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Abstract— The next generations of data centers require a scalable
optical transceiver technology. In this paper we present a silicon
photonics platform supporting single-channel data rates of 50Gb/s and
above. Advanced process options include 56Gb/s GeSi electro-
absorption modulators, high efficiency thermo-optic phase shifters with
Pz <5mW and silicon carrier depletion-based phase-shifters supporting
Mach-Zehnder and micro-ring modulators. The performance and
reliability of the key library components such as modulators, detectors,
fiber couplers and heaters is described.

I. INTRODUCTION

The next generations of data centers require a_scalable optical
transceiver technology to address the projected exponential growth of
datacenter networks. Silicon photonics (SiPh) based optical
interconnects are progressively emerging as a key technology to support
the increase of bandwidth at shorter distances. The SiPh is a cost-
effective and high yield manufacturing platform for co-integrating high
performance photonics components by leveraging the existing CMOS
foundries [1,2,3]. In this paper we present a silicon photonics platform
supporting 50Gb/s and above non-return-to-zero on-off keying (NRZ-
0OK) data rates. First, we briefly describe the SiPh platform integration
standard process based on 193nm lithography and germanium (Ge)
selective epitaxy growth (SEG) as well as the extra modules enabling
additional functionalities. The third section provides an overview of the
key performance metrics for the modulator, detectors, heaters and fiber
couplers. The reliability of the active components is reviewed in the last
section of this paper.

II. SILICON PHOTONICS PLATFORM DESCRIPTION
A. Process Technology

The imec 50Gb/s SiPh platform technology is based on 200mm SOI
substrates with 220nm of silicon on 2000nm of buried oxide (BOX) [4].
The fabrication processes are primarily based on the same tool
generation as the 130nm CMOS node augmented with 193nm
lithography, Ge SEG and MEMS-like deep silicon etch. The integration
flow schematic is provided in Fig. 1. The shallow (70nm), deep (150nm)
and fully (220nm) etched waveguides and grating couplers are patterned
with 193nm lithography and reactive ion etching (RIE) processes that
support features down to 130nm. The silicon junctions are then formed
with boron (p-type) and phosphorous (n-type) dopants using ion
implantation (I/I) and rapid thermal anneal. The technology supports up
to ten implant levels in silicon used for depletion-based Si Mach-
Zehnder (MZM) and micro-ring modulators (MRM), Ge photodetectors,
GeSi modulators and doped Si heaters. After the Si doping, the Ge
detectors are grown using Reduced-Pressure Chemical Vapor
Deposition (RPCVD) SEG on silicon followed by Chemical Mechanical
Polishing (CMP) and doping by I/I and activation by rapid thermal
anneal. The contacts are then formed by the means of a local nickel (Ni)
salicidation process (tnisi~20nm) and 0.25pum x 1.0um tungsten (W)
plugs landing on doped Ge and NiSi. The interconnects are made of two
levels of metals, respectively 450nm and 950nm thick, using standard
Cu damascene processes. The electrical back-end-of-line (BEOL)
process is completed with AlCu bondpads embedded in a SiN

passivation layer deposited with Plasma Enhanced Chemical Vapor
Deposition (PECVD), which is acting as a moisture barrier. Finally the
optical BEOL process consists of locally removing the multiple BEOL
dielectric layers and replacing them with ~2.5um of PECVD SiO; to
form the top layer of the grating couplers and the inverted tapers edge
couplers. The last step is the trench module that includes etching in two
steps the optical facet of the edge coupler and an 80pm deep recess in
the silicon substrate for fiber access to the etched facet.

One of the key quality factors of an integrated photonics technology
resides in the control of the waveguide physical dimensions. The
variability of the silicon thickness, the waveguide width and the
waveguide coupling space are provided in Fig.2. Particularly important
for silicon photonics devices, the overall silicon thickness 1-c variation
is 1.2nm with a within-wafer 1-c variation of ~0.7nm. Another important
parameter is the waveguide propagation loss that is impacted by the
roughness of etched surfaces and by the surrounding oxide. Fig.3 gives
the optical propagation loss at the wavelength of 1550nm for three
waveguide types: (1) 650nm wide, 70nm deep ~0.75dB/cm, (2) 450nm
wide 150nm deep ~1.2dB/cm and (3) 450nm wide 220nm deep ~
1.5dB/cm on par with the state-of-the-art processed with dry 193nm or
248nm lithography.

