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1 General introduction 

1.1 Integrated cropping systems profit from cover cropping 

In the 1960s and 1970s the concept of integrated pest management in agricultural production 

systems was introduced (Liebman et al., 2001). Preventive weed control tools should thereby 

substitute or reduce the use of herbicides. This targets the raising concerns about herbicides 

causing environmental and health risks and the development of herbicide resistances. Also, 

cover crops are respected within this concept, as they may achieve a weed control of more than 

90% during cultivation and afterwards (Boydston and Hang, 1995; Brust, Claupein et al., 2014; 

Dorn et al., 2015). Although cover crops as a biological weed control measure have been a 

standard practice in integrated cropping systems, they are currently receiving increased 

attention in Germany, caused by several reasons as mentioned in the following.  

Wheat yield increase by agricultural intensification reached a certain plateauing in 

Northwestern-Europe (Cassman et al., 2010; van Wart et al., 2013). However, neither resources 

for chemical pest management nor technical know-how and energy for tillage are limited. In 

order to exploit the full crop potential, high inputs are necessary which reduce the economic 

gain (van Wart et al., 2013). The final gain, on the contrary, may increase by keeping the yield 

level and simultaneously reducing labor and costs. Remembering and implementing nature-

based services, as provided for example by cover crops, improve soil characteristics and weed 

control naturally (inspired by Probst and Probst, 1982).  

The herbicide input should be reduced in particular, as their consequent implementation and the 

repeated usage of herbicides with the same modes of actions (Evans et al., 2016) cause an 

increasing number of herbicide-resistant weed species (Heap, 2017). Consequently, as a 

decreasing number of efficient herbicides is available, additional or substitutional weed control 

measures as mechanical, cultural and biological methods are requested, in order to stabilize 

crop yields. Cover crops are thereby suitable as a preventive, as well as a curative herbicide 

resistance management tool (Zhou et al., 2016).  

The one-sided herbicide management and the spread of problematic weeds, such as Alopecurus 

myosuroides Huds., are ascribed for narrow crop rotations which developed in Western-Europe. 

A. myosuroides infests and spreads rapidly in cropping systems with the intensive growing of 

winter cereals (Lutman et al., 2013). Thereby, A. myosuroides which has already developed 

multiple resistances, became one of the most challenging grass weeds in Europe (Heap, 2017; 
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Moss et al., 2007). Using spring crops in the crop rotation would counteract this problem 

(Chauvel et al., 2001; Lutman et al., 2013) in order to break the reproduction dynamics and life 

cycle of weeds in general (Cousens and Mortimer, 1995) and A. myosuroides in particular 

(Moss and Hull, 2012).  

Implementing annual spring-sown crops, unfortunately, creates a crop-free period, lasting from 

fall to spring which favors the emergence of weeds, and soil erosion. As extreme weather events 

with heavy rainfall will occur more often in the future (IPCC, 2014), the soil implicitly needs 

to be protected. Intense rainfall, especially during a fallow period, also causes nutrient leaching. 

Nutrients leached from agricultural production systems are attributed causing environmental 

risks such as eutrophication (Isermann, 1990). Using cover crops, after early maturing cash 

crops as cereals or oilseed rape, contributes to counteracting soil and nutrient loss (Langdale et 

al., 1991; Thorup-Kristensen, 1994) and additionally suppresses weeds during this crop-free 

period (see Chapter 1.2).  

The ‘greening’ strategy, which is implemented by the European Union (EU), refers to these 

benefits and thereby encourages, among other measures, cover cropping for soil and water 

improvements (Regulation (EU) No 1307/2013 of the European Parliament of the Council of 

17 December 2013). Also, biodiversity is respected within this concept, as agricultural 

intensification is being highlighted as having considerable impact on the species loss (Potts et 

al., 2010). Cover crops may also contribute to this target by providing food and habitat for 

beneficials (Dunbar et al., 2017; Ellis and Barbercheck, 2015). Agricultural production systems 

additionally benefit from naturally provided weed control by the promotion of seed predation 

within cover crops (Gallandt et al., 2005). 

1.2 Weed control by cover crops 

During cultivation, cover crops are affecting weeds by the principles of ‘removal’ and ‘addition’ 

(Gliessman, 1986; Liebman et al., 1997). Cover crops are competing (‘removal’) with weeds 

for resources like light, space, nutrients, and water. Biochemicals are induced (‘addition’) into 

the environment by some cover crops causing allelopathic effects. Especially species belonging 

to the Brassicaceae and Poaceae families are attributed with allelopathic potential (Belz, 2007; 

Haramoto and Gallandt, 2005; Sánchez-Moreiras et al., 2003; Schulz et al., 2013). Though the 

impact of biochemical effects to an overall weed suppression is difficult to assess at the field 
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scale (Belz, 2007; Rueda-Ayala et al., 2015), the contribution of allelopathy to weed control 

should not be neglected (Gfeller et al., 2018; Sturm et al., 2018).  

Cover crops also suppress weeds after winter kill or termination. Weed seed germination is 

reduced by cover crop residues remaining at the soil surface. This physical barrier inhibits light 

quantity and quality and affects soil moisture and temperature (Teasdale, 1996). Additionally, 

if allelochemicals are contained in cover crop residues, biochemical compounds are emitted 

from decomposing plant material (Sturm et al., 2016; Tabaglio et al., 2013). General changes 

in the environment, such as by competition or the release of chemical compounds, during cover 

crop cultivation and afterwards reduce weed seed germination and growth rate, causing a 

decrease in weed density (Cousens and Mortimer, 1995).  

To ensure that the weed suppression mechanisms induce efficient weed control during their 

cultivation and afterwards, it is necessary that cover crops germinate and establish quickly 

(Brennan and Smith, 2005; Dorn et al., 2015). The biomass production of cover crops is a 

relevant factor (Finney et al., 2016), however, soil coverage (Brennan and Smith, 2005) and 

allelopathy (Gfeller et al., 2018; Kunz et al., 2016) also contribute to efficient weed control, 

especially during the fall-to-winter season. Weed control in spring and during the early season 

of the main crop is highly dependent on the amount of cover crop residues (Teasdale and 

Mohler, 1993) and the concentration of allelochemicals (Mohler et al., 2001; Petersen et al., 

2001) contained in the plant material.  

To ensure that cover crops establish well and build up high biomass yields, they need to be able 

to survive and thrive under severe circumstances. Therefore, the selection of cover crops needs 

particular consideration. Assuming that sowing management, i.e. depth and timing, is well 

implemented, the lack of precipitation is the main factor determining cover crop germination 

and establishment. Usually, the suitability of cover crop plant species to specific regions is 

derived from their origin. For example, Guizotia abyssinica (L.f.) Cass. and Sorghum bicolor 

L. Moench originate from warm, dry regions, and they are therefore promoted by seed 

producers (Deutsche Saatveredelung AG, 2018) as being suitable for cover cropping in warm, 

dry regions of Germany. Water requirements of cover crops commonly used in Germany, such 

as Sinapis alba L., Phacelia tanacetifolia Benth. and Avena strigosa Schreb., have not been 

sufficiently evaluated.  

The demands for water, temperature, and nutrients are species-specific. Species mixtures 

increase biomass stability and productivity (Tilman et al., 2001; Tilman et al., 2006) because 

species combinations improve the resilience against abiotic stresses and unfavorable growing 
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conditions if composed reasonably (Dukes, 2001). Productivity also increases in mixtures by 

improved resource allocation compared to monocultures, because plant architecture and 

resource acquisition among species differ (Wacker et al., 2009). It has been determined that the 

leaf area index, for example, increases within mixtures compared to monocultures, causing less 

light transmittance through the canopy (Wacker et al., 2009). Ideally, species within cover crop 

mixtures show ‘niche differentiation’ in resource allocation and complementary (Wacker et al., 

2009; Zuppinger-Dingley et al., 2014) instead of similar strategies, to increase the competition 

for resources with weeds rather than competition among mixing partners. In conclusion, the 

diversity among cover crop mixtures should contribute to efficient weed control compared to 

pure cover crop stands by increased resource competition between cover crop and weed and the 

opportunity to combine species with physical and chemical weed suppression mechanisms.  

However, it has been evaluated by several studies that weed suppression by cover crop mixtures 

was not more effective than by well-performing pure cover crop stands (Baraibar et al., 2018; 

Brust, Weber et al., 2014; Finney et al., 2016). But as mentioned above, the contribution of crop 

mixtures being ascribed is to be more stable. This leads to the assumption that cover crop 

mixtures haven’t shown their full potential as species composition and mixing ratios are not 

sufficiently understood and require more research.   

1.3 Objectives  

The following objectives have been considered within this thesis: 

 to assess if cover crops are as effective to control weeds and volunteer crops during the 

fall-to-winter season as chemical and mechanical weed control measures; 

 to test if cover crops are an adequate weed control measure within A. myosuroides 

infested fields; 

 to explore the effects of cover crops on weed control and yield during the cash crop 

season and to identify if the tillage system and the mulching date can, thereby, expand 

the weed suppressive effects of cover crop residues; 

 to evaluate how species selection and species diversity are stabilizing productivity and 

therefore the weed suppression efficacy of cover crop mixtures compared to pure cover 

crop stands; 

 to identify if the water requirements during cover crop establishment and water 

limitations are determining the weed control success of selected cover crops. 
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1.4 Structure and general information of the dissertation  

The dissertation starts with an introduction (Chapter 1) about the benefits of cover crops within 

integrated cropping systems. Thereby, the general capability of cover crops on weed 

suppression and cover crop contribution to current challenges within the weed management 

were evaluated. How cover crops interfere with weeds is described within Chapter 1.2, followed 

by the objectives of this study (Chapter 1.3). The scientific publications which are relevant 

within this work are shown as followed within Chapters 2-5: 

 Weed suppressive ability of cover crop mixtures compared to repeated stubble tillage 

and glyphosate treatments (peer-reviewed) 

 A critical study of cover crop weed suppression during and after cover crop growth 

(submitted)  

 Weed control ability of single sown cover crops compared to species mixtures (peer-

reviewed) 

 Weed suppressive ability of cover crops under water-limited conditions (peer-

reviewed) 

This order was chosen to show the weed suppression ability of cover crops following the crop 

rotation from cover crop sowing in fall until spring crop harvest. Later, the focus is on the cover 

crop species selection in order to improve the weed suppressive effect during cover cropping.  

The first publication (Chapter 2) deals with the weed suppression ability of a cover crop mixture 

sown within differing tillage systems compared to a selected number of mechanical and 

chemical weed control measures during the fall-to-winter season. In the following Chapter 3, 

the focus in on how different cover crop species and a mixture perform in terms of weed control 

from fall-to-winter. Additionally, it is discussed if the weed suppressive effects of cover crop 

residues can be prolonged within non-inversion tillage systems in addition to an adjusted 

mulching date of cover crops. The impact of tillage and cover cropping on the spring crop yield 

was also measured. As the weed suppression ability of cover crops is highly dependent on the 

cover crop performance during the fall-to-winter season, further investigation was done to 

evaluate how species mixtures may stabilize the weed control by cover crops under unfavorable 

conditions in comparison to pure cover crop stands (Chapter 4). Cover crops need a certain 

resilience to water deficit to establishment quickly and subsequently compete with weeds. 

Therefore, the tolerance to water limitation of a selected number of commonly used cover crops 

was investigated within Chapter 5.  
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In addition to the peer-reviewed and the submitted journal articles, the following topics have 

been contributed to international conferences as oral and poster presentations. These conference 

contributions are not included in this thesis.  

 Schappert A., Gerhards R. (2018) Weed reduction potential of cover crop mixtures. In: 

18th European Weed Research Society Symposium. New approaches for smarter weed 

management. 17-21 June 2018. European Weed Research Society. Ljubljana, Slovenia. 

 Messelhäuser M. H., Schappert A., Saile M., Peteinatos G. G., Gerhards R. (2019) 

Black-grass control efficacy and yield response in spring barley after cover cropping, 

repeated stubble tillage and glyphosate treatments. In: 20th Conference of the Hellenic 

Weed Science Society. Weed Research: Problems, trends and current challenges. 4-6 

April 2019. Hellenic Weed Science Society. Agrinio, Greece. 

Conclusions were drawn about the scientific articles in the discussion part in Chapter 6. Chapter 

7 is summarizing the thesis.  

For notification: Fall sown cover crops, which are winter killed and substitute a weedy fallow 

before a spring crop will be solely tackled within this study. For the sake of simplification, these 

winter cover crops are just named as cover crops in the previous and in the following. 
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2 Weed suppressive ability of cover crop mixtures 

compared to repeated stubble tillage and glyphosate 

treatments 

Alexandra Schappert1, Miriam H. Messelhäuser1, Marcus Saile1, Gerassimos G. Peteinatos1, 

and Roland Gerhards1 

1 Department of Weed Science, Institute of Phytomedicine, University of Hohenheim, 70599 

Stuttgart, Germany 

 

Abstract 

 
The utilization of an effective stubble management practice can reduce weed infestation before 

and in the following main crop. Different strategies can be used, incorporating mechanical, 

biological, and chemical measures. This study aims at estimating the effects of cover crop (CC) 

mixtures, various stubble tillage methods, and glyphosate treatments on black-grass, volunteer 

wheat and total weed infestation. Two experimental trials were conducted in Southwestern 

Germany including seven weed management treatments: flat soil tillage, deep soil tillage, 

ploughing, single glyphosate application, dual glyphosate application, and a CC mixture sown 

in a mulch-till and no-till system. An untreated control treatment without any processing was 

also included. Weed species were identified and counted once per month from October until 

December. The CC mixtures achieved a black-grass control efficacy of up to 100%, whereas 

stubble tillage and the single glyphosate treatment did not reduce the black-grass population, 

on the contrary it induced an increase of black-grass plants. The dual glyphosate application 

showed, similar to the CC treatments, best results for total weed and volunteer wheat reduction. 

The results demonstrated, that well developed CCs have a great ability for weed control and 

highlight that soil conservation systems do not have to rely on chemical weed control practices. 

Keywords: biological; black-grass (Alopecurus myosuroides Huds.), chemical; mechanical; 

mulch-till; no-till systems; stubble tillage; weed management 
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2.1 Introduction 

A crop rotation, including spring crops, requires an effective weed management strategy during 

the crop-free period. This might include biological, mechanical, and chemical (also repeated 

and in combination) weed control tools on the fallow ground not in production in autumn. These 

tools have the aim to encourage the germination of volunteer crops, remove emerged weeds, 

reduce available sources, especially for perennial weeds, and to avoid a new weed seed 

production. The success of a weed management technique during the crop-free period may have 

a major impact on the weed seed bank, and weed infestation on the subsequent crops. Weeds 

compete for resources with the main crops and may also act as a host for pests and diseases 

(Norris and Kogan, 2000). The ergot fungus (Claviceps purpurea (Fr.) Tul.) for example uses 

Alopecurus myosuroides Huds. (A. myosuroides) as an alternate host (Mantle and Shaw, 1976). 

An effective weed control strategy therefore improves plant health and provides yield stability. 

The application of synthetic herbicides is a common weed control practice in conventional 

farming systems. The use of non-selective herbicides (e.g., glyphosate) is a non-time-intense 

and efficient weed management practice particularly in conservation agriculture systems. A. 

myosuroides, an annual grassy-weed (Poaceae), became a major problem in autumn sown crops 

in Western Europe (Moss, 2017). The increasing impact of A. myosuroides in agricultural 

cropping systems can be attributed to the modifications on the current agricultural strategies, 

like increasing numbers of autumn sown crops, the alteration of cropping and tillage systems 

and the consequent usage of herbicides with the same mode of action (Moss, 2017). Several 

weed species have developed resistance to herbicides including glyphosate (Powles and Yu, 

2010). Since A. myosuroides has already evolved field resistance to multiple herbicide modes 

of action (Heap, 2017), increasing the reliance on glyphosate can lead to a resistance to it 

(Davies and Neve, 2017). The current public concern raised, regarding the use of glyphosate in 

agriculture and the restrictions enforced in different countries, increases the necessity to search 

for alternative measures and different weed management tools. Biological and mechanical 

control methods might be an option to compete with resistant populations as well as to mitigate 

the development of herbicide resistant weeds.  

Mechanical weed control practices, including tillage, might differ regarding the 

implementation, timing, and frequency (Pekrun and Claupein, 2006). This might include flat 

tillage (<5 cm) and as well a deep stubble tillage (>5 cm) (Melander et al., 2017). Ploughing 

buries the weed seeds and mostly prevents them to emerge from deeper soil layers. Systems 

with a lower or superficial soil disturbance, compared to ploughing, usually result in a greater 
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weed infestation (Wrucke and Arnold, 1985) and weed seed accumulation near the soil surface 

(Colbach et al., 2006). However, reduced tillage systems have the advantage of decreasing run-

off, increasing aggregate stability (Hernanz et al., 2002) and preserving a higher soil moisture 

(Vita et al., 2007). Repeated flat or medium deep tillage may combine the benefits of reduced 

tillage systems for soil conservation with a sufficient weed control, yet with a possible negative 

impact concerning nutrient losses, soil compaction, or carbon gas emissions.  

Winter cover crops (CCs), used as a biological weed control measure (Snapp et al., 2005), may 

demonstrate several advantages, including nutrient recycling efficiency (Snapp et al., 2005) and 

reduced soil erosion (Langdale et al., 1991). The success of CCs as an integrated weed 

management practice, is related to a fast emergence and high soil cover, which depends on the 

chosen species, soil properties, and the weather conditions at the field location. Using different 

cover crop (CC) species within a mixture increases the resilience for management failures, bad 

weather conditions, and combines species-specific benefits (Wortman et al., 2012). Seed 

predation, which may also act as a biological weed control measure (Hartwig and Ammon, 

2002), is enhanced in cover-cropping (Blubaugh et al., 2016) and no-till systems (Petit et al., 

2017) and decreases the amount of weed seeds at the soil surface. 

The straw management, also in combination with the different weed management practices as 

mentioned above, has an impact on weed infestation. Generally, straw disposal can for example 

reduce the number of A. myosuroides plants, due to weed seed removal from the field (Moss, 

1979). In no-till systems the straw surface coverage, which generates a physical barrier, is 

reducing the weed density (Bilalis et al., 2003). Otherwise, the herbicide efficacy could be 

reduced by crop residues (Dao, 1991). On the other hand, the presence of straw in CC systems 

might lead to an immobilization of nitrogen, which will then narrow the CC development and 

their subsequent success for weed suppression (Kahnt, 1983). 

There is little information available about the potential of repeated flat and deep stubble tillage 

in comparison to ploughing and cover-cropping to substitute herbicide applications in autumn. 

In a non-inversion tillage system grass weeds, like A. myosuroides, might be encouraged 

(Froud-Williams et al., 1984). Furthermore, CCs are a suitable tool for broad-leave weed 

control (Teasdale, 1996). Within cover-cropping systems grass weeds may also become a 

severe challenge (Clements et al., 2000) which might require the use of herbicides (Teasdale, 

1996). The presence and absence of straw will additionally deliver information about the impact 

of straw management in combination with different weed management treatments on weed 

infestation.  
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This study aims at estimating the ability of selected biological, mechanical, and chemical weed 

control practices on weed suppression before spring cropping. The following hypotheses were 

investigated: (i) stubble tillage and CCs have similar success in reducing weeds as glyphosate 

applications; (ii) repeated stubble tillage is a more effective weed suppression measure in 

comparison to a single deep, turning soil tillage; (iii) the sowing method of CCs (mulch-tillage 

and no-tillage) has an impact on the success of weed suppression; (iv) the removal of straw 

after harvest is influencing the weed infestation.  

The study was implemented at field sites with an increased population of A. myosuroides. The 

results may clarify if tillage, herbicide application, or cover-cropping can reduce the number of 

A. myosuroides plants. CCs were sown within a mulch-till and no-till systems to evaluate if no-

till systems lead to an increasing number of weeds in comparison to stubble tillage systems as 

shown by Gruber et al. (2012). 

2.2 Materials and methods 

Experimental Sites 

Two field experiments (Binsen: 48°25´22.0´´ N 8°53´15.4´´ E and Risp: 48°25´06.3´´ N 

8°53´48.0´´ E) were conducted in Southwestern Germany from August until December 2017. 

The weather data are shown in Table 1. 

Table 1. Monthly minimum (Min.), maximum (Max.), average temperature (T) and 

precipitation in Southwestern Germany from July until December 2017. 

