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Abstract

Background. During the last decades, the use of simulations for training purposes 
has sparked wide interest. However, it is unclear how training format 
characteristics may affect learning, resulting in a lack of evidence-based 
guidelines for training developers and organizations.

Aim. We explore to what extent variation in the situations presented during 
a simulation training may improve learning outcomes. We test this research 
question in the context of a simulation-based training for improving 
innovation knowledge.

Methods. A sample of 131 business students was invited to participate in a study 
with a pretest and two posttests (within 48 hours after and 4 weeks later) 
and three conditions: a control group without training, an experimental 
training group with low situational variation, and an experimental training 
group with high situational variation.

Results and Conclusion. Compared to the control group, high but not low 
situational variation improved innovation knowledge. Participants’ 
prior innovation knowledge did not moderate the results. Hence, our 
findings indicate that ideally a simulation training includes multiple situations 
that offer learners various opportunities to practice innovation challenges.
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Background

A growing body of evidence suggests that simulation-based training can be effective 
for a variety of learning outcomes, sometimes outperforming traditional methods 
(Gegenfurtner et al., 2014; Sitzmann, 2011; Vogel et al., 2006). Simulations are often 
considered more appealing and engaging than traditional learning settings such as 
classroom lectures or textbooks materials, leading to higher completion rates (Liaw, 
2008; Ong & Lai, 2006). As a result, simulation-based training has become a popular 
method to improve cognitive outcomes (P. H. Anderson & Lawton, 2009; B. W. Mayer 
et al., 2011; Rogers, 2011; Scherpereel, 2005).

Researchers have focused on design characteristics to maximize the learning effec-
tiveness of simulation-based training (Bedwell et al., 2012; Garris et al., 2002; Rutten 
et al., 2012; Sanchez & Van Lysebetten, 2017; Sitzmann, 2011; Wilson et al., 2009). 
Some design characteristics have been connected to learning effectiveness, such as 
learner control (Landers & Reddock, 2017), multimedia elements (Gegenfurtner et al., 
2014), or engagement with training materials (Sitzmann, 2011).

One design characteristic that remains underexplored is situational variation. In 
simulation-based training learners are presented with challenging situations to con-
sider and respond to. Variation in these situations typically comes from differences in 
their surface characteristics, while still focusing on the same underlying learning prin-
ciples (Lievens & Anseel, 2007). To date, situational variation has remained largely 
unexplored in simulation-based training research. While some scholars have suggested 
that presenting multiple situations might improve learning (van Merriënboer et al., 
2006), it is unclear how much variation would benefit learning. Understanding the 
impact of situational variation on learning effectiveness could explain some of the dif-
ferent effects reported in the simulation-based training literature (Sanchez & Van 
Lysebetten, 2017). Adding situational variation could provide a simple, cost-effective 
strategy for organizations, but this necessitates research-based guidance on how much 
variation is effective. Therefore, the aim of the current article is to examine the effects 
of low versus high levels of situation variation in a simulation-based training on per-
formance on an innovation knowledge test.

Simulation-Based Training for Innovation Outcomes

Given variations in how simulations are defined in the research literature (Cannon-
Bowers & Bowers, 2009; Garris et al., 2002; Sitzmann, 2011) we clarify our definition 
of simulation-based training as formats that involve instructions and situations based 
in reality and delivered through a computer (Bell et al., 2008). Increased popularity of 
simulation-based training (Cannon-Bowers et al., 2010; Gegenfurtner et al., 2014; R. 
E. Mayer, 2011; Training Industry Report, 2017) has been fostered by their potential 
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to enhance learner motivation and the learning process (Bell et al., 2008; Sitzmann, 
2011). The realistic virtual environments of simulation-based training can be per-
ceived as fun, attractive, and approachable by learners, making learning goals more 
intrinsically motivating (Malone, 1981; Vogel et al., 2006). Given learner’s openness 
to simulations, many may experience higher self-efficacy because they feel capable 
repeating and performing tasks in a low stakes environment until their skills are satis-
factory (Bandura, 1977; Tennyson & Jorczak, 2008). Meta-analyses have demon-
strated that simulation-based trainings can stimulate self-efficacy, motivation, and 
learning (Gegenfurtner et al., 2014; Sitzmann, 2011).

