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Abstract

Individual-based models (IBMs) informing public health policy should be calibrated to data

and provide estimates of uncertainty. Two main components of model-calibration methods

are the parameter-search strategy and the goodness-of-fit (GOF) measure; many options

exist for each of these. This review provides an overview of calibration methods used in

IBMs modelling infectious disease spread. We identified articles on PubMed employing sim-

ulation-based methods to calibrate IBMs informing public health policy in HIV, tuberculosis,

and malaria epidemiology published between 1 January 2013 and 31 December 2018. Arti-

cles were included if models stored individual-specific information, and calibration involved

comparing model output to population-level targets. We extracted information on parame-

ter-search strategies, GOF measures, and model validation. The PubMed search identified

653 candidate articles, of which 84 met the review criteria. Of the included articles, 40 (48%)

combined a quantitative GOF measure with an algorithmic parameter-search strategy–

either an optimisation algorithm (14/40) or a sampling algorithm (26/40). These 40 articles

varied widely in their choices of parameter-search strategies and GOF measures. For the

remaining 44 (52%) articles, the parameter-search strategy could either not be identified

(32/44) or was described as an informal, non-reproducible method (12/44). Of these 44 arti-

cles, the majority (25/44) were unclear about the GOF measure used; of the rest, only five

quantitatively evaluated GOF. Only a minority of the included articles, 14 (17%) provided a

rationale for their choice of model-calibration method. Model validation was reported in 31

(37%) articles. Reporting on calibration methods is far from optimal in epidemiological

modelling studies of HIV, malaria and TB transmission dynamics. The adoption of better

documented, algorithmic calibration methods could improve both reproducibility and the

quality of inference in model-based epidemiology. There is a need for research comparing

the performance of calibration methods to inform decisions about the parameter-search

strategies and GOF measures.
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Author summary

Calibration—that is, “fitting” the model to data—is a crucial part of using mathematical

models to better forecast and control the population-level spread of infectious diseases.

Evidence that the mathematical model is well-calibrated improves confidence that the

model provides a realistic picture of the consequences of health policy decisions. To make

informed decisions, Policymakers need information about uncertainty: i.e., what is the

range of likely outcomes (rather than just a single prediction). Thus, modellers should

also strive to provide accurate measurements of uncertainty, both for their model parame-

ters and for their predictions. This systematic review provides an overview of the methods

used to calibrate individual-based models (IBMs) of the spread of HIV, malaria, and

tuberculosis. We found that less than half of the reviewed articles used reproducible, non-

subjective calibration methods. For the remaining articles, the method could either not be

identified or was described as an informal, non-reproducible method. Only one-third of

the articles obtained estimates of parameter uncertainty. We conclude that the adoption

of better-documented, algorithmic calibration methods could improve both reproducibil-

ity and the quality of inference in model-based epidemiology.

Introduction

Individual-based models (IBMs) intended to inform public health policy should be calibrated

to real-world data and provide valid estimates of uncertainty [1], [2]. IBMs track information

for a simulated collection of interacting individuals [3]. IBMs allow for more detailed incorpo-

ration of heterogeneity, spatial structure, and individual-level adaptation (e.g. physiological or

behavioural changes) compared to other modelling frameworks [4]. This complexity makes

IBMs valuable planning tools, particularly in settings where real-world intricacies that are not

accounted for in simpler models have important effects [5], [6]. However, researchers and pol-

icymakers often battle with the question of how much value they can attach to the results of

IBMs [7]. Fitting an IBM to empirical data (calibration) improves confidence that the simula-

tion model provides a realistic and accurate estimate of the outcome of health policy decisions

(e.g. projection of the disease prevalence under different intervention strategies, or the cost-

effectiveness of different intervention strategies) [8]–[12]. Transparent reporting on calibra-

tion methods for IBMs is therefore required [11], [12].

Parameter values with accompanying confidence intervals used in IBMs are obtained from

the literature and are often obtained through statistical estimation. When researchers cannot esti-

mate parameters from empirical data, they obtain their likely values through calibration [12].