 Min. T (°C) Max. T (°C) Average T (°C) Precipitation (mm) 

July 12.6 24.9 18.5 119.5 

August 12.2 24.6 18.3 88.2 

September 7.0 17.9 12.0 35.3 

October 4.7 15.8 9.7 40.1 

November 0.7 6.8 3.6 76.0 

December -1.3 3.6 1.2 55.9 

 

The soil type at both trials was characterized as a loamy silt with pH values of 6.9 (field Binsen) 

and 5.9 (field Risp). The fields had a different crop rotation history with the same previous crop 

at the beginning of the experiment. Crop rotation at the field Binsen was winter wheat (2013), 

triticale (2014), spring barley (2015), peas (2016), and winter wheat (2017). The trial at the 
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field Risp had a crop rotation of peas (2013), winter wheat (2014), red clover (2015), flowering 

mixture (2016), followed by winter wheat (2017). The winter wheat was harvested at the 1st of 

August at both trials. The experimental trials were set up as a randomized strip-plot design. The 

two factorial experiments included seven weed management practices with regard to 

mechanical, chemical, and biological treatments (1st factor). The untreated control plots were 

left without any weed control treatment. The details according to the weed management 

treatments are shown in Table 2. The 2nd factor (which was implemented as the strip) combined 

the same weed management treatments as mentioned before including the presence and absence 

of straw. The straw from the plots with the straw removal was baled and taken from the plots 

at the same day as the harvest. In total, 16 treatments with 3 repetitions were included at both 

field trials.  

The plots had a size of 16.5 x 5 m (field Binsen) and 21.5 x 5 m (field Risp). The CC mixture 

sown at both trials for treatments 7 and 8 was provided by DSV-Saaten (Deutsche 

Saatveredelung AG, 2018) and included the following CC species (their ratios within the 

mixture are shown in brackets): Avena strigosa Schreb. (45%), Fagopyrum esculentum Moench 

(18%), Linum usitatissimum L. (12%), Phacelia tanacetifolia Benth. (6%), Raphanus sativus 

var. oleiformis (6%), Sinapis alba L. (6%), Brassica carinata A.Braun (4%), Helianthus annuus 

L. (2%), Camelina sativa Crantz (1%). The plots with the CC treatments sown with mulch-till 

(treatment 7) were prepared with a cultivator and a rotary harrow. A Cambridge roller was used 

after sowing to increase the soil contact of the seeds and to improve the CC seed germination. 
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Table 2. Weed management treatments, weed control type and treatment dates for the 

experimental field sites at Binsen and Risp. Weed management dates include dates for tillage, 

herbicide applications, and sowing dates for the cover crop mixtures. (DAH = Days after 

harvest). 

Treatment
1 

 

Weed Management Practices 

(depth in cm/dose in L ha-1/ 

seed density kg ha-1) 

Weed Control 

Type 

Weed 

Management 

(Date) 

Weed 

Management 

(DAH) 

1 Control Weed fallow without weed management - - - 

2 FST Flat soil tillage with rotary harrow (5 cm) mechanical 

8 August 

6 September 

14 October 

8 

37 

75 

3 DST 
Deep soil tillage with wing share 

cultivator (15-16 cm) 
mechanical 

8 August 

6 September 

15 October 

8 

37 

76 

4 PL 
Turning soil tillage  

with a plough (25 cm) 
mechanical 14 August 14 

5 GLY 
Single glyphosate treatment  

(4 L ha-1) 
chemical 6 September 37 

6 GLY+GLY 
Dual glyphosate treatment  

(4 L ha-1) 
chemical 

6 September 

4 October 

37 

75 

7 CC+MT 
Cover crop mixture + mulch-till  

(1-1.5 cm, 25 kg ha-1)  
biological 19 August 19 

8 CC+NT 
Cover crop mixture + no-till  

(1-1.5 cm, 25 kg ha-1) 
biological 7 August 7 

1 Fat soil tillage (FST), deep soil tillage (DST), ploughing (PL), single glyphosate application (GLY), dual 

glyphosate application (GLY+GLY), cover crop mixture + mulch-till (CC+MT) and cover crop mixture + no-till 

(CC+NT). 

Data Collection 

Individual weed species as well as the total amount of plants were identified and counted at 

three dates: 12th of October (73 DAH), 17th of November (109 DAH) and 13th of December 

(135 DAH). This was performed with a circular 0.33 m2 frame at four randomly chosen spots 

per plot. CC biomass was cut at both mulch-till sown and no-till treatments once at the 14th of 

October. The CC biomass was measured to determine which sowing technique results in a 

greater CC development. The biomass of 0.33 m2 was cut and fresh weed and CC biomass 

measured at four randomly chosen locations per plot. 

Data Analysis 

RStudio software (Version 1.1.453, RStudio Team, Boston, MA, USA) was used for analyzing 

the data. Prior to analysis, the data was visually checked for normal distribution and 

homogeneity of variance. A transformation of the data was not necessary before doing an 

analysis of variance (ANOVA). The Tukey-HSD test (p ≤ 0.05) was performed to compare the 

means of the different treatments. The weed control efficacy (WCE), A. myosuroides control 
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efficacy (ACE), and volunteer wheat control efficacy (VCE) was calculated according to 

Rasmussen (1991) and Machleb et al. (2018): 

WCE, ACE, VCE (%) = 100 - wt (0.01 x wc)-1 (1) 

whereby wt is the weed, A. myosuroides or volunteer wheat density (weeds m-2) of the weed 

management treatments, and wc is the weed, A. myosuroides or volunteer wheat density (weeds 

m-2) of the untreated control plots. 

2.3 Results 

Total Weed Suppression 

Even though a diverse crop rotation was conducted at both experimental field sites, including 

winter and spring crops, A. myosuroides was the most dominant monocotyledons weed species, 

besides volunteer wheat. Other than that, dicotyledons like Lamium purpureum L., Veronica 

persica Poir., Stellaria media Vill., Thalaspi arvense L., and Raphanus raphanistrum L. were 

the dominant weed species (Table 6). The untreated control plots at the field Binsen showed a 

mean weed infestation of 96.9 weeds m-2 (averaged over all counting dates). The WCE of all 

soil tillage treatments (flat soil tillage (FST), deep soil tillage (DST) and ploughing (PL)) at 73 

DAH was between 1-76%, which was significantly lower (Figure 1) than for both glyphosate 

and the CC treatments. The FST and DST treatments showed an improved WCE with up to 

82% at 109 and 135 DAH. Nevertheless, repeated tillage (FSL, DST) treatments resulted in 

lower WCE than the CC and the GLY+GLY (dual glyphosate application) treatments 

throughout the season. The CC+NT (cover crop mixture + no-till) treatment showed a WCE of 

88% (135 DAH). The GLY+GLY treatment showed the highest WCE with more than 97% 

(109 DAH). 
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Figure 1. Average total weed control efficacy of the treatments flat soil tillage (FST), deep soil 

tillage (DST), ploughing (PL), single glyphosate application (GLY), dual glyphosate 

application (GLY+GLY), cover crop mixture + mulch-till (CC+MT), and cover crop mixture + 

no-till (CC+NT) at the two trials at the fields (a-c) Binsen and (d-f) Risp. (a,d) 73, (b,e) 109, 

and (c,f) 135 days after harvest (DAH). Different small letters within one graph show significant 

differences according to Tukey-HSD test (p ≤ 0.05). Means with identical letters do not differ 

significantly. 

The untreated control plots at the trial at field Risp showed a generally higher mean weed 

infestation of 183.7 weeds m-2 (averaged over all counting dates). Similar to the trial at the field 

Binsen the GLY (single glyphosate application) and GLY+GLY performed significantly best, 

with a WCE of approximately 97% 73 DAH. Whereby the dual glyphosate application 

(GLY+GLY) increased the WCE 135 DAH up to 99%, the single treatment (GLY) reduced the 

WCE and showed no significant differences according to the WCE, compared to the CC and 

the repeated tillage (FST, DST) treatments 135 DAH. The CC+NT treatments seem to reduce 

weeds less efficient than the CC+MT (cover crop mixture + mulch-till) treatments. This trend 

was only significant at the field site at Risp 73 DAH. The PL treatments performed always 

significantly worse, at both trials (excluding the field Binsen 73 DAH), resulting in a WCE 

reaching a maximum of 59% 135 DAH at the field site at Risp. The factor straw was not 

significant, therefore Figure 1 is giving average values for total WCE, including treatments with 

straw and those with straw removal. 
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A. myosuroides Suppression 

The untreated control at the field Binsen showed an average number of A. myosuroides with 

7.1 plants m-2 (73, 109, and 135 DAH). Whereas all weed control practices were able to reduce 

the total amount of weeds, compared to the control, treatments like FST and DST increased the 

number of A. myosuroides to 20.6 and 18.7 plants m-2 (73, 109, and 135 DAH at field Binsen), 

respectively. The control treatments at the field Risp had a higher amount of A. myosuroides 

with 8.6 plants m-2. At both trials the repeated stubble tillage (FST, DST) and the PL treatment 

achieved a significant increase of A. myosuroides 73 DAH (Table 3). The CC treatments 

showed the highest ACE from 91.7 up to 100%. Both glyphosate treatments (GLY and 

GLY+GLY) are not showing the same efficacy against A. myosuroides as for the total weed 

control. The presence of straw reduced the number of A. myosuroides plants significantly within 

the FST and the DST treatments at the field Binsen. 

 

Table 3. Average Alopecurus myosuroides Huds. control efficacy of flat soil tillage (FST), deep 

soil tillage (DST), ploughing (PL), single glyphosate application (GLY), dual glyphosate 

application (GLY+GLY), cover crop mixture + mulch-till (CC+MT) and crop mixture + no-till 

(CC+NT) treatments in combination with the presence (+) or absence (-) of straw 73 days after 

harvest (DAH) at the two trials at the fields Binsen and Risp. Different small letters within one 

column show significant differences according to Tukey-HSD test (p ≤ 0.05). Means with 

identical letters do not differ significantly. Different capital letters show significant differences 

within one experiment and within one treatment according to the presence or absence of straw. 

Means with no capital letter do not differ according to the Tukey-HSD test (p ≤ 0.05). 

Treatment 

73 DAH 

Binsen  Risp 

- Straw + Straw   - Straw + Straw 

FST -603.5 cB -244.5 bA  -279.0 d -299.0 cd 

DST -860.6 dB -337.7 bA  -114.0 bcd -500.4 d 

PL -356.4 b -230.4 b  -198.1 cd -185.9 bcd 

GLY -33.0 a 45.2 a  28.1 ab 24.8 ab 

GLY+GLY -31.6 a 33.3 a  6.7 abc -45.5 abc 

CC+MT 100.0 a 100.0 a  100.0 a 97.4 a 

CC+NT 100.0 a 95.8 a  91.7 a 94.1 a 

 

The factor straw had a significant effect on the suppression of A. myosuroides at the field Risp 

109 DAH within the DST and the GLY treatments (Table 4). The other treatments at field Risp 

and also at field Binsen were not affected by the presence or absence of straw. At both trials 

109 DAH the GLY+GLY treatment showed an ACE up to 80.8%. Whereby, the GLY treatment 

was increasing the amount of A. myosuroides compared to the control, which resulted in a 

minimum ACE of -119.8% (field Risp). The CC treatments again performed best with an ACE 
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between 94.4-100% (both trials). Both CC treatments show an ACE of 100% at both field trials 

135 DAH (Figure 2). FST and DST treatments increased the amount of A. myosuroides, 

compared to the control. ACE for the FST treatment was -175.0% at the field Binsen and -

54.7% at the field Risp (135 DAH). The GLY treatment was also inducing an increase of A. 

myosuroides plants compared to the control, which showed an ACE of -262.5% (field Binsen). 

The GLY+GLY treatment showed an ACE up to 52.2% (field Risp). The absence or presence 

of straw had no significant effect on the ACE at both trials 135 DAH. 

 

Table 4. Average Alopecurus myosuroides Huds. control efficacy of flat soil tillage (FST), deep 

soil tillage (DST), ploughing (PL), single glyphosate application (GLY), dual glyphosate 

application (GLY+GLY), cover crop mixture + mulch-till (CC+MT) and crop mixture + no-till 

(CC+NT) treatments in combination with the presence (+) or absence (-) of straw 109 days after 

harvest (DAH) for the two trials at the fields Binsen and Risp. Different small letters within one 

column show significant differences according to Tukey-HSD test (p ≤ 0.05). Means with 

identical letters do not differ significantly. Different capital letters show significant differences 

within one experiment and within one treatment according to the presence or absence of straw. 

Means with no capital letter do not differ according to Tukey-HSD test. 

 109 DAH 

 Binsen  Risp 

 - Straw + Straw   - Straw + Straw 

FST -19.0 a -6.7 a  47.4 abc 21.5 bc 

DST -1.4 a -3.4 a  13.3 bcA -40.7 cB 

PL -160.2 b -182.5 b  -14.1 c -44.1 c 

GLY -13.0 a -4.2 a  -119.8 dB -46.3 cA 

GLY+GLY 75.5 a 60.0 a  80.8 ab 64.4 ab 

CC+MT 100.0 a 96.7 a  100.0 a 100.0 a 

CC+NT 94.4 a 100.0 a  96.7 a 96.7 ab 
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Figure 2. Average Alopecurus myosuroides Huds. (A. myosuroides) control efficacy of flat soil 

tillage (FST), deep soil tillage (DST), ploughing (PL), single glyphosate application (GLY), 

dual glyphosate application (GLY + GLY), cover crop mixture + mulch-till (CC+MT) and crop 

mixture + no-till (CC+NT) treatments at the fields (a) Binsen and (b) Risp 135 days after 

harvest. Different small letters within one graph show significant differences according to the 

Tukey-HSD test (p ≤ 0.05). Means with identical letters do not differ significantly. 

Volunteer Wheat Suppression 

Volunteer wheat was the main weed within both trials. The amount of volunteer wheat achieved 

72.9 (field Binsen) and 138.6 plants m-2 (field Risp), averaged over the three counting dates. At 

both trials and all counting dates, the GLY+GLY treatments had a VCE of 100% (Figure 3). 

The GLY and CC+MT treatments achieved similar results with a VCE of 99.2% at field Binsen 

135 DAH. The VCE at the field Risp for the GLY and CC+MT treatments were only slightly 

lower with 96.1 and 98.1%, respectively (135 DAH). The CC+NT treatments, especially at the 

trial at field Risp, showed significantly less VCE, compared to both glyphosate (GLY and 

GLY+GLY) and the CC+MT treatments. Generally, all treatments were able to reduce the 

amount of volunteer wheat and reached at least 84.4% VCE. The absence or presence of straw 

had no significant effect according to VCE at both trials (73, 109, and 135 DAH). 
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Figure 3. Average volunteer wheat control efficacy of flat soil tillage (FST), deep soil tillage 

(DST), ploughing (PL), single glyphosate application (GLY), dual glyphosate application 

(GLY + GLY), cover crop mixture + mulch-till (CC+MT) and crop mixture + no-till (CC+NT) 

treatments at the two trials at the fields (a-c) Binsen and (d-f) Risp. (a,d) 73, (b,e) 109 and (c,f) 

135 days after harvest (DAH). Different small letters within one graph show significant 

differences according to the Tukey-HSD test (p ≤ 0.05). Means with identical letters do not 

differ significantly. 

CC Biomass 

Even though the CC+NT treatment showed in some cases significantly less WCE and VCE, 

compared to the CC+MT treatment, the fresh CC biomass was not significantly different 

between those two treatments (Table 5). The factor straw had no statistical impact on the fresh 

CC biomass. The CC+MT treatment with the presence of straw at the field Binsen and Risp had 

a fresh CC biomass of 26.9 and 30.5 t ha-1, respectively. The CC+NT treatments, also with 

straw, showed fresh biomass values of 25.9 (field Binsen) and 27.3 t ha-1 (field Risp). Neither 

the sowing technique (no-till or mulch-till) of CCs, nor the presence or absence of straw had an 

impact on the fresh weight of weeds. 
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Table 5. The fresh cover crop biomass (t ha-1) 8 (CC+NT) and 9 (CC+MT) weeks after sowing 

for the trials at the fields Binsen and Risp. CC+MT = cover crop mixture + mulch-till. CC+NT 

= cover crop mixture + no-till. - straw = straw removal after harvest. + straw = no straw removal 

from the previous crop. n.s. = means do not differ significantly within one experiment based on 

the Tukey-HSD test (p ≤ 0.05). 

Treatments 
Fresh Cover Crop Biomass 

Binsen Risp 

CC+MT 
- straw 32.0 n.s. (2.8) 28.2 n.s. (4.0) 

+ straw 26.9 n.s. (3.8) 30.5 n.s. (9.3) 

CC+NT 
- straw 33.1 n.s. (0.9) 29.0 n.s. (8.9) 

+ straw 25.9 n.s. (3.6) 27.3 n.s. (4.5) 

2.4 Discussion 

Stubble management can have a big impact on weed dynamics (Melander et al., 2013). The 

result of postharvest tillage on annual weeds mainly relates to the weed flora, the seed bank, 

and the dormancy status of the seeds (Melander et al., 2013). Flat postharvest tillage 

incorporates crop residues and stimulates volunteer wheat to germinate. Multiple soil tillage 

induces weed seeds for germination and destroys and buries them at the subsequent tillage. This 

might decrease the total weed seed amount in the soil.  

No clear differences concerning weed suppression were found between flat (FST) and deep 

stubble (DST) cultivation, which had also been demonstrated by Boström (1999). In the past, 

the shallow plough, as stubble tillage practise, was seen as most effective tool for weed 

management in Germany and Austria, as reported by Gruber et al. (2012). Within our study 

ploughing (PL) showed worst results concerning WCE among all treatments. It is therefore not 

reasonable to recommend a deep soil tillage (including ploughing), which is labor intense and 

costly and does not provide benefits for weed control and soil conservation. In this study, 

ploughing was done early after harvest. However, a late treatment before weed seed maturity 

might improve the performance. The generally moderate performance of all mechanical 

treatments in comparison with the chemical and the biological treatments might be caused by 

the wet weather conditions during autumn. Cirujeda and Taberner (2006) who harrowed in 

cereals and state that a high WCE of harrowing is attributed to dry conditions after harrowing. 

From time to time inversion tillage or stubble management might be useful in order to control 

weeds in highly infested fields (Gruber et al., 2012). Ploughing, especially in combination with 

stubble tillage (Melander et al., 2012), is a useful tool against perennial and root spreading 

weeds. At both field trials, annual weeds were dominant, which allows a reduction of the tillage 
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intensity Gruber and Claupein (2009) and a conservation stubble management with reduced soil 

disturbance. Pekrun and Claupein (2006) recommend to leave the stubble undisturbed. In terms 

of a biological weed control strategy, keeping the freshly produced weed seeds on the soil 

surface enhances biodiversity and increases seed predation as biological weed control 

(Westerman et al., 2003). 

The experiments had shown that both CC treatments (CC+NT and CC+MT) achieved an 

effective weed control during the crop-free period from August until December. In contrast to 

Brust et al. (2011; 2014) CCs were also able to suppress volunteer wheat. Especially A. 

myosuroides, which tend to be the most challenging grass weed, was successfully controlled by 

CCs, whereas stubble tillage and glyphosate application mostly failed this effect. The CC 

treatments reached an ACE up to 100% and a WCE up to 94%. The weed suppression potential 

of CCs has been proven by several studies (Brust, Claupein et al., 2014; Kunz et al., 2016; 

Melander et al., 2013). Winter CC cultivation has the potential to shift the use of herbicides 

towards a postemergence herbicide program (Teasdale, 1996). Weed seed germination and 

establishment is reduced in cover-cropping systems, but the amount of weed seeds in the soil 

may increase in the upper layer, especially in no-tillage systems. The success of CCs concerning 

their WCE is site specific and relates to the CC chosen. Further, it depends on the present weed 

species and the management at the field site (Bàrberi, 2002). The weather conditions at both 

field sites, with sufficient amount and distribution of rainfall and the long growing period, were 

very suitable to achieve a dense canopy and competitive plant stand to suppress weeds. The 

biomass production of CCs, does not necessarily need to correlate with their weed suppression 

ability (Finney et al., 2016; Kunz et al., 2016). However, biomass-driven CCs are generally 

more competitive (Finney et al., 2016; Teasdale, 1996). Instead of single CCs species, a species 

mixture was used within this study. By combining different CC species with specific advantages 

in CC mixtures, the benefits concerning weed, soil, nutrient, and pest management may increase 

(Bàrberi and Mazzoncini, 2001; Malézieux et al., 2009). 