Several practical advantages of simulation-based training have contributed to its 
rising popularity. For instance, a trainer’s presence is not always required because the 
training is delivered from a computer and learners may have flexibility to complete the 
training at a time and place that is convenient for them (Bell et al., 2008; Sun et al., 
2008). In addition, simulation training can be designed to be customizable to individ-
ual preferences such as pausing or adjusting the pacing of a training that can be con-
trolled by a user in a simulation (Bouhnik & Marcus, 2006; Landers & Reddock, 
2017). The customizability of simulations can be further beneficial when designing 
rare events on the job that are harder to train, such as implicit knowledge about the 
innovation process (Cannon-Bowers & Bowers, 2009).

Simulation-based training has been researched across domains and for various cog-
nitive outcomes including decision making for military commanders (Beal & Christ, 
2004), clinical reasoning for medical doctors making diagnoses (Consorti et al., 2012), 
and critical thinking skills and mental models for business students learning to manage 
organizations (Lovelace et al., 2016; Palmunen et al., 2013; Scherpereel, 2005). These 
studies suggest that participating in simulation-based training can improve cognitive 
skills, understanding one’s environment, decision making, and performance. Given 
these and other positive findings that utilized simulation training for complex cogni-
tive skills (Lainema & Nurmi, 2006; Siewiorek et al., 2013), we analyze advance-
ments in implicit innovation knowledge using simulation training.

It has been established that innovation is a crucial source of organizational suc-
cess (N. Anderson et al., 2004, 2014), which has allowed innovation to be widely 
pursued (Yuan & Woodman, 2010). One approach to improving innovation is to 
stimulate employees’ innovation potential where employees are actively involved 
in the ideas, actions, and decisions that may produce innovative solutions (Scott & 
Bruce, 1994). Much research has been devoted towards enhancing employee-driven 
innovation (N. Anderson et al., 2014; Birdi et al., 2016). However, the impact cog-
nitive factors have on innovation and how to advance implicit knowledge and 
underlying knowledge structures (e.g., schemas, mental models, cognitive frame-
works) of innovation, have been neglected in research (N. Anderson et al., 2014; 
Birdi et al., 2016). This is a relevant topic to pursue in research given evidence that 
suggests an individual’s effective decision making and performance is associated 
with accurate knowledge structures and insights in key principles of that domain 
(Chi et al., 1981; Dane et al., 2012; Gary & Wood, 2011; Gavetti & Levinthal, 
2000).
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When individuals encounter situations, they form mental representations of these 
experiences (Gentner & Stevens, 1983). In these mental representations, individuals 
can generate inferences and manipulate analogies, which helps them to develop 
implicit knowledge and connect this knowledge into a broader cognitive map of 
knowledge structures (i.e., mental models; Gary & Wood, 2011; Johnson-Laird, 1983). 
Studies have shown that knowledge structures help individuals understand causal rela-
tionships between contributory factors and situation outcomes. It could be assumed 
that accurate cognitive frameworks of the innovation domain may provide resources 
for individuals to overcome innovation challenges and may guide individuals in their 
decision-making during innovation projects. These knowledge structures may lead to 
better approaches and individual performance when confronted with complex innova-
tion projects. Given the sparse research on advancing implicit innovation knowledge 
(Dane & Pratt, 2007), there is no practical guidance on selecting and designing effec-
tive learning environments for this purpose. This study aims to identify effective train-
ing formats for implicit innovation knowledge to guide the design of future trainings.

Hypotheses and Research Questions

As a baseline hypothesis, we first test whether the simulation training has a main effect 
on the targeted outcome, performance on an innovation knowledge test. Because there 
are compelling arguments for positive and negative effects of including more variation 
in simulation tests, we articulated competing hypotheses for variation:

Hypothesis 1. Learners in a simulation training for innovation will have better 
innovation knowledge than learners who receive no training.

Working memory (i.e., the cognitive system that allows individuals to retain and pro-
cess information; Baddeley, 2003) has a limited capacity (Baddeley, 1992). The men-
tal activity demanded from working memory is defined as cognitive load (van Gog 
et al., 2010). When this limited capacity of working memory is reached there is cogni-
tive overload and the individual is not able to concentrate or focus, leading to an 
inability to process relevant information, integrate new and prior knowledge, and hin-
dering learning (Gathercole & Alloway, 2012).

