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Abstract

An exploratory study is presented that aims at validating a model for mode locking on
the basis of a large set of ASDEX Upgrade (AUG) discharges. Not discriminating between
plasma configurations, the model allows to estimate the duration of the deceleration
phase, as well as the critical mode width for locking. Both quantities are important for
the design of disruption avoidance algorithms that aim to affect the MHD mode rotation.
It was found that the model successfully described locking of large modes in those cases
where the deceleration started in a quasi-stationary phase of the discharge (i.e. with low
variability of the global plasma angular momentum prior to mode seeding) and where
deceleration took place over temporal intervals comparable to the momentum confinement
time. Theoretical braking curves and locking durations predicted with the model were in
good quantitative agreement with the experiment. On the other hand, the model failed
to reproduce the braking curves of modes appearing towards the end of a transient phase,
e.g. during an impurity influx or when approaching the disruptive density limit. It can
be concluded that the modes were not the primary cause of the plasma momentum losses
within the scope of the model. A modified mode equation of motion is proposed, which
accounts for transient variation of the plasma density, e.g. during the development of a
MARFE, and its impact on braking predictions is discussed. Furthermore, it was observed
that a substantial fraction of modes was rotating at the onset of a major disruptive event.
Consequences of this observation on disruption prediction schemes in AUG are examined.

1 Introduction

Tokamak disruptions, fast losses of the plasma confinement, represent a potential threat to
future large devices in terms of heat and particle loads on the plasma-facing materials and
electromagnetic forces applied on the in-vessel components [1]. Analysis of a large number
of disruptions in JET revealed that a primary cause of the major thermal quench (sudden
drop in the plasma energy content) was a tearing mode [2] of critical amplitude [3], static
in the laboratory frame—the so-called locked mode. The amplitude of the tearing instability
thus represents an important quantity to consider in physics-driven (i.e. based on physi-
cal models and scalings) disruption prediction schemes. Prior to locking, modes are often
observed to rotate. Given the stabilizing effect of conducting structures on rotating modes
(supported by differential rotation of the resonant surfaces), maintaining (or increasing) the
mode rotation frequency is a key instrument for disruption avoidance [4–7]. Losses of the
mode angular momentum leading to locking appear to be linked to the width of the instabil-
ity [8, 9]. Efforts to reduce the radial extent of the mode in real time have involved current
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drive and heating localized on the rational surface of interest [10–12]. A combination of sus-
tained plasma rotation and reduction of the mode width could therefore be instrumental for
disruption avoidance schemes, thus maintaining good plasma confinement, and directing the
discharge parameters towards a non-disruptive area of the device operational space. Hence,
the expected duration of the locking phase is a key information that should be provided to
the plasma control system for disruption avoidance, in order to determine the settings of
the actuators affecting the mode rotation frequency and instability width. In addition, the
critical island width for locking can serve as a warning to prepare the plasma control system
for a potentially disruptive state. Both quantities should be accessible in real time during
the discharge.

In this paper, we intend to demonstrate that the locking phase duration and critical
island width may be obtained in real time on the basis of a physical model for mode braking.
Variants of the model used in this paper have been formulated in the past [13–15] and
have yielded useful input for the design of disruption avoidance actuators [14, 16]. Unlike
future fusion power plants, present experimental tokamak devices operate over a broad range
of plasma conditions. The plasma state is often close to certain operational limits, where
rotating MHD modes can be driven unstable, which may later disrupt the plasma. It is
thus of interest to validate the mode locking model for a large set of discharges, thereby
considering a broad variety of operational scenarios, plasma parameters, discharge phases,
as well as root causes for mode initiation and details of the mode growth. This allows to
explore the limitations of the model and may provide guidelines for its improvement. For this
purpose, a large database of disruptive discharges was assembled in ASDEX Upgrade (AUG)
with initially rotating tearing modes. The database contains a broad variety of braking
dynamics, ranging from fast growing and locking modes to quasi-stable islands braking over
long temporal periods. The physical braking model was invoked with the aim to reproduce
the experimental braking curves, accounting for multiple scenarios of momentum transfer at
the interface between the mode and the bulk plasma, in order to identify the scenario that best
explains the experimental observations. In addition, key predictions by the model (braking
phase duration and critical mode width for locking) were compared with the experiment and,
in the event of a discrepancy, the possible causes were examined.

The contents of the paper are as follows. In Sec. 2, the physical model for mode decelera-
tion is presented. The dynamic critical condition for locking, accounting for the mode growth
and momentum redistribution rate, is derived. Sec. 3 presents the database of disruptive plas-
mas, including classification of disruption types, and discusses validation of the experimental
input necessary for application of the braking model. In Sec. 4, a critical condition for lock-
ing is evaluated both theoretically and experimentally for selected cases. Reconstruction of
braking curves is presented and situations where the model breaks down are investigated in
detail. The role of rotating modes in the disruption onset is studied in Sec. 5. Sec. 6 contains
a discussion of the results, as well as model limitations and potential extensions, and Sec. 7
concludes the paper.

2 Tearing mode braking model

2.1 Mode dynamics

The rotation of tearing modes is assumed to be composed of the toroidal motion of the
plasma bulk ions and the electron diamagnetic drift [17,18]. The rate of change of the mode
angular frequency ω may be expressed as a sum of forces acting on the mode. We assume
that the rotation is driven by viscous coupling between the mode and the bulk plasma and
mode deceleration via electromagnetic interaction with the wall of finite resistivity [14]:

dω

dt
= FVS − FRW. (1)
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Here, the respective force terms (encompassing the moment of inertia associated with the
braking mass) are denoted by FVS and FRW. The interaction with the device error fields
is neglected, since the intensity of error fields is assumed to be small in AUG, becoming
important only at the final stage of locking [19]. The plasma poloidal rotation is assumed to
be damped [20], so the following discussion will only concern the forces affecting the motion
in the toroidal direction.

The model for the viscous force term FVS states that any deviation of the mode rota-
tional frequency from the stationary state ω0, is counteracted by the perpendicular viscous
plasma-mode coupling [18]. The restoring viscous torque is proportional to ω − ω0, with the
proportionality factor containing the momentum diffusivity coefficient. Specifically, we adopt
the following expression for the viscous restoring force [14]:

FVS =
ω0

τM0
− ω

τM
. (2)

Herein, the global momentum confinement time τM is related to the plasma viscosity, where

τM = Lφ/TIN =
1

TIN

∫
meffneR

2ω dV, (3)

with Lφ the total toroidal angular momentum, TIN the total torque input and meff the
effective nucleon number. In NBI-heated discharges, TIN may be fully determined by the
torque induced by the beams, i.e. TIN ≈ TNBI. It should be noted that macroscopic MHD
modes are known to deteriorate global confinement properties. In [9], a model describing this
deterioration was developed, resulting in an expression for a decrement ∆τE,dec of the energy
confinement time, following the growth of the instability. It was shown that ∆τE,dec depends
on the normalized radius of the mode’s rational surface rs/a (a is the plasma minor radius),
as well as the island width w. Often, one can approximate τM by τE, with some exceptions,
e.g. in the case of discharges with peaked density profiles [21]. Therefore, following [14], we
take the momentum confinement deterioration by the mode into account by including in the
mode locking model a correction of τM:

τM =
τM0

1 + fMw/a
. (4)

Here, the subscript ‘0’ refers to the mode-free phase of the discharge and fM is a constant
factor that is assumed to represent various effects of confinement degradation not specified
in any further detail. Experimentally, it is difficult to isolate from fM the effect on the
confinement of the mode braking due to the wall drag. Other phenomena, such as the H-
to-L transition, which usually precedes the disruption onset, contribute to the confinement
deterioration as well.

The resistive wall force term was introduced in [13] and its analytical expression for a
mode with poloidal mode number m is the following:

FRW = −A ωτw

(ωτw)2 +m2

(w
a

)4
. (5)

Here, τw is the resistive wall time, given by

τw =
µ0σwbrw

2
, (6)

where b is the wall thickness, σw its conductivity and rw is the minor radius of the wall. In
addition, A is a parameter depending on the mass subjected to braking, where two scenarios
of momentum transfer can be considered at the interface between the mode and the plasma
bulk:
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• Mode momentum losses are perfectly coupled to the motion of the plasma bulk, implying
common deceleration. This scenario will be indicated by the subscript ‘co’.

• The island deceleration is completely decoupled from the plasma, indicated by the
subscript ‘de’.

Both situations are illustrated in Fig. 1. In the case of perfect coupling, the radial momentum
transfer is maximised and the local momentum losses experienced by the mode are instan-
taneously transferred to deceleration of the plasma bulk over the full radial extent. On the
other hand, in the decoupled case the momentum diffusivity at the radii rs ± w/2 = 0 is
zero. In JET, it has been reported that the experimental situation is likely a compromise
between the two variants [22]. In this paper, we mainly consider the ‘no-slip’ condition, i.e.
the ‘co’ scenario with equal rotation frequency of island and plasma bulk, theoretically ap-
plying to large-amplitude modes [23]. For the parameter A we obtain the following analytical
expressions for the ‘co’ and ‘de’ scenarios, respectively, assuming a flat density profile [13]:

Aco =
(m

16

)2
(
rs

rw

)2m(q′
q

)2

rs

a2B2
θ (rs)

µ0nemi

2n2

R2
0

=
A0

τ2
A,co

, (7)

Ade =
(m

16

)2
(
rs

rw

)2m(q′
q

)2

rs

a2B2
θ (rs)

µ0nemi

a2

rsw

n2

R2
0

=
A0

τ2
A,de

. (8)

Here, q is the safety factor, q′ its radial derivative, n the toroidal mode number, R0 the
tokamak major radius,

A0 =
m2

256

(
rs

rw

)2m(q′
q

)2

rs

a2

and

τ2
A,co =

µ0nemiR
2
0

2n2B2
θ (rs)

, τ2
A,de =

µ0nemiR
2
0rsw

n2B2
θ (rs)a2

(ne ≈ ni)

are the associated Alfvén times.
The locking duration tlock, one of the parameters of interest within the scope of disruption

avoidance, is defined as the time interval from the initiation of the frequency decay from the
mode’s initial angular frequency ω0 until the locked state. It can be shown that for a mode
growth prescribed by a power law in η

w

a
(t) = (γt)η +

(w
a

)
off
, (9)

with γ a parameter describing the mode growth rate, (w/a)off an offset mode width and
under the condition ω0τw/

√
2� m, the ratio of the braking phase durations for the ‘co’ and

‘de’ scenarios is the following:

tlock,co

tlock,de
=

(
Ade

Aco

)1/5

=

(
1

2

a2

rsw

)1/5

. (10)

This implies that tlock,co > tlock,de.
Finally, combining (1) with (2) and (5) yields the expression for the frequency evolution

of the mode:
dω

dt
=

ω0

τM0
− ω(1 + fMw/a)

τM0
−A

[w
a

(t)
]4 ωτw

(ωτw)2 +m2
. (11)

Numerical integration of (11) was used to reconstruct braking curves, i.e. plots of the mode
rotational frequency ωint(t) as a function of time (‘int’ stands for ‘integrated’). This also
provides an estimate of the braking duration tlock. The critical condition for locking is
discussed in Secs. 2.2 and 2.3 below.
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(a) (b)

Figure 1: Schematic illustration of the rotational velocity profile v(r) for the two extreme
scenarios ‘co’ and ‘de’ for mode deceleration. The profile is depicted at three time points
for an island of progressively increasing width w, located at a rational surface of radius
r = rs. Panel (a) displays the situation in which momentum losses experienced by the mode
are transferred instantaneously to the plasma bulk braking (case ‘co’). In (b), the island
deceleration is fully decoupled from the plasma bulk movement (case ‘de’).

