . , n} and C := {({i}, {i+ 1}) : i = 1, . . . , n− 1}∪ {({n}, {1})},
then MC only includes the uniform distribution on X , and as a consequence
there is only one extreme point.

Our upper bound on the number of extreme points depends on the cardinality
of the space n and the number m of comparative assessments; thus, the bound
can be made tighter if we remove constraints that are redundant because they
are implied by other constraints and the monotonicity and additivity properties
of probability measures. For instance, we may assume without loss of generality
that

(∀(A,B) ∈ C ) A 6= X , B 6= ∅, A ∩B = ∅. (C0)

This allows us to bound the cardinality of C :

Proposition 4. If C satisfies (C0), then m ≤ 3n − 2n+1 + 1.

Similarly, we may assume without loss of generality that any (A,B) ∈ C cannot
be made redundant in the following senses:

( 6 ∃(A′, B′) ∈ C , (A′, B′) 6= (A,B)) A′ ⊆ A,B′ ⊇ B. (monotonicity)

(@(A1, B1), (A2, B2) ∈ C ), A = A1 ∪A2, B = B1 ∪B2, A1 ∩A2 = ∅. (additiv.)

(@B1, B2 ∈ 2X , B1 ⊇ B2) (A,B1) ∈ C , (B2, B) ∈ C . (transitivity)

Nevertheless, it is more fruitful to detect redundant constraints using the theory
of coherent lower previsions, as we did in Proposition 2. In this manner, given
an initial (finite) set C of comparative assessments, we may proceed iteratively
and remove all the redundant constraints, and then use Eqn. (3) to bound the
number of extreme points of the comparative credal set MC .

4 A graphical approach

Essential for the results established in [11] is the representation of the elemen-
tary comparative assessments as a digraph. In the non-elementary case, such a
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graphical representation will also be helpful. Throughout this contribution we
use the graph theoretic terminology as defined in [6]; we do allow ourselves one
difference, however: we prefer to use nodes instead of vertices.

4.1 Representing the comparative assessment as a graph

Miranda and Destercke [11] proposed a straightforward but powerful representa-
tion of the elementary comparative assessment C as a digraph: the atoms of the
possibility space correspond to the nodes, and a directed edge is added from x
to y for every ({x}, {y}) ∈ C . The extreme points of the credal set are then
obtained through the top subnetworks generated by certain sets of nodes [11,
Theorem 1].

Because we do not limit ourselves to elementary comparative judgements, we
cannot simply take over their construction. One straightforward generalisation
of the aforementioned construction is to add a directed edge from x to y if
there is a comparative judgement (A,B) ∈ C with x ∈ A and y ∈ B. However,
this approach is not terribly useful because there is loss of information: clearly,
the digraph alone does not contain sufficient information to reconstruct the
comparative judgements it represents. To overcome this loss of information and
to end up with one-to-one correspondence, we borrow a trick from Miranda and
Zaffalon [12] and add dummy nodes to our graph.

We represent the assessment C as a digraph G as follows. First, we add
one node for every atom x in the possibility space X . Next, for every compar-
ison (Ai, Bi) in the assessment C , we add an auxiliary node ξi, and we add a
directed edge from every atom x in Ai to this auxiliary node ξi and a directed
edge from the auxiliary node ξi to every atom y in Bi. Formally, the set of nodes
is N := X ∪ {ξ1, . . . , ξm} and the set of directed edges is

E :=

m⋃
i=1

{(x, ξi) : x ∈ Ai} ∪ {(ξi, y) : y ∈ Bi}.

Running example. The corresponding digraph G is depicted in Fig. 1. �

1 ξ1 2 ξ2 3 ξ3 ξ4 4

Fig. 1. The digraph G of the running example

Fix some node ν in the digraph G. Following [11], we use H(ν) to denote the set
that consists of the node ν itself and all of its predecessors, being those nodes ν′
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such that there is a directed path from ν′ to ν. Following [2, 11], for any subset N
of the set of nodes N , we let H(N) := ∪ν∈NH(ν) be the so-called top subnetwork
generated by N . We will exclusively be concerned with the restriction of these
top subnetworks to non-auxiliary nodes; therefore, we define H ′(x) := H(x)∩X
for any x in X and H ′(A) := H(A) ∩X = ∪x∈AH ′(x) for all A ⊆X .

Running example. The top subnetwork of the node 1 is H(1) = {1} and that of
node 3 is H(3) = {1, ξ1, 2, ξ2, 3}. Hence, H ′({1, 3}) = {1, 2, 3}. �

4.2 Some basic observations

The following results are straightforward observations that follow almost immedi-
ately from our graphical representation G of the comparative assessment C . The
first lemma gives a useful sufficient condition for the existence of a compatible
probability measure.

