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ABSTRACT

Structural performance under dynamic actions, apart from geometric characteristics, 

supports loading conditions, design methods, etc., is mainly related to the intrinsic 

material properties of the structural elements. Earthquake events, as typical examples of 

accidental dynamic loading, involve strong stress waves, induced in the structure in very 

short time intervals. Increased loading rates, difficult to withstand, are generated. 

Therefore, superior complementary characteristics, namely strength and ductility, are 

required in order to avoid sudden failure and, as direct consequence, casualties and 

economic losses.

Engineered Cementitious Composite (ECC), a unique type of mortar framed in the 

category of high-performance fibre-reinforced cementitious composites (HPFRCC), is 

defined by metal-like behaviour due to the multiple cracking patterns developed under 

applied loads. ECC proves an increased deformability potential and, as consequence

ductility, which indicate a superior performance when subjected to dynamic actions. 

The multiple microcracking property of the composite, together with some specific 

matrix attributes and environmental conditions, also ensures an already proved self-

healing potential [1], [2]. All these intrinsic material characteristics induce increased 

durability, considerable material and manpower reduction, improved structural 

performance and reduced repair and maintenance costs. Consequently, ECC is a

valuable building material alternative and it is obvious that will bring a major to future 

sustainable development.

This paper presents the incipient evaluation of the dynamic performance of Fibre 

Engineered Cementitious Materials with Self-Healing potential (SH-FECM), developed 

using the ECC theoretical and applied design principles, in the terms of the strain rate 

sensitivity, which proves to be an essential and difficult to control parameter.
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INTRODUCTION

It is generally accepted that dynamic loads act fundamentally different upon structures 

compared to the static or quasi static ones: there are increased energetic waves 

transmitted to the structure in relatively short time duration, implying raised 

loading/displacements, which become an important feature of the dynamic actions. 

Sudden collapse can occur, leading to life losses and important structural damage.

An earthquake is a complex dynamic loading with increased worldwide occurrence.

Counteracting its fatal consequences can be seen as a general research and design 

challenge. The Cluj-Napoca Branch of the „URBAN–INCERC” National Research 

Institute for Construction Development in Romania focused since 2009 to develop an

innovative concept in seismic design by post-tensioning hybrid precast frame structures. 

The critical spots of the tested models were identified as the narrow slots at the beam to 

column interface subjected to high local stresses, induced at raised strain rates.

Therefore, it was decided to replace the filling grout with an advanced cement-based 

composite, with superior physical and mechanical characteristics. The general features 

of ECCs recommend them as a seismic performing material and a starting point for the

development of SH-FECM by using local raw materials. Initial mix designs proved 

superior potential as intrinsic material characteristics and behaved properly during the 

full scale tests [3], [4] and [5].

Considering all above aspects, the evaluation of the ECC similar mixes by subjecting 

samples to dynamic loading was considered necessary to the overall evaluation of this 

kind of material. Next, first results of the theoretical and experimental program 

developed to investigate the dynamic performance of ECC are presented. 

Complementary, their self-healing potential is also assessed.

CONTEXT - SEISMIC RESISTANT HYBRID CONNECTION

Starting with 2009 two models of the hybrid seismic resistant joints were developed:

first, the planar model and, starting with 2014, a new spatial model (Fig. 1). 

Figure 1 Hybrid joints; critical interface zones: (1) Planar model; (2) Spatial model
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SELF-HEALING FIBER ENGINEERED CEMENTITIOUS MATERIALS (SH-

FECM)

The critical areas at the beam-column contact interface require a superior filling 

material, with adequate workability and ability to fill narrow slots. Moreover, a good 

behaviour with regard to high- rate compressive and tensile stresses is needed, by 

ensuring deformability capacity for energy absorption [6], [7].

The first mixes proved good performance when tested to quasi-static loading, like

tensile and compression tests done in accordance to EN 196-1 procedures. The same 

adequate behaviour was noticed during quasi-static alternant loading (see Fig. 2). The 

tensile strength determined at the age of 20 days (when the first element was tested)

using the 3-Point-Bending (3PB) loading scheme, was 5.0 MPa and the compressive 

strength, 60 MPa. The composite showed good bond strength to the support layer, more 

than 5 MPa as the rupture took place in the support, namely the concrete beam/column 

of the element. Figure 2 shows the important degradation signs induced in the concrete 

structural elements, like large visible cracks and material spalling but impressive 

behaviour of SH-FECM as interface material [8].