τw (ms) q95 R0 (m) ω0/2π (kHz) τM0 (ms) m/n

1.0 3.6 1.65 3.5 50 2/1

fM Ip (MA) Bt (T) ne (m−3) rw/a ν

0 1.0 2.5 5.0 ×1019 1 2

Table 1: Parameter values used for obtaining the solutions of the mode equation of motion
shown in Fig. 2.

2.2 Condition for mode locking

For the purpose of derivation of the condition for mode locking, we will first examine sta-
tionary solutions of (11). Those represent, for a given mode width, situations with balanced
forces [15, 24]. Solving the rotational frequency from the force balance for a scan of island
widths a stationary braking curve can be obtained. An example for the case of the ‘co’ sce-
nario, also indicating the island width prescribed by (9), is shown in Fig. 2a (1/γ = 50 ms,
(w/a)off , fM = 0, other parameters are given in Tab. 1). Using the figure, it is possible to
easily extract the solution of balanced forces in the frequency domain by intersecting the
braking curve with a vertical line placed at the examined island width.

For a certain range of w/a, restricted by red and black arrows in Fig. 2, multiple solutions
of the force balance exist and the braking curve will be intersected two or three times. In
addition, it turns out that the stationary solutions are real if the following condition is met
(cyan arrow):

AτMτw

(w
a

)4
> 8m2. (12)

This condition can be derived upon calculation of solutions of the time-independent form of
(11), reformulated in terms of dimensionless ωτw. This leads to the following cubic equation:
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Figure 2: (a) Comparison of stationary (green and black) and dynamic (magenta) braking
curves in the ‘co’ scenario. The cyan arrow refers to condition fulfilment of (12). For any
increasing w/a, the solutions of (13) are real. The black and red arrows delimit the interval of
w/a for which multiple force balance solutions exist. The range of ‘forbidden’ frequencies is
depicted by the double red arrow. (b) The blue solid line indicates (w/a)crit,d/(w/a)crit,s for a
parametric scan of γ̃ = γτM0 in the ‘co’ scenario, with α = 4 (the individual points of the scan
are encircled). The bold green line results from a fit of the function (w/a)crit,d/(w/a)crit,s =
c1(γτM0)c2 + c3 to the scan points (restricted to γ̃ & 0.1).

(ωτw)3−(ωτw)2 ω0τw

1 + fMw/a
+ωτw

[
m2 +AτM0τw

(w
a

)4 1

1 + fMw/a

]
− ω0τwm

2

1 + fMw/a
= 0. (13)

A locking bifurcation occurs at a critical island width (w/a)crit,s (the subscript ‘s’ refers to
the condition of stationarity). At this mode width, an unstable solution of the force balance
is met. Fluctuations in the frequency domain around this point lead to adopting the root
of (13) at the lower end of the so called forbidden frequency band. The point of bifurcation
defines the critical condition for mode locking.

For an increasing island width, the condition given by (12) is amplified, i.e. AτMτw(w/a)4 �
8m2. Under this condition it is possible to adopt a high-frequency limit of (13), simplifying it
to a quadratic function. The point of locking bifurcation can then be analytically expressed
as: (w

a

)2
[(

1 + fM
w

a

)3/2
+
(

1 + fM
w

a

)1/2
]

=
ω0τw√
AτM0τw

. (14)

Further simplification is possible by assuming that the momentum confinement is not affected
by the mode (fM = 0 in (4)). For the coupled and decoupled situations, this yields

(w/a)crit,s,co =
(ω0τA,co

2

)1/2
(

τw

τM0A0

)1/4

, (15)

(w/a)crit,s,de =
(ω0τA,dea

2w

)2/3
(

τw

τM0A0

)1/3

, (16)

Recall that τA,de ∝ w/a, therefore the right-hand side of (16) is independent of the island
width. In [14], it has been shown that the locking bifurcation occurs at a mode frequency

(ωτw)crit =
ω0τw

2(1 + fMw/a)
. (17)
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A single stationary solution of (11) for an arbitrary w/a is found if the following condition
is satisfied [15]:

ω0τw < 3
√

3m. (18)

In that case, the point of locking bifurcation is not defined and the mode’s rotational frequency
decays as a continuous function (recall that the existence of a forbidden frequency range
represents a discontinuity in the braking curve).

2.3 Static vs. dynamic critical island width

The condition for a locking bifurcation was derived assuming constant parameters appearing
in the island equation of motion (11). In practice, such conditions can be reproduced when the
mode width evolves on a time scale much longer than that of the momentum redistribution,
determined by τM. In such cases, the braking and restoring forces applied on the decelerating
mass balance each other at all times [25]. If the island width increases quickly relative to
the momentum redistribution, the stationary critical island width (w/a)crit,s is not an actual
point of the locking bifurcation. According to (17), a locking bifurcation occurs at half of the
initial rotational frequency of the mode (fM → 0). In the remainder of this work, we define
the critical island width (w/a)crit,d on the time-dependent braking curve at the point where
the bifurcation occurs (the subscript ‘d’ refers to ‘dynamic’). An example of a dynamically
integrated braking curve is shown in Fig. 2a (solid magenta line), with γτM0 = 1.

It is instructive to compare the stationary and dynamic critical island widths, defined
above. Using (15) (‘co’) or (16) (‘de’) with the values in Tab. 1, (w/a)crit,s can be calculated,
where we assumed a current profile of the form j(r) = j(0)[1− (r/a)2]ν , with j(0) = Ip(ν +
1)/πa2 and Ip the plasma current [26]. To calculate the dynamic (w/a)crit,d, (11) with
fM = 0 was reformulated in terms of the ratio w/a(t)/(w/a)crit,s and dimensionless variables
t̃ = t/τM0, ω̃ = ω/ω0, γ̃ = γτM0. Using the expression for the mode width growth (9) (η ≥ 1,
(w/a)off = 0), this results in:

dω̃

dt̃
= 1− ω̃ − 1

4ω̃

[
γ̃t̃

(w/a)crit,s

]α
. (19)

Here, α = 4η (i.e. α ≥ 4) for the ‘co’ case, while α = 3η (α ≥ 3) for ‘de’. In addition,
the high-frequency limit was adopted, assuming that m � ω0τw. Next, (19) was integrated
until t = 1 s in the scope of a parametric scan, where γ̃ was varied over several orders of
magnitude, keeping τM = τM0 constant. Several values of α were tested during the scan.
Furthermore, (w/a)crit,s was set to a constant value to allow scan in γ̃, in particular to 1,
since for this value the fit (described below) was of high confidence for the largest range of
α. An example of a parametric scan in the ‘co’ scenario with α = 4 is shown in Fig. 2b.
For γ̃ � 1, (w/a)crit,d approaches (w/a)crit,s, since in this case the mode grows slowly in
comparison with the momentum redistribution time scale. In the other limit it can be seen
that (w/a)crit,d � (w/a)crit,s, suggesting that the mode grows too fast for the forces to
balance.

Considering a reasonable range of machine sizes and plasma temperatures (determining
the plasma resistivity, which in turn sets the actual mode growth rate), the lower limit
of γ̃ can be estimated to lie around 0.1. Data resulting from the scan, restricted to this
lower limit, were fitted with an analytical expression of the form (w/a)crit,d/(w/a)crit,s =
c1[γτM0/(w/a)crit,s]

c2 + c3. In turn, this was done for values of α within interval α = [3 10],
and the curves ci(α) (i = 1, 2, 3) were then fitted by a simple analytical function. This
resulted in c1 ∼ −0.035α + 1.28, c2 ∼ 1/α and c3 ∼ 0.004α + 0.26. For a given set of
input parameters, the expression for the critical island width for the ‘co’ scenario can be thus
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formulated in the form (‘fit’ stands for ‘fitted’):

(w/a)crit,d,fit

(w/a)crit,s
= (−0.035α+ 1.28)

[
γτM0

(w/a)crit,s

]1/α

+ 0.004α+ 0.26. (20)

The variable (w/a)crit,s appears in (20) although strictly speaking, it was kept constant during
the parametric scan. We test its generalization on the case of the example shown in Fig. 2a.
There, (w/a)crit,s = 13.5% (equation (15)), while (w/a)crit,d ≈ 31.0%, i.e. more than two
times larger. Equation 20 results in (w/a)crit,d,fit ≈ 29.1% which is a good approximation of
(w/a)crit,d. Hence, (20) will be used in the application of the mode locking model in Sec. 4
to evaluate the condition for the locking bifurcation. It should not be used, however, far
outside the parameter space in which it was fitted. Equation (20) is suitable for a real-time
evaluation of the condition for mode locking, but an information concerning the mode growth
has to be submitted to the calculation. Finally, note that for γ̃ � 1 the dynamic braking
curves are always continuous functions (unlike in the stationary case due to existence of the
forbidden frequency range), whether the condition (18) for the locking bifurcation is satisfied
or not.

