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Abstract

Both the natural and the social sciences are currently facing a deep “reproducibility crisis”.
Two important factors in this crisis have been the selective reporting of results and methodo-
logical problems. In this article, we examine a fusion of these two factors. More specifically,
we demonstrate that the uncritical import of Boolean optimization algorithms from electrical
engineering into some areas of the social sciences in the late 1980s has induced algorithmic
bias on a considerable scale over the last quarter century. Potentially affected are all studies
that have used a method nowadays known as Qualitative Comparative Analysis (QCA).
Drawing on replication material for 215 peer-reviewed QCA articles from across 109 high-
profile management, political science and sociology journals, we estimate the extent this
problem has assumed in empirical work. Our results suggest that one in three studies is
affected, one in ten severely so. More generally, our article cautions scientists against letting
methods and algorithms travel foo easily across disparate disciplines without sufficient prior
evaluation of their suitability for the context in hand.

Introduction

Both the natural and the social sciences are currently facing a deep “reproducibility crisis” [1-
4]. When asked what factors contribute to irreproducible research, more than 40 percent of
1573 scientists surveyed by Nature in 2016 responded that problems with “methods” often or
always contribute, and almost 70 percent that “selective reporting” often or always contributes
[5]. What, however, when it is not scientists themselves who, consciously or unconsciously,
distort objective reporting, but the methods they employ? This may happen, for example,
when the algorithms implemented in data analysis software are predisposed towards limiting
their search only to specific regions of the full solution space or when an algorithm is trans-
ferred to a context other than the one which it was originally developed in without adequate
prior assessment of the consequences of such transfers [6-8]. These problems have so far been
given relatively short shrift in the current debate, most likely because of their rather technical
nature. However, they may be one of the most significant contributors to irreproducibility.

In this article, we reveal a specific case of algorithmic bias in research that has relied on the
method of Qualitative Comparative Analysis (QCA). More specifically, we demonstrate that
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the uncritical import of Boolean optimization algorithms from electrical engineering into
causal data analysis with QCA has generated such bias through a transfer of context. A specific
objective function that ensures an algorithm’s identification of a minimal cost solution when
designing electrical switching circuits is responsible for this effect. While this function is very
useful in electrical engineering applications, it is not suited for use in QCA because rival mod-
els of a certain architecture are systematically suppressed. Among the suppressed models, how-
ever, may be the one representing the true data-generating process. Drawing on replication
material for 215 peer-reviewed articles from across 109 high-profile management, political sci-
ence and sociology journals that have employed QCA, we measure the extent this problem has
assumed in empirical work. Our results suggest that one in three studies is affected, one in ten
severely so. More generally, our article cautions scientists against letting methods and algo-
rithms travel too easily across disparate disciplines without sufficient prior evaluation of their
suitability for the context in hand.

QCA: Foundations, diffusion, analytical approach

QCA is a so-called configurational method for causal inference introduced in the 1980s by US
sociologists Kriss Drass and Charles Ragin, who sought to bridge the gulf between variable-ori-
ented and case-oriented research at a time when the “paradigm wars” were reaching another
peak in many fields of the social sciences [9, 10]. Yet, as any other method of observational
data analysis, QCA did not simply fall out of the sky. Unlike methods developed on the basis of
counterfactual, interventionist, mechanistic or probabilistic theories of causation, QCA firmly
rests on the regularity theory of INUS causation [11-14]. Although regularity theories were
long relegated to the margins of research on causation and causal inference, numerous areas of
the natural as well as the social sciences, from economics over neurology to psychology, con-
tinued to invoke the notion of INUS conditionality for building causal arguments [15-21].

By importing the Quine-McCluskey algorithm (QMC) from electrical engineering into
causal inference with QCA, the major accomplishment of Drass and Ragin was to solve the so-
called problem of epiphenomenalism—one of the most vexing problems that had until then
plagued the INUS theory [22]. With the removal of this stumbling block, interest in regularity
theories and INUS causation started to grow again among both philosophers of science and
methodologists [11, 23].

Introductions to QCA generally portray the method’s main analytical principle as follows:
if two empirical cases exhibit identical values on an endogenous factor as well as all exogenous
factors apart from a single one, then it can be deduced that the one factor on which these two
cases differ cannot be ascribed causal relevance to in the context of the remaining factors
because the outcome shows no change. Although different algorithms have been implemented
in software over the years for conducting research with QCA, of which QMC was only the
first, the vast majority of social scientists still take QMC to be QCA’s formal heart [24-27]. Yet
surprisingly, technically adequate expositions of QMC hardly exist in the social-scientific liter-
ature on QCA. Due to its central place and its relevance for our ensuing argument, it is there-
fore essential that we introduce this algorithm’s procedural protocol in as much detail as
necessary. At the same time, we emphasize that our discussion is not limited to QMC, but
extends to all optimization algorithms currently in use in configurational data analysis or of
potential use for such purposes (cf. [28, 29]). In this connection, our argument also updates
[30] and [31] insofar as we hold that it is the objective function given to an optimization algo-
rithm, not the algorithm per se, that may induce bias.
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Switching circuit optimization with QMC: A primer