Parameter calibration is often difficult for IBMs because their greater complexity can render the

likelihood function analytically intractable (i.e. it is impossible to write down the likelihood func-

tion in closed form) or prevent explicit numerical calculation of the likelihood function [13]–

[15]. Consequently, simulation-based calibration methods that avoid the use of a likelihood func-

tion in closed form have been developed [16]. These methods run the model for different param-

eter sets to identify parameter sets producing model output that best resembles the summary

statistics obtained from the empirical data (e.g. disease prevalence over time). Formal simula-

tion-based calibration requires summary statistics (targets) from empirical data, a parameter-
search strategy for exploring the parameter space, a goodness-of-fit (GOF) measure to evaluate the

concordance between model output and targets, acceptance criteria to determine which parame-

ter sets produce model output close enough to the targets, and a stopping rule to determine when
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the calibration ends [9][17]. IBMs vary in their complexity (i.e. the number of parameters) and

the amount of data available for calibration and validation [10]. Simulation-based calibration of

IBMs of higher complexity is typically more computationally intensive [18], [19].

In this review, we pay particular attention to the parameter-search strategy and GOF mea-

sure used. Algorithmic parameter-search strategies can be divided into optimisation algorithms
and sampling algorithms [14], S2 Table describes commonly used algorithms. Optimisation

algorithms find the parameter combination that optimises the GOF, resulting in a single best

parameter combination. Examples include grid-search and iterative, descent-guided optimisa-

tion algorithms using simplex-based or direct search methods (e.g. the Nelder-Mead method)

[20], but many different algorithms exist [21]. Optimisation algorithms provide only point esti-

mates of parameters; once these are found, another algorithm may be used to obtain confidence

intervals (e.g. the profile likelihood method, Fisher information, etc.) [22], [23]. Sampling algo-

rithms aim to find a distribution of parameter values that approximate the likelihood surface or

posterior distribution. Examples include approximate Bayesian computation (ABC) methods

and sampling importance resampling [8], [13], [14], [24], [25]. Parameter distributions

obtained from sampling algorithms allow for the representation of correlations between param-

eters and for parameter uncertainty to be incorporated into model projections [2], [6], [8], [17],

[26]. Quantitative measures of GOF include distance measures (e.g. relative distance, squared

distance) and measures based on a surrogate likelihood function: the likelihood of observing the

target statistic under the assumption that the model output is a random draw from a presumed

distribution (e.g. binomial for prevalence statistics). As the model output is not necessarily dis-

tributed as presumed, we refer to this likelihood as the “surrogate” likelihood. A more subjective

method of calibration involves the manual adjustment of parameter values, followed by a visual

assessment of whether the model outputs resemble empirical data [27].

Previous research in the context of IBMs of HIV transmission found that 22 (69%) out of

32 included articles described the process through which the model was calibrated to data [12].

The impact of stochasticity on the model results, defined as the random variation in model

output induced by running the model multiple times using the same parameter value with a

different random seed, was summarised in nearly half (15/32) of the articles [12]. The depth of

reporting on calibration methods was highly variable [9], [12]. A systematic review in the con-

text of population-level health policy models, including 37 articles, found that 25(71%) of these

performed model calibration [28]. About half (12/25) of these articles reported on the calibra-

tion methods used, whereas the other half (13/25) used informal methods for parameter cali-

bration or did not report on the calibration methods [28]. Previous research on calibration

methods in cancer-simulation models in general–not IBMs specifically–found that 131 (85%)

out of 154 included articles may have calibrated at least one unknown parameter. Of the 131

articles that calibrated parameters, the majority (84/131) did not describe the use of a GOF

measure, the rest either used a quantitative GOF (27/131) such as the likelihood or distance

measures or used visual assessment of GOF (20/131) [9]. Only a few articles reported parame-

ter distributions resulting from calibration; most only presented a single best parameter com-

bination [9]. Information on the parameter-search strategy and stopping rules was generally

not well described, and acceptance criteria were rarely mentioned [9], [29]. Of the 154 articles

included in the review by Stout et al., 80 (52%) mentioned model validation [9]. However,

while previous studies have reviewed specific portions of the modelling literature, they either

did not focus on IBMs or did not focus on the calibration methods in much detail.