Cognitive load theory suggests that training design should reduce cognitive load 
and the demands placed on working memory (Paas et al., 2003). To this end, a training 
should; (a) find an optimal level of complexity and difficulty in the materials (i.e., 
intrinsic load), (b) reduce factors that do not facilitate learning such as distracting and 
unnecessary stimuli (i.e., extraneous load), and (c) support cognitive load for relevant 
learning materials involved with mental model formation (i.e., germane load). This, 
simulation design should optimize intrinsic load and germane load and minimize 
extraneous load.

Offering a variety of situations in a simulation may induce germane load and stim-
ulate the learning processes necessary for cognitive learning (i.e., mental model acqui-
sition). When a learner resolves different versions of the same task, the learner will 
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receive more opportunity to practice and to apply the cognitive processes of selecting, 
organizing, and integrating relevant information into the knowledge structures, which 
implies deep cognitive learning. Situational variations also provide more opportunity 
to detect common principles and similarities across different situations, distinguish 
relevant information from irrelevant cues, and identify the range of situations in which 
the principles can be applied (J. R. Anderson, 1982; Van Gerven et al., 2006). Higher 
situational variation may give leaners more opportunities to integrate the underlying 
structures, insights, and principles into richer and accurate mental models, which drive 
learning. Thus, on one hand, we hypothesize:

Hypothesis 2a. A high level of situational variation in a simulation-based training 
will lead to more innovation knowledge compared to a low level of situational 
variation.

However, from a cognitive load perspective, it can be argued that training is more 
complex when there is more situational variation because the learner must process 
more information. Greater complexity induces a higher intrinsic load, which requires 
more mental activity from the learner’s working memory. Since the working memory 
has a limited capability to process information (Baddeley, 1992; Cook, 2006), too 
much situational variation could result in cognitive overload (i.e., with high intrinsic 
load, the training becomes too complex for the learner). This could undermine training 
effectiveness because the learner might become unable to concentrate and process the 
relevant information, which is vital for effective learning. Thus, on the other hand, we 
provide a competing hypothesis:

Hypothesis 2b. A high level of situational variation in a simulation-based training 
will lead to less innovation knowledge compared to a low level of situational 
variation.

Finally, we also examine whether prior innovation knowledge moderates the effect 
of variation level. Prior knowledge may provide an advantage to learners as it can sup-
port the germane load induced by the training, thereby facilitating learning because it 
requires less mental effort during the training. Also, prior knowledge may lower 
intrinsic load and extraneous load because learners with prior knowledge understand 
the provided situations (due to existing mental models). This makes it easier to process 
the varying information offered in the situations and helps learners avoid distracting 
stimuli during training. These reductions in cognitive load may increase mental capac-
ity in the working memory to optimize the learning process. Accordingly, we expect 
that learners with adequate prior innovation knowledge may benefit more from a high 
level of variation due to their ability to filter the provided information. Thus, we 
hypothesize:

Hypothesis 3. Learners’ prior innovation knowledge will moderate the effect of 
variation level (i.e., low versus high) on innovation knowledge. Learners with high 
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prior knowledge will benefit from high situational variation more than learners 
with low prior innovation knowledge.

Materials and Methods

Sample

This research included 131 students (45.9% male, 54.1% female) enrolled in a busi-
ness and management program at a Belgian university. Participants ranged from 19 to 
29 years of age (M = 21, SD = 2). The majority held a secondary degree (88.8%), 
10.4% bachelor’s degree, and 1% doctoral degree. A sizeable number of participants 
did not participate in later phases of the study, which is common for multi-week online 
training settings (Brown, 2001). Table 1 shows the final sample size per condition for 
each study phase after attrition. Of the original 131 participants, 63% performed the 
first post-test at Time 3 (48 hours later), and 44% performed the second post-test at 
Time 4 (4 weeks later).

This research has been conducted following the ethical requirements established by 
the Belgian national board of ethics. There was no financial or course-related incen-
tives; participation was voluntary. Students were informed they could stop participat-
ing at any time.

Research Protocol

The study involved four phases administered online via e-mail invitations, see Figure 
1. Phase 1 included a pre-test for all participants. Two weeks later in phase two, par-
ticipants in the experimental condition received a link to the training. In phase 3 a first 
post-test was given to all participants. Two weeks later in phase 4 a second pots-test 
was given to all participants.

Control Group

The control group completed the pre-test and both post-tests but did not receive any 
training.