Switching circuits provide basic building blocks for the design of many digital systems that
have made our modern world possible. The mathematical framework for analyzing the con-
version of a given set of input signals to a desired set of output signals in order to make a cir-
cuit perform a specific function is provided by the algebra of switching circuits and logic
design, a specific variant of Boolean algebra [32]. In this connection, one of the most important
questions electrical engineers have to solve concerns the minimization of a circuit’s hardware
costs. Given two different circuits that produce the same output when provided with the same
input, the circuit that is cheaper to build is preferred. More formally, this question can be
phrased as follows: Given a switching function fand an objective function F defined on the set
of f-equivalent switching functions S; what is the set of f-equivalent switching functions S; for
which F reaches a minimum?

There are many ways in which F can be defined. It could relate to the number of circuit
gates, the number of gate contacts, or a more complex requirement of the form aP + bQ + cR,
where P, Q, and R represent the number of gates of a certain type and 4, b and c are weighting
coefficients on unit price, reliability or other economical or technical criteria [33]. For exam-
ple, consider the circuit presented in panel (a) of Fig 1, whose switching function is given by
(W + X)-(W' +Y) = Z, and whose corresponding function table is presented in the left and
middle parts of panel (b) of Fig 1. As is customary in writing logic functions for switching cir-

«/» « »

denotes the logical NOT-operator (open contact), “+” the logical OR-operator
(switches in parallel), “-” the logical AND-operator (switches in series), and “=" the logical
ONLY-IF-THEN-operator (no separate symbol). For convenience, “-” will be dropped if there
is no risk of confusion, and AND will take precedence over OR. A function whose main opera-
tion is an OR-operation is called a sum of products (SOP), a function whose main operation is
an AND-operation is called a product of sums (POS).

The output variable, Z, takes on the value 1 for combinations WX'Y', WX'Y, WXY', W XY
and WXY; and it takes on the value 0 for combinations WX'Y', WX'Y and WXY’ of the input
variables W, X and Y. Combinations for which some switching function fequals 1 are called

positive minterms, those for which ftakes on the value 0 are called negative minterms.

cuits,

WY (a) (c) WX Y
Z W XY Z
1 0 0 0 1
10 0 1 1
1 0 1 0 1
10 1 1 1
0 1 0 0 0
0 1 0 1 0 g
7 0 1 1 0 0
11 1 1 1

(a) (W' +X)- (W' +Y) = Z (b) Function Table for (a) and (¢) (c) W'+ X .Y =2

Fig 1. Two equivalent switching functions and their switching circuits. (a): (W' + X) - (W' + Y) = Z. (b): Function Table for (a) and
(). (c):W+X-Y=2Z.

https://doi.org/10.1371/journal.pone.0233625.9001
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Furthermore, every appearance of a variable in fis called a literal. To realize the given switch-
ing function as a circuit, four gates are required: one NOT-gate, two OR-gates and one AND-
gate.

Now consider the circuit presented in panel (c) of Fig 1, whose switching function is given
by W+ XY = Z, and whose corresponding function table is presented in the middle and right
parts of panel (b) of Fig 1. As Z takes on the same values for the same minterms as (W' + X)
(W' +Y) = Z does, the two functions are equivalent: they behave identically for the same
combinations of input conditions. However, instead of four gates, W+ XY = Z requires
only three gates: one NOT-gate, one AND-gate and one OR-gate. Additionally, it is has only
three literals instead of four. The hardware costs of the circuit in panel (c) are thus lower than
those incurred by the circuit in panel (a). Is there a systematic way of identifying the cheaper
circuit in panel (c)? One possibility to get from (W + X)(W + Y)=Zto W + XY =Zis
by applying the Boolean-algebraic law of distribution with respect to OR, according to which
D +YQ= (D + ¥P)(D+ Q). Contrast this with linear algebra, where “+” (plus) does not distrib-
ute over “” (times) [34]. By reversing the distribution, we can architect a circuit that behaves
exactly as the one represented in panel (a) of Fig 1 yet at lower hardware costs.