We conducted a systematic review of epidemiological studies using IBMs of the HIV,

malaria and tuberculosis (TB) epidemics, as these have been among the most investigated epi-

demics with the highest global burden of disease [30]. We aim to provide an overview of cur-

rent practices in the simulation-based calibration of IBMs.
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Results

Selection of articles for inclusion

The PubMed search resulted in 653 publications, of which 84 articles were included for review;

388 were excluded based on title and abstract, and another 181 were excluded based on a full-

text review (see Fig 1). The number of articles selected by publication year increased from

seven in 2013 to 20 in 2018.

Scope and objectives of included articles

S1 Table summarises the characteristics of the included articles. Fifty-eight (69%) of the

included articles presented IBMs in HIV research, 16 (19%) concerned malaria, and another

10 (12%) concerned tuberculosis.

Most articles, namely 56 (67%), investigated the effect of an intervention, 17 articles looked

at behavioural or biological explanations for the observed epidemic, and other goals (e.g.

parameter estimation, model development) were used in 17. In total, six (7%) articles had two

objectives. For most of these (5/6), one of the objectives was investigating the effect of an inter-

vention (see S1 Table).

Parameter-search strategies and measures of GOF

Of the included articles, 40 (48%) combined a quantitative measure of GOF with an algorith-

mic parameter-search strategy, which was an optimisation algorithm (14/40) or a sampling

Fig 1. PRISMA flow diagram detailing the selection process of articles included in the review.

https://doi.org/10.1371/journal.pcbi.1007893.g001
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algorithm (26/40) (see Fig 2). For the remaining 44 (52%) articles, the parameter-search strat-

egy could either not be identified (32/44) or was described as an informal, non-reproducible

method (12/44). Tables A, B and C in S1 Appendix show that there is no convincing evidence

that the parameter search strategy changed with publication year or differed by disease studied.

A brief description of the methods referred to in Fig 2 under optimisation algorithm and sam-

pling algorithm is provided in S2 Table.

Detailed information on calibration methods for the 14 (17%) articles using optimisation

algorithms is reported in Table 1. For the parameter-search strategy, most articles used either a

grid search (7/14), Latin square (1/14) or random draw from tolerable range (1/14), followed

by the selection of the single best parameter combination. Several iterative, descent-guided

optimisation algorithms (i.e. Nelder-Mead, interior-point algorithm, coordinate descent with

golden section search, random search mechanism) were used in the remaining articles (5/14).

Of these five articles, most (4/5) accepted a single best parameter combination without confi-

dence intervals, while the remaining article obtained confidence intervals around parameter

estimates (see S1 Text.). For the GOF measure, the most common choice was a squared dis-

tance (6/14). Various GOF measures were used in the remaining articles; these include abso-

lute distances (2/14) and R-squared (2/14).

Fig 2. Reporting and application of parameter search strategies in epidemiological studies.

https://doi.org/10.1371/journal.pcbi.1007893.g002
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Table 2 contains the details of the calibration methods in the 26 (31%) articles using sam-

pling algorithms. Random sampling from the prior, followed by rejection ABC, was used the

most (8/26). Different types of Bayesian calibration (7/26), Bayesian melding (3/26) and his-

tory matching with model emulation (3/26) were also used. Most articles (10/26) used the sur-

rogate likelihood as a measure of GOF, and Various GOF measures were used in the

remaining articles, these include absolute distances (4/26), relative distances (4/26) and

squared distances (4/26). (see Table 2).

From the 44 (52%) articles with unidentifiable or informal parameter-search strategies, the

majority (25/44) are also unclear about the GOF used, while the rest either relied on visual

inspection as a GOF (14/44) or used a quantitative GOF (5/44).

Only 14 (17%) of the 84 included articles provided a rationale for their choice of model-cali-

bration method. For example, McCreesh et al. [31] reported: “The model was fitted to the

empirical data using history matching with model emulation, which allowed uncertainties in

model inputs and outputs to be fully represented, and allowed realistic estimates of uncertainty

in model results to be obtained” (see S2 Text. for more examples). Other examples indicate

that an algorithmic calibration method failed to provide either a good fit or parameter esti-

mates: “Ultimately, we chose to use visual inspection because the survival curves did not fit

closely enough using the other two more quantitative approaches.” [32] Or “[Calibration] was

unable to resolve co-varying parameters. These parameters were adjusted by hand. . .” [33].

