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Abstract – We present here recent advances in the use of 

a small network of nonlinear micro-resonators integrated 

on a Silicon chip as a reservoir computer. We provide 

numerical evidence that this novel photonic integrated 

circuit can perform binary-type tasks (e.g.: the XOR task 

or multi-bit header recognition task) at bitrate of 20 Gb/s 

with a performance level adequate for telecom 

applications. We analyze the impact of key operational 

parameters (e.g.:  optical power injected) and topological 

properties of the network on the level of performance of 

the proposed architecture. Finally, we will compare the 

performance between this new chip with a previous 

generation of passive reservoir [1] realized with splitters 

and combiners without any internal nonlinearity. 

 

Introduction – In the last five years, there has been a 

reboot of neuro-inspired optical computing via the 

transposition of a simple, yet very efficient machine 

learning paradigm known as reservoir computing [2,3]. 

The proposed architectures rely on typical photonic 

architectures such as electro-optic oscillators [4,5], 

semiconductor laser diodes [6], or semi-conductor 

amplifiers [7]. Although the level of performance of these 

architectures reaches up to 1 million pattern recognitions 

per second [8] and an energy efficiency increased by two 

orders of magnitude [6], these setups still suffer from a 

lack of integration. 

 

The emergence of integrated photonics has attracted a lot 

attention in recent years with the promise of developing 

novel functionalities not exceeding a few square 

centimeters on a chip.  

 

In this proceeding, we report on the performance of a 

small network (4x4 nodes) of nonlinear micro-resonators 

on a silicon chip as candidate architecture for reservoir 

computing. We show there exist regimes of operation 

where the dynamical network outperforms a purely passive 

reservoir structure comprised of splitters and combiners 

[1]. This opens a new venue for the use of novel classes of 

photonic integrated circuits for neuro-inspired computing. 

 

1.  Theoretical Framework 

1.1 Model for the nonlinear micro-ring resonator  

 

The dynamical system under consideration is a non-linear 

micro-ring resonator, illustrated in Fig. 1(a). This system is 

described within the framework of coupled mode theory 

(CMT) by the following mathematical model [9]:  
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where a denotes the complex mode amplitude, ΔT the 

temperature variations and N the free carrier concentration; 

𝜔 is the frequency of the input optical carrier and 𝜔𝑟 the 

resonance frequency of the micro-ring, 𝛿𝜔𝑛𝑙(∆𝑇, 𝑁) is the 

nonlinear frequency detuning, 𝛾
𝑙𝑜𝑠𝑠

(|𝑎|2, 𝑁)  is the total 

loss in the cavity due to imperfect coupling, radiation and 

absorption.  

 

                       
 
Figure 1 – (a) Illustration of a micro-ring coupled to a waveguide 

with input (𝑠𝑖𝑛) and output (𝑠𝑜𝑢𝑡) signals and cavity mode (a). 

There is a simple mathematical relationship between the three 

quantities: 𝑠𝑜𝑢𝑡 = 𝑒𝑖𝜙𝑠𝑖𝑛 + 𝜅𝑎 with 𝜙 a coupling phase. (b) SWIRL 

topology of a 4x4 network. Each gray circle represents a micro-

ring. 
 

The coefficient 𝜅 is the coupling coefficient between the 

ring and the waveguide as shown in Fig. 1(a) and 𝑠𝑖𝑛 is the 

input optical signal. The remaining parameters are 

associated with material properties: 𝜏𝑝ℎ  and 𝜏𝑓𝑐  are the 
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relaxation times for the temperature and the free carriers, 

respectively. 𝛽
𝑆𝑖

 is the constant governing the two-photon 

absorption. 𝑐𝑝,𝑆𝑖 is the thermal capacity; 𝜌
𝑆𝑖

 is the density 

of silicon; 𝑛𝑔  is the group index equal in first 

approximation to the index of bulk silicon. 𝑉𝑡ℎ,𝐹𝐶𝐴  and 

Γ𝑡ℎ,𝐹𝐶𝐴  are the effective volumes and confinement factor 

for thermal and free-carrier absorption effects, 

respectively. Their numerical values are identical to those 

used in Ref. [9].  
 