B. Special components and options

The baseline flow described in Fig.l (plain bullets) can be
complemented or modified with multiple options (hatched bullets)
enhancing or complementing the performance of various components.
First the Ge SEG can be replaced by GeSi SEG with a Si concentration
of ~1% for C-Band electro-absorption modulators. Additionally, a W
layer can be inserted between the W plugs and the M1-Cu serving as
metal heater which can be positioned directly above an optical device. A
third option creates a local cavity in the substrate underneath thermo-
optic devices via a local undercut of the silicon substrate below the BOX
to reduce the power consumption of the heaters. Finally the edge coupler
Si0; deposition can be replaced by a 3um PECVD SiON (silicon oxy-
nitride) film that is then further patterned to form a guided edge coupler.

Fig.4 provides an overview of the key devices that are fabricated in
this SiPh technology platform. An overview of the performance of the
main electro-optical devices is provided in the next section.

II1. DEVICE RESULTS
A. Silicon depletion modulators

The layout and cross-section of a reference p-n depletion-based
MZM modulator are shown in Fig.5(a,b). The junction is formed with
the p and n dopants, the series resistance is reduced with the n- and p-
body implants while the low contact resistance is made in the n+ and p+
regions, capped with NiSi. The propagation loss (free carrier absorption)
and the carrier-induced refractive index change are antagonist effects
proportional to the carrier density [5]. The trade-off between the two
effects is provided in Fig.6 for imec’s platform. The C-band MZM phase
shifter waveguide has a propagation loss of ~12dB/cm and a
Vir.Lz~1.45V.cm at OV bias. The static tuning for a 14nm Free Spectral
Range (FSR) imbalanced MZM is provided in Fig.7 and the eye
diagrams at 25Gb/s and 56Gb/s are shown in Fig.8 for a 1.5mm long



device that has a 27.5GHz 3dB electro-optical (EO) frequency response.
The “50Gb/s” MRM (Fig.9) uses a phase shifter with propagation loss
of 77dB/cm and Viz.Lx~0.65V.cm providing a modulation efficiency
greater than 50pm/V (Fig.10). This MRM exhibits a 47GHz 3dB EO
frequency response enabling open 56Gb/s NRZ-OOK eye diagrams even
with a modest peak-to-peak voltage (Vpp) of 1.0V (Fig.11). Imec’s
platform allows for two phase shifter conditions to be integrated side-by-
side.

B. GeSi electro-absorption modulators

Franz-Keldysh GeSi electro-absorption C-band modulators [6] can
also be integrated in imec’s platform [7]. The p-i-n diode is formed by
SEG of GeSi and subsequent p- and n-type doping in GeSi (Fig.12). A
0.8% Si concentration enables operation at | 560nm at room temperature.
The 3dB EO frequency response of the device exceeds 50GHz and
supports an open eye diagram at 56Gb/s (Fig.13) and even at 100Gb/s
NRZ-OOK [8].

C. Ge photo-detectors

The SiPh platform supports both Silicon-Contacted Lateral p-i-n
(SLPIN) [9] and Vertical p-i-n (VPIN) (Fig.4(b)) waveguide-based
photodetectors (PD) for which a cross-section TEM is given in Fig. 14(a).
The VPIN PD has an EO 3dB bandwidth exceeding S0GHz at Vyj,=-
1.0V (Fig.14(b)) supporting detection at least up to S0Gb/s (Fig.14(c))
while the SLPIN is used as a monitor photodiode with 10GHz bandwidth
. The VPIN PD has a C-band responsivity of ~0.9+/-0.1 A/W and a dark
current (lan) <100nA at -1V-bias (Fig.15(a,b)). The SLPIN PD has a
responsivity of ~1.1+/-0.1 A/W and las < 60nA at -1V bias.

D. Heaters

Thermo-optic tuning can be realized either using doped silicon
stripes or W wires (Fig.4(c)) and can be used with and without local
substrate undercut. The W heaters have a Px~17.5mW which can be
reduced by a factor of 4 when combined with the local substrate undercut
(Fig.16).