3 Database for validation of the mode locking model

3.1 Assembly of disruptive discharge database

Disruptive plasmas were identified among the discharges performed in AUG during the years
2012–2016, in the presence of the full tungsten wall. In this paper, a disruption is defined as
a sudden drop in the plasma thermal energy content, followed by vertical destabilization of
the plasma column. The database was populated with disruptions having a tearing mode as
the final disruption precursor. In each case, the disruption time was set at the onset of the
current spike with the largest amplitude, preceding the current quench. Furthermore, the
discharges had to fulfil the following criteria to be included in the database:

• Vertically stable plasma column until the onset of the major disruption.

• Thermal quench not induced by a massive gas injection.

• No resonant magnetic perturbations coils in operation over the lifetime of the mode.

This resulted in a database consisting of 454 discharges.
Next, the database entries were grouped according to the main characteristics of the

rotation dynamics:

• Modes rotating until the onset of the major disruption (ROT),

• Initially rotating instabilities decaying in frequency until becoming locked (ROT→LM),

• Born-locked modes (BLM).

The percentage fraction per group can be found in Tab. 2. Groups ROT and ROT→LM are
of primary interest in the study presented here, as they are populated by initially rotating
modes. To be eligible for further analysis, the input torque from the NBI heating modules
had to remain constant during the locking (braking) phase. The reduced database of initially
rotating disruptive modes fulfilling this additional criterion consists of more than 220 entries.
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Full database ROT ROT→LM BLM

454 entries 27% 54% 19%

Table 2: Total number of database entries and relative occurrence of mode groups within the
full database of AUG disruptive discharges presented in this paper.

3.2 Disruption classification

The 454 discharges in the full database were classified according to the disruption root cause,
as defined in [2,27]. This led to the following classification (relative occurrence in parentheses):

DL (50%): L-mode and H-mode disruptions occurring at high plasma density (‘density
limit’) [28,29]. This was often accompanied by the development of a MARFE (a plasma
edge phenomenon characterized by low local temperature compensated by high plasma
density [30]) and a peaked current profile.

IMP (11%): Disruptions induced by a radiative collapse due to too high an impurity content.

NTM (7%): Disruptions due to the presence of a quasi-stationary or short-living neoclassical
tearing mode (NTM).

ACC (12%): Disruptions caused by accumulation of high-Z material in the plasma core.

LON (2%): Modes excited by error fields at low plasma density (‘low ne’), typically locked
at their onset.

RU (9%): Disruptions occurring during the current ramp-up phase (or at the early stage of
the flat-top), induced for example by excessive gas puff.

NBIOFF (6%): Similar to DL, but accompanied by the switching off of the auxiliary NBI
heating modules.

MIX (3%): Complex cases in which multiple root causes were identified.

Fig. 3 shows operational diagrams of the internal inductance li vs. q95. Both parameters
were calculated at the initiation of mode deceleration (t = tslow, Fig. 3a) and at the onset of
the major disruption (t = tdisr, Fig. 3b), for the cases ROT and ROT→LM. Entries within
the diagram are colour-coded by disruption class. The ratio li/q95 is associated with the
free energy available to drive the island growth [31]. Disruptions occurring at high plasma
density can be roughly separated from the remaining classes by the li = 1.3 line. In fact,
the separation is already noticeable in a similar diagram constructed from data at about 0.5
s before the onset of mode deceleration, at a slightly lower value of li ≈ 1.1. Note that,
for the DL and NBIOFF cases, the range of li shifts between tslow and tdisr by ≈ 15%.
Entries below the separation line undergo, on average, minor shifts within the parametric
space. This observation is in accordance with the assumption that entries within the DL and
NBIOFF group are current-driven instabilities. Increasing current profile peaking might serve
as a source of free energy for the modes within these groups, thus progressively approaching
the disruptive state. It is worth noting that different disruption root causes can affect the
locking dynamics differently. Therefore, at times we will discuss the mode braking details in
the context of the disruption class.

3.3 Collection and validation of experimental data

We now briefly present some details about the used diagnostics and characteristics of the
data for the main variables in the database.
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Figure 3: li(q95) diagrams for ROT and ROT→LM entries obtained (a) at the mode deceler-
ation initiation (tslow) and (b) at the disruption onset (tdisr). Note the distinct shift of the
range of li for the groups of disruptions occurring at high plasma density.

3.3.1 Mode frequency and amplitude

A toroidal array of Mirnov coils located at the AUG outer midplane was used to detect the
perturbed field B̃ associated with the MHD modes. Spectrograms, with a frequency resolution
∆f = 0.4 kHz and temporal resolution ∆t = 2.5 ms, allowed to track the experimental mode
frequency ωexp and amplitude (in T/s, converted to T by dividing by the mode frequency [17]).
The initial rotational frequency ω0 was defined as the maximum of the tracked frequency
preceding the mode deceleration.

3.3.2 Mode structure

Mode poloidal and toroidal numbers were derived by analysis of signals from poloidal (m)
and toroidal (n) Mirnov coil arrays, using either the phase fitting method or by performing
the short-time Fourier transform and analysis of the cross-phase. About 50% of the initially
rotating modes were of (m/n)ini = 3/1 structure, followed by ≈ 42% (m/n)ini = 2/1 and
≈ 6% (m/n)ini = 4/1 modes. Other mode structures ((m/n)ini = 3/2, 5/1) were present in
less than 2% of the cases.

3.3.3 MHD equilibrium reconstruction

For the modes locking during the flat-top phase (67%) of the discharge, a constraint on the
central value of the safety factor was set, q0 = 1, in correspondence with the typical current
redistribution during this discharge phase. The CLISTE equilibrium code [32] performed the
fit of the flattest possible current profile while posing a regularization condition (consisting of
keeping the curvature as low as possible) on the parametrized measured signals. The resulting
equilibrium profiles are expected to be more realistic compared to the standard reconstructed
profiles without constraints on q0. Note that about 7% of the locking modes occurred in the
current ramp-up phase and 26% during ramp-down.

The position of the rational surface of interest retrieved with an equilibrium code was
compared with ECE measurements for a selected discharge [17]. A reasonable agreement was
found between the equilibrium output and the location of the phase jump and minimum of
the FFT amplitude from the ECE measurements.
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Figure 4: (a) Attenuation of the absolute value of the poloidal component of the mode
field, after passing through the vessel wall. Solid lines show examples of theoretical curves,
calculated with (37) for various τw (m = 2), considering the actual geometrical configuration
of the coils. The best fit of the analytical formula to the experimental data yielded τw,att ≈
0.82 ms. (b) The fit of the phase shift between the mode field components yielded τw,phase ≈
0.64 ms (m = 2).

3.3.4 Resistive wall time

For the AUG vacuum vessel, (6) yields the theoretical value τw,th = 25 ms (σw = 107 (Ωm)−1,
rw ≈ 0.8 m, b ≈ 0.005 m). Since this parameter is fundamental for the model application,
an experimental technique to determine it was used as well. In particular, the frequency-
dependent attenuation of the mode field due to the vacuum vessel wall was calculated using
(37) in Appendix A. This was based on measurements by magnetic sensors located on both
sides of the wall, at the same toroidal angle and approximately the same poloidal angle (dis-
placement of the coils along the poloidal coordinate was ∆θ = 0.0314 rad). The sensors
are located at the low-field side, midplane. The phase shift was calculated from a similar
expression. Data averaged over five discharges with a single 2/1 mode were used to experi-
mentally determine the ratio. The data were fitted to (37) (see Fig. 4a) and the best fit was
obtained for τw,att ≈ 0.82 ms. Similarly, the phase difference between the signals acquired
with the same pair of coils was measured and fitted with the corresponding analytical expres-
sion. Apart from τw, a phase shift ∆ϕ was added as a free fit parameter, since the integrated
signals from the coils could be phase-shifted due to the hardware integration through the raw
signal processing. Furthermore, the displacement of the coils along the poloidal coordinate
∆θ was considered. The best fit yielded τw,phase ≈ 0.64 ms (see Fig. 4b).

The construction of a frequency-dependent function of the field attenuation and phase
shift associated with single locking modes can be considered as a convenient approach to
deduce properties of a single conducting structure of interest in which helical mirror currents
are driven. An average value τ̄w = 0.73 ms of τw,att and τw,phase was thus used in applications
of the mode locking model. This value is clearly very different from τw,th = 25 ms, admittedly
calculated under the highly idealized assumption of a cylindrical shell of constant thickness.
This discrepancy will be the subject of further study.

3.3.5 Island width

The width of magnetic islands was estimated from magnetic sensor data, measuring the
poloidal component B̃θ of the perturbation magnetic field, as well as the magnetic equilibrium,
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using the following expression [18]:

w = 4

√
qrs|B̃r|
mq′Bθ

∣∣∣∣∣∣
r=rs

. (21)

Here, (34) (specifically (36)) in Appendix A was used to calculate the radial component B̃r(rs)
of the magnetic field at the rational surface, from the data of the poloidal component B̃θ(rc)
measured at the coil position (r = rc). As a cross-check, the island width obtained from the
magnetic measurements (wmag) was compared with the ECE data contour plot (wECE) for a
selected discharge experiencing a large mode. Estimation of wECE suffers from uncertainties
due to imperfect flattening of the temperature within the island region. It should thus be
considered as an upper limit of the experimental mode width. It was found that wmag,
corrected for the effect of toroidicity (see (45)), was in good agreement with wECE.

3.3.6 Momentum confinement time

In case of auxiliary heated AUG discharges, the experimental input needed for the calculation
of τM0 was obtained with individual runs of the TRANSP code [33]. Out of the ROT and
ROT→LM cases, only 139 discharges could be processed with TRANSP due to occasional
absence of experimental data. The calculated τM0 was compared to τE0, both estimated at
the same temporal point in the instability-free part of the discharge preceding the onset of
mode locking. The mean of the τM0/τE0 was calculated to 1.09 ± 0.57. Therefore, in case
of absence of experimental data necessary to calculate τM0, a value of 1.09 τE0 was used.
During transient phases of the discharge, the confinement times should take into account the
temporal derivative of the plasma energy or angular momentum, i.e.