1.2 Network structure  

 

We consider in our study the so-called SWIRL topology 

shown in Fig. 1(b). It allows for the presence of recurrent 

loops in the network necessary for solving tasks requiring 

memory (such as multi-step time-series forecasting) [4-6]. 

This topology has been already used for passive reservoir 

computer architectures [1]. 

 

1.3 Reservoir computing based on network of nonlinear 

micro-resonators  

 

In the reservoir computing approach [2,3], the structure of 

the network is not trained to solve a given task, only the 

weights of a linear combination �̂�
𝑅𝐶

 of the network’s 

states (readout layer) are trained to reproduce a target 

output 𝑦
𝑡𝑎𝑟𝑔𝑒𝑡

 based on a given set of inputs. 

  

In our simulations, we consider that input signal is sent to 

every node in the network. The output signal is realized as 

the weighted sum of the optical intensity of each node 

sampled at discrete times ∆𝑡 = 6.25 𝑝𝑠.  

 

The nodes are trained using ridge regression and five-fold 

cross-validation on sets of 10,000 bits used in the XOR 

task. The XOR task is a nonlinear problem consisting of 

estimating from the k-th bit x[k], the quantity y[k] defined 

by the following expression:  

 

𝑦[𝑘] = 𝑥[𝑘]⨁𝑥[𝑘 − 1].                                                  (4) 

 

We analyze the performance of our reservoir computing 

architecture in terms of bit error rate (BER). 

 

2.  Simulations results 
 

In this section, we perform a comparative performance 

analysis of 4x4 SWIRL networks with (i) passive 

components similar to that of Ref. [1] and (ii) with 

nonlinear micro-rings. 

 

We first study the influence of the size of a network of 

nonlinear micro-rings on the XOR-task performance at 

two different bit rates 10 Gb/s and 20 Gb/s. Figure 2(a) 

shows the level of performance for these various 

networks. Similar to an all-passive reservoir, the 

performance scales with the size of the reservoir. 

However, we observe consistently a lower BER at 20 

Gb/s. This dependence of performance on the data rate is 

linked to the presence of intrinsic time-scales of dynamics 

in the micro-ring that do not exist in purely passive 

reservoir. A bitrate of 20 Gb/s corresponds based on 

extensive simulations to an optimum operational point to 

use a reservoir with nonlinear micro-rings.  

In Fig. 2(b), we compare the performance on the XOR 

task of a reservoir with passive elements and another one 

with nonlinear rings. They operate under similar 

conditions in terms of number of nodes (4x4: 16 nodes), 

data rate (20 Gb/s), and injected optical power (0.5 mW 

per node). 

               
 

Figure 2 – (a) BER on the XOR task for a nxn reservoir with 

n=1,2,3,4 at two different bit rates: 10 Gb/s (black curve) and 20 

Gb/s (red curve). (b) Comparative performance in terms of BER 

for a 4x4 passive reservoir (black curve) and reservoir composed 

of nonlinear micro-ring (red curve) at 20 Gb/s. 

We analyze how the interdelay (the propagation delay 

between the nodes) in the reservoir relative to the bit rate 

influences the performance level (this test has been also 

realized in Ref. [1]). In these conditions, we notice that 

the minimum BER is smaller than the one obtained by a 

fully passive reservoir. We also observe that for an 

interdelay greater than 50 ps, the reservoir based on 

micro-rings systematically performs better than its passive 

counterpart.  

3.  Conclusion 

 

We have demonstrated in this proceeding preliminary 

results on the level of performance of a small network of 

nonlinear micro-rings integrated on a photonic chip for 

reservoir computing applications. The addition of 

nonlinear components allows us to perform better on the 

nonlinear XOR task in similar operating conditions. This 

motivates further investigation to fully characterize the 

performance of this type of architecture and opens new 

venues toward all-optical signal processing. 
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