Figure 2 Hybrid spatial joint model after testing - critical interface zone, bottom view: 

good performance of SH-FECM, no spalling or large visible cracks

The Self-Healing potential of the composite was evaluated after 50 wet and dry curing 

cycles, considering both complementary directions [8]: (1) Self-Sealing – the prismatic 

specimens showed partial crack-closing under visual analyses (Fig. 3, a);

Figure 3 Self-Healing of SH-FECM specimens: a) Self-Sealing of cracks; b) Self-

Repairing (distinct failure path when retesting); c) Micro-cracking under compression

(2) Self-Repairing – the prismatic specimens, initially loaded in 3PB until reaching the 

90% of the bearing capacity were re-tested in the same condition after exposure to the 

curing cycles, showing tensile recovery ranging from 85 up to 100%, with respect to the 

strength determined at the age of 20 days. Supplementary, the healing products 
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developed in the cracks were strongly enough so the re-testing of one specimen 

produced a different crack as failure pattern, distinct from the initial one (Fig. 3, b).The 

compressive resistance, determined on the half prisms after the tensile re-testing, is of 

72.0 MPa (Fig. 3, c) [8].

DYNAMIC PERFORMANCE OF FECM

The first testing procedures for the initial SH-FECM mix designs were performed under 

quasi-static loading, as previously mentioned; for a more complex material evaluation 

dynamic characteristics should be analysed. Load (-strain) rate sensitivity is identified 

as a crucial parameter for the material capacity of undertaking increased stress waves 

developed when subjected to accidental, dynamic loadings like blast, impact or seism

[6], [7]. Loading rate sensitivity of Fibre Engineered Cementitious Materials was 

evaluated at Magnel Laboratory for Concrete Research, Ghent University, Belgium by 

the means of studying several mixtures of cement-based composites with polymeric 

fibres as dispersed reinforcement, subjected to specific tensile tests using different 

loading rates.

1. Materials

The raw materials provided by Magnel Laboratory, are typical for an ECC mix: the 

binding system (B) is a 1 to 1 combination of Portland Cement (C), namely CEM I 52.5 

N and class F Fly-Ash (FA); Silica Sand (S) as aggregate with maximum grain size 250

; the High-Range Water Reducer (HRWR) polycarboxylate admixture is the BASF

Glenium 51, (concentration 35%). A Belgium bicore Polypropylene (PP) was used as 

synthetic fibre, with a 6 mm length and 2% (by volume) content, as dispersed 

reinforcement of the mix. The essential characteristics of the raw materials are fully 

specified [9].

2. Mix Design 

The analysed composite PP-M1.5 was designed taking into consideration as basic 

points: the classic ECC M45 [2], the initial SH-FECM previously studied [8] and also 

the specific mix designs previously developed at Magnel Laboratory, including the 

mixing sequences, that involve shorter, more efficient mixing stages, adapted for small 

experimental batches [9]. The FA/C ratio was selected 1.0, distinct from the 1.2 ratio 

previously used. The BASF Glenium 51 HRWR reduces significantly the specific ratios 

W/B or L/B. Table 1 presents the relevant mix proportions.

Table 1 Mix proportion: ECC M 45 and SH-FECM

C FA C +FA S W HRWR L PP W/C W/B L/C L/B

ECC M45

1.0 1.2 2.2 0.8 0.79 0.01 0.8 0.2 0.58 0.26 0.59 0.27

SH – FECM

1.0 1.2 2.2 0.8 0.82 0.04 0.8 0.2% 0.83 0.38 0.88 0.40

PP – M1.5

1.0 1.0 2.2 0.7 0.6 0.023 0.62 0.2% 0.60 0.30 0.62 0.31

3. Testing method

3.1 Dynamic Performance

Prismatic specimens 40 x 10 x 160 mm (Fig. 4) were subjected to the specific ECC 

tensile tests, namely Four-Point Bending (4PB) using 4 different loading rates induced 
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in the terms of vertical displacement, converted into strain rates by considering the 

geometrical and the loading characteristics.

The loading/strain rates used for 4PB tests of the PP - M1.5specimens:

I. 0.0011 mm/s converted into the strain rate of 5.00 x 10-4 s-1
;

II. 0.0055 mm/s converted into the strain rate of 2.50 x 10-3 s-1
;

III. 0.0276 mm/s converted into the strain rate of 1.25 x 10-2 s-1
;

IV. 0.1200 mm/s converted into the strain rate of 0.55 x 10-1 s-1;

The first strain rates are corresponding to quasi-static loading regime, the last two being 

relevant to the dynamic type: III - multi-cycle, seismic actions; IV – impact [8].

  

Figure 4 4PB test on PP-M1.5: a) 4PB loading scheme; b) Specimen during 4PB test

The characteristic stress-strain ( - ) diagrams were plotted and compared. The relevant 

mechanical parameters considered for the parallel evaluation are [9]:

- Tensile strength (MPa): (1) the peak strength under loading ( cu); (2) the first-

cracking-strength ( fc), namely the strength corresponding to the first force drop, 

producing the first crack in the specimen; (3) Tangent Modulus of elasticity (E), 

namely the slope of stress-strain curve

- Ductility, in terms of strain (%) evaluated at the bottom part of the coupon

specimens: the total strain ( max), recorded from the beginning of loading and till the 

failure is considered to take place, usually when the force drops below the first crack 

force value; multiple cracking interval (MC) – recorded as the difference between 

the total strain ( max) and the strain corresponding to the first crack ( fc); multiple 

cracking interval (MC*) – recorded as the difference between the strain 

corresponding to the peak strength ( cu) and the strain corresponding to the first 

crack ( fc);

3.1 Self-Healing Capacity

The PP – M1.5 coupon specimens were divided into two categories: (1) Rupture 

specimens (R), loaded until failure at the age of 28 days; (2) Self-healing specimens

(SH), preloaded (age of 28 days) to an imposed vertical displacement of 1.5 mm, 

corresponding to an approximate strain of 1%, cured by exposure to 28 wet and dry 

alternating cycles and then retested until failure in similar conditions. 