τE0 =
Wth

Ptot − dWth
dt

, (22)

with Ptot the total power input and Wth the plasma thermal energy, and

τM0 =
Lφ

TIN −
dLφ

dt

. (23)

We will refer to these expressions as ‘dynamic’ confinement times. However, dLφ/dt could
not always be evaluated due to signal discontinuities. In that case the ‘static’ τM0 = Lφ/TIN

was used. A comparison of calculated dynamic and stationary τM can be found in Figs. 6b,8b.
It can be seen that during the transient discharge phase, τM(dynamic)∼ (0.5-0.9)τM(static).
Furthermore, we note that the temporal evolution of τM and τE can differ substantially during
discharge transient phases.

3.3.7 Plasma density

The electron density ne at the rational surface of interest was calculated from Thomson
scattering (TS) measurements. If those were unavailable, or if there were less than two TS
data points during the mode duration, data from the DCN interferometer were used instead,
which views the plasma region along a line-of-sight (LoS) at a normalized radius r/a ≈ 0.8.
In case the interferometer data were suffering from fringe jumps, the density was calculated
during the previous available time point without fringe jumps. We note that in most cases
this point was separated from the locked mode onset time by a short temporal interval, it is
thus reflecting the plasma density conditions in the particular LoS plasma shortly before the
onset of the transient discharge period.
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3.3.8 Parameter ranges at locking onset

The period 2012–2016 covers a broad range of operational conditions and plasma parameters
in AUG. In addition, the temporal evolution of the growth of the instability for the ROT and
ROT→LM database entries can be very different from case to case. There are instabilities
that grow explosively and lock immediately (Fig. 5, left), others are of a quasi-stable nature
(Fig. 5, right), etc. Tab. 3 shows the extent of the parameter space in which the mode locking
model was applied during this work. For various key parameters calculated at the onset of
mode deceleration, the range across the database is presented in the format median(x)-MAD,
median(x), median(x)+MAD, where MAD is the median absolute deviation. Confinement
times were deduced shortly before the mode onset and γ was obtained by fitting the analytical
mode growth formula (9) to the experimental data. In multiple cases, γ was observed to vary
during the period of mode rotation.

tROT is defined as the time between the onset and decay of the rotating mode. It has
a particularly broad and skewed distribution in the database, with a median of 21 ms and
an average of 135 ms. Often, rotating modes exhibited a quasi-stationary phase during their
existence. Tab. 4 presents tROT for the various disruption classes. The shortest rotating
mode durations are associated with the modes driven unstable at high plasma density, while
the longest modes tend to be NTMs. Particularly for this disruption class, monitoring of the
rotating phase can be beneficial, as it expands the temporal window for disruption avoidance
significantly. On the other hand, maximum locking phase durations were of the order of tens
of milliseconds. Modes decelerating during the plasma flat-top phase had the longest locking
durations (with an average value of 33 ms and median 10 ms). The distribution of the locking
durations in the ramp-down phase was narrow, peaking at ≈ 10 ms. The ramp-down phase
typically shows a strong variation of plasma parameters, particularly in case of an emergency
ramp-down initiated by the plasma control system. Fast current density redistribution (sup-
ported, for example, by development of a cold plasma edge) might accelerate mode locking
and pose a rather strict upper limit to the locking phase duration. The DL database entries
were mostly of ω0/2π < 4 kHz. Modes of higher ω0/2π belonged mainly to the ACC, NTM
and MIX categories. The parameter fM in (4), accounting for the degradation of the mo-
mentum confinement, was not determined, as this would require modelling the momentum
diffusion during the mode growth.

The model for mode locking used in this work was derived for cylindrical plasmas. How-
ever, modes within the database typically lock in a diverted plasma configuration. The actual
mass undergoing braking is thus underestimated if the plasma minor radius given by CLISTE
is used in the mode equation of motion. To compensate partially this effect, we used the ef-
fective minor radius aeff , obtained by forcing the plasma shaping factor S = q95/qcyl = 1
(qcyl = 5a2Bt/R0Ip) [34], yielding

aeff =

√
q95R0Ip

5Bt
. (24)

This leads to a better representation of the braking mass in shaped plasmas. As a < aeff ,
the aspect ratio reduces and consequently the neoclassical transport effects amplify, but this
is not considered in the model for mode deceleration that is employed here.

4 Application of the model for mode locking

4.1 Theoretical evaluation of the locking bifurcation condition

In applying the mode locking model outlined in Sec. 2 to the modes observed in our database,
the condition (18) for the locking bifurcation was first investigated. Tab. 5 lists the minimum
ω0,min/2π for which this condition was satisfied. About 59% of the m = 2 locking modes and
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βp W (MJ) H98 τE0 (ms) τM0 (ms)

0.22, 0.35, 0.48 0.05, 0.11, 0.17 0.34, 0.56, 0.78 39, 57, 75 34, 53, 72

ne(rs) (×1019 m−3) τw (ms) Ip (MA) Bθ(rs) (T) Bt (T)

4.0, 6.1, 8.2 0.73 0.67, 0.78, 0.89 0.33, 0.36, 0.39 2.5, 2.5, 2.5

TNBI (Nm) q95 li a (m) κ

2.2, 3.9, 5.6 4.2, 4.7, 5.2 1.2, 1.4, 1.6 0.50, 0.51, 0.52 1.5, 1.6, 1.7

rw/a ω0/2π|2/1 (kHz) rs/a|2/1 (LFS) Rgeo (m) δl

1.8, 1.8, 1.8 1.6, 2.4, 3.2 0.62, 0.72, 0.82 1.6, 1.6, 1.6 0.33, 0.35, 0.37

1/γ (ms) ω0/2π|3/1 (kHz) rs/a|3/1 (LFS) tROT (ms)

1.0, 33, 64 1.2, 2.0, 2.8 0.87, 0.91, 0.95 5, 21, 37

Table 3: Ranges of parameters x in the database, retrieved at t = tslow, presented in the
format median(x)-MAD, median(x), median(x)+MAD, where MAD is the median absolute
deviation. βp is the poloidal beta, Rgeo is the geometrical radius of the torus, κ the plasma
elongation, W the total plasma stored energy, δl the lower triangularity, Bθ the poloidal field
component and Bt the toroidal field.

Disruption class DL IMP NTM ACC RU NBIOFF MIX

Mean 13 13 99 69 63 13 178
Median 93 45 460 113 111 59 433

Table 4: Mean and median of tROT (ms) within each disruption class.

Figure 5: Examples of ROT and ROT→LM database entries: immediately locking radiation-
driven mode near the density limit (left), quasi-stable NTM (right). Points marking the
initiation of the mode deceleration are encircled.
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m 2 3 4

ω0,min/2π (kHz) 2.23 3.35 4.47
ω0/2π > ω0,min/2π 59% 20% –

Table 5: ω0,min/2π calculated for different poloidal mode numbers. The last row shows the
number of locking modes for which the condition for mode bifurcation is fulfilled.

20% of the m = 3 modes had an initial rotational frequency exceeding ω0,min, thus exhibiting
a locking bifurcation. For the remaining cases—a substantial fraction—the point of locking
bifurcation, i.e. the critical mode width for locking (Eqs. (15) and (16)), was not defined.
Within the scope of the model, these modes should thus decay continuously in frequency.
In the absence of an estimate of the critical mode width where the locking bifurcation takes
place, our definition of the dynamic critical mode width breaks down. This will become
important in Sec. 4.3.

Next, the minimum w/a for the existence of real solutions of the stationary form of (11)
was evaluated for all concerned discharges. On average, the condition given by (12) was
satisfied when w/a ≥ 11%.

4.2 Reconstruction of experimental braking curves

We next discuss reconstruction of experimental braking curves for the discharges in the
database by solving the mode equation of motion (11) numerically. Both the case of plasma
bulk breaking (‘co’) and island deceleration (‘de’) were considered as those represent the
extreme braking scenarios. The temporal variation of the input parameters was taken into
account, with the factor Aco (see (7)) or Ade (see (8)) a function of time. τM was obtained
by integration of the concerned parameters over the full plasma radius. The experimentally
obtained island widths w/a(t) were smoothed and fitted with an analytical function of the
form (9). In a number of cases, the best fit yielded η < 1. The fitted function was used to
extrapolate w/a(t) to a point of complete mode locking. In case of multiple (coupled) modes
decelerating simultaneously, the mode with the strongest field was selected for reconstruction
of the braking curve.

Out of the about 220 plasmas with initially rotating modes that were suitable for further
analysis using the mode locking model, the braking curve could be integrated for 103 dis-
charges. For the other cases, there were various reasons why w/a(t) could not be fitted by
the function (9), e.g. because a minor disruption took place during the deceleration phase, or
due to a wildly fluctuating temporal evolution, or because the fit was of insufficient quality
(R2 . 0.8).

In a number of discharges, the calculated amount of decelerating torque was not sufficient
to reproduce experimental braking curves (a similar observation was reported in [35]). In such
cases, the mode locking model used here allows matching experimental and theoretical curves
by increasing the parameter fM in (4), i.e. allowing for large plasma momentum losses due
to the mode itself. The value of fM has to lead to a rough match between the experimental
momentum confinement time in the locked state and that predicted by (4). Alternatively, the
experimentally observed mode width may be increased with a factor fw, yielding a modified
mode equation of motion:

dω

dt
=

ω0

τM0
− ω(1 + fwfMw/a)

τM0
−A

[
fw
w

a
(t)
]4 ωτw

(ωτw)2 +m2
. (25)

Note that in the wall force term (last term on the right-hand side) the multiplication factor
makes an important contribution, with a factor f4

w. This effect is dominant with respect to
the influence of fw on decreasing the plasma momentum confinement (second term on the
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right-hand side). While setting fM � 1 may correspond to a physically plausible scenario,
using a factor fw > 1 for the island width is a more artificial intervention. On the other hand,
the value of fw, which turns out to be discharge-specific, does provide information concerning
the amount of missing torque due to the mode-wall interaction.