Ten out of the 84 articles included (12%) used a weighted calculation of GOF. Four articles

weighted the GOF based on the amount of data behind the summary statistic fitted to, for

example by weighting based on the inverse of the width of the confidence interval around the

data. In contrast, one article increased the weight for a data source for which fewer data was

available. Other strategies included weighting based on a subjective assessment of the quality

of the data, or weighting based on which data they wanted the model to fit best. One article

Table 1. Details of the calibration methods used in articles using optimisation algorithms for calibration, sorted by parameter search strategy algorithm.

Authors Year Pathogen Parameter search strategy algorithm GOF

Luo et al. 2018 HIV Grid search Absolute distance

Romero-Severson

et al.
2013 HIV Grid search Kolmogorov-Smirnov

Marshall et al. 2018 HIV Grid search R-squared

Goedel et al. 2018 HIV Grid search R-squared and Manhattan distance of parameters

Brookmeyer et al. 2014 HIV Grid search Squared distance

Suen et al. 2014 TB Grid search Number of model outputs within the confidence

intervals around the targets

Suen et al. 2015 TB Grid search Number of model outputs within the confidence

intervals around the targets

Bershteyn et al. 2013 HIV Iterative, descent-guided optimisation algorithm (Coordinate
descent w. golden section search)

Squared distance

Klein et al. 2015 HIV Iterative, descent-guided optimisation algorithm (Coordinate
descent w. golden section search)

Squared distance

Sauboin et al. 2015 Malaria Iterative, descent-guided optimisation algorithm (Interior point
algorithm, hill-climbing)

Squared distance

Knight et al. 2015 TB, HIV Iterative, descent-guided optimisation algorithm (Nelder-Mead) Squared distance

Kasaie et al. 2018 HIV Iterative, descent-guided optimisation algorithm (Random search
mechanism)

Absolute distance

Shrestha et al. 2017 TB Latin hypercube sampling Surrogate likelihood

Jewell et al. 2015 HIV Sampling from tolerable range Squared distance

https://doi.org/10.1371/journal.pcbi.1007893.t001
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down-weighted particular data to improve fit. Others stressed the importance of determining

weights a priori since weights are chosen subjectively.

Acceptance criteria and stopping rules

None (0/14) of the articles applying optimisation algorithms mentioned the acceptance criteria

or stopping rules. Acceptance criteria and stopping rules applied in studies using sampling

algorithms can be summarised as running the model until obtaining an arbitrary number of

accepted parameter combinations.

The number of target statistics, the number of calibrated parameters and

the size of the simulated population

The number of target statistics was explicitly mentioned in only three (3%) of the 84 included

articles, for 62 (74%) articles we had enough information to attempt to deduce this number

from either text or figures. The remaining 19 (23%) articles either provided incomplete infor-

mation (11/19) or no information (8/19). Some (4/65) of the articles for which we were able to

obtain the number of target statistics had different numbers of target statistics for calibration

in different locations or calibration to different diseases. The 61 (73%) articles for which we

Table 2. Details of the calibration methods in articles using sampling algorithms for calibration, sorted by parameter search strategy algorithm.

Authors Year Pathogen Parameter search strategy algorithm GOF

Cameron et al. 2015 Malaria Bayesian calibration (Combining model emulation with MCMC) Surrogate likelihood

Huynh et al. 2015 TB Bayesian calibration (Latin hypercube with IMIS) Surrogate likelihood

Chang et al. 2018 TB Bayesian calibration (Latin hypercube with IMIS) Surrogate likelihood

Penny et al. 2015 Malaria Bayesian calibration (MCMC) Surrogate likelihood

Penny et al. 2015 Malaria Bayesian calibration (MCMC) Surrogate likelihood

White et al. 2018 Malaria Bayesian calibration (MCMC) Surrogate likelihood

Schalkwyk et al. 2018 HIV Bayesian calibration (Random draw from prior with SIR) Surrogate likelihood