The PP – M1.5 Self-Healing performance was evaluated considering [10], [11], [12]:

Self-Sealing (evaluation of crack closing efficiency) and Self-Repairing (evaluation of 

mechanical regain when retesting of the specimens, with respect to the initial preloading 

and also with the R type samples).
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RESULTS AND DISCUSSIONS

1. Fresh State Mix

The fresh state of PP – M1.5 is plastic, with creamy texture and good workability. The 

PP fibres prove to have an expected tendency of balling which can be counteracted by 

careful mixing sequences, especially after fibres addition. It was noticed that the mix 

required a 1-2 min resting interval after mixing, to reduce the initial stiff aspect and 

became more fluid and proper for casting.

2. Typical Material Characteristics

The tensile and compressive resistances of the PP – M1.5 mix were determined using 

the EN 196-1 (cement) and EN 1015 (mortar) standard methods, at the age of 28 days 

and 60 days, respectively. The tensile strength was determined using the 3-Point 

Bending (3PB) method. Supplementary, the dry bulk density of hardened mortar was 

determined in accordance to EN 1015-10. Table 2 presents the typical physical and 

mechanical characteristics with the increase from 28 to 60 days (the retesting age of the 

SH specimens). The 17% increase in compression and 12% increase in tension are 

according to the expectation, considering the considerable amount of FA in the mix, 

with slower pozzolanic reaction and developing later hydration products than the pure 

cement-based composites [13]. A similar tendency can be observed during the 4PB 

retesting the SH specimens.

Table 2 Physical and mechanical characteristics of PP – M1.5 mix

Dry bulk 

density

(Kg/m3)

Compressive resistance

(MPa)

3PB Tensile resistance

(MPa)

28 days 60 days Increase

(%)
28 days 60 days Increase

(%)

2160 56.8 66.4 16.9 9.7 10.9 12.2

3. 4PB tensile tests under different strain rates

The 4PB tests were performed as previously described, using four different loading 

rates. The testing age was 28 days and the obtained results are reported in Table 3.

Figure 5 4PB test with 4 different 

strain rates

Figure 6 SH capacity: Self-Repairing,

preloading and retesting

The results show a small strain rate sensitivity of the material, which is able to maintain 

approximate constant performance when subjected to slow and also fast loading rates. 

The IInd loading rate shows the best results in terms of balance strength / ductility.
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Table 3 4PB test using different strain rates 

Loading 

rate

Strength / Elastic modulus Ductility

fc

(MPa)
cu

(MPa)

E

(GPa)
max

(%)

MC

(%)

MC*

(%)

I 5.35 6.37 37.7 1.90 1.85 1.08

II 5.68 7.68 30.8 2.88 2.84 1.16

III 5.43 6.70 29.3 1.74 1.69 0.74

IV 6.15 8.44 31.3 2.05 1.95 0.70

4. Self-Healing Capacity Evaluation

The evaluation Self-Healing capacity of the material is still an on-going data analysis.

Regarding the Self-Sealing potential of the material, the initial microscopic analysis 

shows complete closing of small microcracks (width less than 20 ) and partial sealing 

of larger cracks (Fig. 7). The Self-Repairing potential is evaluated by the means of 4PB 

retesting of SH specimens. As expected, there is an increase of maximum peak strength 

and a small drop in the ductility of material when increasing the loading rate (Fig. 6).

Also, there is a clear regain in first-cracking-strength. So, the visual closure of the crack 

points to the regain in mechanical properties as well. Further evaluation of the results 

will be performed.

Figure 7 SH capacity: Self-Sealing - partial / complete crack closing

CONCLUSIONS

The theoretical and experimental study regarding the dynamic performance of the strain 

hardening cement composites (SHCC) proves encouraging results and, as consequence, 

recommends these materials for structural seismic resistant elements. Their low strain 

rate sensitivity proves high energy absorption capacity even in case of seismic action or 

impact, no brittle failure and prevention of sudden collapse threat.

The Self-Healing capacity also proves the effectiveness of autogenous healing, both in 

terms of visual crack closing (even complete in case of very small microcracks) and 

good mechanical recovery when retesting the specimens after exposure to 28 wet and 

dry curing cycles.

Further data analysis and supplementary experimental procedures, involving different 

types of mixes and testing methods are necessary for better understanding of dynamic 

potential of SHCC.
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