4.2.1 Cases with fM > 0, fw = 1

Assuming first that fw = 1 and by varying fM > 0 to match the experimentally observed
momentum confinement, good agreement was obtained between the numerical solution of the
equation of motion and the experimental braking curve for 15 of the 103 initially rotating
modes. An example of such a case is shown in Fig. 6 for AUG discharge #30838, during which
high-Z material accumulated in the core, leading to enhanced radiation from this plasma
region. Strong MHD activity was observed and the 2/1 mode of our interest appeared at
t ≈ 3.52 s (denoted by ‘mode ini’ in the plots). At that point the momentum confinement
was relatively high (τM0 ≈ 120 ms) and for the first tens of milliseconds after its onset, the
mode remained in a quasi-stationary state. Mode braking initiated at t ≈ 3.56 s (‘lock ini’),
ending at t ≈ 3.66 s, although the mode continued to rotate at low frequency.

Plasma rotational profiles reveal that the mode was located within a region of high ro-
tational shear. Indeed, Fig. 6c points out that deceleration started with the island, reaching
the plasma centre only at a later time. The dynamic τM suggests that the plasma angular
momentum content started to drop shortly before the mode onset (the input torque density,
not shown, was roughly uniformly distributed during the mode duration). This may have
been caused by an MHD mode that appeared shortly before the examined 2/1 locking mode.
This MHD mode was recognisable in the spectrogram during the temporal interval t ≈ 3.487–
3.507 s, with a decaying amplitude and braking from ω0/2π ≈ 5.6 kHz to 4.8 kHz before it
disappeared. Growth of the 2/1 mode of interest initially occurred in a nonlinear fashion,
reaching a saturated width of w/a ≈ 17% at t = 3.575 s. After that, the mode started to grow
exponentially. In both phases of the mode growth, (9) was fitted to the experimental curve,
separately to the two growth segments. The final data vector representing the mode width
temporal evolution, considered for the numerical integration of the mode equation of motion,
was thus composed of the two mode growth phases along the distinct temporal intervals.

As the mode grew towards saturation, τM was first affected only mildly, but then started
to decrease noticeably during the phase of exponential mode growth (Fig. 6d, rightmost
arrow). fM was set to a non-zero value only at the start of the braking phase, accounting
for the influence of the mode on the rate of momentum redistribution. Initially, the q = 2
surface was located at rs/a ≈ 0.82, shifting to rs/a ≈ 0.75 by the end of the locking phase,
i.e. a change of about 10%. In [9], a dependence of fM on rs/a was suggested, but we kept
fM constant for the numerical solution.

Fig. 6a displays the experimental and reconstructed braking curves. An agreement be-
tween the two curves for the case of full plasma column braking was obtained when fM = 17.
For the decoupled island braking, setting fM = 9 resulted in the agreement with the ex-
periment. At the end of the locking phase, w/a had grown to about 36%, which can be
substituted in (4) to predict the decrease of τM. Using the dynamic formula for the experi-
mental confinement time τM, a decrease from about 90 to 10 ms was observed (initial data
point read at the mode onset, see Fig. 6b). In case of the static τM , the decrease happens
from 120 ms to ≈ 12 ms. Those final values of ≈ 10 − 12 ms are in reasonable agreement
with that predicted by (4) for fM = 17 (≈ 17 ms). For fM = 9, the predicted drop in τM

(≈ 28 ms) overestimates the experimental situation.
For the other 14 cases for which the experimental braking curve could be reconstructed

with fw = 1, fM > 0, the manually obtained value of the parameter fM was found to lie
between 1 and 18, decreasing the momentum confinement time by a factor of . 6 at locking. In
Fig. 7, the parameter fM is plotted against the discharge-specific ratio τM0/tlock. The general
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rising trend is in accordance with physical arguments that were already mentioned, i.e. that
correction of the momentum confinement losses due to the mode becomes increasingly critical
as the ratio of momentum redistribution time to locking time rises. As a rule of thumb, the
model is able to reproduce the experimental braking curve, such that ωexp(t) ≈ ωint(t) during
the entire braking phase, when τM0/tlock . 2.

4.2.2 Cases with fM � 0 or fw > 1

We next proceed to plasmas where it was not possible to adjust fM such that both the nu-
merically integrated braking curve and the predicted drop in τM agreed with the experiment.
This observation is reported in the 88 out of 103 cases. Furthermore, in ∼ 35% of the 103
tested cases, the discrepancy between the experimental and predicted locking duration for
both ’co’ and ’de’ scenarios was overestimated by a factor of 1.3 − 2. The missing braking
torque was compensated by setting either fw > 1 or fM � 1 (or a combination of both, see
below). An example of one of those cases is examined in the following.

In Fig. 8 an initially rotating mode occurring during the AUG discharge #28227 is shown.
We inspect the discharge details to examine the potential source of the above mentioned
discrepancy. The disruption took place due to a locked mode that appeared as a consequence
of high density and an impurity influx, according to a scenario similar to the H-mode density
limit presented in [29]. More specifically, the discharge entered a transient period at around
6 s. At this time, the Greenwald fraction reached ne/nGW ≈ 0.96 and li started to gradually
increase, while the thermal stored energy Wth started to decrease. Slightly later, an NBI
source tripped briefly (see the dip in the corresponding time trace in Fig. 8b at t ≈ 6.05
s), which could have led to a redistribution of the torque input density. Due to divertor
detachment, a region of cold plasma, presumably a MARFE, developed early in the transient
phase. This cold plasma region started to shift poloidally at around 6.105 s. At the same time,
the equilibrium reconstruction suggests that the plasma separatrix moved slightly towards
the torus inner wall, which may have led to the material erosion (the measured tungsten
concentration in the plasma has risen). A cold dense region is recognized to shortly stabilize
close to the midplane at the inner part of the torus. In addition, the plasma appears to have
briefly entered and left the H-mode during the transient period, the second time at t ≈ 6.112
s. A ’cold edge’, featuring highly peaked current density profiles, developed progressively,
driving a 3/1 mode unstable at t ≈ 6.145 s, which started to decelerate immediately. The
mode was located at a normalized radius rs/a ≈ 0.91 and it grew within 7 ms from w/a ≈
3% to w/a ≈ 14%. Rotation profiles (not shown) reveal a large and fast variation of the
central plasma rotation. Changes were also observable in Te and Ti, with the latter gradually
decreasing and the former increasing. The initially rotating mode was followed by a rise of
the locked mode signal (Fig. 8d). It is thus probable that the toroidal rotation of the plasma
column changed rapidly, at least in the vicinity of the rational surface. Note that in this
particular case, the line-integrated plasma density was retrieved from the DCN interferometer
data. These suffered from a fringe jump at t ≈ 6.108 s, presumably due to displacement of the
cold region. This was the last temporal point at which the density was calculated, therefore
the plasma density was kept constant at this value in the numerical integration of the braking
curve. However, Fig. 8a clearly shows that, for fM = 0 and fw = 1, the integrated curves in
both the ‘co’ and ‘de’ scenarios do not correspond to the experimental curve, the rotational
frequency is severely overestimated (ωexp � ωint).

In Fig. 8c, fM � 0, or fw � 1, or a combination of both was adopted in the attempt
of the braking curve reconstruction. Only the ‘co’ scenario is shown here, first for fw = 1
and fM � 1. The value fM = 110 yielded the best approximation to the data points, but
failed to reproduce the frequency decay to a locked state that was observed experimentally,
instead showing asymptotic behaviour. These settings of fM and fw predict a decay of
τM from 17 ms (≈ τM0) to ≈ 1 ms, i.e. decreasing τM0 by about a factor 20. However,
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Figure 6: NBI-heated discharge #30838 with a 2/1 mode. (a) Comparison of experimental
and reconstructed braking curves, both braking curves were obtained by setting fM = 17. In
case of the ’de’ scenario this leads to underestimation of the experimental braking duration.
Setting fM = 9 results in matching of the ’de’ scenario braking curve to the experimental
data points, but the ‘co’ scenario overestimates the locking phase duration. Note that only
the ’fitted w/a(t)’ and the associated data points (visualized by black stars and bold blue
line) were plotted w.r.t the right vertical axis. (b) Temporal evolution of TNBI and τM. (c)
Temporal evolution of rotation profiles. (d) Evolution of the dynamic τM during the mode
growth.
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Figure 7: Parameter fM vs. the discharge-specific ratio τM0/tlock. As a rule of thumb, the
mode locking model can reproduce the experimental braking curves when τM0/tlock . 2. Only
the disruption classes NTM, ACC, RU and MIX are present in the plot.

experimental data suggest that the momentum confinement time at the end of the transient
phase was about 11 ms. It should be noted that the calculation of τM relies on the knowledge
of the rotation profiles, whereas in case of this discharge the ω(r) profiles could suffer from
considerable uncertainties during the transient phase. In a next attempt, the values fw = 3.0
and fM = 0 were chosen. In this case, the reconstructed braking curve decays to locking
at the experimentally observed time, but the details of the experimental braking curves are
not captured, with ωexp � ωint. Finally, for fw = 2.5 and fM = 35 a satisfactory braking
curve was obtained. However, with these settings the predicted final momentum confinement
time is τM ≈ 2 ms, i.e. about a factor 9 smaller than τM0, significantly underestimating the
experimental value. We therefore conclude that with this combination of fw > 1 and fM � 1,
the momentum losses of the plasma column are not dominated by the braking mode within
the scope of the model. This is discussed in more detail in Sec. 6.

4.2.3 Relation of tlock and fw with plasma parameters and disruption classes

For all 103 initially rotating modes, braking curves were reconstructed such as to match
the experimentally observed duration tlock of the locking phase with that obtained from the
integrated braking curve. In case this match could not be achieved using fM > 0 and fw = 1,
with the additional requirement of consistency with the experimental confinement time at
the locking, also fw > 1 was applied. Analysis of the 103 discharges yielded average values
f̄w,co = 1.5 (median 1.2) and f̄w,de = 1.2 (median 1.0). In the following, we focus on the ‘co’
scenario, involving plasma column braking.

To further examine the potential dependence of the experimental locking duration on the
plasma parameters, the Pearson correlation across the full set of 103 discharges was calculated
between tlock and various parameters x at braking initiation. The correlation between tlock

and the total change ∆x of x over the entire period of braking was determined as well. In
the following, we refer to the absolute value of the correlation.