Table 1. Final Sample Distribution by Condition at Each Time.

Condition Time 1 Time 2 Time 3 Time 4

Control 43 - - 31 22
Experimental Low SV 46 37 25 17
Experimental High SV 42 33 26 19
Total n 131 70 82 58

Note. SV = Situational Variation Training.
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Experimental Groups

The experimental groups completed the pre-test followed by a training simulation. 
One group (i.e., low situational variation) received three situations and the other (i.e., 
high situational variation) received six situations in the training. The number of situa-
tions was determined by the withdraw point of participants in a pilot test. Participant 
feedback revealed the training was too long, when it contained nine situations, to 
retain full attention. Six situations were used in the high situation variation as this was 
near the natural withdraw point. Half the situations were used in the low situation 
variation group because one would have provided no variation and the variation for 
two situations would have been limited (see Gary et al., 2012).

Attrition and Pre-Training Differences

We performed one-way analyses of variance (ANOVAs) and chi-square tests to mea-
sure the effect of attrition on the different study conditions with regard to demographic 
characteristics, performance scores for training motivation, and prior innovation 
knowledge at Time 1. We found no significant differences due to attrition (all p > .05). 
In addition, participants who only completed the pre-test at Time 1 were excluded 
from further analysis on the basis of missing data.

We also performed one-way ANOVAs and chi-square tests to identify pre-training 
(Time 1) differences across conditions for age, gender, level of education, training 
motivation, or prior innovation knowledge (all p > .05). None of the analyses showed 
significant results, indicating that random assignment was effective for ensuring the 
three groups were similar before training.

Intervention

The simulation training consisted of situations mimicking real-life innovation chal-
lenges. Participants were instructed to write actions they would take to 

Figure 1. Study overview.
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solve the innovation situation, and explain the effectiveness of their approach. Next, 
participants received seven possible response actions and rated the effectiveness of 
each action on a seven-point scale, for which they received automatic feedback. This 
feedback included effectiveness ratings from innovation experts. Next, participants 
received a comprehensive and structured expert model with instructions to compare 
their solution to the expert model, see Figure 2. The procedure repeated for each situ-
ation. Multiple-choice questions requesting feedback on the situation were used as an 
attention check.

Training materials. The innovation situations in the simulation were developed using 
an inductive approach by two researchers, following the protocol for situational judg-
ment test development (Lievens & Anseel, 2007; Lievens et al., 2008). For the pur-
poses of this study, nine of the initial 70 situations were selected (i.e., six for training 
and three as performance measures). These situations captured innovation challenges 
such as selecting innovative ideas, gathering support to implement ideas, managing 
production complications, and communication issues with clients. Moreover, to ensure 
the realism of the simulation task, the situations were supplemented with audio, graph-
ics, and interactive activities. Appendix A (see Supplemental Material) provides 
images of a situation used in the simulation task.

Figure 2. Different steps of the innovation simulation training.
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Feedback materials. For each situation in the training participants were asked to rate 
seven response actions. Input was provided by 56 innovation experts1 and 18 laypeo-
ple2 to generate these response actions, which were reviewed and rated on their effec-
tiveness. Response actions with low agreement between raters using intra-class 
coefficients (ICC < .80) were excluded. The average effectiveness score from experts 
was used as the effectiveness rating in the study.

Expert models. The expert models that participants used to make comparisons with 
their own decisions were generated for each situations by 10 innovation experts using 
a think-aloud protocol (Ericsson & Simon, 1993; Hoffman et al., 1995). Interviews 
were transcribed and consistent structures and similar information in the experts’ solu-
tions were highlighted and aggregated to design a comprehensive and structured 
expert model for each situation (see Day et al., 2001). Each expert model yielded: (a) 
a comprehensive approach to problem solving; i.e., with a sequence of steps showing 
how the specific innovation situation can be effectively resolved, (b) various innova-
tion principles, such as rules of thumb that are in line with the experts’ simplified 
mental models of the innovation process and are applied when confronted with com-
plex and uncertain situations (Gary & Wood, 2011), and (c) explanations of why these 
steps and principles would be effective. The expert models were similar in length and 
level of detail. Appendix B (see Supplemental Material) provides an example of an 
expert model used in the simulation training.

Measurements

Demographic data. At Time 1 we obtained data about the participants’ gender, age, 
and educational level.