However, the optimization of a switching circuit by means of applying Boolean-algebraic
laws to its corresponding switching function becomes increasingly cumbersome as the com-
plexity of this circuit’s input-output specification increases. To circumvent this problem, an
algorithmic alternative was proposed by Edward McCluskey, who improved on earlier work
carried out by Claude Shannon and Willard Quine at the intersection of electrical engineering
and analytical philosophy, in the form of QMC [35-40]. Because of its accessibility to begin-
ning students of electrical engineering, all elementary textbooks on applications of Boolean
algebra, switching circuit theory or logic design contain sections on this algorithm [32, 41-43].
A simple example shall be provided in the following. Without any loss of generality, we will
adopt as our objective function the identification of a SOP function that has the minimum
number of AND-gates among all equivalent functions. We call such a function a minimal sum.

Consider a new switching function, presented in Table 1, which involves four input vari-
ables, V, W, X and Y, and the output variable Z. In this table, each minterm now also has an ID
character, which is the decimal number associated with the binary number representation of
the respective minterm. For instance, the ID of the second row of Table 1 is 1 because the
number 1 is expressed as 0 x 2* + 0 x 2% + 0 x 2" + 1 x 2° under a binary number system; the
ID of the row before the last is 14 because 1 x 2° + 1 x 2° + 1 x 2" + 0 x 2° = 14. The last row
groups together all minterms whose respective combination of values under V, W, X and Y is

Table 1. Function table.

ID \4 w X Y Z
0 0 0 0 0 1
1 0 0 0 1 1
3 0 0 1 1 1
4 0 1 0 0 0
6 0 1 1 0 0
8 1 0 0 0 1
9 1 0 0 1 0
11 1 0 1 1 0
13 1 1 0 1 0
14 1 1 1 0 1
2,5,7,10,12,15 -

https://doi.org/10.1371/journal.pone.0233625.t001
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Table 2. Derivation of prime implicants.

(a)

w
— o~ |~ |oclo|~|locoloc|lco|l<d
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—_ == o= o~ o~ |o|o | K
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https://doi.org/10.1371/journal.pone.0233625.t002

(b) (c)

\% w X Y \% w X Y
0,1 0 0 0 - v 0,1,2%,3 0 0 - - X
0,2* 0 0 - 0 v 0,2%,8,10" - 0 - 0 X
0,8 - 0 0 0 v 1,3,5%,7* 0 - - 1 X
1,3 0 0 - 1 v 8,10%,12*,14 1 - - 0 X
1,5 0 0 1 v
253 0 0 1 - v
2%,10* - 0 1 0 Vv
8,10" 1 0 - 0 v
8,12* 1 - 0 0 v
3,7* 0 - 1 1 v
5%,7* 0 1 - 1 v
10,14 1 - 1 0 v
12,14 1 1 - 0 v
7*,15* - 1 1 1 v*
14,15* 1 1 1 - X

not relevant for the specification of the circuit because these combinations do not occur; hence
the dash, “—”, under Z. In switching circuit theory, such functions are called incompletely
specified functions, and the non-specified combinations are referred to as don’t care minterms
or simply don’t cares. All information contained in the function table in Table 1 can be more
compactly summarized as Z(V, W, X, Y) =¥ m, (0, 1, 3, 8, 14) + X my (2, 5, 7, 10, 12, 15),
where m; stands for the positive minterms and 4 for the don’t cares. This expression repre-
sents the canonical sum.

The first algorithmic phase of QMC consists in eliminating as many literals as possible
from the positive minterms by making use of a successive combination of three Boolean-alge-
braic laws: the dual to the distributive law used above in relation to the circuits shown in Fig I,
according to which ®(¥ + Q) = @Y + ®Q; the law of complementarity, according to which
® + @’ = 1, and the law of identity, which states that @ - 1 = ®. To this end, QMC arranges all
positive minterms as well as all don’t cares in blocks of minterms for which the number of 1s
they contain is the same. This is shown in sub-table (a) of Table 2. The asterisk marks off don’t
cares from positive minterms. For example, the second block includes minterms 1, 2* and 8
because they are the only ones that contain a single 1 in their binary number representation.
As there is only one possibility for having not a single 1, as many 1s as there are input variables,
respectively, minterms 0 and 15* each have their own block.

Provided the difference in the number of 1s in adjacent blocks is one, minterms from adja-
cent blocks whose IDs differ by a number that can be expressed as a power of 2 can be reduced
by eliminating literals on the basis of the three Boolean-algebraic laws introduced above. These
reduced minterms are called (proper) implicants. For example, minterms 0 and 1 can be com-
bined because 1 — 0 = 1, which can be expressed as 2°. Specifically, literals Y’ and Y can be
eliminated because VW' X'Y + V'WX'Y equals V'W'X'(Y'+ Y) by distribution, which in turn
equals V'W'X'(1) by complementarity, which in turn equals V' WX’ by identity.