A strong correlation was found between tlock and the change in the pressure-dependent
parameters (∆βp, ∆Wth). In most cases βp decreased during the braking phase (∆βp < 0),
which might be mainly associated with a decrease in the plasma kinetic pressure. This
could be due to a drop in the plasma temperature, potentially caused by the mode and
localized plasma cooling. In turn, this may influence the mode velocity through the electron
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Figure 8: NBI-heated discharge #28227 with a 3/1 mode. (a) Comparison of experimental
and reconstructed braking curves. (b) Temporal evolution of TNBI and τM. (c) Attempts
to reconstruct the experimental braking curve by setting fM � 1 and/or fw > 1. Only a
combined adjustment of both factors allows to reproduce the experimental braking curve.
(d) The locked mode field amplitude B̃r(rSC) (black bold line, measured at the saddle coil
location rSC) rises above the noise level at t ≈ 6.149 s. The rotating mode amplitude B̃θ(rMC)
starts to rise shortly before (red bold line, measured at the Mirnov coil location rMC).
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Figure 9: Experimental locking duration tlock plotted against the variation in βp occurring
during the mode braking. Color coding separates TNBI > 0 and TNBI = 0 (both calculated
at t = tslow) cases. Note that for better data visualization the class code symbols differ from
those previously displayed.

diamagnetic drift, given by

ve,dia =
∇pe ×B

neeB2
. (26)

On the other hand, in case of the NBI heated discharges, the mode rotation can be dominated
by the ion bulk rotation, suppressing thus the relative importance of ve,dia. We report that
tlock correlated positively with TNBI and also with ω0. This observation is in accordance
with the assumption that the external torque input acts as a source of plasma rotation,
which can be reflected in higher mode initial rotational frequency and can lead to extended
braking phase duration. Fig. 9 displays tlock in the context of ∆βp and resolves the cases
with NBI torque input and without it at t = tslow. The plot area can be virtually divided
along ∆βp = −0.05. The strong correlation between tlock and ∆βp is preserved for cases with
∆βp < −0.05. Those cases are typically of long braking phase durations and with TNBI > 0
at t = tslow. The mode rotation can be thus dominated by the external torque input there,
giving the electron diamagnetic drift mode velocity component a minor relative importance.
The reason for the strong correlation between tlock and ∆βp appears thus unclear in the
context of ve,dia.

We note that only a weak correlation was observed between tlock and the change of
pressure-dependent parameters preceding the locking phase (the temporal interval of interest
was set 200 ms prior to the mode braking until the locking initiation). This suggests that
the rate of mode momentum loss is mainly related to the variation of the plasma parameters
during the mode locking.

A moderate correlation between tlock and ∆li, ∆q95 and ∆li/q95 was observed. The first
two parameters determine the q-profile, thus indirectly affecting the position of the resonant
surface rs. As mentioned before, the ratio li/q95 is related with the free energy available for
growth of the mode. In turn, this may influence the mode growth rate, which is strongly
correlated with tlock.

As in the case of tlock, ∆βp and ∆Wth appear to be linked to fw, but the correlation was
relatively weak. A weak positive correlation between rs/rw and fw was observed. This is
somewhat counter-intuitive, since the braking force increases when the mode is located closer
to the wall. On the other hand, the mode growth might also be counter-acted by currents
induced in the wall. A moderately negative correlation between fw and ω0 was observed,
suggesting a decreasing need for correcting (increasing) the mode wall torque for modes with

21



101 102 103 104

{w/a}
crit,exp

(ω = ω
0
/2)t

lock
 [%·ms]

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

f w

DL
IMP
NTM
ACC
RU
NBIOFF
MIX

Figure 10: Parameter fw vs. (w/a)crit,exptlock, indicating disruption classes. The wall torque
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higher initial rotational frequency.
A plot of fw is shown in Fig. 10. It shows that the correction factor fw has a tendency to

decrease with the product of tlock with (w/a)crit,exp. The latter is defined as the experimental
island width calculated at ω = ωcrit (see Sec. 4.3). This means that the correction of the wall
torque becomes less important for large islands with an extended braking phase. Furthermore,
Fig. 10 resolves the disruption classes, suggesting that fw > 1 is systematically necessary for
the DL class disruptions. Recall that for this particular class, li varied significantly during the
time between braking initiation and disruption onset (Fig. 3). As DL plasmas are likely to
develop a cold edge, the resulting changes in the current profile may explain at least partially
the need to correct the torque. In addition, interplay between local cooling by the mode and
the presence of a cold edge might further enhance changes in the plasma momentum content.

Unfortunately, the relation between tlock, fw and the plasma density could not be exam-
ined for the full set of discharges, particularly for the DL cases.

4.3 Experimental evaluation of the locking bifurcation condition

In the following, we attempt to experimentally validate the dynamic condition for locking
bifurcation given by (20) (we refer to the ’co’ braking scenario only). Out of the 103 cases
suitable for application of the mode locking model (and therefore for the bifurcation condition
validation), the necessary condition (18) for the locking bifurcation to take place was fulfilled
in 61 cases. Furthermore, the conditions η ≥ 1 (mode growing linearly or faster in time,
recall (9)) and α ≤ 9 (i.e. the maximum value of this parameter across the parametric scan
discussed in Sec. 2.3) were satisfied for 23 out of those 61 cases. Therefore, in only 23 cases we
could proceed to comparison of experimental and predicted critical island width for locking. In
Sec. 4.2.1, the experimental braking curves were reproduced for fM between 1 and 18, whereas
for the rest of the discharges, the value of this parameter was undetermined. Furthermore,
this parameter is not included in the definition of the dynamic locking bifurcation condition.
Therefore, in evaluating the critical island width for locking, fM = 0. For the purpose of
further discussion, we note that equation (17) allows evaluating the critical mode frequency
ωcrit at which a locking bifurcation takes place. In the following, using fM = 0, we obtain
ωcrit = ω0/2.

For each of the 23 cases, (w/a)crit,s and (w/a)crit,d,fit were calculated using (15) and (20),
respectively. Means and medians of the calculated terms are displayed in Tab. 6. According
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Figure 11: Experimental evaluation of the condition for mode locking (i.e. the point of locking
bifurcation) for discharge #28825 (2/1 mode), with fM = 0, fw = 1. The green line shows
the static braking curve and the double red arrow delimits the forbidden frequency range,
while the magenta line corresponds to dynamic braking (recall Fig. 2a). The experimental
ω(t) data points were not smoothed, the discrete data points thus reflect the temporal and
frequency resolution of the spectrogram (see Sec. 3.3.1).

to the expectations, the average/median dynamic critical island widths exceed the stationary
equivalents.

Furthermore, we obtain (w/a)crit,d from the fitted w/a(t) curve at a temporal point at
which the integrated braking curve decays in frequency to ωcrit (see an example in Fig. 11).
In principle, (w/a)crit,d,fit and (w/a)crit,d should match. However, given the approximations
made along derivation of equation (20) and together with that A(t) was considered a function
of time, whereas A is taken a constant in the definition of (w/a)crit,d,fit (A was calculated
from plasma parameters obtained at the time of initialization of the numerical integration
for the purpose of the (w/a)crit,d,fit calculation), (w/a)crit,d,fit and (w/a)crit,d can differ. In
the example shown in Fig. 11, (w/a)crit,d,fit ≈ (w/a)crit,d. Tab. 6 allows comparison of
means/medians of the two critical island widths for the 23 discharges. The average effect of
the two above factors results in (w/a)crit,d,fit ≈ 1.2 (w/a)crit,d.

We note that among the 23 here discussed discharges, multiple cases required fw to match
the experimental and predicted locking duration (for example, fw = 1.4 in case of the locking
mode displayed in Fig. 11). Multiplication of the island width by fw > 1 typically resulted
in the modification of the mode growth parameters and therefore the change in (w/a)crit,d,fit

and (w/a)crit,d. The observed variation was, however, minor.
Last column of the table contains the experimental island width at ωcrit, (w/a)crit,exp. It

can be seen that the median experimental island width, calculated for the 23 cases of interest,
exceeds both (w/a)crit,d,fit and (w/a)crit,d by the respective factors ∼ 3 and ∼ 2. We report
thus that the physics elements contained in the dynamic condition for locking bifurcation are
insufficient to reproduce the experiment.

Finally, the experimental island width at ωcrit was retrieved for all 103 discharges, re-
gardless of whether the condition for locking bifurcation given by (18) was satisfied. With
this manipulation, we can present in Tab. 7 summary statistics concerning (w/a)crit,exp and
fw(w/a)crit,exp. It can be seen that the mean ‘corrected’ fw(w/a)crit,exp is larger than its
experimental uncorrected equivalent by a factor of ≈ 1.3 in the ‘co’ scenario and 1.1 in the
‘de’ scenario.
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(w/a)crit,s (w/a)crit,d,fit (w/a)crit,d (w/a)crit,exp

Mean 15.5 35.8 31.1 13.7
Median 14.0 36.7 29.8 12.5
Std 6.1 9.3 9.3 6.5

Table 6: Means and medians of (w/a)crit of interest for fM = 0, expressed as percentages.
Standard deviations have been added in the last row (‘Std’).

Scenario (w/a)crit,exp fw(w/a)crit,exp

‘co’
Mean 14.9 ± 6.9 19.6 ± 7.1
Median 13.7 18.4

‘de’
Mean 14.9 ± 6.9 16.3 ± 6.9
Median 13.7 14.4

Table 7: Means and medians, expressed as a percentage, of (w/a)crit,exp and fw(w/a)crit,exp

for 103 discharges.

5 Rotating modes triggering disruptions

At AUG, as at various other devices, a real-time locked mode signal is used as a disruption
warning monitor for emergency discharge shutdown [36]. However, from Tab. 2 it follows
that 27% of the modes in our database were rotating at the disruption onset. We subdivided
this category of modes into two groups according to their frequency at disruption initiation.
Indeed, the maximum of the wall torque occurs at ω ≈ m/τw. In the case of AUG, this is
at ω/2π ≈ 430 Hz and ω/2π ≈ 650 Hz for m = 2, 3 modes, respectively (τw = 0.73 ms, see
Sec. 3.3.4). Modes disrupting the plasma above this frequency (≈ 25% of the ROT cases)
were assigned to a ‘ROT-high’ group, the other modes falling into a ‘ROT-low’ group. In
the latter case, the wall torque is assumed to be weak and other forces applied on the mode
(such as device error fields [15,37]) may dominate the locking process.