Training motivation. As a control, participants were asked to complete a training moti-
vation questionnaire (Tharenou, 2001) at Time 1. The scale consisted of seven items 
such as, “I try to learn as much as I can from Training & Development programs.” 
Agreement was on a Likert type scale from 1 = strongly disagree to 5 = strongly 
agree. The scale’s Cronbach’s alpha was .79.

Innovation knowledge. The simulated innovation situations were used to measure par-
ticipants’ innovation knowledge. At Time 1, one simulated innovation situation was 
used to measure the participants’ prior innovation knowledge. For both post-training 
innovation knowledge tests, we used a simulated innovation situation that was also 
used during the training.

During these simulations, participants provided written responses that were scored 
by two independent raters who were trained to use the coding scheme. The coding 
scheme guided raters to determine if (1) an effective action was proposed in the solu-
tion, (2) the solution was structured and detailed, (3) the solution held correct and 
comprehensive explanations, and (4) innovative principles were used. The maximum 
possible score was 20 points.
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Participants’ scores on the innovation knowledge tests were at Time 1: M = 4.94, 
SD = 3.49, ICC = .91, n = 131; Time 3: M = 5.72, SD = 2.71, ICC = .93, n = 82; 
and Time 4: M = 7.97, SD = 4.77, ICC = .94, n = 58. The inter-rater reliability scores 
were adequate and in line with previous studies (see Jones, 1981).

Analogical learning. To determine if participants could apply their learned knowledge 
directly to a new situation with the same solution, we presented participants with a 
novel innovation situation at Time 3 and at Time 4 (Gentner et al., 2003). The same 
coding schema and methodology were used to score the situations. The mean scores 
were at Time 3 (M = 7.65, SD = 3.48, ICC = .93, n = 82) and Time 4 (M = 8.02, 
SD = 4.17, ICC = .90, n = 58).

Results

Descriptive Statistics and Correlations

Table 2 presents the means, standard deviations, and correlations between the study 
variables. A significant negative relation was observed between gender and innovation 
knowledge at Time 3 (r = −.21; p < .05). Prior innovation knowledge had significant 
positive relationships with innovation knowledge (r = .23, p < .01) and analogical 
learning (r = .31, p < .01) at Time 3. Training motivation did not have a significant 
correlation with innovation knowledge at either post-test (for Time 3, r = .04, p > .05; 
and for Time 4, r = .20, p > .05). Furthermore, we found that innovation knowledge 
at Time 3 and Time 4 significantly correlated (r = .73; p < .01), and there was also a 
significant positive correlation for analogical learning between Time 3 and Time 4 
(r = .50; p <.01). In addition, innovation knowledge at Time 3 had a moderate positive 
relation with analogical learning at Time 3 (r = .60; p < .01) and Time 4 (r = .62; p < 
.01), while there was a significant correlation at Time 4 (r = .70; p > .05).

Table 2. Means, Standard Deviations, and Correlations.

M SD 1 2 3 4 5 6 7

1. Gender - -a - -a - -  
2. Age 21.04 1.74 −.41** - -  
3. Training Motivation 3.90 0.39 .10 −.07 - -  
4. Prior Knowledge 4.94 3.49 −.01 .11 −.04 - -  
5. Innovation Knowledge (T3) 5.72 2.71 −.21* −.05 .04 .23* - -  
6. Innovation Knowledge (T4) 7.97 4.77 −.01 −.03 .20 .15 .73** - -  
7. Analogical Learning (T3) 7.65 3.48 .20 .10 .16 .31** .60** .56** - -
8. Analogical Learning (T4) 8.02 4.17 −.16 −.04 .05 .21 .62** .70** .50**

Note. Gender: 0 = male, 1 = female. T3 = Time 3; T4 = Time 4.
aMeans and SDs could not be calculated since they are categorical variables.
*p < .05, **p < .01.
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Test of Hypotheses

Table 3 shows the means and standard deviations for innovation knowledge and ana-
logical learning for Time 3 and Time 4.

First, we conducted ANOVAs with training condition as the independent variable 
and innovation knowledge and analogical learning as the dependent variables for both 
Time 3 and Time 4 (Hypothesis 1). For innovation knowledge, we found a significant 
difference between the three conditions at both Time 3, F(2, 79) = 5.59, p = .005 and 
at Time 4, F(2, 55) = 3.41, p = .04. There was no significant difference in analogical 
learning across conditions, neither at Time 3, F(2, 80) = 1.62, p = .20 nor at Time 4, 
F(2, 54) = .21, p = .814.