The continuous loss of herbicides in the EU (Melander et al., 2013) and the increasing problems 

with herbicide resistant weeds will raise the awareness of producers to strengthen their focus 

on non-chemical weed management. The GLY+GLY treatment achieved the significantly 

highest WCE within this experiment. However, a single glyphosate application (GLY) was not 

sufficient, in particular, to control A. myosuroides weeds. A. myosuroides plants emerge in 

several flushes during autumn, when the climate conditions are favorable (Colbach et al., 2006). 

Applying glyphosate too early might miss most of the plants. Furthermore, this study 
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demonstrated that at both trials, during autumn and at the end of the growing period, CCs 

(especially CC+MT) had similar effects on WCE, ACE, and VCE as the chemical treatments. 

The CC+NT treatment was only showing a slightly weaker WCE and VCE than the CC+MT 

treatment. Nevertheless, glyphosate is a useful tool within no-till and reduced tillage systems.  

The wheat residue management (presence or absence of straw) had a minor effect on the success 

of either mechanical, chemical, or biological weed control practices. Even though burning the 

straw on the field is used in some regions and it might result in decreasing weed numbers, it 

can have some negative side effects especially concerning the carbon gas emissions. The baling 

of straw is not achieving a decrease of the weed infestation (Moss, 1979), which was also 

demonstrated within this study.  

Within this study, the effects of postharvest weed control on the previous spring crop season 

were not evaluated, but might deliver interesting insights to see whether the CC treatments 

preserved weed seeds, instead of reducing the weed seed bank for the repeated stubble tillage 

treatments (FSL, DST).  

2.5 Conclusions 

The flat soil tillage with rotary harrow (FST) and the deep soil tillage with wing share 

cultivation (DSL) treatments did not show satisfying results concerning WCE and ACE, 

compared to the chemical and biological methods, but seemed to be a suitable tool for volunteer 

wheat control. The cover crop (CC) suppression performance for total weed and especially for 

A. myosuroides showed, that even conservation practices have the potential to minimize future 

weed control challenges. Their success mainly attributes to their fast and competitive 

development, which is determined by external factors. In a season with unfavorable growing 

conditions for CCs, stubble tillage and glyphosate applications might be more efficient weed 

control practices. Even though the weed suppression ability of CCs is often unpredictable, it is 

worthwhile to do cover-cropping in terms of soil conservation and biodiversity. The effect of 

non-chemical weed management in reduced and no-till systems still needs a better 

understanding for weed dynamics (Melander et al., 2013). Long-term experiments will help to 

show how continuous stubble tillage, herbicide application and cover-cropping will affect the 

weed density and the weed community and which combinations will enable a sufficient and 

sustainable weed control. 
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Appendix A 

Table 6. Mean number of weed species (averaged over all counting dates) per m2 for the eight 

treatments (averaged for the treatments with the presence and the absence of straw) at the field 

sites Binsen and Risp. 1: untreated control; 2: flat soil tillage; 3: deep soil tillage; 4: ploughing; 

5: single glyphosate application; 6: dual glyphosate application; 7: cover crop mixture + mulch-

till; 8: cover crop mixture + no-till. Alopecurus myosuroides Huds. (A. myosuroides), Veronica 

persica Poir. (V. Persica), Thalaspi arvense L. (T. arvense), Lamium purpureum L. (L. 

purpureum), Stellaria media Vill. (S. media), Raphanus raphanistrum L. (R. raphanistrum). 

Others: Cirsium arvense (L.) Scop., Sonchus arvensis L., Matricaria chamomilla L., Euphorbia 

helioscopia L., Borago officinalis L. 

 Binsen Risp 

 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 

A. myosuroides 7 21 19 15 13 6 2 1 9 14 14 9 14 5 1 2 

Volunteer wheat 73 8 6 6 4 4 1 2 139 16 18 11 10 9 3 14 

V. persica 6 4 2 7 - - 6 3 12 5 7 14 2 - 11 10 

T. arvense 2 - - 14 - 1 - - 5 - - 11 - - - - 

L. purpureum 3 4 2 5 - - 4 4 5 4 6 13 1 1 7 12 

S. media 2 - 1 8 1 1 - - 4 - - 12 - - 1 1 

R. raphanistrum 1 1 1 3 - - - - 2 - 1 3 - - - - 

Others 3 1 - 2 - - - - 7 - - 5 - - - - 
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Abstract 

 
The performance of cover crops (CCs) on weed suppression during the cover cropping season 

is mainly determined by environmental conditions and the species selected. In contrast, the 

effects of CCs on weeds after their termination is related to the cover crop (CC) residue 

management. This study aims to estimate the potential of CCs, in pure stands and species 

mixtures, to suppress weeds during CC growth and in the following cash crop. Three field 

experiments were conducted in Southwest-Germany between 2015-2018, to test if CCs control 

weeds as effectively as chemical or mechanical weed control practices and to test if reduced or 

no-tillage and a temporally concerted mulching of CC residues prolongs the weed suppression 

until and during the early cash crop season. Additionally, the impact of CCs on crop yield was 

determined. Spring barley yield was not affected by different weed control practices, while corn 

yield was influenced by the tillage practice, regardless whether CCs were grown before or not. 

Oilseed radish reached a weed control efficacy of 60% and black oat was able to reduce weed 

coverage by 96% during the CC season compared to the no-CC control. A CC mixture, 

including ten CC species, sown within a no-till system reached a complete reduction of black-

grass during spring barley cropping, whereas non-selective herbicide application and non-

inversion tillage did not reduce black-grass completely. The results clarify that well-established 

CCs have the potential of being an efficient weed control measure during CC growth, and CC 

residues suppress weeds in the early season of the following cash crop. Reduced tillage and a 

temporally concerted mulching did not improve the weed suppressive effects of CC residues in 

spring when CCs performed poorly during growth. 
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Nomenclature: Black-grass, Alopecurus myosuroides Huds.; Buckwheat, Fagopyrum 

esculentum Moench; Black oat, Avena strigosa L.; Oilseed radish, Raphanus sativus var. 

oleiformis; Subterranean clover, Trifolium subterraneum L.; Corn, Zea mays L.; Spring barley, 

Hordeum vulgare L.  

Keywords: Biodiversity, catch crop, conservation tillage, mulch, weed management.
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3.1 Introduction 

Winter cover crops (CCs) are worthwhile to be integrated into the crop rotation through their 

attributed benefits like nitrogen loss reduction and erosion and weed control induced by living 

CCs and their residues (Hooker et al., 2008; Kunz et al., 2017; Langdale et al., 1991; Teasdale, 

1996; Teasdale and Mohler, 1993). Living CCs compete with weeds for water, nutrients, light, 

and space. Allelochemicals emitted by some CCs may also reduce germination and growth of 

weeds (Gfeller et al., 2018; Sturm et al., 2018). Non-incorporated residues remain as a mulch 

layer and create a physical barrier, whereby the light quality and quantity are reduced (Teasdale, 

1996). The mulch layer may hinder weeds to emerge and to consequently penetrate into the soil 

surface. Additionally, a number of plant species used as CCs (e.g. Brassicaceae) inhibit weeds 

by emitting chemical compounds into the soil while residues decompose or when incorporated 

into the soil (Petersen et al., 2001; Sturm and Gerhards, 2016).  

The success of cover cropping on weed suppression is considerable when sowing date, 

accompanies favorable growing conditions and suitable CC species (Brust, Claupein et al., 

2014; Sturm et al., 2017). When weed suppressive effects by CC residues are expected to be 

insufficient and seed rain during the CC season was not reduced by poorly developed and low 

competitive CCs, further weed control measures, such as tillage, may be required. A field 

experiment was implemented to compare the effects of non-inversion and inversion tillage after 

cover cropping on the weed infestation during spring cropping.  

The weed infestation in no-till systems is often greater than within inversion tillage systems 

(Cousens and Moss, 1990; Gruber et al., 2012) as weed seeds accumulate near the soil surface. 

In order to increase the weed suppressive effects by CCs within non-inversion tillage systems 

before and during the subsequent cash crop, the CC residue management needs particular 

consideration. The weed control efficacy by CC residues within no-till systems is mainly 

determined by the amount of residue soil cover, and their homogenous distribution within the 

field (Teasdale and Mohler, 2000). Heterogeneously deposited plant residues result in 

uncovered soil and might create favorable areas for weed emergence even though the mulch 

layer has a certain thickness (Teasdale and Mohler, 2000). CC mulching early in spring may be 

an option to distribute and deposit CC residues uniformly at the soil surface to improve weed 

control after CC growth. 

The ability of CCs to control weeds and problematic weeds, such as Alopecurus myosuroides 

Huds. in particular, may increase the relevance of CCs in agricultural production systems with 
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narrow crop rotations. A. myosuroides is one of the most competitive grass weeds in fall-sown 

crops in Europe (Chauvel et al., 2001; Moss et al., 2007). The intensive growing of winter 

annual crops, early sowing, and reduced tillage systems favored the occurrence of A. 

myosuroides (Lutman et al., 2013). Repeated use of herbicides with the same mode of action, 

results in a selection of herbicide-resistant weed populations (Evans et al., 2016; Heap, 2017; 

Moss and Rubin, 1993). Alternative weed control practices are required to counteract increasing 

A. myosuroides infestations, to retard herbicide resistance development and to control 

herbicide-resistant A. myosuroides populations. Including spring crops in the crop rotation may 

effectively decrease the infestation of A. myosuroides (Chauvel et al., 2001). Implementing 

spring crops, however, creates a crop-free period from fall-to-spring which favors the 

emergence of weeds and, thereby, requires additional weed control measures in fall and spring. 

It has been demonstrated that well-established CCs control A. myosuroides up to 100% during 

the fall-to-winter season (Schappert et al., 2018). This experiment was continued to determine 

if winter cover cropping also impacts A. myosuroides infestation during the subsequent cash 

crop season. If A. myosuroides control by CCs is still measurable after the implementation of 

common conventional agricultural practices before and during cash cropping, the integration of 

CCs as a general weed and herbicide resistance management measure may increase.  

Nevertheless, to justify the use of CCs in crop rotations, the success of weed control and the 

impact on crop yield need to compensate the producers’ labor and costs. CCs are generally 

attributed as having positive effects on the following cash crop by increasing the nitrogen 

content (Parr et al., 2011) and improving the soil water retention (Wortman et al., 2012), 

particularly in non-water-limited areas (Blanco-Canqui et al., 2015; Unger and Vigil, 1998). 

Hashemi et al. (2013) showed that corn silage yield was 41% greater after growing oat as a CC 

compared to no cover cropping. Although CC residues mainly contribute to weed control within 

non-inversion tillage, no-till practices might, unfortunately, cause lower yields, e.g. of oat and 

corn (Gruber et al., 2012; Rice et al., 1986) if beneficial effects on soil moisture are not 

compensating slower crop emergence and densities (Gruber et al., 2012).  

As the performance of CCs is often difficult to predict, producers still often use either chemical 

or mechanical measures, or a combination of both, to achieve reliable, season-long weed 

control. Therefore, it is imperative to test the added value of CCs in different regions and 

cropping systems. CC monocultures and mixtures were addressed within this study to improve 

the weed control by living CCs and CC residues. It was further explored if inversion tillage 

after cover cropping is required and if an adjusted mulching date within non-inversion tillage 
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systems improves the weed suppressive effect of CC residues. The following questions were 

considered: 

i) Is the integration of CCs into the crop rotation able to reduce the input of mechanical and 

chemical weed management practices? ii) Is the management of CC residues affecting the weed 

infestation in the subsequent spring crop? iii) Is the subsequent spring crop yield affected by 

winter CCs and their residue management? 

3.2 Materials and methods 

Experimental Sites 

Experiment 1 was implemented at two field trials at Binsen (48°25`22.0”N 8°53`15.4”E) and 

Risp (48°25`06.3”N 8°53`48.0”E) near Hirrlingen in Southwest-Germany. Experiments 2 and 

3 were located in Southwest-Germany at a research station of the University of Hohenheim 

‘Ihinger Hof’ (48°44`24.0”N 8°55`12.0”E) near Renningen. Weather, experimental conditions 

and soil preparations are shown in Table 7. At the location Renningen, during the cover 

cropping season, the weed community was dominated by volunteer crops and annual broadleaf 

weeds including Capsella bursa-pastoris M., Lamium purpureum L., Matricaria spp., Stellaria 

media L., and Veronica persica Poir.. During the cash crop seasons, species like A. 

myosuroides, C. bursa-pastoris, Chenopodium album L., L. purpureum, Matricaria spp., and 

S. media dominated. At the locations Binsen and Risp, the weed community was mainly 

characterized by A. myosuroides, L. purpureum, Raphanus raphanistrum L., S. media, Thlaspi 

arvense L., and V. persica during the fall-to-winter season. Only A. myosuroides was present 

in spring barley as dicotyledonous weeds were controlled by herbicides. 
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Table 7. Weather, experimental conditions and soil preparations for Experiment 1 at the field 

trials Binsen & Risp and Experiments 2 and 3 at Renningen from 2015 until 2018. Precipitation 

(P) and temperature (T) separately shown for the cover crop (CC) and the spring crop (SC) 

season. CC+NT: cover crop mixture + no-till, CC+MT: cover crop mixture + mulch-till (see 

also treatment overview for Experiment 1 within Table 8). M1 & M2 = mulching dates 1 and 2 

(see also treatment overview for Experiment 3 within Table 10).  

 Binsen & Risp Renningen  

 Experiment 1 Experiment 2 Experiment 3  
2017/2018 2015/2016 2016/2017  2016/2017 2017/2018 

Sum P (Aug-Dec)  

CC-season 
295.3 mm 215.2 mm 186.9 mm 186.9 mm 268.1 mm 

Sum P (Apr-Aug) 

SC-season 
244.6 mm 337.8 mm 327.4 mm 327.4 mm 185.8 mm 

Mean T (Aug-Dec) 

CC-season 
8.9 °C 10.9 °C 9.2 °C 9.2 °C 9.1 °C 

Mean T (Apr-Aug) 

SC-season 
16.6 °C 14.4 °C 15.1 °C 15.1 °C 16.8 °C 

Crop rotation 

Winter wheat - 

CC/NoCC a -  

spring barley 

Canola - CC - 

corn 

Winter 

wheat - CC - 

corn 

Winter 

wheat - CC - 

corn 

Winter 

barley - CC - 

corn 

Soil type Loamy silt Clay loam Silty loam Silty clay Silty loam 

Soil preparation 

before CC 

CC+MT: stubble 

cultivator + rotary 

harrow 

Stubble cultivator + 

deep tillage + 

rotary harrow 

Stubble cultivator + 

deep tillage + 

rotary harrow 

Sowing date (CC) 
CC+NT: 07/08/17 

CC+MT: 19/08/17 
21/08/15 17/08/16 19/08/16 25/08/17 

Sowing depth (CC) 1-1.5 cm 2 cm 2 cm 2 cm 2 cm 

Soil preparation 

(before SC) 
Disc harrow See Table 9 See Table 9 

Rotary 

harrow 

DynaDrive b 

+ rotary 

harrow 

Sowing date (SC) 03/04/18 06/06/16 17/05/17 17/05/2017 02/05/18 

Sowing depth (SC) 2-2.5 cm 4 cm 4 cm 4.5 cm 4.5 cm 

a See treatment overview Experiment 1 (Table 8); b only for M1 & M2 (Table 10) 
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Experimental Set-up 

Cover Crops vs. Tillage and Glyphosate Treatments: Experiment 1. Experiment 1 was designed 

to evaluate the impact of weed management practices implemented following wheat harvest in 

late summer, on a subsequent barley crop planted the following spring (Table 7). Experimental 

treatments were arranged in a two-factorial randomized complete strip-plot design. Eight weed 

management treatments were implemented as the first factor (Table 8). The second factor, 

which was implemented as the strip, is the winter wheat straw management. The straw 

management included either straw removal just after the harvest or leaving straw on the field. 

In total, 16 treatments were set up with three replications at two locations in 2017. The plot size 

at the field sites was 16.5 x 5 m and 21.5 x 5 m at Binsen and Risp, respectively. At locations 

Binsen and Risp, the CC mixture (provided by Deutsche Saatveredelung AG (DSV), Germany) 

contained 45% Poaceae (Avena strigosa Schreb.), 18% Polygonaceae (Fagopyrum esculentum 

Moench), 17% Brassicaceae (6% Raphanus sativus var. oleiformis, 6% Sinapis alba L., 4% 

Brassica carinata A.Braun, 1% Camelina sativa Crantz), 12% Linaceae (Linum usitatissimum 

L.), 6% Boraginaceae (Phacelia tanacetifolia Benth.), 2% Asteraceae (Helianthus annuus L.). 

The seed producer recommends this legume-free mixture as being suitable for late sowing dates, 

cool growing conditions, and water production areas. Their attributed rapid growth and high 

biomass production are useful for weed suppression which supported choosing this mixture. 

Sowing, fertilization and plant protection measures were done uniformly across the entire 

experimental fields. Spring barley was sown at the 3rd of April at both locations. Calcium 

ammonium nitrate was applied with a rate of 300 kg ha-1 (4th of April) and 100 kg ha-1 (22nd of 

April). Tritosulfuron and florasulam (49.98 g active ingredient (ai) ha-1 and 3.78 g ai ha-1, 

respectively (70 g ha-1 Biathlon® 4D)) were applied at the 27th of April with a tractor sprayer. 

Additionally, the trials were treated with a fungicide and insecticide to avoid yield losses by 

pests. Epoxiconazol and Xemium® (62.5 g ai ha-1 (1 L ha-1 Adexar®) and 62.5 g L-1, 

respectively) were applied to the experimental fields at the 24th of May and thiacloprid (72 g ai 

ha-1 (0.3 L ha-1 Biscaya®)) at the 28th of May.  
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Table 8. Set-up of Experiment 1. Weed management treatments, weed control type, and 

treatment dates for the experimental field sites at Binsen and Risp. Weed management dates 

include dates for tillage, herbicide applications and sowing dates for the cover crop mixtures. 

(DAH = Days after cereal harvest). Based on Schappert et al. (2018). 

Treatment 

Weed management practices 

(depth in cm / 

concentration in L ha-1 / 

seed density kg ha-1) 

Weed control 

type 

Weed 

management 

(date in 2018) 

Weed 

management 

(DAH) 

1 Control 
Weed fallow without weed 

management 
- - - 

2 FST 
Flat soil tillage with rotary harrow 

(5 cm) 
mechanical 

08/08 

06/09 

14/10 

8 

37 

75 

3 DST 
Deep soil tillage with wing share 

cultivator (15-16 cm) 
mechanical 

08/08 

06/09 

15/10 

8 

37 

76 

4 PL 
Inversion soil tillage  

with a plow (25 cm) 
mechanical 14/08 14 

5 GLY 
Single glyphosate treatment  

(4 L ha-1) 
chemical 06/09 37 

6 2*GLY 
Dual glyphosate treatment  

(4 L ha-1) 
chemical 

06/09 

04/10 

37 

75 

7 CC+MT 
Cover crop mixture + mulch-till  

(1-1.5 cm, 25 kg ha-1)  
biological 19/08 19 

8 CC+NT 
Cover crop mixture + no-till  

(1-1.5 cm, 25 kg ha-1) 
biological 07/08 7 
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Soil Tillage Impact after Cover Cropping: Experiment 2. Experiment 2 was designed to 

evaluate the impact of cover cropping implemented following canola or wheat harvest and 

spring-applied weed management practices after cover cropping on corn grown in the following 

summer (Table 7). Experimental treatments were arranged in a two-factorial randomized 

complete block design. Six CC treatments were implemented as the first factor (Table 9). These 

species represent commonly used CCs in Southwest-Germany as well as species which, under 

given conditions, have shown valuable characteristics in previous field trials. The second factor 

included three different tillage practices in spring. The 18 treatments were replicated four times. 

Each plot had an area of 33 m2 (11 x 3 m). In spring 2016 and 2017, the plowing (PL) treatments 

were plowed on the 9th of March and 10th of February, respectively, with a depth of 30 cm. In 

the PL and no-till (NT) treatments, glyphosate (3.75 L ha-1 Roundup Powerflex®, 1,800 g acid 

equivalent ha-1) was applied with a hand boom on the 9th of May and 25th of April in 2016 and 

2017, respectively. Before corn sowing, a rotary harrow was used to prepare the seedbed within 

the PL treatments. A mulching unit and a rotary harrow were used at the 21st and 16th of May 

in 2016 and 2017, respectively, to prepare the soil within the mulch-till (MT) treatments. Corn 

was sown with a density of 93,200 grains ha-1 at the 6th of June and 17th of May in 2016 and 

2017, respectively. 160 kg N ha-1 were applied a few days after sowing. During the corn season 

no weed control was performed to investigate the effects of CCs and tillage.  