In Fig. 12a, a spectrogram is shown with a disruptive, progressively growing and locking
ROT-high mode. The disruption took place at about 3.715 s, at which point the mode rota-
tional frequency was ω/2π ≈ 5 kHz. Fig. 12b displays the measured locked mode amplitude.
Because of the high rotational frequency, the locked mode amplitude only barely surpassed
the noise level during the last phase of the discharge. As a consequence, the warning levels for
machine protection were not reached (a ‘soft-stop’ initiates a fast current ramp-down, while
the massive gas injection (MGI) threshold activates gas filling through the disruption miti-
gation valves). In addition, the figure shows the disruptive locked mode amplitude B̃LM,disr

(black dashed line), calculated from a recently established scaling [3], accounting for the po-
sition rSC of the saddle coils. This empirical formula allows, for a given experimental input,
to estimate the locked mode amplitude at which a disruption is initiated. Throughout the
mode duration, it estimates a disruptive amplitude of ≈ 0.6 mT. In dashed green, the dis-
ruptive locked mode amplitude is calculated accounting for the position of the Mirnov coils
(r = rMC). In red, the poloidal field component of the mode is displayed, measured with the
Mirnov coils, B̃θ(rMC), as well as B̃r(rMC) (green) using (34). The measured value of the ra-
dial field component surpassed the predicted field intensity at the initiation of the disruption.
This example demonstrates that large decelerating modes rotating at high frequencies at the
disruption onset are undetected by the present AUG device protection schemes. Moreover,
due to the hardware signal processing, amplitudes of the ROT-low group are attenuated. De-
spite growing to significant amplitudes, this attenuation might cause the machine protection
to fail to react on these modes.
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Figure 12: Discharge #32505 disrupted due to a locking 2/1 mode (coupled with a 3/1
mode). (a) A spectrogram tracks the mode’s field B̃θ(t) and ω(t). (b) Time traces of the
mode field detected by the Mirnov coils (B̃θ(rMC), converted to B̃r(rMC) using (34)) and the
locked mode detector (B̃r(rSC)). In addition, the disruptive locked mode amplitude B̃LM,disr

is plotted, predicted by an empirical scaling, either calculated using the position of the saddle
coils (rSC) or that of the Mirnov coils (rMC). Also shown are the field amplitudes predefined
by the device protection scheme to initiate an emergency ramp-down (‘soft-stop’) or open
the disruption mitigation valves (‘MGI’).

6 Discussion and prospectives for extension of the mode lock-
ing model

The model for mode locking that was used in this study can describe two extreme scenarios
of mode braking: either the mode locking is decoupled from the plasma bulk motion (‘de’),
or the plasma column decelerates with the mode (‘co’). The evolution of the experimental
rotation profiles shown in Sec. 4.2.1 suggests, however, that the actual situation might be
a compromise between the two scenarios. The extent to which either scenario is a good
approximation is likely related to the instantaneous mode width and the rate of the mode
growth relative to the rate of momentum redistribution. In practical applications, one could
estimate the critical mode width for locking and the locking duration using the two scenarios,
resulting in an interval of critical locking parameters with boundaries defined by the two
braking scenarios.

Degradation of the confinement properties during the discharge can occur due to multiple
reasons, which can be difficult to disentangle. In some cases, setting fM < 18 and fw = 1
allowed reconstruction of the experimental braking curves, with the mode braking usually
accompanying the onset of the momentum confinement deterioration (Sec. 4.2.1). In those
cases, momentum confinement times at locking, predicted by (4), agreed with the experimen-
tal data points, decreasing the initial momentum confinement time by a factor . 6. For a
number of examined locking modes, the predicted value of the momentum confinement time
for fM � 1 was of the order of milliseconds or less. For a given constant torque density input,
such low values would imply a plasma column at almost complete rest at locking. However,
experimental rotation profiles often reveal a delayed deceleration of the central part of the
plasma, with respect to the mode (see Ref. [8] for a similar observation in the JET tokamak).

In a substantial fraction of the cases studied here, the calculated wall torque was not large
enough to reproduce the experimentally observed locking (Sec. 4.2.2). A similar observation
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was reported in the DIII-D tokamak, hypothesized in [35] to originate from the existence of
a second in-vessel conducting structure that could contribute to mode locking. The charac-
teristic resistive time of this second structure would be an order of magnitude smaller than
that of the vacuum vessel. As a result, a component of the wall torque would be introduced
reaching a maximum at comparatively higher mode frequencies, compensating for the miss-
ing braking torque. However, this model involving two resistive shells does not appear to
be a suitable candidate to explain the missing torque in our observations, since the need to
compensate for the missing torque only presented itself under specific discharge conditions,
not universally (see below).

Within the scope of the model used in this paper, the stationary condition for the locking
bifurcation is only suited for determining the critical mode width for locking when the mode
grows on a sufficiently long time scale compared to that of the momentum redistribution.
Therefore, in most practical applications the dynamic condition for the bifurcation should
be used instead. In this paper, the dynamic bifurcation condition was restricted to certain
mode growth scenarios and did not include the momentum confinement time degradation
(Sec. 2.3). Validation of this theoretical condition was thus affected by those restrictions.
In Sec. 4.3 it turned out that the predicted and experimental critical island widths differed
substantially, possibly due to the above limitations. The dynamic condition for the locking
bifurcation is a step forward in estimating the critical island widths in practical cases, but
highlights the necessity to include more physical mechanisms in its definition.

The condition for the locking bifurcation was satisfied for about 60% of the 2/1 locking
modes and 20% of the 3/1 modes. A substantial fraction of decelerating modes thus lack a
definition of the critical island width for mode locking. For the full set of 103 discharges,
normalized island widths at half of the frequency decay were thus assembled. It turned out
that at this point, the islands typically extend over about 15% of the plasma radius. However,
to match the experimental and numerically calculated locking durations, the modes would
have to extend, on average, over about 20% of the radius for the scenario with full plasma
column braking (Sec. 4.3). The critical island width in a scenario of decoupled island braking
would be more compatible with the experiment.

The mode locking model used here takes into account only two forces on the mode and
assumes rigid body motion, either fully coupled to or decoupled from the plasma bulk. A
more detailed description of the mode locking should incorporate additional forces, such as
interactions with external fields, and consider the momentum redistribution by solving the
momentum transfer across the plasma [37]. On the other hand, the feasibility of such a
scheme might be questioned in the context of a large database, or as a real time application
during the discharge. In contrast, an advantage of the simple model used here is that it might
allow to estimate locking durations and critical mode widths in real time.

One possible source of deceleration that was neglected in this work is the poloidal com-
ponent of the wall force term, as the motion in this direction was assumed to be damped.
However, according to Ref. [13], the associated force term component is, when evaluated with
the discharge-specific parameters, one or two orders of magnitude larger than the toroidal
component. Thus, identifying the circumstances under which the poloidal component of the
force becomes important, could be a next step in the analysis of mode braking.

Multiple root causes can destabilize resistive instabilities and a clustering according to
disruption class was recognizable in the operational diagram containing li and q95, about half a
second before the locking onset [22] (Sec. 3.2). Following the study presented here, it appears
that the model can predict locking durations for disruptions falling into certain disruption
classes. The model systematically fails to predict locking of initially rotating modes that
are driven unstable at high plasma density and/or that are compromised by a high impurity
content. In discharge #28227, where the model failed to reproduce the experimental braking
curve (Sec. 4.2.2), the mode was seeded after a cold region, originally located at the vessel
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inner bottom (see Fig. 13a), was detected at the inner midplane (Fig. 13b). Following a slight
separatrix movement, the local vessel wall erosion could have enhanced the radiative losses,
thus increasing the local density. Unfortunately, the DCN interferometers suffered from fringe
jumps during the cold region development. However, the CO2 interferometer edge channel
(not routinely examined at AUG due to the high noise level and sensitivity to the external
heating power and environmental conditions) shows the effect of the cold region on density
(Fig. 13c). Specifically, a transient density increase can be observed, up to about 2.5× 1020

m−3, presumably owing to the corresponding line-of-sight intersecting the cold and dense
region. At an increased density the plasma rotational frequency would have to decrease for
the toroidal angular momentum to remain constant.

The mode equation of motion, accounting for the effect of a local particle source, e.g.
caused by a MARFE, might adopt the following form:

dω

dt
= − ω

ne

dne

dt
+
ne0ω0

neτM0
−
ω(1 + fMfw

w
a )

τM0
−A

[
fw
w

a
(t)
]4 ωτw

(ωτw)2 +m2
. (27)

Here, ne0 is the electron density at the resonant surface at the onset of braking. In case
of fast (� τM0) and large variations of the density, the first term on the right-hand side
can dominate the mode slowing down, while for dne/dt ≈ 0 (i.e. ne ≈ ne0) the equation
approaches its original form of (11). A test was conducted to integrate (27) in the decoupled
braking scenario, at the same time mimicking the presence of a significant particle source
during mode braking. A simplified model with constant dne/dt was applied for the rate of
density increase, starting from ne0 = 1020 m−3 at the onset of the mode deceleration and
ending at a maximum density ne,max = 2.5 × 1020 m−3 roughly at the end of the braking
phase, in accordance with the CO2 interferometer data. The density variation was also taken
into account for calculating the parameter Ade from (7). Note that in Fig. 13c the density
probably fluctuates due to the cold dense region moving in and out of the viewing chord,
even though it is assumed to represent a particle source during the entire braking phase.
The resulting braking curve is plotted in Fig. 13d (cyan dotted curve) and compared with
the result from the mode equation (11) without particle source (dashed-dot magenta curve).
The settings fM = 5 and fw = 1 were used, the former value chosen in order to match the
experimentally observed decrease of the momentum confinement (Fig. 8b). It can be seen
that the output of (27) agrees well with the experimental braking curve at the initial phase
of braking, reducing the need to artificially increase the decelerating wall torque.

Finally, we note that, in the study presented here, about 21% of the modes leading to
a disruption were rotating at the disruption onset (Sec. 5). These might go unnoticed to
present machine protection systems that are based on locked mode detection. Therefore, a
useful extension of disruption prediction schemes might rely on monitoring rotating mode
amplitudes with additional sensors. Furthermore, the predictive power of the previously
developed empirical scaling for critical amplitudes of locked modes (see [3]) could be examined
for rotating modes as well.