We proceeded with a contrast test conducted via a General Linear Model-procedure 
for the dependent variable of innovation knowledge measured at Time 3 and Time 4 to 
further examine whether there was a difference between the combined mean score of 
the two training conditions and the mean score of the control condition. Since there 
was no significant differences between the training conditions for analogical learning, 
no further analyses were conducted for this outcome.

Innovation knowledge was significantly higher in the training groups compared to 
the control group for both post-tests. There was a mean increase of 1.51, 95% CI [.34, 
.2.67], p = .01 for Time 3 and a mean increase of 3.07, 95% CI [.58, 5.54], p = .02 for 
Time 4. Our findings indicate that participants scored significantly higher on the inno-
vation knowledge test immediately and 4 weeks after completing a simulation training 
when compared to a group that received no training. However, this was not found for 
analogical learning. In sum, we only found partial support for Hypothesis 1.

Table 4 shows the results of the Tukey post-hoc tests for innovation knowledge as 
a dependent variable for Time 3 and Time 4. These analyses were conducted to com-
pare differences across the three conditions for innovation knowledge to test for the 
competing Hypotheses 2a and 2b. Innovation knowledge mean scores at Time 3 and 
Time 4 increased from the control group, to the low situational variation group, and to 
the high situational variation group (see Table 3). However, the only significant differ-
ences were the mean increase in innovation knowledge at Time 3 comparing the con-
trol group and high situational variation group (2.26, 95% CI [.63, 3.9], p = .004; see 

Table 3. Means and Standard Deviations for Cognitive Outcome Tests by Condition.

Condition

Innovation Knowledge Analogical Learning

T3 T4 T3 T4

M SD M SD M SD M SD

Control 4.77 1.80 6.05 4.82 6.77 3.23 7.77 3.02
Experimental Low SV 5.52 2.68 8.53 4.95 8.31 3.79 7.75 5.25
Experimental High SV 7.04 3.03 9.68 3.87 8.00 3.27 8.53 4.48

Note. Possible score range 0-20. T3 = Time 3; T4 = Time 4; SV = Situational Variation Training.
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Table 4) and the mean increase at Time 4 comparing the control group and high situ-
ational variation group (3.64, 95% CI [.19, 7.09], p = .037; see Table 4). No post-hoc 
tests on analogical learning were conducted since one-way ANOVAs did not reveal 
significant differences.

Simulation training with high situational variation was effective in improving inno-
vation knowledge initially and 4 weeks after the training in comparison with a control 
group that received no training. However, we did not find significant differences 
between the training condition with low situational variation and the control condition 
or between the two training conditions with different situational variability (i.e., low 
vs. high) for either post-test. In summary, we found partial support for Hypothesis 2a 
suggesting that a high level of situational variation can improve innovation knowledge 
compared to a control group. So the competing Hypothesis 2b was not supported.

Hypothesis 3 was tested via multiple regression analyses to examine the interaction 
effect of situational variation level (i.e., low vs. high) and prior innovation knowledge 
on the dependent variables of innovation knowledge and analogical learning (control-
ling for both main effects).

There was no significant moderator effect of prior innovation knowledge, as evi-
denced by the coefficients of the interaction term for Time 3 (b = .29, SE = .27, p = .28) 
and Time 4 (b = .69, SE = .51, p = .19) for innovation knowledge as the dependent 
variable. Similarly, when analogical learning was the dependent variable, the coeffi-
cients of the interaction term were not significant for Time 3 (b = .02, SE = .32, p = .96) 
or Time 4 (b = .50, SE = .56, p = .38). Consequently, Hypothesis 3 is not supported.

Discussion

This study aimed at improving the understanding of an important but underexplored 
training design characteristic, namely situational variation in simulation training. 
More specifically, we explored whether a high level of situational variation is more 

Table 4. Post-hoc Tukey Tests (ANOVA) for Innovation Knowledge.