Abuelezam et al. 2016 HIV Bayesian melding Squared distance

McCormick et al. 2014 HIV Bayesian melding Surrogate likelihood

McCormick et al. 2017 HIV Bayesian melding Surrogate likelihood

Ciaranello et al. 2013 HIV Grid search, step-wise acceptance of parameter sets resulting in GOF < cut-off Absolute distance

McCreesh et al. 2017 HIV History matching with model emulation Implausibility measure

McCreesh et al. 2017 HIV History matching with model emulation Implausibility measure

McCreesh et al. 2018 HIV History matching with model emulation Implausibility measure

Shcherbacheva et al. 2018 Malaria Markov chain Monte Carlo Absolute distance

Johnson et al. 2016 HIV Random draw from prior with selection of best 500 parameter combinations Surrogate likelihood

Pizzitutti et al. 2015 Malaria Random draw from prior, stepwise calibration Absolute distance

Pizzitutti et al. 2018 Malaria Random draw from prior, stepwise calibration Squared distance

Nakagawa et al. 2016 HIV Rejection ABC (Random draw from prior) Relative distance

Nakagawa et al. 2017 HIV Rejection ABC (Random draw from prior) Chi-square

Cambiano et al. 2018 HIV Rejection ABC (Random draw from prior) Relative distance

Hontelez et al. 2013 HIV Rejection ABC (Random draw from prior) Squared distance

Phillips et al. 2013 HIV Rejection ABC (Random draw from prior) Relative distance

Phillips et al. 2015 HIV Rejection ABC (Random draw from prior) Relative distance

Shrestha et al. 2017 HIV Rejection ABC (Random draw from prior) Absolute distance

Tuite et al. 2017 TB Rejection ABC (Random draw from prior) Squared distance

IMIS, Incremental-mixture importance sampling; SIR, Sampling importance resampling; MCMC, Markov chain Monte Carlo.

https://doi.org/10.1371/journal.pcbi.1007893.t002
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were able to obtain a single count had a median number of target statistics of 23 (range 1–321).

A histogram of the number of target statistics is provided in figure A in S2 Appendix. The

number of target statistics differed between parameter search strategies (See Fig 3B, Kruskal-

Wallis chi-square = 8.610, p = 0.035), with articles using sampling strategies having more tar-

get statistics compared to articles for which we could not identify the parameter search strategy

(Wilcoxon rank-sum, Benjamini-Hochberg adjusted p-value = 0.025).

The number of calibrated parameters was explicitly mentioned in 11 (13%) of the 84

included articles, for another 53 (63%) articles it was possible to deduce this number from

either text or figures. The remaining 20 (24%) articles either provided incomplete information

(10/20) or no information at all (10/20). The 64 (75%) articles for which we were able to obtain

a count had a median number of calibrated parameters of 10 (range 1–96). A histogram of the

number of calibrated parameters is provided in figure B in S2 Appendix. The number of cali-

brated parameters differed between parameters search strategies (See Fig 3A, Kruskal-Wallis

chi-square = 9.304, p = 0.026), with articles using sampling strategies having higher numbers

of calibrated parameters compared to articles for which we could not identify the parameter

search strategy (Wilcoxon rank-sum, Benjamini-Hochberg adjusted p-value = 0.050).

For 55 (66%) articles, we obtained counts for both the number of target statistics and the

number of calibrated parameters. For many of these articles (17/55), the number of calibrated

parameters appeared to exceed the number of target statistics. A plot of the number of target

statistics against the number of calibrated parameters is provided in figure C in S2 Appendix.

Fig 3. Comparison of the number of calibrated parameters and target statistics between different parameter search strategies. (A) Boxplots of the number of

calibrated parameters for different parameter search strategies. (B) Boxplots of the number of target statistics for different parameter search strategies.

https://doi.org/10.1371/journal.pcbi.1007893.g003
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The size of the simulated population was explicitly mentioned in 54 (64%) of the 84

included articles, for another 9 (11%) articles it was possible to deduce this number from either

text or figures. The remaining 21 (25%) articles either provided incomplete information (3/21)

or no information at all (18/21). For the 63 (75%) articles for which we obtained a number, the

median population size was 78000 (range: 250–47000000). A histogram of the log10 of the size

of the simulated population is provided in figure D in S2 Appendix.