Table 9. Set-up of Experiment 2. Four cover crop monocultures and one mixture combined 

with different tillage practices after the cover crop season and before corn seeding (PL = 

plowing, NT = no-till, MT = mulch-till). Mixing ratios related to seed weight. 

Treatment 
Management 

practice 
Cover crop Sowing density 

1 

2 

3 

PL 

NT 

MT 

Control - 

4 

5 

6 

PL 

NT 

MT 

 Fagopyrum esculentum Moench  50 kg ha-1 

7 

8 

9 

PL 

NT 

MT 

Trifolium subterraneum L. 32 kg ha-1 

10 

11 

12 

PL 

NT 

MT 

Raphanus sativus var. oleiformis 25 kg ha-1 

13 

14 

15 

PL 

NT 

MT 

Avena strigosa Schreb. 120 kg ha-1 

16 

17 

18 

PL 

NT 

MT 

Mixture  

(35% F. esculentum, 15% T. subterraneum,  

15% R. sativus var. oleiformis, 35% A. strigosa) 

40 kg ha-1 
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Adapted Mulching Date of Cover Crops: Experiment 3. Experiment 3 was conducted to 

estimate the impact of CCs following wheat harvest in late summer and their residue mulching 

on a subsequent corn crop (Table 7). The treatments were set up as a two-factorial randomized 

complete block design. The first factor included the same six CC treatments as used at 

Experiment 2 (Table 10). Three spring-applied mulching dates were implemented as the second 

factor. The mulching was performed with a flail mower. The 18 treatments were conducted 

with four repetitions. Plot size in both years was 11.5 x 3 m. CC residues were mulched at an 

early (M1), a medium (M2) and a late (M3) date (for mulching dates see Table 10). In 2018, 

the M1 and M2 treatment were treated with a soil-driven tiller (Dyna-Drive®, Bomford Turner 

Ltd., Worcestershire, UK) two weeks before sowing due to the high weed infestation which 

would have hindered sowing. Corn was sown with 93,200 grains ha-1. At the 18th and 9th of 

May 170 kg N ha-1 were applied in 2017 and 2018, respectively. No other weed control practices 

were applied during the corn cropping season. 

Table 10. Set-up of Experiment 3. Four cover crop monocultures and one mixture combined 

with different mulching dates after the cover crop season and before corn seeding. Mulching 

dates during the season 2016/2017: M1 = 14/12/16, M2 = 15/03/17, M3 = 12/05/17. Mulching 

dates during the season 2017/2018: M1 = 15/01/18, M2 = 02/03/18, M3 = 30/04/18. Mixing 

ratios related to seed weight. 

Treatment Mulching date Cover crop Sowing density  

1 

2 

3 

M1 

M2 

M3 

Control - 

4 

5 

6 

M1 

M2 

M3 

Fagopyrum esculentum Moench 50 kg ha-1 

7 

8 

9 

M1 

M2 

M3 

 Trifolium subterraneum L. 32 kg ha-1 

10 

11 

12 

M1 

M2 

M3 

 Raphanus sativus var. oleiformis 25 kg ha-1 

13 

14 

15 

M1 

M2 

M3 

Avena strigosa Schreb. 120 kg ha-1 

16 

17 

18 

M1 

M2 

M3 

Mixture 

(35% F. esculentum, 15% T. subterraneum,  

15% R. sativus var. oleiformis, 35% A. strigosa) 

40 kg ha-1 
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Data Collection 

Cover Crops vs. Tillage and Glyphosate Treatments: Experiment 1. The densities of A. 

myosuroides, dicotyledonous weeds, and spring barley were assessed by counting plant 

densities 12 weeks after spring crop sowing (WASSC). Furthermore, the ears per plant of A. 

myosuroides and spring barley were estimated at the same date. All assessments were conducted 

with a quadrat (0.33 m2), within three random spots per plot. Spring barley was harvested with 

an area of 12.5 m2 and 25 m2 at trials Binsen and Risp, respectively, with a plot combine 

harvester at the 26th of July 2018. 

Soil Tillage Impact after Cover Cropping: Experiment 2 & Adapted Mulching Date of Cover 

Crops: Experiment 3. Weed and CC dry matter were determined by cutting the fresh biomass 

of a randomly chosen area with 0.25 m2 quadrat 7 (Experiment 3) and 12 (Experiment 2 and 3) 

weeks after sowing of CCs (WASCC). The fresh weed and CC plant material was separately 

placed in an oven at 100 °C for 24 hours to get the dry matter yields. Soil coverage within the 

CC season in Experiment 3 was visibly estimated randomly two times per plot within an area 

of 0.1 m2. Within an area of 0.1 m2, the weed density and composition within the CC season 

was determined 12 WASCC in 2016. The weed dry matter during the corn season was measured 

by cutting the weeds within an area of 0.25 m2 (at Experiment 2 in 2015 and 2016) and 1 m2 (at 

Experiment 3 in 2016 and 2017) 8 WASSC. The corn yield in Experiment 2 was measured by 

harvesting 16.5 m2 of the plot (11 x 1.5 m) using a plot-combine harvester at the 11th of October 

(18 WASSC) and 28th of September (19 WASSC) in 2016 and 2017, respectively. Corn at 

Experiment 3 was harvested with a combine from a 17.2 m2 area (11.5 x 1.5 m) on the 28th of 

September (19 WASSC) and the 22nd of August (16 WASSC) in 2017 and 2018, respectively. 

The weed density and community at Experiment 3 within the corn season was determined twice 

per plot within an area of 0.1 m2 8 WASSC. 

Data Analyses  

The data from all three experiments were analyzed using software R version 3.5.1 (R Core 

Team, 2018) and RStudio (Version 1.1.453, RStudio Team, Boston, MA, USA). Prior to 

analysis, the dataset was visually checked for variance homogeneity and normal distribution. 

The A. myosuroides densities at Experiment 3 in 2017 and 2018 were square-root transformed 

prior to using an analysis of variance (ANOVA). The data were separately analyzed for each 

experiment, year and sampling date. Significant differences were identified using the Tukey-
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HSD test with a significance level of p ≤ 0.05. Multiple comparisons of the means were 

conducted using the R add-on package lsmeans (Version 2.27 – 61). The results of the analysis 

for Experiment 1 are shown in Table 11.  

Table 11: Results of the analysis of variance related to Experiment 1 according to factor 

(column) and measured parameter (row). * p ≤ 0.05; n.s. = not significant. No interaction 

between factors was determined. 

Parameter 
Weed 

management 
Location 

Straw 

management 

Alopecurus myosuroides Huds. ears  * * n.s. 

A. myosuroides control efficacy * n.s. n.s. 

Barley tiller  * n.s. n.s. 

Barley yield  n.s. * n.s. 

 

The location had a significant impact on the barley yield and the A. myosuroides ears 

(Experiment 1). Therefore, those parameters were analyzed separately for the field trials Binsen 

and Risp. The straw management factor (Experiment 1) was not significant for the measured 

parameters. 

As tillage and mulching were done after the CC growing season within Experiments 2 and 3, 

CC and weed dry matter, soil cover and weed control efficacy (WCE) during CC growth were 

only analyzed according to the different CC treatments. The control treatments (Experiments 2 

and 3) were excluded from the CC dry matter analysis. The weed dry matter during the corn 

season in 2017 within Experiment 3 wasn’t been recorded. Wherever there were no interactions 

and factor CC not significant (Experiment 2 and 3), analysis during the corn season was 

performed according to management practices (Experiment 2, see treatment overview Table 9) 

or mulching dates (Experiment 3, see treatment overview Table 10). The results of the analysis 

for Experiments 2 and 3 are shown in Table 12 and Table 13, respectively. 
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Table 12: Results of the analysis of variance related to Experiment 2 according to factor 

(column) and measured parameter (row). * p ≤ 0.05; n.s. = not significant. No interaction 

between factors was determined. 

Season Year Parameter Cover crop choice  Soil tillage 

Cover cropping 

season 

2015 
Weed dry matter  * -  

Cover crop dry matter  n.s. - 

2016 
Weed dry matter n.s. -  

Cover crop dry matter  * - 

Corn cropping 

season 

2016 
Weed dry matter  n.s. * 

Corn dry matter n.s. * 

2017 
Weed dry matter  - - 

Corn dry matter n.s. * 

 

Table 13: Results of the analysis of variance related to Experiment 3 according to factor 

(column) and measured parameter (row). * p ≤ 0.05; n.s. = not significant. No interaction 

between factors was determined. 

Season Year Parameter Cover crop choice  Mulching date 

Cover cropping 

season 

2016 

Weed dry matter * - 

Weed soil cover * - 

Weed control efficacy * - 

Cover crop dry matter  * - 

Cover crop soil cover * - 

2017 

Weed dry matter * - 

Weed soil cover * - 

Cover crop dry matter  * - 

Cover crop soil cover * - 

Corn cropping 

season 

2017 

Weed dry matter  n.s. n.s. 

Total, A. myosuroides, 

monocotyledonous and 

dicotyledonous weed density 

n.s. n.s. 

Corn dry matter n.s. * 

2018 

Weed dry matter n.s. n.s. 

Total weed density  n.s. n.s. 

A. myosuroides density n.s. * 

Monocotyledonous weed density n.s. * 

Dicotyledonous weed density n.s. * 

Corn dry matter n.s. n.s. 

 

The WCE and A. myosuroides control efficacy (ACE) were calculated according to Rasmussen 

(1991) as:  

WCE, ACE (%) = 100 – wt (0.01 x wc)-1 (2) 

Wt is the weed (A. myosuroides) density (plants m-2) of the weed management treatments and 

wc the weed (A. myosuroides) density (plants m-2) of the control treatments. 



Publications 

39 

 

3.3 Results and discussion 

Cover Crops vs. Tillage and Glyphosate Treatments: Experiment 1  

A. myosuroides was controlled by 13-89% within Experiment 1 (Figure 4). The control 

treatment at Binsen showed an average of 32.2 A. myosuroides ears m-2. All weed control 

practices at the field trial Binsen, except for the DST treatment (16 ears m-2), reduced A. 

myosuroides ears m-2. The treatments PL and CC+NT achieved a reduction of A. myosuroides 

ears m-2 at both field trials (Figure 4 a, b). The PL treatment showed the greatest ACE with 

89%, which was greater than the worst-performing FST treatment with 13% ACE. Our results 

are generally consistent with previous research. For example,  Lutman et al. (2013) showed that 

moldboard plowing reduced the number of A. myosuroides plants in the subsequent crop by 

69% compared with a non-inversion tillage system. Moss (1979) reported that A. myosuroides 

was reduced from 557 plants m-2 within a shallow, tine treatment to 20 plants m-2 within a 

plowing treatment. Shallow tillage practices rather mix the upper soil layer, causing a horizontal 

distribution and an accumulation of weed seeds near the soil surface (Colbach et al., 2014; 

Cousens and Moss, 1990; Mohler and Galford, 1997). In order to bury the accumulated weed 

seeds, it may be recommended to combine shallow tillage practices with plowing every three 

to five years (Cousens and Moss, 1990; Gruber and Claupein, 2009). It is also expected that the 

increased A. myosuroides density in the plowing treatments during the fallow season in fall 

(Schappert et al., 2018) decreased viable seeds in the upper soil layer which resulted in a low 

number of A. myosuroides ears during cash cropping.  

The CC+NT treatment reached an ACE of 86%. The mechanisms responsible for strong 

suppression of A. myosuroides by the CC+NT treatment are unclear but may have been a result 

of the effective A. myosuroides control during CC growth and suppressive effects after CC 

termination. Chemical compounds from the CC residues might have impacted on the A. 

myosuroides control in summer. However, allelopathic active compounds like isothiocyanates 

are reported to disappear rapidly (Brown and Morra, 1995; Petersen et al., 2001), in comparison 

to the decomposition of residues (Yenish et al., 1995). Concluding, weed control after cover 

cropping is more likely to the physical barrier, created by the mulch layer, than to the presence 

of active allelopathic compounds released from CC residues. CCs developed well from fall-to-

winter and produced fresh matter amounts of more than 25 t ha-1 (Schappert et al., 2018). Tillage 

prior to the cash crop sowing mixed the CC residues into the upper soil layer, whereby 
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beneficial effects on weed control by the CC mulch layer decreased. However, Kruidhof et al. 

(2009) showed that the incorporation of CCs, e.g. Brassica napus L., achieves higher weed 

suppression than a mulch layer of the respective species. 

Further research is necessary to reveal the impact of CCs on A. myosuroides control after CC 

termination, which might contribute to further herbicide savings. 

 

Figure 4. Alopecurus myosuroides Huds. (A. myosuroides) ears m-2 within Experiment 1 at the 

field trials Binsen (a) and Risp (b). A. myosuroides control efficacy is shown in (c) averaged 

for the two field trials. Treatments: no cover crop control (Control), flat soil tillage (FST), deep 

soil tillage (DST), plowing (PL), single glyphosate application (GLY), dual glyphosate 

application (2*GLY), cover crop mixture + mulch-till (CC+MT) and crop mixture + no-till 

(CC+NT). Small letters within one graph show significant differences according to Tukey-HSD 

test (p ≤ 0.05). 

With a range between 219-263 tillers m-2, all treatments were able to increase tillering of spring 

barley compared to the control (Figure 5 a). The average spring barley yield was between 5.3 t 

ha-1 (Binsen) and 5.9 t ha-1 (Risp) (Figure 5 b). No differences in yield were observed between 

the treatments (Table 11). Therefore, one or two glyphosate applications (treatments: GLY and 

2*GLY) in fall did not improve A. myosuroides control and spring barley yield compared to 

either CCs or tillage methods. Therefore, CCs or tillage are reasonable options in order to 

control A. myosuroides and to retard the selection of glyphosate-resistant populations. 

Whereby, tillage is mostly implemented for weed control and seed bed preparation, CCs offer 

numerous advantages such as building up soil organic matter or breaking disease and pest cycles 

if well managed (Snapp et al., 2005). This can make a valuable contribution to agricultural 

production systems. 
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Figure 5. Number of barley tillers (a) within Experiment 1 of the treatments untreated control 

(Control), flat soil tillage (FST), deep soil tillage (DST), plowing (PL), single glyphosate 

application (GLY), dual glyphosate application (2*GLY), cover crop mixture + mulch-till 

(CC+MT) and crop mixture + no-till (CC+NT) averaged for Binsen and Risp. Average yield 

across all treatments for the field trials Binsen and Risp (b). Small letters within one graph show 

significant differences according to Tukey-HSD test (p ≤ 0.05).  

Soil Tillage Impact after Cover Cropping: Experiment 2  

With an average CC dry matter between 1402-1602 kg ha-1, there were no significant 

differences between the CC treatments in 2015 12 weeks after cover crop planting (Figure 6). 

All CC treatments, except for the Trifolium subterraneum L. treatment, were able to reduce 

weed dry matter. Baraibar et al. (2018) also observed the highest weed dry matter within a red 

clover treatment in comparison with grass, legume and cruciferous CCs. In 2016, none of the 

CC treatments were able to reduce the weed dry matter compared to the control treatment.  

While the CC mixture in Experiment 1 showed great potential for weed control during CC 

growth (Schappert et al., 2018) and after termination (Figure 4), weed suppressive effects by 

CCs after termination within Experiment 2 were not detected during either experimental 

seasons (Table 12). CC performance during the fall-to-winter was probably too weak in order 

to provide weed suppressive effects after termination.  



Publications 

42 

 

 

Figure 6. Weed and cover crop dry matter 12 weeks after sowing during the cover crop season 

within Experiment 2 in 2015 (a) and 2016 (b). Capital letters within one graph show significant 

differences among the weed dry matter according to Tukey-HSD test (p ≤ 0.05). Small letters 

within one graph show significant differences among the cover crop dry matter. Bars with no 

letters are not significantly different. 

As the performance of CCs is dependent on the location and the year, CCs are not always a 

reliable tool for weed control (Dorn et al., 2015) and are expected to arouse additional weed 

control strategies after termination. Tillage practices in spring impacted weeds during the corn 

season, independent from the CCs grown (Figure 7 a). Within the corn season in 2016, the PL 

and the MT treatments (Experiment 2) achieved the greatest weed dry matter with 2226  

kg ha-1 and 2202 kg ha-1, respectively. The NT treatment showed the lowest weed dry matter 

(1182 kg ha-1) and the greatest corn dry matter with 11 t ha-1 in 2016 (Figure 7 b). However, 

the performance of the tillage treatments on the corn yield changed in the following season 

(2017).  
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Figure 7. Weed (a) (in 2016) and corn (b) (in 2016 and 2017) dry matter at corn harvest within 

Experiment 2. Small letters within the graph (a) show significant differences in weed dry matter 

according to Tukey-HSD test (p ≤ 0.05). Small letters within the graph (b) show significant 

differences in corn dry matter within the year 2016. Capital letters within (b) show significant 

differences in corn dry matter within the year 2017. 

In 2017, the NT treatment showed the least and the PL treatment the greatest corn dry matter 

with 7 and 19 t ha-1, respectively. Weather conditions and the sowing date might have 

encouraged the seasonal differences between the tillage treatments. The corn yield variability, 

according to Kravchenko et al. (2005), is mainly affected by the spring-early summer 

precipitation in well-managed fields. Within the first 5 WASSC in 2016 the rainfall amount 

reached 78 mm. In comparison, the accumulated precipitation in 2017 was only 33 mm  

(5 WASSC). Hussain et al. (1999) showed that the corn yield within a no-till practice is greater 

in dry years, whereby the yield within moldboard-plowed treatments increased within wetter 

conditions. Greater soil moisture contents within no-till treatments caused by increased water 

infiltration, decreased runoff and evaporation compared to conventional tillage systems 

(Blevins et al., 1971; Hill, 1990) seem reasonable. However, the NT treatment showed the 

greatest yield during the 2016 season and the least corn yield in the dry 2017 season. The 

differences in yield seem, therefore, not be explainable by the water availability alone and might 

have additional reasons. Soil tillage or no-tillage have a major effect on the nitrogen cycle 

(House et al., 1984), which is linked to lower nitrogen availabilities in the no-till system during 

the early years after implementation (Rice et al., 1986). However, with a focus on the long-time 
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average, tillage (including no-till) may not show any effect on the corn yield (Hussain et al., 

1999).  

Adapted Mulching Date of Cover Crops: Experiment 3  

The ANOVA results show that the CC choice impacted on weed and CC dry matter and soil 

cover in both experiment seasons (Table 13). CC establishment and weed infestation were much 

lower in 2016 than in 2017, which resulted in a maximum weed soil cover of 6% (control) in 

2016 and 57% in 2017 (12 WASCC) (Figure 8 b, d). A. strigosa achieved the greatest weed 

coverage reduction of 96% (2017) (Figure 8 d). In 2016, the greatest CC dry matter was 

produced by R. sativus var. oleiformis, F. esculentum, and the mixture with 1738 kg ha-1, 1477 

kg ha-1, and 1418 kg ha-1, respectively (Figure 8 a). The CCs A. strigosa, R. sativus var. 

oleiformis and the CC mixture achieved the greatest CC dry matter with 1178 kg ha-1, 1083 kg 

ha-1 and 975 kg ha-1 in 2017, respectively. Except for T. subterraneum, all treatments were able 

to reduce the weed dry matter compared to the control 12 WASCC in 2016 and 2017 (Figure 8 

a, c).  

According to Brust, Claupein et al. (2014), Brassicaceae species (including R. sativus var. 

oleiformis) generally produce high dry matter yields, which result in effective weed control. 

The WCE in 2016 (12 WASCC) of R. sativus var. oleiformis, A. strigosa, and the CC mixture 

was significantly better (53-61%) than of F. esculentum and T. subterraneum, which only 

reached 2-3% WCE (Figure 9). Although, none of the CC produced high biomass yields, 

differences between the treatments indicate suitabilities of single species being suitable as a 

weed control measure. Across Experiments 2 and 3, R. sativus var. oleiformis showed the 

greatest potential in generating high biomass yields, reliable soil cover/plant establishment, and 

weed reduction ability. Out of the three years presented, A. strigosa seems to have a lower 

resilience against dry conditions compared to R. sativus var. oleiformis, which was reflected in 

low dry matter yields (Experiments 2 and 3) within the cover cropping season in 2016. 