Condition Comparison Mean Differencea Significance CI

Time 3 (N = 82)  
 Control Low SV −0.75 .53 −2.40, 0.91
 High SV −2.26 .004** 3.90, 0.63
 Low SV High SV −1.52 .10 −3.24, 0.20
  
Time 4 (N = 58)  
 Control Low SV −2.49 .22 −6.04, 1.07
 High SV −3.64 .04* −7.09, −0.19
 Low SV High SV −1.16 .73 −4.83, 2.52

Note. CI = Confidence Interval; SV = Situational Variation Training.
aDifference between the marginal means of the condition and its comparison.
*p < .05. **p < .01.
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effective than a low level and whether this difference is dependent on the learners’ 
prior knowledge.

First, our results supported that innovation knowledge can be advanced by com-
pleting simulation-based training. Participants who received simulation training were 
better at solving innovation problem situations than those who did not. The learning 
effect was observed immediately after training and also 4 weeks later. However, par-
ticipants were not able to apply their knowledge to solve new related situations, nei-
ther immediately nor 4 weeks after training. A possible explanation might be that the 
small sample sizes (partly caused by participant attrition) prevented the detection of 
differences for analogical learning. Another explanation might be that it is difficult to 
train a complex cognitive outcome such as innovation knowledge when only provid-
ing artificial situations. Others have suggested that learners might not incorporate rel-
evant information into their knowledge structures due to a lack of verbalization of 
what is processed during simulation training (Leemkuil & Jong, 2011; Wouters et al., 
2008), and this hinders its application in new situations. Thus, we can assume that 
simulation tasks should ideally be part of a broader training context (Sitzmann, 2011; 
Wouters & van Oostendorp, 2017) with supplemental instructions (e.g., a debriefing 
possibility in which learners can discuss their learned insights).

Second, our findings suggest that only simulation training with an extensive set of 
varying innovation process situations yielded a significant increase in innovation 
knowledge compared to a control group. However, no significant differences for ana-
logical learning were found (i.e., participants were unable to apply learned innovation 
knowledge to new and unfamiliar innovation situations). This seems contrary to the 
findings of Gary et al. (2012) who reported positive effects by adding only one situa-
tion to improve strategic decision making. However, our findings suggest that no cog-
nitive overload of the working memory was induced. Greater variability did not 
hamper learning but rather improved innovation knowledge. Thus, it can be assumed 
that more opportunities to practice supported the germane load produced by the train-
ing and led to cognitive learning. The results also suggest that the higher level of situ-
ational variation did not produce a higher level of intrinsic load; training with more 
variability was not too complex to impede innovation knowledge, as otherwise no 
learning would have occurred. Of the two possibilities we investigated, we found more 
evidence supporting the effectiveness of using a higher level of situational variation.

Third, further drawing on theories of mental model formation (Moreno & Mayer, 
2005) and cognitive load theory (Sweller, 1988), we expected that prior knowledge 
would play a moderating role. Participants with low and high levels of prior knowl-
edge would benefit more from receiving training with low and high variability, respec-
tively. Our results did not support this hypothesis. Prior knowledge did not seem to 
influence the optimal number of situations during training. However, given that our 
sample only consisted of students with no prior experience of making decisions or 
leading organizational innovation projects, we did not detect significant variance in 
prior innovation knowledge (M = 4.94, SD = 3.49). This minimal variance in prior 
knowledge, combined with our small sample size, is a probable explanation for why 
we did not observe a moderating effect of prior knowledge. Future research could 
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investigate the moderating role of prior knowledge on the level of variability in 
improving cognitive outcomes, with a sample containing differing degrees of exper-
tise (e.g., experts, novices, and naïves).

Practical Implications

Our study has direct implications for the design of simulation-based training for cogni-
tive outcomes. Given that organizations prefer efficient employee training, it would be 
beneficial if training designers focus on developing simulation-based training that 
enables participants to transfer knowledge and skills they learn into different context. 
In order to attain this goal, we recommend developing and implementing more exten-
sive training designs with multiple situations that have variable surface characteristics 
but the same underlying structure. Irrespective of prior participant knowledge, this is 
a better format than presenting a smaller variety of situations. This should help build a 
broader knowledge foundation in learners, which can improve their understanding and 
performance. This recommendation aligns well with a meta-analysis for leadership 
training. Lacerenza et al. (2017) demonstrated that longer training duration (i.e., more 
extensive training) was more effective to train leadership skills; however, caution is 
needed. In our pilot test, participants tended to drop out when we utilized a training 
with nine situations. This indicates that simulation developers need to strike a balance 
between variation and brevity. Therefore, we would recommend incorporating an 
option for the learner to control when to pause and continue the training. This is sup-
ported by previous research suggesting integrating learner control into simulation 
training designs (Landers & Reddock, 2017) to prevent learners from becoming demo-
tivated by feeling overwhelmed.