Computational aspects and the use of platforms

The software used to build IBM was not reported in 33 (39%) of the articles. Sixteen articles

(19%) used the low-level programming language C++, six (7%) used MATLAB, and another

six (7%) used Python. Various other computing platforms were used in the remaining 23

(28%) articles. A high-performance computing facility was used in 16 (19%) articles.

Several simulation tools (i.e. CEPAC [34], EMOD [35] HIV-CDM [36], MicroCOSM [37],

PATH [38], STDSIM [39] and TITAN [40]) were used in the articles modelling HIV. Similarly,

two platforms (i.e. EMOD [41] and OpenMalaria [42]) were used in the articles modelling

malaria. In the articles modelling tuberculosis, the only tool reported was EMOD [43].

Model validation

Only 31 (37%) articles mentioned that a validation of the model had been performed.

Discussion

More than half of IBMs we studied used non-reproducible or subjective calibration methods.

Articles that reported the use of formal calibration methods used a wide range of parameter-

search strategies and GOF measures. Only one-third of articles used calibration methods that

quantify parameter uncertainty. These findings are important because choices concerning the

calibration method can have substantial effects on model results and policy implications [2],

[6]–[8], [44]–[46].

We encourage authors to use the standardised Calibration Reporting Checklist of Stout

et al. [9]. Additionally, we propose an extended checklist in S3 Appendix based on the work

presented in this paper. While algorithmic parameter-search strategies are in principle repro-

ducible, unclear or incomplete reporting, and non-disclosure of software code can render

them de facto non-reproducible. [47]. Manual adjustment of parameter values and visual

inspection of GOF may perform equally well compared to other methods in terms of GOF

alone [48], may provide researchers with valuable insights into and familiarity with the model

[49], and can be useful for purely didactic purposes [50]–[52]. However, we advise against

using these methods in analyses intended to inform public health as they do not favour repro-

ducibility and involve subjective judgment, which may produce less than optimal calibration

results and usually leads to the acceptance of a single parameter set (i.e. does not provide

parameter uncertainty) [17]. On occasion, authors justified their choice of an informal method

by indicating that algorithmic calibration methods did not converge to provide parameter esti-

mates or failed to provide a satisfactory fit to the targets. A potential explanation for non-con-

vergence of an algorithmic calibration method is that the parameters in question are

unidentifiable, which is the case when a vast array of different parameter combinations provide

a comparably good fit to the target statistics. Performing manual calibration in such an

instance will deliver one set of parameters out of all of the parameter combinations that pro-

vide a fit. However, using this single parameter combination hides the fact that there is not

enough information to uniquely identify the best parameter values. Furthermore, model-sto-

chasticity provides the possibility that a great fit is found by chance for a parameter
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combination for which the probability of observing the target statistics is lower than for other

parameter combinations.

There are several methodological challenges in the calibration of individual-based models,

including the choice of calibration method–i.e. the combination of algorithmic parameter-

search strategy and GOF measure. The findings of the current review and previous research

suggest that there is no consensus on which calibration method to use [9], [10], [17], [53], [54].

Additionally, some of the articles reviewed here indicated that algorithmic calibration methods

had failed, leading the researchers to calibrate the model, either fully or partially, by hand.

These issues suggest that there is a need for research comparing the performance of calibration

methods to inform the choice of parameter-search strategy and GOF [10]. Previous research

on calibration methods focused on the GOF [27], computation time and analyst time [48].

Where applicable, correct estimation of the posterior [55] should be a core aspect of perfor-

mance. We further suggest investigating several contextual variables, including the amount

and nature of the empirical data to calibrate against, the number and type of model parameters

to be calibrated and insights to be derived from the calibrated model. As evident from our

review, these contextual variables vary widely across IBM studies in epidemiology.