E. Fiber couplers

The surface fiber coupling is achieved with Si/poly-Si grating
couplers [10] with typical single polarization SMF28 fiber-to-waveguide
insertion loss of ~2.5dB for both C- and O-band (Fig.17). The inverted
taper edge coupler fiber-to-waveguide transmission spectra are provided
in Fig.18 when using a lensed SMF28 fiber. The C-band insertion loss is
less than 2dB from 1500nm to 1600nm while the O-band insertion loss
is less than 3dB from 1280nm to 1380nm when coupled to lensed fiber.

IV. RELIABILITY
A. Ge photo-detectors

2000h high-temperature operation life tests (HTOL) at 175°C and -
2V reverse bias (=2V,,), have been performed on VPIN and SLPIN Ge
photo-detectors. The tested VPIN detectors were 13.7um long and 2pm
wide, while the tested SLPIN detectors where 14.2um long and 400nm
wide. Fig.19 shows lgua at -1V as a function of 1/kgT, where kg is
Boltzmann’s constant, in the temperature range between 25°C and
175°C. The obtained activation energy E; of lux at -1V is 0.43eV for
both detectors. Fig.20 shows the Iy, at -2V and 175°C as a function of
time during HTOL. No increase of lg« with time is observed which
indicates no degradation. During the HTOL-test, at intermediate times,
the lark at -1V and 25°C is measured and shown in Fig.21. Most of the
VPIN detectors show no increase in Ly, One die at the wafer edge shows
an increase, but the lg,x remains low and within specification. The Ik
of the SLPIN detectors shows a small increase from 3.5nA to 11nA
(median value). In summary, the 4. at operation voltage remains within
specification after HTOL for both types of devices.

B. Silicon depletion modulators

A similar HTOL-test has been performed on silicon depletion
modulators, where the stress was done at 175°C with a 5.5V reverse bias.
The test structure was a 1.5mm long p-n diode without termination. As

the leakage of these devices was too low to be measured in our package-
level HTOL-system, the leakage current vs voltage response was
obtained before and after HTOL. As can be seen from Fig.22, little or no
degradation in Ik is observed, indicating a high reliability.

C. Integrated heaters

Both Si-heaters and W-heaters were tested for their resistance to
electromigration (EM). For the Si-heater, a 13pum and 1 pm wide line was
used. To avoid voiding in the feeder lines, a wide copper M1 line was
used and the structure was contacted with 2 rows of 4 contacts at each
end of the line. For the W-heater, a 150um long and 0.6pum line was used.
The line was connected to a wide Cu line with an overlap of 1um. The
W-heater was tested with an undercut in the Si under the heater. For each
structure, the average heating as a function of current was determined
based on resistance R vs temperature T and R vs [-measurements. For
the Si-heaters, EM was performed at 3 temperatures between 280 and
330°C and 3 currents between 1.2 and 2.4mA. The failure criterion was
set to 10% R-change. For the W-heaters, EM was performed at 3
temperatures between 200 and 260°C and a current of 10mA. Failure
criterion was set to open. Typical R-change vs time curves for both
structures are shown in Fig.23. For the Si-heaters, a gradual change
without line open is observed, where for the W-heaters the lines go to a
complete open. Maximum likelihood analyses of the data using Black’s
model as acceleration factor and the lognormal distribution as
distribution of failures times resulted in an E;=1.53(1.37,1.69) eV, an n-
factor=1.81(1.14,2.47) and a o= 0.43(0.35,0.55) for the Si-heaters and
an E;=1.49(0.66,2.35) eV and a 6=1.73(1.13,1.86) for the W-heaters (the
n-factor is not yet determined and assumed to be -1.5 in the extrapolation
described below), where the values in brackets represent the 95%
confidence interval. For both structures, the E, is high, which is
encouraging from a reliability point-of-view. The high o for the W-
heaters suggests process improvements leading to less variability would
be beneficial for reliability. Fig.24 shows the extrapolated lifetime for
1000ppm failures for an operating temperature of 125°C (left axis) and
the average line temperature (right axis) as a function of current. To
guarantee a 10y lifetime, the Si-heaters can withstand a line temperature
of 200°C, where this is limited to 160°C for the W-heaters. Also, the
samples had an undercut in the Si under the structure and the impact of
this undercut on reliability is not yet fully characterized.

V. CONCLUSION

We have a presented a silicon photonics platform supporting NRZ-
OOK data rates of 50Gb/s and above. We have reviewed the key
performance characteristics and the reliability of this complete
technology that will support the development of the next generation of
electro-optical transceivers.
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