Limitations of the Present Study

Our results should be evaluated in the light of some limitations. First, we did not mea-
sure the underlying theoretical mechanisms of mental model formation (i.e., the cogni-
tive processes of selecting, organizing, and integrating) or cognitive load experienced 
by the learners. Second, only students participated. We should be cautious in general-
izing these findings to a business or organizational context. Third, there was attrition 
for both post-tests resulting in a smaller sample than expected. Although we took mul-
tiple actions to counter attrition (e.g., professors emphasized the importance of partici-
pation, a motivational information brochure was sent prior to the program start, and 
multiple reminder emails were sent), a sizeable number of participants still dropped 
out. A possible explanation is that the program was time intensive, so participants were 
less motivated to complete the post-tests. Also, encountering technical difficulties 
(e.g., slow internet, error notifications, etc.) during online training results in higher 
attrition levels (Sitzmann et al., 2010). Despite this, training conditions were still com-
parable regarding gender, age, training motivation, and prior knowledge. A final short-
coming of the study is that due to the online learning context, we had limited control 
regarding how, where, and when participants completed the different study phases, 
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which may have decreased internal validity. We tried to counter lack of control by 
emphasizing that participants were required to complete the different phases at a loca-
tion where it was quiet and they were not distracted. However, as there is no clarity on 
the impact of the real-life learning environment when learning via a simulation train-
ing, further research is needed to specify how this influences the learning process.

Suggestions for Future Research

Future research should explore the underlying cognitive mechanisms influencing 
learning processes during simulation-based training. For instance, by applying recent 
technologies such as eye tracking, researchers could clarify which information learn-
ers focus on during training (Gegenfurtner & Seppänen, 2013). Including a cognitive 
load measure would also help to understand how much cognitive load the training 
produces and how this impacts learning. This would clarify the impact of cognitive 
load and attention span during training.

To better comprehend the impact of situational variation, it may help to explore a 
curvilinear relation of situational variation and learning effectiveness. Too little varia-
tion is not beneficial, but our pilot study suggests that excessive variation is also not 
ideal. For this purpose, a study with more levels of situational variation should be car-
ried out.

Another underexplored simulation characteristic that might impact the participants’ 
experience is the role they are required to adopt in different situations. In other words, 
the perspective from which the participant is involved in the situation. In typical busi-
ness simulations, participants are often required to take on the role of an employee or 
manager. For the purpose of developing a richer and broader mental model, it might be 
interesting to let participants solve situations from the perspectives of different stake-
holders and adopt multiple roles. Rather than changing the context, the decision-mak-
ing role can vary the perspective of the situation and thus the knowledge structures 
may be expanded.

An additional avenue for future research could be examining the option of micro-
training formats (De Jans et al., 2017; Lukosch et al., 2016) to advance cognitive 
learning outcomes. As we observed during our pilot study, participants tend to drop 
out when they find the training too time and attention intensive. One way to solve this 
may be to provide different situations separately over a longer timespan instead of 
offering them during a single session, in essence a micro-training format. This option 
could reduce the likelihood of cognitive overload of the working memory since only 
one situation would need to be solved at a given time.

Conclusion

A growing body of evidence suggests that simulation-based training can be effective 
for a variety of learning outcomes, sometimes outperforming traditional learning set-
tings (Gegenfurtner et al., 2014; Sitzmann, 2011; Vogel et al., 2006). Due to its appeal-
ing design characteristics and their potential for deeply engaging learners, 
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simulation-based training has become a popular method to improve cognitive out-
comes. Organizations seeking to develop effective simulations are often confronted 
with various design question, for which evidence-based guidelines are not yet avail-
able. The current study provides a first answer to a very basic, but important design 
question: Does situational variation in training simulation make a difference in learn-
ing effectiveness? Using an experimental design, we showed that high situational 
variation during a simulation training improved complex cognitive outcomes such as 
innovation knowledge, irrespective of the learners’ prior knowledge about innovation. 
This finding provides a first step towards a more nuanced understanding of how design 
characteristics may influence learning through simulation.
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