7 Conclusions

A large database of tearing modes was assembled at AUG, contributing to plasma disruptions,
under a variety of operational conditions. The database entries were classified according
to disruption cause. The modes within the database either locked and contributed to the
plasma disruption, or caused the disruption during their rotating phase. Characterization of
the locking phase could thus provide key information for the purpose of disruption avoidance
and prediction, based on the duration of the braking phase and critical mode width for
locking. A simple analytical model was employed in order to describe the experimentally
observed dynamics of mode braking, in particular to predict braking duration and critical
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Figure 13: Illustration of an attempt to reconstruct the braking curve in NBI-heated discharge
#28227. (a) and (b) display AXUV diode bolometry signals, colour-coded according to
relative emissivity (dark blue = low emissivity, light green = medium, red = high). In (a),
at t = 6.09 s, a cold region has developed and is visible in the channels viewing the vessel
HFS bottom. (b) At t = 6.16 s the cold region is recognizable near the inner midplane. (c)
Line-integrated electron density measurements from the CO2 interferometer. The core LOS
is nearly unaffected by the cold and dense region, while in the edge channel its influence can
be clearly noticed between about 6.1 and 6.2 s. In particular, during the presence of the
mode, the density reaches ≈ 2.5× 1019 m−3. (d) Comparison of braking curves obtained by
integrating the mode equation either with a modelled local particle source (equation (27),
cyan dotted) or without (magenta dash-dotted).
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island width for locking. The model for mode deceleration incorporated the braking force
due to electromagnetic interaction between the mode and the conducting vessel wall, as well
as the restoring viscous force and its degradation due to growth of the mode.

The mode braking model showed its merit in describing deceleration of large modes lock-
ing over temporal intervals comparable to the momentum confinement time, in case the mode
deceleration phase was initiated in a quasi-stationary rotating plasma column. Under such
conditions the model could predict the duration of the braking phase. On the other hand,
the theoretical critical mode width for locking, set at the dynamic point of the locking bifur-
cation, could not be reliably compared with the experiment due to limitations in the locking
bifurcation definition.

For a substantial fraction of discharges, often those occurring in high-density plasmas,
the calculated wall torque was not sufficient to reproduce the locking dynamics and the
braking of the initially rotating modes could not be explained on the basis of the physical
mechanisms contained in the model. To increase the predictive capability of the model for
plasmas experiencing a transient increase of the plasma density in the vicinity of the mode
location, it was proposed to add a local particle source in the mode equation of motion.

Future experimental tokamak devices like ITER will operate close to the limits of the non-
disruptive plasma parameter space, i.e. under conditions favourable for seeding of (initially
rotating) MHD modes. The present case study for AUG showed that disruption avoidance
schemes that aim to tailor the features of rotating modes will need to consider all boundaries
of the non-disruptive operational space. It remains to be seen whether this observation is
also valid for other devices.
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A Appendix

A.1 Perturbation field components in the vicinity of a resistive wall (cylin-
drical plasma)

Features of the magnetic field B̃ of a helical mode structure can be derived by defining an
associated scalar flux function of the form ψ̃(r, θ, φ) = ψ̃r(r)e

i(mθ−nφ−ωt). Radial and poloidal
components of B̃ are retrieved using [13,18,26]

B̃r = −1

r

∂ψ̃r
∂θ

= − im
r
ψ̃r, (28)

B̃θ =
∂ψ̃

∂r
. (29)

A mode located at r = rs is a source of surface current J̃s(r, θ, φ) = J†s δ(r − rs)e
i(mθ−nφ−ωt)

and induces in the wall a current J̃w(r, θ, φ) = J†wδ(r − rw)ei(mθ−nφ−ωt), where J†s and J†w
are constants. In the thin-wall approximation (thickness b), this current is assumed uniform
over the wall layer: J̃w = jwb. Currents in the resistive wall decay on a time scale τw and
induce an electric field Ew,φ along the helical coordinate. A solution of the flux function
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in the radial domains r < rs (I), rw < r < rs (II) and r > rw (III) is obtained by solving
Ampère’s equation, with appropriate boundary conditions:

ψ̃I =
ψ†

m

[
1− ωτw

im+ ωτw

(
rs

rw

)2m
](

r

rs

)m
ei(mθ−nφ−ωt), (30)

ψ̃II =
ψ†

m

[(rs

r

)m
− ωτw

im+ ωτw

(
rs

rw

)2m( r
rs

)m]
ei(mθ−nφ−ωt), (31)

ψ̃III =
ψ†

m

[
1− ωτw

im+ ωτw

](rs

r

)m
ei(mθ−nφ−ωt). (32)

where ψ† = µ0J
†
s rs/2. Invoking (28) and (29), relations between the radial and poloidal

components of the mode magnetic field can be established:

B̃r,I = −iB̃θ,I, (33)

B̃r,II/B̃θ,II = i
im+ωτw
ωτw

r2m
w − r2m

im+ωτw
ωτw

r2m
w + r2m

, (34)

B̃r,III = iB̃θ,III. (35)

The above relations were used to retrieve the radial component B̃r(rs) of the mode’s magnetic
field at the rational surface, from B̃θ(rc) measured at the coil position rc. This results in

|B̃r(rs)|
|B̃θ(rc)|

=

(
rc

rs

)m+1

{
m2r4m

w ω2τ2
w(r2m

s + r2m
c )2 + [m2r4m

w + ω2τ2
w(r2m

w − r2m
s )(r2m

w + r2m
c )]2

}1/2

ω2τ2
w(r2m

w + r2m
c )2 +m2r4m

w

.

(36)
The ratio of the perturbation field inside (‘in’) and outside (‘out’) the conducting structure
can be obtained using (31), (32) and (29). This yields

|B̃θ,out|
|B̃θ,in|

=

[
m2 + ω2τ2

w

m2

(
rc,out

rc,in

)m+1

+
ω2τ2

w

m2

(rc,in)m−1(rc,out)
m+1

r2m
w

]−1

. (37)

Furthermore, from the expressions of the flux function in (31) and (32), the phase differ-
ence ∆θ̃ across the wall can be derived. This depends on the wall properties and is related
to the force through which the mode loses its momentum to the wall. The poloidal angle θ
represents the angle by which the sensors are displaced along the poloidal coordinate. Similar
to (37), an expression for the phase shift can be established, depending on ω and τw.

A.2 Perturbation field components in the vacuum approximation corrected
for the effect of toroidicity

Bending the plasma column in an axisymmetric configuration implies correction of the flux
function solutions (Eqs. (30)–(32), here considered in the vacuum limit) for the effect of
toroidicity, both along the radial and poloidal coordinates. This is because modes of the
same toroidal mode number n, but different poloidal mode number m, become coupled.
In [17], it is shown that the amplitude modulation Ã(θ, φ) in an axisymmetric tokamak of
circular cross-section is the following:

Ã(θ, φ) = Ã cos(mθ − nφ) +
Ã1

2

{
cos[(m− 1)θ − nφ− ϕ1] + cos[(m+ 1)θ − nφ+ ϕ1]

}
. (38)

In this expression, Ã is the amplitude of the perturbation at a given point along the radial
coordinate. The first term on the right-hand side represents the phase of the flux function re-
lated to the cylindrical geometry. The second term appears after modulation of the amplitude

30



when passing to the case of generalized geometry, retrieved upon Fourier series expansion of
the amplitude in the poloidal θ coordinate. The effect of toroidicity is pronounced for j = 1
and the ∆m = ±1 sidebands justify the existence of the toroidally coupled modes. The same
conclusion can be obtained by accounting for the Merezhkin correction, expressing the phase
in terms of a Bessel function of the first kind J(±1,mλ) [18]. This approach allows estimating
the amplitude Ã1 (under the condition mλ� 1),

Ã1 = Ãmλ ≈ Ã r

R
, (39)

where λ ≈ βp + li/2 + 1. The effect of toroidicity on the radially-dependent part of the flux
function solution can be examined by combining (31) (vacuum limit) and (39), yielding exact
solutions of the sideband flux functions for r > rs,m+1:

ψ̃(r) =
ψ†

m+ 1

(rs,m

r

)m+1
cos[(m+ 1)θ]J(+1,mλ)

(
R0

r cos θ +R0

)
, (40)

ψ̃(r) =
ψ†

m− 1

(rs,m

r

)m−1
cos[(m− 1)θ]J(−1,mλ)

(
R0

r cos θ +R0

)
. (41)

The last term in (40) and (41) results from the 1/R-dependence of the helical field in toroidal
geometry, which for large aspect ratio expands to 1/(r cos θ + R0). The R0 term in the
nominator is added for normalization purposes. The perturbation field components in toroidal
geometry are the following:

B̃r,tor = − 1

2πR

1

r

∂ψ̃

∂θ
, (42)

B̃θ,tor =
1

2πR

∂ψ̃

∂R
. (43)

For given λ, the full solution including the effect of toroidicity is obtained by adding the
sidebands to the cylindrical case. In Fig. 14, the radial decay of B̃θ,tor for the case of the
midplane low-field side (θ = 0, R0 = 1.65, rs = 0.4 m) is plotted for progressively increasing
λ, m = 2. The curves were fitted with an analytical function of the form αrmeff in the range
r = 0.5 m to 1 m (dashed lines). The m number was varied from 2 to 4 and the resulting
scaling relations can be used in the expression for the mode poloidal field component, replacing
m with its effective equivalent meff , accounting for the effect of toroidicity. Taking λ = 0.4
and adopting medians of βp and li from Tab. 3, we obtain for the high-field side (HFS) and
low-field side (LFS):

meff,θ,HFS = 2.57m− 1.30, (44)

meff,θ,LFS = 0.81m+ 0.03, (45)

respectively. In case of the vacuum solution, the radial component of the perturbation field
vanished at the LFS and HFS midplane. Given the symmetry of the problem, B̃r,tor(θ =
π/2) = B̃r,tor(θ = 3π/2), the resulting scaling relation for the effective mode numbers is:

meff,r = 0.98m+ 0.86. (46)
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