Lemma 1. If the digraph G has a node with zero indegree, then MC 6= ∅.

To facilitate the statement of the following and future results, we introduce some
additional notation. For any non-empty event A ⊆ X , we denote the uniform
distribution over A as pA. In the particular case that the event A is the singleton
{x}, we also speak of the degenerate distribution on x. The second lemma links
atoms without predecessors with extreme points that are degenerate distributions.

Lemma 2. If x ∈X is a node with zero indegree, then the degenerate distribu-
tion p{x} on x is an extreme point of the comparative credal set MC .

Running example. Observe that the node 1 is the only node with zero indegree.
Then, Lemmas 1 and 2 imply that (i) the comparative credal set MC is non-
empty; and (ii) the degenerate distribution on 1 is an extreme point because
p1 = p{1}. �

Our next result uses the well-known fact—see for instance [6, Sections 1.6
and 1.4.1]—that any digraph H can be uniquely decomposed into its connected
components: the subdigraphs H1, . . . ,Hk such that (i) H = ∪ki=1Hi, (ii) each
subdigraph Hi is connected, and (iii) Hi and Hj are not connected for any i 6= j.
For elementary comparative assessments, it is shown in [11, Proposition 2] that
the extreme points of the comparative credal set can be obtained by determining
the extreme points of the (elementary assessments induced by the) connected
components separately. Our next result generalises this to general comparative
assessments.

Proposition 5. Denote the connected components of the digraph G by G1, . . . ,Gk.
For every connected component Gi, we denote its set of non-auxiliary nodes by
Xi and we let Ci be the comparative assessment with possibility space Xi that is
in one-to-one correspondence with Gi. Then

ext(MC ) =

k⋃
i=1

{extend(pi) : pi ∈ ext(MCi)},
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where extend(pi) is the cylindrical extension of pi to X that is obtained by
assigning zero mass to X \Xi.

Because of this result, without loss of generality we can restrict our attention in
the remainder to digraphs G that are connected. It is also immediate to establish
the following result.

Proposition 6. Consider a set of comparative assessments C , and let C ′ :=
C ∪{(A,B) : A ⊃ B}. If there is a cycle A1 � A2 � A3 � · · · � Ak � Ak+1 = A1

in C ′, then for any p ∈ MC , any i, j ∈ {1, . . . , k} such that Aj ⊂ Ai and any
x ∈ Ai \Aj, p(x) = 0.

In the language of Section 2, this means that PC (IAi\Ai+1
) = 0 if Ai+1 ⊂ Ai, so

any atom in Ai \ Ai+1 will always have zero mass. Hence, we can simplify the
digraph G by removing nodes that are sure to have zero mass: (i) any atom in
Ai \ Ai+1 with Ai+1 ⊂ Ai; and (ii) if these removals result in the formation of
one or more extra disconnected components, the entirety of those disconnected
components that used to be connected exclusively by incoming directed edges
from (the direct successors of) the previously removed atoms.

Remark 1. This graphical representation also allows us to simplify somewhat
the study of the compatibility problem and the extreme points in the following
manner. We define a relationship R between the elements of X as xRy if and
only if there is a directed cycle going through x and y. It is easy to see that R is an
equivalence relationship. Hence, we may consider the different equivalence classes
and the directed edges between them that can be derived from G, leading to a
new acyclic digraph G′ on the equivalence classes. Let G′i denote the subdigraph
associated with the i-th equivalence class and Ci the corresponding subset of
comparative judgements. Observe that

– the set MC is non-empty if and only if at least one of the sets MCi
is

non-empty, where the associated graph G′i has no predecessors in G′;
– if a subgraph G′i is such that MCi

is empty, then for each of its successors G′j
any element of MC gives zero probability to the nodes in G′j .

This also allows us to remove redundant parts of the graph. �

4.3 Acyclic digraphs

If a digraph is free of directed cycles, then we call it acyclic [6, Section 4.2]. Any
acyclic digraph has at least one node with zero indegree [6, Lemma 4.1]. Therefore,
the following result is an immediate corollary of Lemma 1; alternatively, it is also
a corollary of Propositions 8 and 10.

Corollary 1. If the digraph G associated with the comparative assessment C is
acyclic, then the associated comparative credal set MC is non-empty.