To indicate that a minterm has been used in creating an implicant, it receives a tick mark,
and the newly formed implicant is transferred to a new table, sub-table (b) in Table 2, where
the ID of a new implicant is simply the combination of IDs from the minterms that have gone
into creating it. The eliminated literal is marked by a dash. Each minterm can be used more
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than once in deriving implicants because of the law of idempotency, according to which

® + @ = ®. This process continues until no further eliminations are possible. From a table
with 11 minterms, QMC has progressed to a table with 15 implicants. Seemingly, the situation
has become more complex rather than less complex, but further reductions are possible.

In sub-table (b), implicants from adjacent blocks can be combined if the differences in their
respective double IDs is not only the same, but also again a number that can be expressed as a
power of two. For example, implicant (0, 1) cannot be combined with implicant (1, 3) because
the powers of two that make up the difference in their IDs are not the same; 1 — 0 = 1, but
3 — 1 =2.In contrast, implicant (0, 1) can be combined with implicant (2*, 3) because the dif-
ferences in their double IDs are both 2, which is a number that can be written as a power of
two, namely 2! Specifically, literals X" and X can be eliminated from (0, 1) and (2*, 3) because
VWX + VWX=VW(X +X)=VW(1)=VW.Asbefore, to indicate that an implicant
has been used in creating another, shorter implicant it receives a tick mark, and the newly
formed implicant is transferred to a new table, sub-table (c) in Table 2. Also, the ID character
of a newly formed implicant is simply the combination of IDs from the implicants that have
gone into creating it. This process continues until no further reductions are possible.

In sub-table (b), implicant (14, 15*) could not be further minimized to yield a shorter impli-
cant, and none of the implicants in sub-table (c) can be reduced further. Implicants that cannot
be reduced further are called prime implicants and receive a cross instead of a tick mark. Once
there are only crosses left, QMC stops the process of eliminating literals. Theoretically, all
prime implicants could now simply be joined to yield the complete sum, Z= VWX + VW' +
W'Y’ + V'Y + VY, which is a correct representation of the canonical sum. As this function cor-
responds to a switching circuit with as many AND-gates as that associated with the canonical
sum yet fewer literals, less hardware would be required. Yet, since our objective function
requires a SOP function with as few AND-gates as possible, we need to test whether some
prime implicants can be eliminated without losing equivalence. What is thus needed is not a
complete sum but an irredundant sum, that is, a SOP function of prime implicants that does
not contain any unnecessary prime implicants. In a second phase of optimization, QMC thus
identifies those functions that have the minimum number of prime implicants, yet still behave
exactly as specified in Table 1.

By invoking the consensus theorem, according to which ®¥ + @'Q + ¥Q = ¥ + &'Q, we
immediately see that, for example, W'Y’ is redundant in the presence of V'W’ and VY'. As
before, however, the direct application of theorems of Boolean algebra can become very cum-
bersome. QMC therefore decomposes the complete sum via a device called prime implicant
chart, in which all prime implicants are listed along the rows and all positive minterms along
the columns. The prime implicant chart that results from the first step of minimization per-
formed in Table 2 is shown in Table 3. Don’t cares that have been used in deriving an impli-
cant are not listed alongside the positive minterms, nor would be prime implicants that had

Table 3. Prime implicant chart for function table in Table 1.

1,3,5%,7* V'Y
8,10%,12%,14 vy
0,1,2%,3 vw
0,2%,8,10" wYy
14,15* VWX

https://doi.org/10.1371/journal.pone.0233625.t003

Minterms
0 1 3 8 14
VWXY VWXY VWXY VwWXxXy VWXY
- x X — —
- - - X X
X X X - -
X - - X -
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been derived solely from don’t cares. If a prime implicant covers a positive minterm, it receives
a cross in the chart, if it does not, it receives a dash. For instance, VY’ covers VWXY’ because
all the former’s literals form a subset of all the latter’s. Any combination of prime implicants
that covers all positive minterms yields a function equivalent to the original function, but not
necessarily a function that satisfies 7.

One way of finding the switching function(s) with the fewest prime implicants would be to
systematically identify all equivalent switching functions at once, and to then select the func-
tion that has the smallest number of prime implicants. Clearly, such an approach would be
highly inefficient because all the objective function requires is a single switching function for
which it is guaranteed that it contains the lowest possible number of prime implicants. So as to
optimize the second step of minimization, QMC therefore implements a routine based on the
concept of row dominance: A row i in a prime implicant chart dominates another row j of that
chart if, and only if, i has a cross in all columns in which j has a cross and i has a cross in at
least one column in which j does not have a cross [36]. As dominated prime implicants can
never outperform dominating ones when the objective function specifies the minimum num-
ber of AND-gates, a solution consisting only of dominating prime implicants is guaranteed to
satisty F.