Another methodological challenge in the calibration of IBMs is determining a priori

whether the target statistics provide sufficient information to calibrate the parameters [56],

especially when the model has many parameters [57]. Firstly, the target statistics are based on

variable amounts of raw data. Secondly, a time series of target statistics is often used, typically

violating the assumption of independence implied by many calibration methods. Thirdly, the

complexity of the model may hamper an appropriate specification of a prior parameter-distri-

bution (including the specification of a correlation between parameters) that is fully informed

by prior knowledge of the data-generating processes represented by the model. These prob-

lems preclude the use of standard statistical methods for calculating the number of target sta-

tistics that is sufficient for parameter calibration. A related problem is that target summary

statistics are based on data from different sources, including observational data that are poten-

tially affected by treatment-confounder feedback (e.g. time-dependent confounder CD4 cell

count affected by prior cART treatment) [58]. Another related problem is that of validation,

i.e. testing model performance on data that was not included in the calibration step. There is

considerable debate on when data should be reserved for this purpose [54].

The last methodological aspect of IBMs we would like to draw attention to is the size of the

simulated population [1], [59]. Intuitively, one would recommend that the simulated popula-

tion size should be similar to the size of the population from which the samples were drawn

that gave rise to the target statistics. However, for many studies, modelling the full population

is not feasible with currently available computational infrastructure. Instead, researchers often

adjust for the inflated stochasticity in the modelled system by averaging outcomes of interest

over multiple simulation runs per parameter set [59]. How choices around modelled popula-

tion size and analysis of model output affect the validity of model inference deserves further

attention in future research.

Our results in the setting of HIV, TB and malaria IBMs indicate that the use of formal cali-

bration methods (48% of articles) is higher than in previous research on simulation models in

general–not IBMs specifically. Previously, only one-fifth to one-third of articles reporting on

epidemiological models used a quantitative GOF [9], [60]. Our results concerning parameter

uncertainty are also optimistic compared to previous research by Stout et al. on calibration

methods in cancer models, which found that almost no articles quantified parameter uncer-

tainty, but instead accepted a single best-fitting parameter set as the result of the calibration

[9]. The same researchers reported that several different combinations of parameter-search

strategies and GOFs were used [9], outcomes which are similar to our findings. Stout et al.
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report that articles rarely describe acceptance criteria and stopping rules. Stout et al. also report

that a standard description of the calibration process lacks in almost all articles [9]. Similarly,

previous research on IBMs of HIV transmission found that reporting was lacking in the

description of calibration methods [12]. All of this is in agreement with the results of the cur-

rent review. Concerning the goals of the included articles, our results broadly agree with

Punyacharoensin et al. They found that the main goals of HIV transmission models for the

study of men who have sex with men are: making projections for the epidemic, investigating

how the incorporation of various assumptions around the behavioural or biological character-

istics affect these projections, and evaluating the impact of interventions [60].

To our knowledge, this is the first detailed review of methods used to calibrate IBMs of

HIV, malaria and TB epidemics. A limitation of our study is that we are unsure to what extent

the results are generalisable to other infectious diseases. We encourage future research on

other diseases to confirm or refute our current findings on the use of and reporting on meth-

ods in the calibration of IBMs in epidemiological research. Similarly, since our PubMed search

excluded articles matching “molecular”, we may have missed relevant articles. However, we

don’t believe this selection is likely to bias the findings of this review. Another possible concern

is that we don’t control for overlaps in authorship; thus, we effectively treat articles that come

from a given”research group” as independent observations, even though the calibration

method used by a particular group is often the same, as we show in Tables 1 and 2. Another

limitation is that the counts presented in this review often had to be deduced from the article,

this was a difficult and laborious task involving manual counting of target statistics in either

the text, figures or tables, a process that is prone to error. A final limitation is that we did not

go into the strengths and weaknesses of each method. Existing literature compares the perfor-

mance of alternative algorithms for calibrating the same model but does not allow us to draw

general conclusions [10]. As a starting point for comparison, we provide a brief description of

calibration methods in S2 Table.

In conclusion, it appears that calibrating individual-based models in epidemiological stud-

ies of HIV, malaria and TB transmission dynamics remains more of an art than a science.

Besides limited reproducibility for a majority of the modelling studies in our review, our find-

ings raise concerns over the correctness of model inference (e.g., estimated impact of past or

future interventions) for models that are poorly calibrated. The quality of inference and repro-

ducibility in model-based epidemiology could benefit from the adoption of algorithmic

parameter-search strategies and better-documented calibration and validation methods. We

recommend the use of sampling algorithms to obtain valid estimates of parameter uncertainty

and correlations between parameters. There is a need for simulation-based studies that com-

pare the performance, strengths and limitations of different methods for calibrating IBMs to

epidemiological data.