On the other hand, a digraph is acyclic if and only if it has a topological ordering,
sometimes also called an acyclic numbering [6, Proposition 4.1]. This necessary
and sufficient condition allows us to establish the following result.
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Proposition 7. The digraph G associated with C is acyclic if and only if there
is an ordering x1, . . . , xn of the atoms of the possibility space X such that

(∀(A,B) ∈ C )(∃i ∈ {1, . . . , n− 1}) A ⊆ {x1, . . . , xi} and B ⊆ {xi+1, . . . , xn}.

Running example. It is easy to verify using Fig. 1 that the graph G is acyclic,
and we have seen that the comparative credal set is non-empty. Furthermore, the
ordering of Proposition 7 is clearly 1, 2, 3, 4. �

4.4 Strict comparative assessments

Our graphical representation also has implications when we consider a strict
preference relation, where A � B is to be interpreted as ‘the event A is more
likely than event B.’ For a given set C of comparative judgements, we now
consider the set

M>
C :=

{
p ∈ ΣX : (∀(A,B) ∈ C )

∑
x∈A

p(x) >
∑
y∈B

p(y)

}
of probability mass functions that are compatible with the strict comparative
judgements. Since the set MC is a polytope, it follows that it is the closure
of M>

C , provided that this latter set is non-empty. In our case, we can prove
something stronger: that M>

C is the topological interior of MC .

Proposition 8. For any comparative assessment C , M>
C = int(MC ).

In our next result, we establish a necessary and sufficient condition for M>
C to

be non-empty.

Proposition 9. Let C be a finite set of strict comparative assessments. Then
the following are equivalent:

(a) M>
C 6= ∅.

(b) Given the set KC defined by Eqn. (2), 0 /∈ posi(KC ∪ L+).
(c) For every (A,B) ∈ C , PC (IA − IB) > 0.

In the case of elementary comparisons, it was established in [11, Lemma 1] that
M>

C is non-empty if and only if the digraph C is acyclic. In the general case, the
lack of directed cycles turns out to be sufficient as well.

Proposition 10. Let C be a set of strict comparative assessments. If the asso-
ciated digraph G is acyclic, then M>

C 6= ∅.
Quite remarkably and in contrast with the case of elementary probability com-
parisons, M>

C can be non-empty even though the digraph G has directed cycles.
For example, if X = {1, 2, 3} and we make the assessments ({1, 2}, {3}) and
({3}, {1}), then the graph has a cycle involving 1 and 3; however, the probability
mass function (0.25, 0.45, 0.3) is compatible with the strict assessments.

On the other hand, a necessary condition for M>
C to be non-empty is that

we cannot derive from C a cycle of the type A1 � A2 � · · · � Ak � A1. This
is equivalent to the graph being acyclic in the case of elementary probability
comparisons, and this is what leads to [11, Lemma 1]; however, the two conditions
are not equivalent in the general case.
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5 Extreme points of the comparative credal set

As we have often mentioned before, Miranda and Destercke [11] show that
in the case of elementary comparative assessments, the extreme points of the
comparative credal set can be determined using the graphical representation.
More specifically, they show that:

E1. all the extreme points of MC correspond to uniform probability distributions
[11, Lemma 2];

E2. if C ⊆X is the support of an extreme point, then C = H ′(C) [11, Lemma 3];
E3. there are at most 2n−1 extreme points, and this bound is tight [11, Theo-

rem 4].

Unfortunately, these observations do not hold in the case of non-elementary
comparative assessments, as is illustrated by the following example.

Example 2. Let X := {1, . . . , 5}, and let C be given by

C := {({1, 4}, {5}), ({2, 4}, {1}), ({2, 5}, {1}), ({2, 3, 5}, {4}), ({2, 3}, {1}),
({2, 4, 5}, {3}), ({1, 2, 3}, {4, 5}), ({3, 4}, {5}), ({1, 5}, {3}),
({1, 3, 4, 5}, {2}), ({1, 3, 5}, {4}), ({3, 4, 5}, {1})}.

The 34 extreme points of MC are reported in Tab. 1. Note that 34 > 25 = 32. �

Table 1. The extreme points of the comparative assessment in Example 2.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