Nevertheless, the allelopathic potential of CCs may compensate the lower dry matters yields 

and soil cover which still results in efficient weed control (Schulz et al., 2013). Therefore, a 

low ratio of A. strigosa in mixtures might support sufficient weed control and allow the 

remaining mixing partners to fulfill additional ecosystem services (Baraibar et al., 2018) like 

nitrogen fixation and a prevention of soil erosion. The mixture shown within Experiments 2 

and 3 achieved a similar weed control than the two most efficient single sown CCs. Due to the 
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resilience of species combinations against severe weather conditions and producers’ operations, 

mixtures may be advisable as they show a higher average weed control ability across seasons 

than CC pure stands (Wortman et al., 2012).  

During the subsequent corn season, CC choice did not influence weed dry matter, density and 

corn dry matter. All treatments were minimum-tilled before corn sowing, whereby weed 

suppressive effects by CC mulch seem to have vanished. Additionally, not much biomass was 

produced by CCs during both experiment seasons. The residue amount and the mulch soil 

coverage are the main drivers influencing weed infestations after cover cropping (Kunz et al., 

2017; Mirsky et al., 2011; Weber et al., 2017). The mulching dates did not impact on weed dry 

matter and total weed density (Table 13). Weed dry matter ranged between 901-1007 kg ha-1 in 

2017 and 958-1256 kg ha-1 in 2018 (Figure 10 a). Within the corn cropping season in 2017, the 

weed density was very low (Table 14). A maximum of 16.3 weeds m-2 (M3) was counted in 

2017 compared to a maximum of 122.1 weeds m-2 (M3) in 2018. The weed community was 

affected by the mulching dates in 2018 (Table 14). Whereby, the M3 treatment showed greater 

densities of A. myosuroides and monocotyledonous weeds, but reduced dicotyledonous weed 

density compared to the treatments M1 and M2. An explanation could be that the M1 and M2 

treatments received a supplementary soil tillage treatment in 2018 two weeks before sowing in 

order to prepare an appropriate seedbed. Thereby, the additional mixing (M1, M2) of the upper 

soil layer may have created favorable conditions, especially to dicotyledonous weeds. In 

contrast, the M3 was left fallow until two days before sowing which seemed to have encouraged 

the dispersal and emergence of monocotyledonous weeds, including A. myosuroides.  
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Figure 8. Weed and cover crop dry matter within Experiment 3 12 weeks after sowing in 2016 

(a) and 2017 (c). Weed and cover crop soil cover are shown for the year 2016 (b) and 2017 (d). 

Capital letters within one graph show significant differences within the weed dry matter/soil 

cover according to Tukey-HSD test (p ≤ 0.05). Small letters show significant differences within 

the cover crop dry matter/soil cover. * = missing data of F. esculentum in (b). 
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Figure 9. Weed control efficacy (WCE) 12 weeks after sowing during the cover crop season 

2016 within Experiment 3. Small letters show significant differences according to Tukey-HSD 

test (p ≤ 0.05). 

Table 14. Weed density (plants m-2) within Experiment 3 during the corn cropping season 8 

weeks after sowing in 2017 and 2018. Mulching dates during the season 2016/2017: M1 = 

14/12/16, M2 = 15/03/17, M3 = 12/05/17. Mulching dates during the season 2017/2018: M1 = 

15/01/18, M2 = 02/03/18, M3 = 30/04/18. ALOMY = Alopecurus myosuroides Huds., Monocot 

= monocotyledonous weeds, Dicot = dicotyledonous weeds (weed community see chapter: 

Experimental Sites). Capital letters show significant differences within one column according 

to Tukey-HSD test (p ≤ 0.05). Means with no letters do not differ significantly. NS = not 

significant. 

  2017 
NS   2018 

Treatment ALOMY  Monocot Dicot Total    ALOMY Monocot Dicot Total
 NS 

M1 1.1 1.4 14.2 15.6    1.1 
B
 14.9 

B 105.0 
A 118.7  

M2 1.4 1.7 11.8 13.5    1.5 
B
 14.7 

B   96.3 
A 110.7  

M3 1.8 2.0 15.0 16.3   5.3 
A
 55.3 

A   73.2 
B 122.1 

 

In 2018, the corn dry matter was 45-48% lower (averaged over all treatments) compared to the 

2017 season and reached a maximum of 9 t ha-1 (M1) (Figure 10 b). Marcillo and Miguez (2017) 

evaluated the effects of winter CCs on corn yield within a meta-analysis, using publications 

from 1965 until 2004. They concluded that winter CCs may have a negative, neutral, and 

positive impact on corn yield depending on the region, management practices, nitrogen 

fertilization, tillage, CC species, CC sowing, and termination date. Whereby Kuo and Jellum 
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(2000) argued that the nitrogen availability changed by CCs is the main trigger for an increase 

of corn biomass. The CC species used within Experiment 2 and 3 did not show any effect on 

the corn yield, while Marcillo and Miguez (2017) were distinguishing the effect on the corn 

yield according to the CCs used. Grass species, for example, have a neutral effect, while 

legumes reach an overall positive effect on the corn yield (Marcillo and Miguez, 2017), due to 

the additional atmospheric nitrogen fixation (Parr et al., 2011). CC mixtures may reach 13% 

greater corn yields compared to no-CC systems (Marcillo and Miguez, 2017), related to the 

biomass produced and the date of termination. Sainju and Singh (2001) observed that a delayed 

termination of CCs increased silage corn yield and nitrogen uptake within no-till systems. Corn 

dry matter was significantly increased in the M3 treatment compared to the M2 treatment and 

reached 17 t ha-1. Also Parr et al. (2011) demonstrated that a late termination with a roller-

crimper of winter-hardy legume CCs may increase corn yield even though sowing needs to be 

delayed. These findings agree with the results from Marcillo and Miguez (2017) who 

investigated a yield increase of about 30% if the mixture was terminated immediately before 

the sowing of corn. Applications of 200 kg N ha-1 or more negates the impact of CCs as N is 

then non-limiting (Marcillo and Miguez, 2017), which was also observed within this study as 

the CCs did not affect the corn yield. Continuous cover cropping with no or superficial soil 

disturbance and reduced fertilization might help to finally estimate the effects of CCs on corn 

yield. 
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Figure 10. Weed dry matter 8 weeks after sowing (a) and corn dry matter at corn harvest (b) 

within Experiment 3 in 2017 and 2018. Mulching dates during the season 2016/2017: M1 = 

14/12/16, M2 = 15/03/17, M3 = 12/05/17. Mulching dates during the season 2017/2018: M1 = 

15/01/18, M2 = 02/03/18, M3 = 30/04/18. Small letters within graph (b) show significant 

differences within one year according to Tukey-HSD test (p ≤ 0.05). Bars with no letters are 

not significantly different. 

Impact of CCs and their Management on Weed Control and Crop Yield  

Winter CCs were an efficient weed control measure during the fall to winter season. Weed 

suppression, however, did widely vary according to CC species and the seasonal amount of 

precipitation. The single sown A. strigosa, R. sativus var. oleiformis, and the species mixture 

showed the greatest and most reliable weed suppression during the cover cropping seasons. The 

CC mixture used at Experiment 1 demonstrated that well-established CCs do have a great 

potential to reduce A. myosuroides in the subsequent cash crop. This justifies substituting fall-

applied chemical weed control measures by CCs and encourages CCs to be integrated within 

herbicide resistance management strategies. However, weed suppressive effects after CC 

termination were different among the experiments. Neither the single species nor the mixture 

used for cover cropping at Experiments 2 and 3 had an impact on the weed infestation during 

the corn cropping seasons. CCs were identified as being suitable to integrate within non-

inversion systems when inversion tillage did not improve weed control after CC termination 

and when CCs did not show weed suppressive effects during CC growth. Management 

practices, like an adjusted mulching date of CC residues, failed in expanding weed suppressive 

effects from winter until spring cropping. In conclusion, CC establishment and weed 
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suppression performance from fall-to-winter need to increase in order to benefit from weed 

suppressive effects after CC termination. Further research is required to identify CC 

management strategies (sowing date, seed density, sowing technique, species selection, mixing 

strategies and fertilization) to provide reliable high CC biomass production. This will most 

likely also increase their impact on weeds within the subsequent spring crop. Growing of 

winter-hardy CCs might be considerable if weed suppression by CCs after their termination is 

especially intended. The corn and the spring barley yields were not affected by either well or 

poor performing CCs. This encourages testing different CC strategies without expecting crop 

yield losses.  
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Abstract 

 
To achieve efficient weed control by cover cropping, the plant species chosen need particular 

consideration. Combing different cover crop (CC) species in mixtures may increase the number 

of provided ecosystem services, including a reliable suppression of weeds. We tested the weed 

suppression ability of single CC species and mixtures in a field trial during the autumn-to-

winter growing season in 2016 and 2017. Anethum graveolens L. (dill), Raphanus sativus var. 

oleiformis Pers. (oilseed radish), Avena strigosa Schreb. (black oat), Carthamus tinctorius L. 

(safflower), Vicia sativa L. (vetch) and Phacelia tanacetifolia Benth. (phacelia) were sown in 

monocultures, as well as in mixtures with three or six species. Treatments with favorable 

establishment and above-average biomass yields tended to suppress weeds by showing lower 

weed dry matter and weed numbers. The highest weed control efficacy within the monocultures 

was reached in 2017 by black oat and oilseed radish with 72% and 83%, respectively. The 

mixture treatments reached a generally lower soil cover, aboveground dry matter and weed 

control efficacy (with an average of 57% in 2017). Even though mixtures were not as effective 

as the best performing single sown CCs, species combinations increased resilience against 

adverse weather conditions, an advantage to achieving efficient weed control over a long-term 

period. Therefore, the species composition within mixtures is more relevant than the number of 

species included. 

Keywords: biological; catch crop; plant diversity; weed management 
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4.1 Introduction 

The incorporation of cover crops (CCs) into crop rotations has become a practical strategy by 

producers. The European Union further promotes the use of CCs in agriculture by their 

“greening” strategy (Regulation (EU) No 1307/2013 of the European Parliament of the Council 

of 17 December 2013). The increasing interest of producers and researchers in CCs might have 

been encouraged by the manifold positive aspects which are attributed to cover cropping. CCs 

are normally grown between two main crops to reduce erosion and to improve soil 

characteristics like nitrogen content, phosphor availability and soil structure (Hartwig and 

Ammon, 2002). Additionally, they serve as a pollen and nectar source for pollinators and 

overwintering habitat for beneficials (Dunbar et al., 2017; Ellis and Barbercheck, 2015). They 

also provide services that reduce pests, pathogens and weeds (Farooq et al., 2011; Fourie et al., 

2016). CCs offer different temporal and spatial (niche) possibilities as well as physical and 

biochemical mechanisms to control weeds. 

After sowing, CCs provide direct weed control during their establishment by releasing 

allelochemical compounds into the environment (Gfeller et al., 2018) and competing with 

weeds for light, water, nutrients and space (Blanco-Canqui et al., 2015). This can severely 

hamper the development of weeds (Brennan and Smith, 2005) or even prevent them from 

emerging. Some cover crop (CC) species are able to survive the harsh conditions over winter 

and continue to provide this service in early spring. CCs are normally terminated by mechanical 

or chemical methods before sowing of the next main crop. In any case, CC residues are either 

incorporated into the soil or retained on the soil surface (Creamer et al., 1996). Under both 

strategies, plant residues continue to release the remaining allelochemicals that are contained 

in the dead plant material (Putnam et al., 1983; Tabaglio et al., 2013). If CC residues are left on 

the soil surface, they additionally act as a physical layer that small weed seedlings need to 

penetrate (Teasdale et al., 1991; Teasdale and Mohler, 1993). This slows down the development 

of the weed populations in spring after the main crop has already been sown (Wayman et al., 

2015). Therefore, CCs are able to affect weed populations from their sowing date until a certain 

time after the subsequent main crop is established (Falquet et al., 2015). Naturally, the weed 

suppressive ability of a CC depends on several environmental influences that determine, e.g., 

the level and activity of allelochemicals (Belz, 2007), the speed of CC development and the 

build-up of biomass (Hiltbrunner et al., 2007). Under unfavorable conditions, a single sown CC 

might not be able to provide a sufficient level of weed suppression. 
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Crop stands of single CC species are not able to buffer rapidly changing environmental 

conditions. Therefore, many studies have investigated the adaptability of mixtures (Finckh et 

al., 2000; Hajjar et al., 2008; Tilman et al., 2001). Higher species diversity increases the 

likelihood that some of the species in a mixture are more productive, because they are better 

adapted to a certain set of environmental conditions (sampling effect) (Huston, 1997; Tilman 

et al., 1997). The CC species Vicia sativa L. and Phacelia tanacetifolia Benth. were not 

germinating well under high temperatures, whereas Guizotia abyssinica (L.f.) Cass. performed 

well (Tribouillois et al., 2016). Combinations of contrasting species in regard to environmental 

conditions, therefore, might provide resilience to weather conditions and provide stability in 

their service provision. The conditions that drive CC species performance are also dependent 

on agronomic measures such as sowing date and termination method (Constantin, Le Bas et al., 

2015). CC mixtures might not only be resilient to environmental conditions, but also to failures 

in the conductance of agronomic measures by the producer. One of the upcoming major 

challenges will be the handling of climate change and extreme weather events in agriculture 

(Stott et al., 2004) and the question of how to design appropriate CC mixtures to deal with them. 

Additionally, more diverse mixtures host species that have different acquisition and 

competition strategies. The “niche complementarity” (MacArthur and Levins, 1967) describes 

the actual function of a mixture based on the traits of the single species. The more diverse or 

different the setup of these traits for every single species within a mixture, the more likely it is 

that they occupy different niches and are more productive. CC species with different plant 

canopy features might intercept and use light more efficiently and therefore reduce the 

availability of light on the soil surface, leading to a reduced emergence of weeds. The unique 

root growth patterns and abilities to take up and mobilize nutrients in the soil by CC species in 

mixtures might be able to use nutrients more efficiently and consequently leave fewer resources 

for weeds (Abraham and Singh, 1984; Tribouillois et al., 2015). Regarding weed suppressive 

abilities, cereal species are often more effective than legume species (Baraibar et al., 2018; 

Brainard et al., 2011; Ofori and Stern, 1987), which makes the former preferable components 

of CC mixtures dedicated to controlling weeds while the latter can add value by fixing nitrogen. 

It might also be possible to combine CC species with predominant physical or biochemical 

effects to further enhance the weed control abilities of these mixtures. Poaceae and Brassicaceae 

species have proven to be allelopathic (Belz, 2007; Hartwig and Ammon, 2002), while others 

like vetch (Vicia villosa Roth) seem to act predominantly via competition (Inderjit and 

Asakawa, 2001). As the weed control efficiency is dependent on both of these effects, the use 
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of CC mixtures was already advised and examined by several authors (Baraibar et al., 2018; 

Kunz et al., 2016). One, yet unsolved, issue is how to separate between competition and 

biochemical effects and their contribution to weed control in the field (Sturm et al., 2018; 

Tschuy et al., 2014). Another important question is: which traits of CCs are affecting their level 

of weed control? The usual reasoning that higher biomass production leads to a higher 

competitive ability and therefore more efficient weed control (Teasdale, 1996) might not hold 

true in all cases. Several recent studies reported no correlation between biomass and weed 

reduction (Baraibar et al., 2018; Kunz et al., 2016). There might be other or additional factors 

that may determine the level of weed control. 

Sampling effect and niche complementarity have been examined well in natural plant 

communities (Hooper et al., 2005; Tilman, 1999), but also to some extend for agricultural 

systems (Hector et al., 1999; Prieto et al., 2015). All these systems, natural and agricultural 

alike, perform ecosystem services based on the functions that the plants provide and these are 

often enhanced if species diversity is increased. A combination of the effects of species 

mixtures with the multiple advantages that CCs offer, can result in a very productive CC stand. 

This productivity does not normally lead to a harvest good, but might enhance the services 

provided by the CCs (Blesh, 2018). How many CC species or which particular traits are 

necessary to ensure weed control is still under investigation (Baraibar et al., 2018; Finney and 

Kaye, 2017; Holmes et al., 2017; Wortman et al., 2012). Ultimately, carefully designed species 

mixtures may be more stable in terms of weed control efficiency and reaction to changing 

weather conditions than single sown CCs, providing reassurance for the producer. Recognizing 

this great potential of CC mixtures along with the still scarce knowledge on service provision 

and reaction to climate, this study investigated the weed control ability of single sown CCs and 

CC mixtures in two very contrasting years. Within the study, the following hypotheses were 

investigated: i) CC dry matter does not determine the weed suppression ability; ii) mixtures 

have a better ability to suppress weeds in comparison to CC monocultures; iii) species-rich 

mixtures suppress weeds more efficiently than species-poor mixtures. 
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4.2 Materials and methods  

Experimental Sites 

The experimental field trials were conducted at the research station of the University of 

Hohenheim (48.74° N, 8.92° E, 475 m a.s.l.) in Southwest-Germany from August until 

December 2016 and 2017. After CC sowing in 2016 a long dry period followed. During the 

cover cropping season in 2017 the frequency and the amount of water provided ideal growing 

conditions for the CCs (Figure 11).  

 

Figure 11. Temperature and precipitation from August to December 2016 (a) and 2017 (b). 

The soil type at the field site during the season 2016 was classified as a silty clay (6% sand, 

53% silt and 41% clay). During the 2017 season, the field site was classified as a silty loamy 

soil (27% sand, 48% silt and 25% clay). Table 15 shows details about the crop rotation and 

field preparations. 

Table 15. Experimental set-up and conditions for the field trials in Southwest Germany in 2016 

and 2017.  

 2016 2017 

Crop rotation Winter wheat-cover crop Winter barley-cover crop 

Cereal harvest date 8 August 2016 5 August 2017 

Soil preparation (depth) 

Stubble cultivator +  

deep tillage (15 cm) +  

power harrow (6-8 cm) 

Stubble cultivator +  

deep tillage (15 cm) +  

power harrow (6-8 cm) 

Sowing date 19 August 2016 25 August 2017 

Sowing depth 2 cm 2 cm 
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Six CCs (provided by Deutsche Saatveredelung AG (DSV)): Anethum graveolens L. (A. 

graveolens), Raphanus sativus var. oleiformis Pers. (R. sativus), Avena strigosa Schreb. (A. 

strigosa), Carthamus tinctorius L. (C. tinctorius), Vicia sativa L. (V. sativa) and Phacelia 

tanacetifolia Benth. (P. tanacetifolia) were sown in both years (Table 16) in monocultures and 

in five mixtures including the same species as for the monocropping treatments. The untreated 

control treatment was left as a weed fallow without CCs. The mixing ratios refer to the seed 

weight and recommend seeding densities as for the single sown CCs. 

 

Table 16. Twelve treatments including an untreated control treatment without cover crops, six 

single sown cover crops and five cover crop mixtures.  

Treatment Crop Species Seed Density (kg ha-1) 

Control Without cover crops - 

A. graveolens Single sown Anethum graveolens L. 25 

R. sativus Single sown Raphanus sativus var. oleiformis Pers. 25 

A. strigosa Single sown Avena strigosa Schreb. 120 

C. tinctorius Single sown Carthamus tinctorius L. 40 

V. sativa Single sown Vicia sativa L. 100 

P. tanacetifolia Single sown Phacelia tanacetifolia Benth. 10 

Mixture 1 Mixture with 33% A. graveolens, 33% R. sativus, 33% A. strigosa 57 

Mixture 2 Mixture with 33% P. tanacetifolia, 33% C. tinctorius, 33% V. sativa  50 

Mixture 3 50% Mixture 1, 50% Mixture 2 53 

Mixture 4 20% Mixture 1, 80% Mixture 2 51 

Mixture 5 80% Mixture 1, 20% Mixture 2 55 

 

Data Collection 

Percent of soil coverage by CCs was estimated four times in a 0.1 m2 area randomly selected 

in each plot. Soil coverage was recorded seven (2016) and four times (2017) after sowing until 

12 weeks after sowing (WAS). Seven and 12 WAS the weed density and community were 

determined. Fresh matter of CCs and weeds was cut 7 and 12 WAS within an area of 0.25 m2. 

The fresh matter was cleaned with water and afterwards placed in the oven at 100 °C for 24 h 

to obtain biomass on a dry matter basis. 