Materials and methods

This review was performed following the Preferred Reporting Items for Systematic Reviews

and Meta-Analyses (PRISMA) statement [61]. The PRISMA flow diagram details the selection

process of articles included for review (see Fig 1).

Search strategy and selection criteria

We identified articles on PubMed that employed simulation-based methods to calibrate IBMs

of HIV, malaria and tuberculosis, and that were published between 1 January 2013 and 31

December 2018. Six years seemed to be long enough to yield a sizeable amount of information

and to observe recent time trends, and short enough to be feasible and to speak to recent
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practices in model calibration in epidemiological modelling studies. The following search

query was performed on 31 January 2019: ‘((HIV[tiab] OR malaria[tiab] OR tuberculo�[tiab]
OR TB[tiab]) AND (infect� OR transmi� OR prevent�) AND (computer simulation[tiab] OR
microsimulation[tiab] OR simulation[tiab] OR agent-based[tiab] OR individual-based[tiab] OR
computer model�[tiab] OR computerized model�[tiab]) AND ("2013/01/01"[Date—publication]:
"2018/12/31"[Date—publication]) NOT(molecular))’.

Eligibility criteria were agreed upon by WD, JD and CMH before screening. Articles were

included if models stored individual-specific information and calibration involved running

the model and comparing model output to population-level targets expressed as summary sta-

tistics. We excluded review articles, statistical simulation studies, and studies that focused on

molecular biology and immunology because we were primarily interested in studies informing

public health policy.

Titles and abstracts were screened for eligibility by CMH, and difficult cases were discussed

with WD. If the title and abstract did not provide sufficient information for exclusion, a full-

text examination was performed. Full-text inclusion was performed by two independent

researchers (CMH and either ZM or ED) for a subset of 100 articles. CMH included 28 articles,

of which ZM and ED did not include six; these six articles were double-checked by WD and

consequently included for review. ZM included four articles that CMH did not include these

four articles were double-checked by WD and consequently not included for review. After

that, full-text inclusion was performed by CMH in consultation with WD.

Data extraction

For each article, we extracted information on the objective of the study (i.e. estimating the

effect of an intervention, investigating a behavioural or biological explanation for the observed

infectious disease outbreak or other goals including estimation of parameters or model devel-

opment), the parameter-search strategy and the GOF measure, the rationale for choosing this

calibration strategy over alternatives, and model validation. Acceptance criteria and stopping

rules are only relevant for articles applying algorithmic parameter-search strategies and col-

lected for that subset of articles. For readability purposes, we say “used” to mean “reported the

use of” throughout this review.

Information was collected independently by two reviewers (CMH and either ZM or ED)

for each article included using a prospectively developed form. This form was based on the

Calibration Reporting Checklist of Stout et al. [9] and was extended by several items, includ-

ing; the software and hardware used to build the model, the size of the initial population of

agents and the name of the modelling platform. Additionally, we inserted several items to col-

lect information on the number of calibrated parameters, the number of fixed parameters, and

the number of targets. We noted how information on these counts was reported in the articles

(i.e. the number was explicitly provided, could be deduced from text or figures, was provided

incompletely or was not provided).

Information on calibration methods was extracted verbatim, allowing for later classifica-

tion. Articles on which there was disagreement in the classification were discussed by WD, JD

and CMH until an agreement was reached. We classified articles reporting both algorithmic

and informal calibration as informal since doing part of the calibration informally makes the

entire calibration irreproducible.

Statistical analysis

R 3.5.0 (www.r-project.org) was used to perform the statistical analyses [62]. Differences

between groups in non-normally distributed continuous variables were analysed by the

PLOS COMPUTATIONAL BIOLOGY Calibration of individual-based models to epidemiological data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007893 May 11, 2020 12 / 17

http://www.r-project.org/
https://doi.org/10.1371/journal.pcbi.1007893


nonparametric Kruskal-Wallis test [63]. Wilcoxon rank-sum test was used to determine which

groups differed significantly [63]. Benjamini-Hochberg (BH) correction was used to adjust for

multiple testing [64].
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