In the prime implicant chart in Table 3, VY’ dominates VWX, VW' dominates V'Y, and
no other prime implicant dominates any other. As VY’ and V' W’ together already cover all
positive minterms, the solution that minimizes circuit hardware costs when the objective
function defines the minimum number of AND-gates is given by V'W’ + VY’ = Z. Without
ever identifying other irredundant sums, we already know that no other combination of
prime implicants will provide an alternative to VW’ + VY'. Hence, the application of row
dominance permits an efficient identification of irredundant sums that will also be minimal
sums.

Algorithmic bias

QCA studies usually report only a single explanatory model for their data. In other words,
QCA research almost always seems to produce strong results. However, we hold that such
results have often neither been the upshot of the collection of high-quality data material nor
the skilful use of pertinent theories but simply an algorithmic corollary of the uncritical import
of QMC from electrical engineering. To do this, let us leave the mechanics of QMC introduced
in the previous section aside for the moment, and jump to the daily business of social scientist
John Doe, who has collected data on some phenomenon S, which Doe presumes to be an effect
of some combination of variables C, R, L and E. These data, which exist for 16 cases, ¢; to ¢,
are presented in Table 4.

What Doe does not know: social nature has determined the data-generating structure
(DGS) C'E + RE' + CRL = S, which has given rise to Doe’s data, and which Doe seeks to
uncover, or at least get closer to, as much as his data permit. Put verbally, S takes on the value 1
if, and only if, C takes on the value 0 and E takes on the value 1 (cases c;o and ¢;;), or R takes
on the value 0 and E takes on the value 0 (cases c4, ¢s, ¢ and ¢;5), or C takes on the values 1
and R takes on the value 1 and L takes on the value 1 (case c;). That each of these conjunctions
is minimally sufficient for S can easily be verified: neither C' nor E alone are sufficient for S
because cases 1 to c1,, and cases ¢; to cs, cg and cy, respectively, are associated with S = 0; nei-
ther R’ nor E’ alone are sufficient for S because cases c; to c3, and cases c;3 to c;¢, respectively,
are associated with S = 0; and neither the conjunction of CR, nor that of CL, nor that of RL
alone are sufficient for S because cases cg and co, case ¢;, and cases c;3 and ¢, 4, respectively, are
associated with § = 0.
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Table 4. Data collected by social scientist John Doe.

Case C R L E S
[ 1 0 1 1 0
C 1 0 0 1 0
3 1 0 0 1 0
Cy 1 0 0 0 1
Cs 1 0 0 0 1
C 1 0 0 0 1
cy 1 1 1 0 1
Cg 1 1 0 1 0
Co 1 1 0 1 0
Clo 0 0 1 1 1
n 0 0 0 1 1
Ci2 0 0 0 0 1
C13 0 1 1 0 0
Cia 0 1 1 0 0
C1s 0 1 0 0 0
Ci6 0 1 0 0 0

https://doi.org/10.1371/journal.pone.0233625.1004

There are thus three alternative pathways to the outcome. For identifying the causal inter-
play between R, C, L, E and S, Doe chooses the £s/QCA software [44], whose output is pre-

sented verbatim in Fig 2.

The solution is given as C'R’ + CE', a solution that is clear-cut yet unequivocally false.
Instead of CE/, the presented result should have been the opposite, namely C'E; and instead of
C'R’, the opposite in conjunction with L should have been reported, namely CRL. Moreover,
the third path of the DGS, R'E/, has not been discovered at all. Any interpretation of this solu-
tion that Doe were to propose would lead him further away from the truth rather than closer
to it even though his data are ideal for discovering the DGS that social nature has predeter-

mined. What went wrong?

File: C:/Users/John Doe/QCA Research Project/my_data_for_qca.csv

Model: S = f(C, R, L, E)
Algorithm: Quine-McCluskey

--- TRUTH TABLE SOLUTION ---
frequency cutoff: 1
consistency cutoff: 1
Assumptions:
raw unique

coverage coverage
~C*~R 0.428571 0.428571
C*~E 0.571429 0.571429
solution coverage: 1
solution consistency: 1

consistency

Fig 2. Output of £s/QCA software for an analysis of Doe’s data.

https://doi.org/10.1371/journal.pone.0233625.9002
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That £s/QCA presented a solution that not even remotely reflects the DGS is no program-
ming bug, nor an idiosyncratic scenario unlikely to be reproduced with different data, nor a
fault attributable to QMC. Instead, it is a prime example of how far astray researchers can be
led when methods developed in one discipline (electrical engineering) for one specific purpose
(the minimization of hardware costs in architecting electrical switching circuits) are imported
into another area (social sciences) without proper adaptation of these foreign methods to their
new purpose (observational data analysis for causal inference). We have now everything in
place to link Doe’s research problem back to the previous section on QMC.