Data Analysis 

The data were analyzed with the software R (Version 3.5.1). Normal distribution and 

homogeneity of variance were visually checked before analyzing the data. Linear regression 

was used to test for correlations. A log data transformation, prior to using an analysis of variance 

(ANOVA), was necessary for the weed density (12 WAS 2017) data. Means of different 
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treatments were compared using the Tukey-HSD test (p ≤ 0.05). According to Rasmussen 

(1991), the weed control efficacy (WCE) based on the weed density was calculated as 

WCE (%) = 100 - wt (0.01 x wc)-1 (3) 

where by wt is the weed density (weeds m-2) of the weed management treatments and wc the 

weed density (weeds m-2) of the untreated control.  

4.3 Results 

Cover Crop and Weed Development 

At the beginning of the CC growing season in 2016, the R. sativus and P. tanacetifolia 

treatments displayed the highest soil cover among the single sown CCs (Figure 12). The P. 

tanacetifolia treatment had the highest soil cover (79%) during the beginning of November 

while R. sativus reached a maximum of 50% soil cover during this same period. In 2017, the A. 

strigosa and the P. tanacetifolia treatments reached the highest soil cover among all treatments 

with a maximum of 92 and 83%, respectively, in late November. The mixtures generally 

showed less soil cover than the best performing single sown CC treatments in both years. The 

soil cover of the mixtures was generally quite homogeneously distributed and ranged between 

39-67% (4 November) in 2016 and 68-79% (15 November) in 2017. 
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Figure 12. Cover crop soil cover (%) for the six single sown cover crops (a,c) and the five 

mixtures (b,d) from the end of September until the end of November in 2016 (a,b) and 2017 

(c,d). Dates in the x-axis in the format dd.MM. 

In both years, volunteer crops like Brassica napus L. (2016), Triticum aestivum L. (2016) and 

Hordeum vulgare L. (2017) belonged to the dominant weeds. Dicotyledonous weeds were the 
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dominant weed species in addition to volunteer crops. In 2016, the dominant weed species were 

Galium aparine L., Chenopodium album L., Veronica persica Poir. and Capsella bursa-

pastoris (L.) Medik.. In 2017, there was a broader species diversity, including species like 

Matricaria spp., Lamium purpureum L., Capsella bursa-pastoris (L.) Medik., Veronica persica 

Poir., Stellaria media Vill., Chenopodium album L. and Cirsium arvense (L.) Scop. The 

untreated control treatment in 2016 showed a mean weed infestation of 62.5 plants m-2 (Table 

17). In 2017, the untreated control showed a 10-times higher (678.8 plants m-2 12 WAS) weed 

density than in 2016. In 2016, the significantly lowest number of weeds was counted in the R. 

sativus (13.1 plants m-2) and Mixture 4 (14.4 plants m-2) treatments. In 2017, the significantly 

lowest number of weeds was observed in the A. strigosa treatment with 112.5 plants m-2. 

Similarly, high weed densities as in the untreated control were counted in the A. graveolens, C. 

tinctorius and V. sativa treatments, which had shown a generally weak performance within the 

two years regarding CC soil cover and CC dry matter. There were no significant differences 

between any treatments concerning total weed density 7 WAS in 2017.  

Table 17. Total weed density for the six single sown and five cover crop mixtures 12 weeks 

after sowing in 2016 and 2017. Different capital letters within one column show significant 

differences according to Tukey-HSD test (p ≤ 0.05). 

Treatments Total Weed Density (Plants m-2) 

 2016  2017 

Control 62.5 A  678.8 A 

A. graveolens 49.9 AB  433.8 ABC 

R. sativus 13.1 C  196.6 BC 

A. strigosa 29.4 BC   112.5 C 

C. tinctorius 41.9 ABC  452.5 ABC 

V. sativa 37.5 ABC   483.8 AB 

P. tanacetifolia 20.0 BC  382.5 ABC 

Mixture 1 30.0 BC  168.8 BC 

Mixture 2 25.6 BC  370.0 ABC 

Mixture 3 28.8 BC  326.3 ABC 

Mixture 4 14.4 C  237.5 ABC 

Mixture 5 27.5 BC  272.5 ABC 

 

The weed densities 12 WAS in 2016 and 2017 showed a correlation with an R2 of 0.58. The 

regression between those two parameters was significant (p = 0.004), which shows that the 

occurrence of weeds within the treatments was not random within both years.  

Due to the four weeks of drought after sowing in 2016, the CCs were only sparsely developed 

7 WAS (Figure 13a). The R. sativus treatment reached the significantly highest aboveground 

dry matter (1210 kg ha-1) 7 WAS in 2016. Except for the A. graveolens and Mixture 2 treatment, 
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all treatments were able to significantly reduce the dry matter amount of weeds (7 WAS) 

compared to the untreated control. The generally low weed infestation and the poor growing 

conditions in 2016 season led to a maximum weed dry matter of 206 kg ha-1.  

None of the CC treatments were able to show a significantly lower weed dry matter than the 

untreated control 12 WAS in 2016 (Figure 13b). The R. sativus and P. tanacetifolia treatments 

reached the significantly highest amount of CC dry matter within the single sown species with 

1626 and 2068 kg ha-1, respectively. Among all treatments, Mixture 2 and 3 achieved with 2396 

and 2350 kg ha-1 the highest amount of CC dry matter. 

The amount of weed dry matter of the untreated control 7 WAS in 2017 was, with 467 kg ha-1, 

almost twice as high as 7 WAS in 2016 (Figure 13c). Among the single sown CCs, only the 

treatments R. sativus and A. strigosa, with 1247 and 1450 kg ha-1 aboveground dry matter, 

respectively, were able to significantly reduce the amount of weed dry matter compared to the 

untreated control 7 WAS in 2017. Compared to the untreated control all mixtures, except for 

Mixture 2, significantly reduced the weed dry matter.  

In 2017, the P. tanacetifolia treatment had the highest amount of CC dry matter with 2247 kg 

ha-1 but did not significantly reduce the amount of weed dry matter compared to the untreated 

control 12 WAS (Figure 13d). The treatment A. strigosa showed the lowest amount of weed 

dry matter with 97 kg ha-1 among all treatments and reached an aboveground dry matter of 2197 

kg ha-1. The mixtures, except for Mixture 4, were able to significantly reduce the dry matter of 

weeds compared to the untreated control, but showed generally lower numbers of CC dry matter 

compared to the previous year, reaching a maximum of 1674 kg ha-1 (Mixture 1). 
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Figure 13. Cover crop (grey) and weed (black) aboveground dry matter in kg ha-1 for the six 

single sown and five cover crop mixtures 7 weeks after sowing (WAS) in 2016 (a)/2017 (c) and 

12 WAS in 2016 (b)/2017 (d). Different small letters within one graph show significant 

differences concerning the cover crop dry matter according to Tukey-HSD test (p ≤ 0.05). 

Different capital letters within one graph show significant differences concerning the weed dry 

matter according to Tukey-HSD test (p ≤ 0.05). Means for weed dry matter with no capital 

letters do not differ significantly. * Due to space limitations in the graph (c): Control A, A. 

graveolens ABC, R. sativus BCD, A. strigosa D, C. tinctorius ABCD, V. sativa AB, P. tanacetifolia 
ABCD, Mixture 1 BCD, Mixture 2 ABCD, Mixture 3 BCD, Mixture 4 BCD, Mixture 5 CD. 

Weed Control Efficacy  

In 2016, among the mixtures, the highest WCE was reached 12 WAS by the Mixture 4 treatment 

with 47% (Figure 14). Across all treatments, the R. sativus treatment had the highest WCE with 
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60%. The highest WCE 12 WAS in 2017 among all treatments was reached by the A. strigosa 

treatment with 83% followed by the treatments Mixture 1 and R. sativus with 75% and 72%, 

respectively. The differences in WCE between the treatments were not significant in 2016 and 

2017 (12 WAS). 

 

Figure 14. Weed control efficacy (WCE) of the six single sown and five cover crop mixtures 

12 weeks after sowing in 2016 (a) and 2017 (b). Means with no letters do not differ significantly 

according to Tukey-HSD test (p ≤ 0.05).  

4.4 Discussion 

The highest WCE within both years was achieved by the A. strigosa treatment with 83% (12 

WAS in 2017). Brust and Gerhards (2012) showed a similarly high weed suppression ability of 

A. strigosa with 90%. CCs seem to be able to significantly reduce the number of weeds but 

have not shown complete weed control within this study due to a severe drought period after 

sowing in 2016 and the generally high weed infestation in the 2017 season.  

As expected, the CC dry matter is not necessarily a predictor of the weed suppression ability. 

No correlations between CC biomass and weed dry matter/density were determined. This agrees 

with Kunz et al. (2016) and Baraibar et al. (2018) who also did not find correlations between 

CC dry matter and weed density. Finney et al. (2016) pointed out that biomass driven CCs do 

generally have a more effective weed suppression potential. However, it seems like this is only 

relevant to a certain extent. Gfeller et al. (2018) name the threshold of 3 t ha-1, until which the 
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CC biomass and the suppression of Amaranthus retroflexus L. were negatively correlated. 

Onwards, other parameters, like chemical or other physical parameters might have a higher 

importance to contribute to an efficient weed control. Within their study, also some CCs with 

low biomass yields, like Brassicaceae and A. strigosa, were able to achieve an efficient weed 

control against Amaranthus retroflexus L. (Gfeller et al., 2018). This agrees with the data 

presented for the season 2016, whereby the A. strigosa treatment reached a WCE of 33% 

(average WCE across all treatments: 24%), with a simultaneously low amount of dry matter. 

This might be attributed to the allelopathic potential of A. strigosa (Gfeller et al., 2018; Rueda-

Ayala et al., 2015). R. sativus was, within the experiment, one of the most efficient single sown 

CC, reaching an average WCE within the two seasons of 66% (12 WAS). R. sativus is able to 

reach weed suppression efficacies of more than 90% (Brust, Claupein et al., 2014; Sturm et al., 

2017) under ideal conditions and sowing dates. This is probably caused by the relatively high 

dry matter production (negative correlation between weed and brassica CC biomass (Baraibar 

et al., 2018)) and the well-reported allelopathic potential of Brassicaceae species (Haramoto 

and Gallandt, 2005; Petersen et al., 2001). 

Additionally, Brennan and Smith (2005) and Dorn et al. (2015) suggest that rapid plant 

development after sowing is more important than the final CC biomass (Baraibar et al., 2018). 

For some examples, these results can be referred to the data presented. In late September 2017, 

the treatments R. sativus, A. strigosa and P. tanacetifolia showed the highest soil cover with 

52-55%. Both, the R. sativus and the A. strigosa treatment achieved the highest WCE among 

the single sown CCs with 72% and 83%, respectively. In contrast, the P. tanacetifolia treatment, 

even though biomass and soil cover were well developed, performed as poorly as the very weak 

established treatments A. graveolens and C. tinctorius with less than 13% of soil cover. 

The mixtures were not more efficient at suppressing weeds than the monocultures, which agrees 

with several studies (Baraibar et al., 2018; Brust, Weber et al., 2014; Finney et al., 2016; Smith 

et al., 2014). The most efficient single sown CCs showed a higher suppression ability than the 

most efficient mixture in both years, which is also shown by (Smith et al., 2014). According to 

Baraibar et al. (2018), CC mixtures containing grasses are more efficient to suppress weeds 

than monocultures with Brassicaceae species or legumes. Within both years, all mixtures were 

clearly more efficient at suppressing weeds than V. sativa. This can be inferred from the studies 

of Baraibar et al. (2018) and Hayden et al. (2012), who conclude that CCs with early canopy 

closing, to which vetch does not belong, generally show better weed suppression. In 2016, the 

R. sativus treatment reached the highest WCE with 60%, while in 2017 the Mixture 1 and the 
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R. sativus treatment showed a similar WCE of 75% and 72%, respectively. All other mixtures 

only reached a WCE between 42% and 62%. Finney et al. (2016) state as a reason that highly 

productive single sown CCs may produce as much biomass as diverse species mixtures. In 

October 2016 and 2017, particularly the single sown treatments like R. sativus and P. 

tanacetifolia were achieving higher dry matter yields than the mixtures. However, as discussed, 

the biomass of CC monocultures and mixtures is not, or only weakly, related to the weed 

suppression potential. Generally, species-specific mechanisms for weed suppression are still 

not well understood. How different mechanisms of weed suppression act or interact also need 

further investigation (Baraibar et al., 2018). Even though mixtures might not be an improved 

tool for weed management in cover cropping systems, many other benefits are attributed to CC 

mixtures. In consideration of the dry matter, soil cover and the reduction of weeds during the 

2016 season, the mixtures showed the ability to withstand unfavorable weather conditions better 

than many of the single sown CCs. The resilience of mixtures towards severe weather 

conditions or management errors (Wortman et al., 2012), might compensate their less efficient 

weed control compared to monocultures. However, only high crop densities are an effective 

tool for weed suppression (Weiner et al., 2010). As species mixtures follow the idea to be able 

to buffer the failure of other species, increasing the sowing density of all species included in 

the mixture should be considered. This might be relevant in order to achieve similar crop stands 

under unfavorable conditions than within well-performing single sown treatments, resulting in 

an improved weed suppression potential. 

The six species mixtures (Mixture 3-5) did not show a more efficient weed suppression potential 

than the three species mixtures (Mixture 1-2). As demonstrated by Kunz et al. (2017), a five 

species mixture was not better than a mixture with seven species in terms of weed control. This 

leads to the conclusion that the quantity of plant species within a mixture is less relevant than 

the mixture composition. Brassicaceae and Poaceae species, for example, respond well to dry 

conditions, while Fabaceae species do not (Tribouillois et al., 2016). Mixture 1, with R. sativus, 

A. strigosa and A. graveolens showed the best weed control performance and was able to 

significantly reduce the weed density in both years compared to the control. Baraibar et al. 

(2018) concluded that a high proportion of grass species achieves a large reduction of weed 

biomass, as grass species are also highly suppressive in monocultures. Mixtures with an 

increasing proportion of rye were able to decrease the weed biomass as observed by Akemo et 

al. (2000). This might be the reason why Mixture 1 with the highest proportion of A. strigosa 

performed best, while Mixture 2, as the only mixture without grass species, showed a 
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comparably slow soil cover and weak WCE in 2017. Mixture 3-5 with different proportions of 

A. strigosa showed a reliable establishment and an adequate weed suppression ability. 

Sufficient weed control might already be provided by low proportions of grass species within 

mixtures, meanwhile other species may fulfill important ecosystem services (Baraibar et al., 

2018). 

4.5 Conclusions 

Out of the two years of data presented, R. sativus and A. strigosa are the two most promising 

single sown CCs, because they showed a fast establishment along with the highest weed 

suppression potential. In order to fulfill the requirements of diverse ecosystem services and 

weed control, CC mixtures like Mixture 1 seem to be suitable for cover cropping. In general, 

mixtures need to be composed reasonably in order to avoid weed problems caused by poorly 

competitive species (McLaren et al., 2019). Combing CC species with physical and chemical 

weed suppression mechanisms may increase the weed control success. Species with chemical 

mechanisms thereby, for example, contribute to an efficient weed control under unfavorable 

circumstances when CC development and biomass yield is low. CC mixtures might 

substantially contribute to the success of biological weed control if the weed suppression 

mechanisms of different plant species and their ideal composition within mixtures can be 

identified. 
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Abstract 

 
The water demand of cover crops (CC) should be considered in order to achieve competitive 

crop stands for weed control also under unfavorable conditions. This study aims to estimate the 

weed suppressive ability of winter CC, as Sinapis alba L., Phacelia tanacetifolia Benth., Vicia 

sativa L. and Avena strigosa Schreb., under a water-limited regime. The water deficit tolerance 

of different CC was determined in a greenhouse experiment by measuring the maximum 

quantum efficiency of photosystem II. Moreover, soil moisture, CC, and weed establishment 

were measured within field experiments in Southwest-Germany during two contrasting 

growing seasons in 2016 and 2017. A. strigosa showed a higher water deficit tolerance than S. 

alba in the greenhouse. In the field, A. strigosa showed the highest weed cover reduction (98%) 

in the field, along with an increasing effect on the soil moisture compared to the untreated 

control. S. alba performed most sensitive to water deficit in the greenhouse but reached the 

significantly highest weed control efficacy (94%) during the dry field season in 2016. Even 

though the selected CC showed differing sensitivities to water deficit in the greenhouse, their 

weed suppression ability was independent of the water supply under field conditions.  

Keywords: abiotic stress; catch crop; chlorophyll fluorescence; weed management; water 

balance 
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5.1 Introduction 

The increasing interest on cover crops (CCs) is caused by their associated benefits (Snapp et 

al., 2005) like weed suppression (Teasdale and Mohler, 2000), nutrient recycling efficiency, 

soil erosion reduction (Snapp et al., 2005) and cash crop productivity (Abdin et al., 2000). 

However, CCs may change the water balance significantly (Ward et al., 2012). In water-limited 

regions, producers do not opt integrating winter CCs between two cash crops, as CCs might 

decrease the restoration of soil water resources, which may lead to a lower soil water content 

for the following spring crop (Wortman et al., 2012).  

If negative effects on the following cash crop are not expected, single CCs or cover crop (CC) 

mixtures are a suitable weed control measure during the fallow period from fall to spring. CCs 

suppress weeds during cultivation by competition for resources and by releasing biochemical 

compounds (Gfeller et al., 2018). To increase the weed control ability of CCs, an early CC 

establishment in fall, in combination with high biomass production and complete soil coverage, 

are targeted (Brennan and Smith, 2005; Finney et al., 2016). To achieve appropriate CC stands, 

CCs need to be resilient to abiotic stresses, including water deficits, as the probability of 

extreme weather events seems to rise due to climate change (IPCC, 2014).  

This study aims to estimate the water demand of some commonly used winter CCs in Germany 

and their weed suppressive ability under moist and water-limited conditions. Vicia sativa L. 

(Fabaceae) has quite low habitat requirements and even increases water infiltration rates 

(Decker et al., 1994) but seem to respond sensitively to dry conditions (Tribouillois et al., 2016). 

Phacelia tanacetifolia Benth., which belongs to the family of Hydrophylaceae, requires higher 

water potentials for germination and prefers, as V. sativa, mild temperatures (below 30 °C) for 

germination (Tribouillois et al., 2016). In comparison, Raphanus sativus var. oleiformis Pers. 

and Sinapis alba L., which belong to the family of Brassicaceae and Avena strigosa Schreb. 

(Poaceae) seem to be more tolerant to water deficits during germination (Tribouillois et al., 

2016). This study evaluates how these CCs are affected by water deficit and if themselves 

contribute to lower soil moisture contents compared to the control without CCs. Thereby, the 

following questions were addressed: (i) Do P. tancacetifolia, S. alba and A. strigosa show 

differing sensitivities to water deficit in greenhouse and field experiments; (ii) is the water stress 

tolerance of CCs determining their weed suppression ability, and (iii) is the soil moisture 

content from fall to winter affected by cover cropping. 

 



Publications 

71 

 

5.2 Material and methods 

Greenhouse experiment: Experimental set-up  

A greenhouse pot trial was conducted twice to assess the tolerance to water deficit of S. alba, 

P. tanacetifolia, and A. strigosa. A randomized complete block design with 4 repetitions per 

treatment was used. The greenhouse temperature was set to 20/14°C day/night at a 12 h 

photoperiod. To receive a unique set of plants, plants were pre-grown in vermiculite until the 

second leaf was unfolded. At this time, three seedlings of one species were transplanted to one 

plastic pot (7 x 7 x 8 cm), which was filled with 350 g of soil (60% sand, 28.7% silt, and 11.3% 

clay). One pot served as one repetition. After transplanting, plants were grown 7 days with full 

water supply. The trial consisted of 15 treatments of different periods without irrigation. The 

durations without irrigation ranged from 1 to 14 consecutive days without water supply. 

Whereby, e.g., treatment 2 and 14 were not irrigated for 2 and 14 days, respectively. A control, 

which was irrigated throughout the whole trial period, was included. Each pot of the respective 

treatment was irrigated with 30 mL of water until field capacity after reaching the first day of 

irrigation and every second day afterward.  

Before the first time of irrigation, the maximum quantum efficiency of photosystem II (Fv/Fm) 

was determined with an Imaging PAM M-Series chlorophyll fluorometer (Heinz Walz GmbH, 

Effeltrich, Germany) to receive information on the physiological plant status at the end of the 

water-limited period. Before the measurements, plants were dark acclimated for 30 min. 

Afterward, the ground fluorescence (Fo) and the maximum fluorescence (Fm) were determined. 