pi(1) 1
3

1
3

1
4

3
8

1
7

1
5

1
5

0 1
6

1
4

1
4

1
3

1
4

1
4

1
3

3
14

4
11

pi(2) 1
3

1
3

0 2
8

0 0 1
5

1
2

0 1
4

1
8

1
3

1
4

1
4

1
3

1
14

3
11

pi(3) 0 1
3

1
4

1
8

3
7

2
5

2
5

0 1
3

0 1
8

0 0 1
4

1
6

3
14

1
11

pi(4) 1
3

0 1
4

1
8

1
7

1
5

0 1
4

1
6

3
8

3
8

1
6

1
4

0 0 2
14

1
11

pi(5) 0 0 1
4

1
8

2
7

1
5

1
5

1
4

1
3

1
8

1
8

1
6

1
4

1
4

1
6

5
14

2
11

i 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

pi(1) 3
12

0 1
10

1
6

1
5

2
12

0 1
4

1
4

1
4

1
6

1
8

1
4

0 0 1
4

1
7

pi(2) 1
12

1
4

0 0 1
5

1
12

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
3

1
2

1
2

1
7

pi(3) 2
12

1
4

4
10

1
3

1
5

3
12

1
6

0 0 1
4

1
6

1
4

1
8

1
6

1
8

1
8

3
14

pi(4) 2
12

1
4

2
10

1
3

2
5

5
12

1
6

1
4

1
8

0 0 0 0 1
3

1
4

1
4

3
7

pi(5) 4
12

1
4

3
10

1
6

0 1
12

1
6

0 1
8

0 1
6

1
8

1
8

1
6

1
8

0 1
14
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We learn from Example 2 that (E1) does not hold because p4 is not a uni-
form distribution; (E2) does not hold because the support of p1 is {1, 2, 4} but
H ′({1, 2, 4}) = {1, 2, 3, 4, 5}; and (E3) does not hold because there are more than
25−1 = 16 extreme points. In fact, we see that a comparative credal set can
have more than 2n extreme points. Consequently, we cannot use the strategy of
[11, Algorithm 1]—that is, construct the possible supports and use the uniform
distribution over them—to immediately determine the extreme points of the
comparative credal set for some general comparative assessment. That being said,
we have nevertheless identified some special cases other than the elementary one
in which we can generate the extreme points procedurally.

5.1 Multi-level partitions of comparative assessments

As a first special case, we consider a straightforward extension of [11] using a
multi-level approach. At the core of this special case are some nested partitions
of the possibility space and the restriction that the comparative judgements
can only concern events that are on the same level of the nested partitions and
belong to the same part of the partition in the previous level. We will here only
explain the two-level case in detail; extending the approach to multiple levels is
straightforward.

Let C1, . . . , Ck be a partition of the possibility space X . A comparative
assessment C is two-level over this partition if it can be partitioned as

C = C ′ ∪
k⋃
i=1

Ci,

with C ′ ⊆ {(A,B) : A,B ∈ {C1, . . . , Ck}} and Ci ⊆ {(x, y) : x, y ∈ Ci} for all i ∈
{1, . . . , k}. Observe that if such a decomposition exists, then we can interpret C ′ as
an elementary comparative assessment with possibility space X ′ := {C1, . . . , Ck}
and, for all i ∈ {1, . . . , k}, we can interpret Ci as an elementary comparative
assessment with possibility space Ci. Hence, we may use the algorithm described in
[11] to determine the extreme points of the comparative credal sets corresponding
to these elementary comparative assessments, which we shall denote by Mel,
Mel,1, . . . , Mel,k, respectively. The following result establishes that we can
combine these extreme points to obtain the extreme points of the original
comparative credal set MC .

Proposition 11. Consider a comparative assessment C that is two-level over
the partition C1, . . . , Ck of the possibility space X . Then ext(MC ) is given by

{comb(p, p1, . . . , pk) : p ∈ ext(Mel), (∀i ∈ {1, . . . , k}) pi ∈ ext(Mel,i)},

where comb(p, p1, . . . , pk) is the probability mass function defined for all i ∈
{1, . . . , k} and x ∈ Ci as comb(p, p1, . . . , pk)(x) := p(Ci)pi(x).

Furthermore, as corollary of Proposition 11 and [11, Theorem 4] we obtain the
following bound on the number of extreme points.

Corollary 2. Consider a comparative assessment C that is two-level over some
partition. Then |ext(MC )| ≤ 2n−1.
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5.2 Acyclic digraphs

Recall from Section 4.4 that the absence of cycles simplifies things if we are
interested in the compatibility with strict comparative judgements. Hence, it does
not seem all too far-fetched that determining the (number of) extreme points
of the comparative credal set induced by a (non-strict) comparative assessment
also simplifies under the absence of cycles. As will become clear in the remainder,
this is only certainly so in some special cases.