First notice that when Doe’s data are transformed into a QCA truth table, this table is equiv-
alent to the function table presented above in Table 1: simply replace the original factor label V
with the new label C, W with R, X with L, Y with E and Z with S. Minterm 0 in Table 1 repre-
sents case ¢, in Table 4, minterm 1 case ¢,;, minterm 3 case c;o, minterm 8 cases c,, c5 and cq,
and minterm 14 case c;. By extension, the prime implicant chart for Doe’s data also presents
exactly the same optimization problem as that presented in Table 3. The complete chart for
Doe’s data is provided in Table 5.

Recall the objective function specified in the previous section and QMC’s approach to opti-
mizing the process of identifying a switching function that would meet this objective function.
The use of the principle of row dominance allowed QMC’s to directly derive such a function
without identifying any alternative irredundant sums that, under no circumstances, could out-
perform this function. Doe’s interest, however, is in getting closer to the truth behind phenom-
enon S, not in building a low-cost electrical switching circuit. All that needs to be done to
adapt QMC to the purpose of causal inference is to redefine the objective function such that it
agrees with this purpose. As Grafthoff and May [22] had already demonstrated in the frame-
work of propositional logic about two decades ago, any minimally necessary disjunction of
minimally sufficient conjunctions is a potential candidate for a causal explanation under the
INUS theory of causation. As propositional logic and switching circuit theory are completely
equivalent branches of the same Boolean algebra, this simply means that, when translated to
the terminology of electrical engineering, QMC must produce all irredundant sums, and not
only a minimal sum, if employed for purposes of causal inference. Let us therefore reformulate
F such that QMC should identify the set of all equivalent SOP functions that are irredundant,
but not necessarily minimal.

Petrick’s method provides a straightforward and well-established technique in electrical
engineering that can be employed for finding all irredundant sums [41]. All we need is an aux-
iliary prime implicant function p. More specifically, let CE = P,, CE' = P,, CR'=P;,R'E' =P,
and CRL = Ps. After combining all prime implicants in a POS function such that each term is a
sum of all prime implicants covering a positive minterm, the following transformations can be

Table 5. Prime implicant chart for Doe’s data presented in Table 4.

ID 0

C
1,3,5%,7* CE -
8,10%,12%,14 CE' -
0,1,2%,3 C'R X
0,2*,8,10" R'E X
14,15* CRL -

https://doi.org/10.1371/journal.pone.0233625.t005

Minterms
1 3 8 14
'R'L'E' CRLE CRLE CR'L'F CRLE
X X - -
- - X X
X X - -
_ _ x _
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carried out:

p :(P3+P4)(P1 +P:s)(P1+P3)(P2+P4)(P2+P5)»

= (Py + P,)(P, + P3)(P, + P,)(P, + P) by idempotency,
= (P, +P,P,)(P, + P,P,) by distribution,
=P,P, + P P,P,+ P PP, + P,PP. by commutativity and idempotency.

Four irredundant sums exist for Doe’s data. When p is now transformed back, the following
four models m; to m, emerge as candidates for explaining S:

m, : S= CE +CR,

m,: S= CE+ CE +RE,

m,: S= CE+RE +CRL, and
m,: S= CR +RE +CRL.

Model m;—the only model presented by £s/QCA—corresponds to the output of QMC
given in the previous section, namely V'W’ + VY’ = Z. This, however, is not the DGS behind
Doe’s data. Instead, the correct model is m3, which would have never been returned by QMC
under sum minimality; nor would have been models m, and my, for that matter. Three out of
four possible and equally well-fitting causal explanations of S would therefore have never been
brought to the attention of Doe. Instead, Doe would have been led to believe that the evidence
is clear-cut and that the data allow of only a single explanation for S, which we know to be the
wrong one.

In the following section, we analyze the extent to which this algorithmic bias has intruded
into empirical work over the last quarter century. Concretely, we present a large-scale replica-
tion effort estimating the degree to which applied research in three social-scientific disciplines
has been affected by algorithmic bias attributable to the use of sum minimality instead of sum
irredundancy when employing Boolean optimization algorithms in QCA.

Data

We drew on a total of 215 peer-reviewed articles from across 109 high-profile management,
political science and sociology journals indexed in Clarivate Analytics’ Journal Citation
Reports. They are listed in S1 Appendix, and represent the final set out of a total of 357 eligible
articles for which it was possible to gather sufficient information for re-running the analysis.
Our sampling and data collection strategy, including the Preferred Reporting Items for Sys-
tematic Reviews and Meta-Analyses (PRISMA) flow diagram, can be found in S2 Appendix.
The PRISMA checklist is included in S3 Appendix.

As many articles present several distinct solutions based on separate runs of QCA, the unit
of analysis is not the study itself, but the presentation of a distinct solution. For instance, many
studies present separate results for the presence and the absence of an outcome, or present
analyses for different yet related outcomes. Across all 215 articles, 552 distinct QCA solutions
turned out to be reanalyzable.