The variable fluorescence (Fv) was calculated by subtracting Fo from Fm. The Fv/Fm value 

was calculated as: 

Fv/Fm = (Fm – Fo) Fm-1 (4) 

The Fv/Fm value is a commonly used parameter to receive information on the photosynthetic 

efficiency (Baker, 2008). It can be used to quantify plant stress in plants of diverse origin 

(Rosenqvist and van Kooten, 2003). In healthy conditions, the Fv/Fm value is ~ 0.8 (Björkman 

and Demmig, 1987), while lower values indicate plant stress. 
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Field experiments: Experimental and meteorological conditions  

Two field experiments were conducted in Southwest-Germany at the research station of the 

University of Hohenheim (48.74°N, 8.92°E, 475 m a.s.l.) near Renningen from August until 

December in 2016 and 2017. The soil at Experiments 1 and 2 in 2016 was classified as a silty 

clay (6% sand, 53% silt, and 41% clay). Soil texture of 6% sand, 65% silt and 29% clay was 

indicated at Experiment 1 in 2017. In 2017, the soil type at Experiment 2 was a silty loam (27% 

sand, 48% silt and 25% clay). The monthly weather details and the water balance are shown in 

Table 18. The daily water balance (D, mm) was calculated as:  

D = P – ETo (5) 

While P is the precipitation (mm) and ETo the crop reference evapotranspiration (mm). ETo was 

calculated using the ETo calculator version 3.2 (FAO 2012). The soil textures, crop rotations, 

and field preparations for Experiments 1 and 2 are shown in Table 19.  

Table 18. Mean temperature, total precipitation, water balance and total crop reference 

evapotranspiration (ETo). 

 

  

Year  Month  
Temperature 

(C°) 

Precipitation 

(mm) 

ETo 

(mm) 

Water Balance 

(mm) 

2016 

July  18.1   64.8 115.7 -50.9 

August 17.8   29.3 107.9 -78.6 

September 16.4   50.6   76.7 -26.1 

October   8.1   53.3   26.9  26.4 

November   3.6   48.7   11.7  37.0 

 Total 12.8 246.7 338.9 -92.2 

2017 

July  18.1 109.9 109.9   0.0 

August 18.1   69.3   94.5 -25.2 

September 12.1   52.2   52.7  -0.5 

October 10.8   51.1   37.2 13.9 

November   4.2   63.0   11.9 51.1 

 Total 12.7 345.5 306.2 39.3 
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Table 19. Experimental set-up and conditions of the field trials.  

 2016 2017 

 Experiment 1 Experiment 2 Experiment 1 Experiment 2 

Crop rotation winter wheat - cover crop winter wheat –  

cover crop 

winter barley –  

cover crop 

Cereal harvest date 08/08/2016 10/08/2017 05/08/17 

Soil preparation 

(depth) 

stubble cultivator + 

deep tillage (15 cm) +  

power harrow (6 - 8 cm) 

stubble cultivator +  

deep tillage (15 cm) +  

power harrow (6 - 8 cm) 

Sowing date 19/08/2016 25/08/2017 

Sowing depth (cm) 2 2 

Soil texture silty clay  silty clay loam silty loam 

 

Set-up and data acquisition of Experiment 1 

Experiment 1 was conducted with 3 treatments and 8 replications within a randomized complete 

block design. In 2016 and 2017, S. alba, P. tanacetifolia, and A. strigosa (Deutsche 

Saatveredelung AG (DSV), Lippstadt, Germany) were sown in pure stands with seed densities 

of 25, 10 and 120 kg ha-1, respectively within 30 m2 plots. A control treatment without CCs was 

included. The weed flora was determined 7 weeks after sowing (WAS). CC and weed dry matter 

were measured by harvesting, washing, and drying 0.25 m2 fresh material 7 WAS.  

According to Rasmussen (1991), weed control efficacy (WCE) was calculated as: 

WCE (%) = 100 – wt (0.01 x wc)-1  (6) 

Where: wt - weed dry matter (kg ha-1) of the CC treatments; wc - weed dry matter (kg ha-1) of 

the control without CCs. 

Set-up and data acquisition of Experiment 2 

R. sativus, V. sativa, P. tanacetifolia, and A. strigosa were sown, in 2016 and 2017, in 60 m2 

plots with seed densities of 25, 100, 10 and 120 kg ha-1, respectively. Experiment 2 was set up 

as a randomized complete block design with four replications. Within the control treatment, no 

CC was sown. Soil moisture contents were measured within one tube per plot by a frequency 

domain reflectometry device called PR2 probe (Profile Probe; Delta-T Devices Ltd., Burwell, 

UK). The soil cover of CCs and weeds were estimated four times per plot with a metal frame, 

covering an area of 0.25 m2, 7 WAS. The weed community was also determined 7 WAS.  
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Data analysis (field and greenhouse experiments) 

The software R (version 3.5.1, R Foundation for Statistical Computing, Vienna, Austria) was 

used for data analysis. The data were visually checked for normal distribution and homogeneity 

of variance. Based on the Fv/Fm values, dose-response curves were calculated with a three 

parametric log-logistic model and checked for fit with a lack-of-fit test (Ritz et al., 2015). To 

receive differences in the resilience to water deficit of the different CCs, the duration for a 

reduction of 50% in the Fv/Fm value (TE50) was calculated. An analysis of variance (ANOVA) 

was performed for the TE50 and the ground truth field data collected for the field Experiments 

1 and 2. Differences, of the treatment means, were obtained using a Tukey-HSD (honestly 

significant difference) test with p ≤ 0.05.  
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5.3 Results and discussion 

Within the greenhouse experiment, S. alba showed the highest sensitivity to water scarcity 

(Figure 15) and reached TE50 already after 12.3 days without irrigation, whereas A. strigosa 

reached TE50 after 14.6 days. P. tanacetifolia showed the significantly highest tolerance to 

water deficit and exhibited a TE50 to 15.9 days without irrigation.  

 

Figure 15. Dose-response curves of the maximum quantum efficiency of the photosystem II 

(Fv/Fm) response of Sinapis alba L., Phacelia tanacetifolia Benth. and Avena strigosa Schreb. 

to days without irrigation. 

A similar weed community composition was noticed in the experimental field for both the 

experiments. In 2016, volunteer crops (Experiment 1 and 2: winter wheat) and annual broad-

leaved weeds like Capsella bursa-pastoris M., Chenopodium album L., Galium aparine L. and 

Lamium purpureum L dominated the weed community. In 2017 at Experiment 1, C. album, G. 

aparine, Stellaria media L. and volunteer crops (winter wheat) were dominating. C. bursa-

pastoris, L. purpureum, Matricaria spp. and volunteer crops (winter barley) were predominant 

in the weed flora of Experiment 2 in 2017. The field sites showed a water equilibrium of -92.2 

mm in 2016 (from July until November) and a positive water equilibrium in 2017 with 39.3 

mm within the same months (Table 18). The amount of water, which was lost by ETo in 2016, 
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exceeded the amount of precipitation throughout the whole season (Figure 16). Due to the water 

deficit in 2016, the maximum amount of dry matter with 1002 kg ha-1 (S. alba) in Experiment 

1 was almost 60% lower than the maximum amount of dry matter in 2017 (S. alba) (Figure 17).  

 

 

Figure 16. Cumulative reference crop evapotranspiration (ETo) and precipitation from August 

until December 2016 and 2017. 

 

 

Figure 17. Cover crop dry matter, weed dry matter, and weed control efficacy (WCE) 7 weeks 

after sowing (Experiment 1). Capital letters within one graph show significant differences in 

2016, according to Tukey-HSD (honestly significant difference) test (p ≤ 0.05). Small letters 

within one graph show significant differences in 2017, according to Tukey-HSD test (p ≤ 0.05). 

Even though the highest sensitivity to water scarcity was measured for S. alba in the 

greenhouse, S. alba was unimpaired by water deficits in the field. This is consistent with 

literature where mustard is described as drought-tolerant (Brown et al., 2005; Tian et al., 2014). 

Bodner et al. (2007) found that S. alba, when used as a CC, shows high evapotranspiration 
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losses compared to CCs like vetch and phacelia. However, according to their study, S. alba 

compensates for these water loss with a high biomass production, which increased the 

competitions with weeds. the field, S. alba showed the lowest weed dry matter and highest 

WCE with ~96% in both years (Experiment 1). This result agrees with other studies that also 

suggest S. alba as being suitable as an efficient weed control measure. Brust, Claupein et al. 

(2014) and Kunz et al. (2016) showed a weed density reduction between 57–59% compared to 

the no-CC control. Björkman et al. (2015) showed a reduction of more than 50% in 9 of 10 

study cases with weed biomass reductions by up to 99% by S. alba as compared to the untreated 

control. A. strigosa reached a similar WCE with 95% (Experiment 1 in 2017) and the highest 

reduction of weed coverage as compared to the control with 98% (Experiment 2 in 2017 (Figure 

18)).  

V. sativa was also able to significantly reduce the weed coverage as compared to the control in 

2017. Nevertheless, following Baraibar et al. (2018), V. sativa showed a weaker weed 

suppression potential than the Brassicaceae or Poaceae species. Also, Nielsen et al. (2015) 

indicated that grasses are more competitive than legumes. Additionally, V. sativa is being 

expected to be more sensitive to drought during germination (Constantin, Dürr et al., 2015). P. 

tanacetifolia showed the highest tolerance to water deficit in the greenhouse. While producing 

a similar amount of dry matter per unit area as A. strigosa (Experiment 1 in 2017), P. 

tanacetifolia demonstrated a significantly weaker WCE than S. alba and A. strigosa. 

Additionally, P. tanacetifolia exhibited a great level of coverage ability (62%) in 2016 and 

decreased weed coverage by 67%. However, it was only as efficient as R. sativus, with only 

42% of soil coverage (Figure 18). In conclusion, CCs are attributed to an efficient weed 

suppression potential if they are strong resource competitors, show an early CC canopy 

development (Brennan and Smith, 2005) and produce a certain biomass amount (Finney et al., 

2016; Gfeller et al., 2018). However, biochemical weed suppression mechanisms of CCs, as 

attributed to, e.g., the family of Brassicaceae or Poaceae (Belz, 2007), seem to contribute 

substantially to the weed suppression success. The weed suppressive effects of A. strigosa are 

reported to be considerably during cultivation and afterward (Brust and Gerhards, 2012; Price 

et al., 2006; Schappert et al., 2019). A. strigosa showed a great weed suppression potential 

during the dry season, even though the dry matter production of A. strigosa was quite low. Plant 

stress, as, e.g., induced by water deficits, may enhance the allelopathic potential (Einhellig, 

1996), which might have contributed to efficient weed control by A. strigosa during the dry 

season in 2016. 
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Although allelopathy seems to contribute to weed control during CC cultivation, its effects on 

the subsequent cash crop should not be neglected. It is reported by Sturm and Gerhards (2016) 

that mulch of R. sativus is inhibiting crop germination and root length, which was attributed to 

the allelopathic potential of Brassicaceae. However, allelopathic compounds, like 

isothiocyanates emitted by Brassica napus, were described to disappear quickly as compared 

to the decomposition of the CC residue mulch layer, which functions as a physical barrier to 

weeds (Petersen et al., 2001; Yenish et al., 1995). This might explain why maize emergence 

was unaffected after growing winter cereals as CCs within a study from Dhima et al. (2006) 

and after growing Poaceae and Brassicaceae CCs within this study (data not shown). In contrast, 

A. strigosa is very popular in Brazil as a preceding crop to soybean. In this specific combination, 

A. strigosa was reported to increase crop yield as compared to other CC treatments and a winter 

fallow (Derpsch et al., 1986; Price et al., 2006). 

 

Figure 18. Weed and cover crop coverage in 2016 and 2017 (Experiment 2). Capital letters 

within one graph show significant differences in cover crop coverage, according to Tukey-HSD 

(honestly significant difference) test (p ≤ 0.05). Small letters within one graph show significant 

differences in weed coverage, according to Tukey-HSD test (p ≤ 0.05). 

In 2016, when CCs generally developed poorly, V. sativa and A. strigosa increased the soil 

moisture content compared to the P. tanacetifolia, R. sativus var. oleiformis, and the control 

treatments (Figure 19). Mitchell et al. (1999), in contrast, showed that V. sativa was reducing 
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the soil moisture compared to treatments without CCs. The different observations can be 

explained as the water use of different CCs varies according to the degree of water stress, 

climate, and soil fertility (Meisinger et al., 1991). 

The soil moisture in 2017 was generally higher than in the previous years, with subtle 

differences between the CC treatments, but relative differences between years were similar. 

This leads to the conclusion that the impact of CCs on the soil moisture increases under dry 

conditions, an effect which was noticed by Mitchell et al. (1999). 

Information about the water deficit tolerance (Figure 15), the soil moisture values (Figure 19), 

the weed biomass, and coverage (Figure 17 and 18), it is necessary to choose appropriate CCs 

to combine their advantages. A. strigosa, thereby, seems to condense several benefits. From the 

results of the greenhouse experiment, it was observed that A. strigosa showed greater water 

deficit tolerance as compared to S. alba. Although this could not be proven under field 

conditions. However, A. strigosa did not develop sufficiently under dry conditions in both field 

experiments, also concerning other CC treatments. Nevertheless, it was still able to reduce the 

weed cover and biomass compared to the control and increased the soil moisture. In the wet 

season 2017, A. strigosa showed the highest soil cover with 92% resulting in the highest weed 

suppression and minor effects on soil water content. S. alba showed a similar high weed 

suppression potential but simultaneously exhibited the highest sensitivity to drought in the 

greenhouse. 

 

Figure 19. Precipitation and average soil moisture content in 10-30 cm depth of different cover 

crops from September until December in the years 2016 and 2017 (Experiment 2).  
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In conclusion, in the greenhouse under controlled conditions, CCs showed different water stress 

tolerances. CC biomass production under dry field conditions could not be attributed to CC 

water stress tolerance, as CCs with a low water deficit tolerance in the greenhouse produced 

the highest dry matter in the field. In the field, interrelations seem to be more complex and CC 

germination and establishment, important factors of the weed suppression potential, depend on 

several abiotic and biotic factors as well as management practices (as, e.g., seed density and 

depth).  

Generally, when CCs produce a low amount of biomass, as e.g., in water-limited areas or within 

years of low precipitation in fall, their benefits like weed suppression are a lot smaller than in 

humid areas or seasons (Nielsen et al., 2015). Taking into account the water demand and the 

specific weed suppression mechanisms of CCs, therefore, may contribute to reducing the 

depletion of soil moisture and improves the success of weed control by CCs also under water-

limited circumstances. Still, further research is needed to gather more information on CC 

species for specific requirements related to different soil types and climate conditions.  
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6 General discussion 

Winter cover crops can be implemented during the fallow season prior to spring cropping and 

provide weed control during and after cultivation. However, the weed control ability of cover 

crops is highly variable. To enhance the relevance of cover cropping substituting a weedy fall-

to-spring fallow, the weed control reliability of cover crops also needs to increase under 

unfavorable circumstances. Improved cover cropping strategies may contribute to reduced 

herbicide inputs and soil tillage within integrated agricultural production systems. Therefore, 

this study investigated how cover crop sowing techniques, species selection, and species 

mixture compositions may improve the cover crop establishment and development and, 

therefore, the weed suppression success during the fall-to-winter period and the following cash 

crop season. 

Within a field experiment, which was conducted at two locations near Hirrlingen, Germany, 

from 2017 and 2018, the weed control efficacy of cover crops was compared with diverse 

stubble management practices, including glyphosate application(s), non-inversion, and 

inversion tillage practices. Furthermore, four field experiments were performed from 2015-

2018 at a research station of the University of Hohenheim near Renningen, Germany, whereby 

different pure cover crop stands and mixtures were tested and cover crop residue management 

in spring was evaluated with a focus on the overall weed suppression ability of cover crops. 

Additionally, it was investigated how species selection and species diversity within cover crop 

mixtures may alter the weed suppression success. The capability to cope with water limitations 

was evaluated for selected species on the basis of the collected field data and further examined 

within a greenhouse experiment conducted in 2018.  

6.1 Weed suppression ability of cover crops during the fall-to-winter 

season 

With an overall weed and volunteer crop suppression during the fall-to-winter season up to 

98%, cover crops have proven to be an efficient weed control measure within this study 

(Chapters 2-5). In particular, single sown Avena strigosa Schreb. has shown the greatest 

potential for weed control across the experiments shown in Chapters 3-5, reaching significant 

weed density and weed cover reductions up to 83-98% compared to the untreated control. The 

mixture used within Chapters 2 and 3 (Experiment 1) showed a similar weed control potential 
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compared to the implemented mechanical and chemical weed control measures. Notably, 

Alopecurus myosuroides Huds. was controlled by this mixture by 100%, which was more 

efficient than any tillage practice or glyphosate treatments. However, the mixtures used in 

Chapter 3 (Experiments 2 and 3) and 4 showed a weaker weed suppression potential than the 

most efficient pure cover crop stands.  

The weed control efficacy of cover crops had a wide range, according to the selected species, 

the location and the season, which was also observed by Dorn et al. (2013; 2015). Water deficits 

in 2016 reduced the weed control ability among the cover crops tested in Chapters 3 and 4, to 

a maximum of 61%. How species selection and mixing strategies may increase the weed 

suppression stability will be evaluated in the following chapters.  

6.1.1 Cover crop species consideration  

Pure stands of A. strigosa with a soil cover of 92%, and Sinapis alba L. with 1.7 t ha-1 dry 

matter reached the highest weed cover and dry matter reduction of more than 95% (Chapters 4, 

5). A. strigosa achieved a weed dry matter reduction of 92% (Chapter 4) and 95% (Chapter 3) 

with differing dry matter amounts of 2.2 and 1.1 t ha-1, respectively. Water-limitations in 2016 

caused low dry matter amounts of A. strigosa but may have enhanced the concentration of 

released allelochemicals (Einhellig, 1996). This might have contributed to the weed control 

success of A. strigosa although the dry matter production was certainly low. This is in 

agreement with Baraibar et al. (2018) and Kunz et al. (2016) who also concluded that biomass 

production is not necessarily predicting the weed control success of cover crops. But when high 

dry matter yields of A. strigosa came along with soil coverage of more than 90%, the weed 

control efficacy was highly improved. This relation cannot be transferred to Phacelia 

tanacetifolia Benth.. Because P. tanacetifolia showed a similar or even higher dry matter 

production and soil cover in pure stand than Raphanus sativus var. oleiformis Pers. and A. 

strigosa but showed a weaker weed suppression ability. Although P. tanacetifolia did not show 

the greatest weed suppression among the cover crops tested, it might be worth considering, as 

it provides additional ecosystem benefits. P. tanacetifolia is, for example, an ideal preceding 

crop because it is not related to any of the cash crops commonly used in Germany. Additionally, 

P. tanacetifolia is popular as a bee pasture (Williams and Christian, 1991). 

In the end, there were no correlations between weed suppression and cover crop biomass or soil 

cover. The assumption that allelopathy is contributing to weed control has been shown by 

several studies (Gfeller et al., 2018; Kunz et al., 2016; Sturm et al., 2018) and is assumed to 
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have contributed to the weed control success of R. sativus and A. strigosa. However, allelopathy 

is highly related to the cultivars, their development stage and the environment (Belz, 2007) and 

was not further evaluated within this study.  

It can be summarized that the weed control success was most likely improved by growing 

species which are reported as having highly competitive and allelopathic properties, which 

agrees with Tribouillois et al. (2015) and Baraibar et al. (2018). Therefore, species like Anethum 

graveolens L., Carthamus tinctorius L., Vicia sativa L., Fagopyrum esculentum Moench, and 

Trifolium subterraneum L. cannot be recommended for weed control as pure stands or as a main 

component within mixtures, as they established weak or have been winter-killed early in our 

recent study. 

Although certain characteristics of single species or species groups increase the weed 

suppression ability, weather and management define additional limitations. Weed suppression 

in 2015 and 2017 was much higher than during the dry season in 2016 where cover crop cover 

and dry matter were low. Growing drought-tolerant species might improve weed control, as 

only well-established cover crops contribute to weed plant and weed seed dispersal reductions. 

Assuming from Chapters 3-5, A. strigosa, R. sativus, and S. alba showed the highest weed 

suppression ability under water-limited conditions among the species tested. However, their 

weed control potential was quite different. While S. alba achieved an almost complete weed 

control (Chapter 5) during the dry season in 2016, R. sativus reached a maximum weed dry 

matter and density reduction of 39-61% only (Chapters 3 and 4).  