First, we revisit the three main points of [11] that we recalled at the beginning
of this section in the case of acyclic graphs. Our running example shows that also
in the acyclic case (E1) does not hold because p7, p8 and p9 are not uniform; (E2)
does not hold because p3 has support C3 := {1, 3} but H ′(C3) = {1, 2, 3} 6= C3;
and (E3) does not hold because there can be more than 24−1 = 8 extreme points.
Furthermore, since different extreme points can have the same support—in our
running example, this is the case for p7, p8 and p9—there is no reason why the
number of extreme points should be bounded above by 2n. Nevertheless, and
despite our rather extensive search, we have not succeeded in finding an example
of a comparative assessment C with an acyclic digraph G that has a comparative
credal set with more than 2n extreme points. This is in contrast with the cyclic
case, as we have shown in Example 2.

While the absence of cycles alone does not seem to allow us to efficiently
determine the extreme points, there are two interesting special cases that permit
us to do so. Essential to both these special cases is a specific class of subdigraphs
of the digraph G. To define this class, we first need to introduce two concepts
from graph theory. The first concept is that of the root of a digraph H: a node ν
such that for any other node ν′, there is a directed path from ν to ν′. The
second concept is that of an arborescence: a digraph that has a root and whose
underlying graph is a tree. We now call a subdigraph G′ of the digraph G an
extreme arborescence if (i) it is an arborescence whose root x? has no predecessors
in the digraph G; and (ii) each of its auxiliary nodes has one direct predecessor
and one direct successor.

Important to note here is that all extreme arborescences can be easily procedu-
rally generated. In essence, one needs to (i) select a node x without predecessors in
the original digraph G; (ii) either stop or, if possible, (a) add one of the outgoing
edges of x and the auxiliary node ξ in which it ends, (b) add one of the outgoing
edges of ξ and the atom y such that y is not already in the arborescence; (iii)
repeat step (ii) but with x being any of the atoms already in the arborescence.

Singular assessments The first special case of acyclic digraphs concerns repre-
senting digraphs where every atom has at most one direct predecessor. We call a
comparative assessment C singular if |{(A,B) ∈ C : x ∈ B}| ≤ 1 for all x ∈X .

We see for instance that the comparative assessment in our running example is
not singular, since 4 appears in both the assessments ({1, 3}, {4}) and ({1, 2}, {4}),
while the comparative assessment C := {({1}, {2}), ({1, 2}, {3}), ({2, 3}, {4})},
represented in Fig. 2, is.
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1 ξ1 2 ξ2 3 ξ3 4

Fig. 2. A singular digraph G

The graph associated with a singular assessment need not be acyclic—for
example, let X = {1, 2, 3} and consider the comparative judgements ({1}, {2}),
({2}, {3}) and ({3}, {1}). In case it is, we can establish the following:

Theorem 1. Consider a singular assessment C such that the associated di-
graph G is acyclic. Then every extreme point p of MC corresponds to a unique
extreme arborescence G′ ⊆ G and vice versa, in the sense that p is the unique
probability mass function that saturates the comparative constraints associated
with the auxiliary nodes in G′ and the non-negativity constraints associated with
the atoms that are not in G′.

Because we can procedurally generate all extreme arborescences, it follows that
we can use Theorem 1 to generate all extreme points of the comparative credal
set. Another consequence of Theorem 1 is that we can establish a lower and
upper bound on the number of extreme points in the singular case.

Theorem 2. Consider a singular assessment C such that the associated di-
graph G is acyclic. Then n ≤ |ext(MC )| ≤ 2n−1.

These lower and upper bounds are reached, as we can see from [11, Section 4.1].

Arborescences Finally, we consider the case that the digraph G is an arbores-
cence. Clearly, for this it is necessary that C is singular and that |A| = 1 for
every (A,B) ∈ C . As arborescences are special types of acyclic digraphs, we can
strengthen Theorem 1 to be—in some sense—similar to [11, Theorem 1].

Theorem 3. Consider and assessment C such that the associate graph is an
arborescence. Then the set of extreme points of MC consists of the uniform
distributions on H ′(C), where C is any set of atoms such that, for all x, y ∈ C,
the closest common predecessor of x and y is a non-auxiliary node.

We also observe that the bound on the number of extreme points established in
Theorem 2 is still valid. To see that this result does not extend to all singular
assessments, it suffices to take the extreme points of the assessment depicted in
Fig. 2.

6 Conclusions

Although we find the results in this paper promising, there are some open
problems that call for additional research, which should help towards making
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this model more operative for practical purposes. First and foremost, we would
like to deepen the study of the acyclic case, and in particular to determine the
number and the shape of the extreme points in other particular cases. In addition,
a bound on the number of linearly independent constraints, in the manner hinted
at in Section 3, should let us get a better bound on the number of extreme points.
Finally, we should also look for graph decompositions that allow to work more
efficiently with comparative judgements.
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