So as to minimize the risk of human errors, we automated the analysis via a purpose-built R
function called algoBias, which imports the complete replication material at once, verifies
the correctness and integrity of this material, and carries out the calculation of all bias statistics.
This function also has an in-built emergency stop for data that generate so many equally well-
fitting models that a meaningful interpretation becomes impossible. The function algoBias
is available in the replication script, and can be easily re-used or adapted.
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Analytical strategy

In addition to algorithmic bias, empirical QCA studies may suffer from other types of bias. At
least two additional, major types of bias that need to be factored out when computing the
degree of bias solely attributable to algorithmic sources command attention. The source of the
first lies in the discounting of evidence due to personal beliefs, a phenomenon referred to as
confirmation bias in psychology [45, 46]. Although the negative consequences of preferring
belief-compatible over belief-incompatible evidence have long been recognized, some QCA
methodologists still explicitly recommend disregarding explanatory models that are not in
accordance with theoretical preferences when faced with equally well-fitting counter-evidence.
These recommendations seem to have given applied QCA researchers license to tacit model
selection [30].

The second alternative source of bias consists in the use of so-called conservative
(QCA-CS) and intermediate solutions (QCA-IS), which trade in the guarantee of methodolog-
ical correctness of the parsimonious solution (QCA-PS) for a higher likelihood of generating
stronger results via the back-door addition of artificial data [47-49]. We refer to the effect of
this practice as data inflation bias.

The overall reporting bias in empirical QCA studies is thus an aggregate of at least three
separate types of bias that need to be distinguished: confirmation bias, data inflation bias and
algorithmic bias. The first two types simply need to be computed for identifying a study’s
degree of algorithmic bias, yet we will not pay closer attention to them here. More specifically,
so as to isolate algorithmic bias, we reanalyzed each of the 552 QCA solutions under both sum
minimality and sum irredundancy, and compared the obtained numbers of models to the
number of models reported for a solution in the corresponding article. Concretely, let mps g
denote the total number of models fitting the data equally well under sum irredundancy in
QCA-PS, mpg sy the total number of such models under sum minimality in QCA-PS, mcs s
the total number of such models under sum irredundancy in QCA-CS, mcg sps the total num-
ber of such models under sum minimality in QCA-CS and m,., the number of models
reported. Then, confirmation bias b, data inflation bias b;,rand algorithmic bias b, are
computed as specified in Table 6.

As an illustration, imagine a study reported only a single model for a QCA-PS run on its set
of data, but two models fit these data equally well under sum minimality and five models
under sum irredundancy. Then, data inflation bias would be ruled out a priori because of the
use of QCA-PS, confirmation bias would amount to (2 — 1)/5 = 0.2, algorithmic bias to (5 — 2)/
5 = 0.6, and the overall reporting bias to 0.2+ 0.6 = 0.8. Expressed as percentages, 20 per cent
of all data-fitting models were consciously suppressed by the study’s authors (confirmation
bias), 60 per cent of all data-fitting models were unconsciously suppressed (algorithmic bias),
and 80 per cent of all models fitting the study’s data equally well were not reported.

Table 6. Formulas for computing different types of bias in QCA.

Bias

bcvnf
bdinf

balgo

https://doi.org/10.1371/journal.pone.0233625.t006

Mps.sm > Mcs.sm

QCA solution type
QCA-CS QCA-IS QCA-PS
Mpg.sm < Mcs.sm Mps.sm > Mcs.sm Mpg.sm < Mcs.sm
Mcs.sM—Mrep mcs.sM —Mrep Mcs.sM—Mrep Mps.sM— Myep

mcs.st Mps.SI mcs.st Mps.S1
Mps.SM—MCS.SM
MPps.sI

mes.s1 —Mes.sM Mps.SI—MMps.SM MCs.S1=MCs.SM Mps.SI ~Mps.SM
mcs.s1 mps.Si mcs.si mps.si
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Results

The results of our meta-analysis are presented in Fig 3. The first fact to be noticed is that 361
out of all 552 analyzed solutions (about 65 per cent) are not affected by algorithmic bias. At the
same time, that means every third published QCA solutions in our sample is affected, which is
a considerable proportion. In other words, even when everyone involved in the production
and release of scientific work—authors, reviewers, and journal editors—is assumed to have
acted as ethically and objectively as they possibly could, and even when the analyzed data are
assumed not to be beset by any other problems impacting negatively on the quality of the
reported results, our analysis suggests that every third QCA solution presented in a manage-
ment, political science or sociology journal has oversold its solution simply because the algo-
rithm in the chosen QCA software operated under an objective function that is suitable for
one specific purpose in electrical engineering applications, but not for causal inference.

When magnitude, rather than the mere presence or absence of bias, is taken into account,
our results show some interesting nuances. For almost all QCA solutions that are affected by
algorithmic bias (about 31 per cent overall), at least half of all viable candidate models have
never been brought to the attention of researchers or the readers of these researchers” pub-
lished article that presented this solution (ba, > 0.5). If we increase the magnitude to b, >
0.75, this figure drops to about 17 percent. However, at the extreme end of by, > 0.95, which
refers to all situations in which only a single model was reported by the authors although at
least 20 models fit the data equally well, about one QCA solution in 12 (8.5 per cent) is still
affected. Contained within this figure are no fewer than 36 solutions, amounting to 6.5 per
cent of all presented QCA solutions, for which the number of models was so high that virtually
nothing could have been inferred from the data.

An example study which did manage to avoid confirmation and data inflation bias but
whose results suffer from an enormous amount of algorithmic bias is Stoiber and Téller [50].
This study seeks to analyze the causes of privatization of hospital order treatment of criminals
with diminished capacity in the German Bundeslinder by means of multi-value QCA and the
software Tosmana (multi-value QCA has been employed far less than other QCA variants,
but Tosmana has enjoyed a software market share of around 15 percent [51]). Five out of 16
Bundesldnder have privatized such treatments. The authors acknowledge that solutions
explaining privatization are ambiguous, but only a tiny fraction of this ambiguity is reported.

50 8.5

45 — o
o 40
c
S
g 35 o
3
<</(> 30

4.5

%) _
g 25
S 20 31
3

15
E 1.8 1.8 16
= 10 — 1.3 1.1 13
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0 -
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Magnitude of Algorithmic Bias

Fig 3. Frequency of QCA solutions (overall percentage share above bars) along magnitudes of algorithmic bias (0:
no bias, 1 complete bias; bar for “no bias” removed for layout reasons).

https://doi.org/10.1371/journal.pone.0233625.g003
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More precisely, Tosmana presented three models to the authors, two of which contained the
same two prime implicants. These two prime implicants together covered four of the five posi-
tive cases. As a result, the authors believed that their analysis led to a relatively clear-cut finding
(“einem eindeutigen Ergebnis fiir drei Bundeslidnder [. ..]. Auch fiir Thiiringen erbringt die
sparsame Losung einen eindeutigen Befund [. ..].”). To the readers of this study, it thus seems
as if there exists slight model ambiguity, but the effects of this problem are attenuated by the
existence of two shared prime implicants covering four of the five Bundesldnder that imple-
mented privatization. Yet, in actuality, there exist 72 other and equally well-fitting models,
among which the supposedly central prime implicants are not central any more. What Tos-
mana reported were only the three minimal sums from among a total of 75 irredundant sums
that should have been reported. Stoiber and Téller’s study is thus commendable insofar as the
authors objectively report all models presented to them by their chosen software, yet the enor-
mous amount of algorithmic bias induced by Tosmana’s undocumented use of sum minimal-
ity instead of sum irredundancy unfortunately completely overshadows this positive aspect.

Conclusion

In this article, we have revealed a type of bias that has gone almost unnoticed to date in the
context of science’s replication crisis: algorithmic bias. Concretely, we have shown why the
uncritical import of the Quine-McCluskey algorithm (QMC) from electrical engineering to
data analysis with the method of Qualitative Comparative Analysis (QCA) for purposes of
causal inference has led to considerable algorithmic bias due to the simultaneous import of an
objective function under which QMC operates in electrical engineering applications. This
objective function, called sum minimality, is appropriate for architecting minimum cost
switching circuits, but not for causal inference. For purposes of causal inference, sum irredun-
dancy provides the correct objective function for any optimization algorithm, QMC or
otherwise.

Why this misapplication of objective functions in QCA-based literature has gone unnoticed
for decades remains an important question. We see two conditions that, together, may provide
a significant part of the explanation: first, despite its heavy reliance on components originally
developed in electrical engineering, QCA is a method that has evolved in sociology and politi-
cal science, but hardly any social scientist takes courses in logic design or reads textbooks on
electrical engineering. From this perspective, the borrowing of algorithms from disciplines
which one has no aim to become familiar with is a highly risky business in the first place. Sec-
ond, simulations were never implemented before or shortly after QCA had been released to
the “market”. While it is standard in many disciplines to test new algorithms in advance of
their application to substantive problems, neither early critics nor proponents of QCA seem to
have ever considered implementing appropriate tests to verify that sum minimality would be
suitable for purposes of causal data analysis. Beyond the realm of QCA, our article should thus
caution scientists more generally against letting elaborate methods and algorithms travel too
easily across disparate disciplines without sufficient prior evaluation of their suitability for the
context in hand. Sometimes, extensive upfront testing is preferable to post-release corrections.

Supporting information
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(PDF)
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