The majority of the experiments revealed that weed control within dry seasons is non-sufficient 

and requires more attention. Therefore, further investigations on the water needs of S. alba, A. 

strigosa, and P. tanacetifolia were conducted in the greenhouse (Chapter 5). Clear differences 

among the species occurred in reaction to low water availabilities. A comparison between these 

cover crops within the field, however, showed that the weed suppression ability, cover crop dry 

matter, and soil cover formation of cover crops cannot be explained by the water supply alone. 

S. alba and A. strigosa showed a high weed suppression potential of 94% and 88%, respectively, 

during the water-limited season in 2016, although S. alba was most sensitive to water deficit in 

the greenhouse. In conclusion, the competitiveness of cover crops against weeds relies, in 

additions to a low susceptibility to dry conditions, on a number of factors as e.g. sowing density 

and species-specific resource allocation (Brennan and Boyd, 2012; Lambers and Poorter, 1992; 

Tribouillois et al., 2016).  
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Although the greenhouse experiment did not explain the cover crop weed suppression 

performance in the field, further greenhouse experiments might be helpful for species screening, 

in order to predict cover crop performances under a water-limited regime. Experiments might 

include variations of the water stress level under different soil, temperature, and humidity 

conditions. To reflect farming practices, species should be directly sown in pots at commonly 

used sowing depths and densities. Weed suppression might be directly evaluated by sowing the 

weed and cover crop seeds simultaneously within the same pots. Additionally, cover crop 

response to water stress needs to be further tested under changing management and field 

conditions in order to guarantee the relevance of the results to implemented cover cropping 

systems. 

6.1.2 Cover crop species mixtures 

In several experiments presented, pure stands of R. sativus and A. strigosa had shown the 

highest weed suppression ability among the pure cover crop stands. Also, Mixture 1 with high 

ratios of R. sativus and A. strigosa reached the highest weed control efficacy among the 

mixtures used within Chapter 4. This agrees with the results from Florence et al. (2019) who 

argued that species, which perform well in pure stands, are also productive in mixtures. Within 

a direct comparison, none of the species mixtures achieved higher weed control than the most 

efficient pure stands. Species that performed poorly in pure stands probably did not contribute 

to the weed suppression in mixtures. Additionally, mixtures, in terms of seed density, contained 

only a portion of the most efficient cover crops in pure stands. This resulted in a weaker 

performance of the mixture compared to species components sown in pure stands.   

According to Dukes (2001), resource-rich conditions promote highly productive mixtures, as 

dominant species are not able to fully acquire all available resources from which other species 

then profit. This might be the reason for the highly competitive cover crop mixture in 

Hirrlingen, which caused complete suppression of volunteer wheat and A. myosuroides 

(Chapter 2). In 2016, when water was limited, resource partitioning was most likely reduced, 

as the dominant and competitive species shift their resource allocation to acquire more water. 

Subsequently, competition with other species increased (Dukes, 2001). This means that weed 

control by cover crop mixtures is increased by high yielding, competitive cover crop stands 

under favorable conditions and high resource allocation by cover crops if conditions are 

unfavorable. These findings cannot be attributed to all of the experiments presented, as the weed 
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control success is more complex than the cover crop yield formation alone (see Chapters 1.2. 

and 6.1.1).  

While the dry matter production of the mixtures used within Chapter 4 was greater in the water-

limited 2016 season compared to the 2017 season, the weed control ability was higher in 2017. 

The mixture used within Chapter 3, in two different field experiments, showed two very 

contrasting results concerning weed control during the dry season in 2016. Weed biomass 

reduction varied from 10% (Experiment 2) to 98% (Experiment 3). Experimental conditions for 

both experiments, like soil type and weather, cannot be named as reasons, as they were similar 

and equal, respectively. Low weed biomass reduction is rather expected to be caused by the 

75% higher weed biomass in the control treatments in Experiment 2 compared to Experiment 

3 with only 264 kg ha-1 weed dry matter. However, Mixture 1, which was used within Chapter 

4, was able to achieve a weed control efficacy of 75% when weed biomass in the control 

treatment reached values above 1 t ha-1. What was different between both experimental trials 

was the high number of volunteer crops (data not shown). In conclusion, the mixture used in 

Experiments 2 and 3 (Chapter 3) was not able to combat high numbers of volunteer crops. From 

these results, it should not be derived that cover crops have a generally weak ability to control 

volunteer crops. 

Brust, Claupein et al. (2014) and the results from the experiment in Hirrlingen (Chapter 2) agree 

that CCs are well suited to control volunteer crops. Several agronomic reasons might have 

contributed to the improved cover crop establishment and weed control ability of the cover crop 

mixture sown in Hirrlingen compared to those at Ihinger Hof. Experimental conditions, 

including soil type and precipitation, were similar. Sturm et al. (2017) reported that sowing 

cover crops one week after cereal harvest significantly improved the suppression of volunteer 

wheat compared to later sowing dates. Cover crops were sown six days earlier within the mulch-

till treatment and 18 days earlier within the no-till treatment in Hirrlingen compared to Ihinger 

Hof. There, cover crops were sown on the 25th of August in 2017.  

The mixture used at Hirrlingen, furthermore, contained the highest amount of A. strigosa with 

45%, while the mixtures at Ihinger Hof only contained between 33-35% A. strigosa at most. As 

evaluated by Akemo et al. (2000), Baraibar et al. (2018) and McLaren et al. (2019) an increasing 

proportion of Poaceae within mixtures is improving the weed control. This suits to another 

example within this study. Mixture 2 (Chapter 4), as the only mixture without A. strigosa, 

produced the highest amount of dry matter in 2016, while simultaneously showing a generally 

weak weed suppression ability compared to mixtures where A. strigosa was included. 



General discussion 

87 

 

Generally, A. strigosa is worth considering within mixtures for several reasons: 1.) allelopathic 

characteristics are an additional factor for niche differentiation (Zuppinger-Dingley et al., 

2014); 2.) reliable weed control also under dry conditions (Chapters 3-5) and 3.) the ability to 

compensate for less productive species (Dukes, 2001). However, as crop rotations in Europe 

are commonly dominated by cereals, A. strigosa cannot be frequently included in these 

cropping systems because it forms a potential infection bridge for pathogens and fungi, which 

induces cereal diseases. 

Focusing on single, potent species is one possibility to improve the weed suppression ability of 

mixtures. Species composition and richness should also be considered (Finney and Kaye, 2017). 

Although Kunz et al. (2016) demonstrated that species richness among mixtures is not 

improving weed control, several studies indicate that diversity and thus productivity of mixtures 

is more complex than the number of species included (Dukes, 2001; Hector et al., 1999; 

Zuppinger-Dingley et al., 2014). The nine species mixture used in Hirrlingen (Chapter 2) 

showed the highest weed suppression potential among the mixtures tested within this study. 

The factors that might have contributed to the weed suppression success, in this case, were 

discussed previously. The six species mixtures in 2016 at Ihinger Hof, showed a higher average 

weed control ability with 36% than the three species mixtures with 17% (Chapter 4). However, 

under favorable conditions in 2017, the three species mixture (Mixture 1) performed best among 

the mixtures tested in Chapter 4. This suits the findings from Hector et al. (1999) and Dukes 

(2001), who stated that poorly productive mixtures profit from increasing species richness. As 

species richness, in general, is named to increase productivity (Balvanera et al., 2006), adding 

more species in the cover crop mixtures may increase cover crop performance and thus weed 

suppression potential. Species-rich mixtures, including well-performing, even ‘selfish’ species, 

also increase productivity (Wacker et al., 2009), whereby species-rich mixtures, with only low 

competitive species, may contribute to weed problems (McLaren et al., 2019). Considering 

species richness, species composition, and functional group richness increased the productivity 

in grassland experiments (Dukes, 2001; Hector et al., 1999), and are therefore expected to 

improve the weed suppression by cover crops as well (Baraibar et al., 2018). Unfortunately, 

depending on the composition, seed mixtures might be more expensive and the N return, in 

comparison to pure cover crops stands, is more difficult to estimate by producers. However, in 

addition to increased reliability on weed control, mixtures show a greater ability to combine 

multiple ecosystem services like nitrogen retention, disease resistance, and habitat provision for 

beneficial insects (Finckh et al., 2000; Finney and Kaye, 2017; Snapp et al., 2005). In order to 
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increase the multifunctionality of cover crop mixtures, functional diversity among components 

might be more important than species richness (Finney and Kaye, 2017). 

In narrow crop rotations, including high numbers of cereals and oilseed rape, two of the most 

promising functional cover crops named in this study (Poaceae and Brassicaceae), can only be 

sparsely included in crop rotations. However, sufficient weed control can be realized by 

increasing the number of species and functional groups, considering allelopathic cover crops 

and productive species that are able to compensate for poor-performing cover crops. However, 

weed suppression mechanisms of cover crops sown in pure stands or in mixtures are still not 

sufficiently understood and require extensive research. Further knowledge would contribute to 

greatly simplify the composition of mixtures. Meanwhile, developing mixtures with reliable 

establishment and development is, therefore, the main priority to improve the general weed 

suppression ability of cover crops.  

6.2 Contribution of cover crops to weed control after cultivation  

In order to counteract the development of herbicide resistance and to control herbicide-resistant 

weeds, alternative weed control measures need to be implemented. A. myosuroides, as the 

currently most challenging grass weed in Europe, was efficiently controlled by cover crops. 

The experiments have shown that an efficient A. myosuroides suppression during cover crop 

cultivation also resulted in low densities after cultivation (Chapters 2 and 3 (Experiment 1)). 

The fall-to-winter weed control measures, like cover crops (direct-sown) and plowing, achieved 

an A. myosuroides control efficacy of more than 86% during the spring barley season (Chapter 

3). Chemical treatments and non-inversion tillage showed an A. myosuroides control of less 

than 50%. In conclusion, A. myosuroides control is improved by either retaining the seeds at 

the soil surface and inhibiting germination or burying them by plowing. Whereas plowing was 

expected to be important to control A. myosuroides, no-till systems are rather attributed to 

increase its densities (Lutman et al., 2013; Moss, 1985). However, combining the no-till system 

with highly productive cover crop stands effectively controlled A. myosuroides. CCs sown 

within the no-till system resulted in greater A. myosuroides control during the spring barley 

season and suppressed weeds only slightly less than cover crops sown with the mulch-till 

system during cultivation. Concluding that direct sowing of CCs is appropriate to control weeds 

in general and A. myosuroides in particular, cover cropping might help to support herbicide-

resistance strategies.  
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Further experiments should target direct-sowing of cover crops to reduce tillage operations. 

This would reduce labor and costs. Additionally, reducing chemical and mechanical stubble 

management practices would enable to select earlier sowing dates of cover crops that could 

improve their productivity (Chapter 6.3).  

The productivity of the CCs used in another two experiments (Chapter 3, Experiment 2 and 3) 

was probably too low to impact the weed control during the corn cropping season. Therefore, 

weed densities and dry matter at the cover crop treatments did not differ from those at the 

control treatments. 

6.2.1 Management strategies and crop yield  

Well-established cover crops are able to control herbicide-resistant and problematic weeds as 

A. myosuroides and Cyperus esculentus L. and weeds in general (Mirsky et al., 2010; Zhou et 

al., 2016). Low competitive cover crop stands are reported to result in increased weed seed soil 

entries (Mirsky et al., 2010). The short-term and long-term success of weed control mostly 

relies on a combination of different measures. Weed suppression seems to be improved when 

resource competition and allelopathic interference by cover crops is combined with mechanical 

weed damage and soil disturbance (Gerowitt, 2003; Liebman and Dyck, 1993; Mirsky et al., 

2010).  

Moonen and Barberi (2004) reported from a long-term experiment that plowing, after growing 

rye as a cover crop, had reduced the weed seed bank density by 25% compared to the crop 

residue control. In the same study, rye failed the seed reduction effect in the no-till system while 

subterranean clover did. The weed suppression during the corn cropping seasons, as presented 

in Chapter 3 (Experiments 2 and 3), was solely related to the tillage implemented in spring 

rather than the cover crops sown in fall. As the weed suppressive effects of cover crops were 

expected to be greatest within the no-till system (Kruidhof et al., 2009), the cover crops chosen 

had apparently not produced sufficient mulch biomass (Chapter 3, Experiment 2). Also, the 

early distribution of cover crop residues at the soil surface did not impact the weed control 

success by cover crops after cultivation (Chapter 3, Experiment 3). Weed suppression early 

after mulching depends on the presence and concentration level of allelochemicals and/or 

physical barriers. Both effects are expected to disappear faster after growing non-frost tolerating 

winter cover crops in contrast to winter-hardy cover crops, as they are starting to decompose 

already after a natural termination by frost. The termination date and method of overwintering 

cover crops are well reported to reduce the weed density before and during the cash cropping 
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season (Dorn et al., 2013; Kruidhof et al., 2009; Mirsky et al., 2011). Therefore, selecting more 

frost-tolerant species, which are late maturing or even overwintering cover crops may increase 

the amount of cover crop residues and thus the weed control ability.  

If the cover crop performance is weak during the fall-to-winter season and a mechanical 

termination of cover crops and weeds prior to cash crop sowing is not sufficient, non-selective 

herbicides are commonly sprayed. In order to reduce these herbicide applications, inversion 

tillage may be considered (Gerowitt, 2003), which is unfortunately not targeting the idea of 

conservation agriculture and soil protection. However, the results from Experiment 2 presented 

in Chapter 3 show that the application of non-selective herbicides at the no-till treatments in 

spring was significantly more effective to reduce the weed dry matter during the corn season 

than plowing, regardless if cover crops were grown or not. To which extent cover cropping goes 

along with a reduction of soil tillage and herbicide applications is still not sufficiently examined. 

If site-specific cover crop strategies, including resilient cover crops, are identified, stability and 

productivity increases and the necessity to implement inversion tillage or non-selective 

herbicide applications in spring might decrease.  

In order to justify the reduction of mechanical or chemical weed management measures by 

cover cropping, cover crops need to maximize creating unfavorable conditions for weeds while 

minimizing the negative impacts on the subsequent spring crop (Liebman et al., 1997). The soil 

water content in cover cropping systems is affected by increased water infiltration (Gulick et 

al., 1994) and species-specific induced water losses by evapotranspiration (Bodner et al., 2007). 

Cash crops might benefit from increased soil water contents after cover cropping compared to 

a fallow season (Blanco-Canqui et al., 2011; Fageria et al., 2005). On the other hand, if cover 

crops establish successfully under water-limited conditions, concerns about the water supply of 

the cash crop may arise. Because in water-limited areas or within below-average dry seasons, 

cover cropping is reported to deplete soil water resources in comparison to a weedy-fallow 

(Bodner et al., 2007). This interferes with the water availability for the subsequent cash crops 

and their yield formation (Nielsen and Vigil, 2005; Unger and Vigil, 1998; Wortman et al., 

2012). When cover crops negatively affect the cash crop productivity, producers will refrain 

from implementing cover crops into their crop rotations. In order to avoid water depletion 

within generally warm regions with a long-lasting vegetation period and limited rainfall, cover 

crop sowing delay or cover crop termination prior to winter kill can be considered (Probst and 

Probst, 1982; Unger and Vigil, 1998).  
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There are some approaches for cover crop termination methods to avoid water depletion within 

usually humid but within below-average precipitation seasons (Kornecki et al., 2009; Wortman 

et al., 2012). Many more studies dealt with the evaluation of cover crops grown in semi-arid 

areas (Bodner et al., 2007; Mitchell et al., 1999; Unger and Vigil, 1998). Applying the findings 

from semi-arid areas to usually humid areas with seasons without sufficient rainfall would 

expand the possibilities to improve cover cropping under a generally water-limited regime. But 

the transferability from one case to another has not been sufficiently evaluated. However, 

results from water-limited areas seem to be in agreement with the data presented.  

In addition to an adjusted cover crop management, the cover crop species selection also affects 

the soil moisture content. That cover crops reduce soil moisture contents compared to a weedy-

fallow during dry seasons, as previously mentioned, might not hold true in many cases. 

According to Bodner et al. (2007) and shown in Chapter 5, cover cropping had rather neutral 

or positive effects on the soil moisture contents during cultivation. Increasing soil water 

contents, for example, were shown within this study for V. sativa and for Vicia villosa L. cv. 

Beta within experiments from Bodner et al. (2007). Therefore, it is worth considering cover 

crops that combine a positive impact on the water balance and efficient weed control. A. strigosa 

showed reliable weed control under unfavorable conditions while increasing the soil moisture 

content. S. alba, with a high tolerance to dry conditions and fast soil coverage, was also 

beneficial for weed control (Chapter 5) and has the ability to compensate evapotranspiration 

losses by productivity (Bodner et al., 2007). Out of the data presented, growing cover crops at 

usually humid regions but in exceptional dry seasons is throughout suitable to control weeds. 

Additionally, the yields of spring barley and corn of the cover crop treatments were similar to 

those of the control treatments. 

6.3 Conclusions and further adjustments to improve the weed control 

ability of cover crops 

The experimental results showed that cover crops are worth integrating into the crop rotation 

as they provided efficient weed, volunteer crop, and A. myosuroides control during cultivation 

in particular and partly after cultivation. A negative impact on weed density and yield in the 

subsequent spring crop was not determined. Nevertheless, cover crop performance is strongly 

related to environmental conditions, wherefore weed control may show high variability within 

different years. However, it should always be considered that weed control is only part of the 
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manifold advantages provided by cover crops. Regardless of cover crops that are not 

compensating their sowing costs with measurable benefits in certain years, replacing a weedy 

fallow by cover cropping should be considered. Applying more diverse crop rotations may not 

increase crop yield and weed suppression but reduces external inputs (Davis et al., 2012). 

Keeping the field fallow may require labor as intense stubble tillage practices and/or herbicide 

applications to control weeds without achieving ecological benefits. 

The monetary value of ecological effects caused by cover crops is sometimes difficult to 

estimate by producers, as some benefits are not obviously visible and only measurable after a 

certain time and frequency of cover cropping. As some environmental impacts (as run-off and 

nitrate discharge to surface water) go beyond the production areas, the state might create 

incentives for cover cropping (Snapp et al. 2005) as realized in the European Union with 

subsidies. Those incentives would become negligible or redundant if reliable cover cropping 

strategies would be identified.   

Many studies agree that the weed suppression success is linked to the establishment and the 

development of competitive cover crop stands (Brust, Claupein et al., 2014; Finney et al., 2016; 

Gfeller et al., 2018). Identifying cover crop requirements would help to increase the 

development of selected species for specific sites. However, experimental results revealed that 

the weed suppression ability of some species tested, was independent of the water availability 

(Chapter 5). S. alba and A. strigosa, for example, produced much less dry matter within the 

seasons with water deficit compared to the season with sufficient precipitation, but they showed 

similar effective weed control within both seasons. In conclusion, the selection of cover crop 

species which combine physical and chemical weed suppression mechanisms may increase the 

weed control effectiveness (Chapter 6.1.1).  

Species mixtures were named as an opportunity to improve the reliability of the cover crop 

performance by increased resilience against management errors and severe weather conditions 

(Wortman et al., 2012). In order to increase their stability within a long-term perspective and 

their absolute weed suppressive ability, cover crop mixing strategies (as mentioned in Chapter 

6.1.2) need further investigations. A. strigosa, R. sativus and S. alba as the most promising 

cover crops (Chapter 6.1.1) within this study concerning weed control, could be tested together 

with changing ratios and seed densities. To refer to the idea of increasing species diversity and 

functional richness to improve the weed control ability of cover crop mixtures (Chapter 6.1.2), 

single, highly competitive species could be tested in increasing proportions in order to increase 

weed control. Supplementary components, which fulfill other ecosystem services, should also 
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be included with differing numbers, ratios, and densities. It is expected that at a certain mixing 

ratio, the competitive species are so dominant within the mixture that weed control is increased, 

but on the other hand ecosystem services are decreased because additional components cannot 

develop properly. Meeting several expectations within one mixture, therefore, is difficult but 

might increase the likelihood of cover crops being integrated into crop rotations. 

Transferring the performance of single sown species directly to species mixtures would simplify 

the species selection process. However, when considering different species to be included in 

mixtures, their performance should be directly tested in mixtures rather than in pure stands. 

According to Zuppinger-Dingley et al. (2014) species tested in pure stands performed 

differently from those tested within diverse mixtures, as complementarity and differentiation 

are, thereby, promoted. In conclusion, the development of mixing strategies will remain 

challenging, particularly when management strategies are included as an additional factor. 

Management adjustments might include fertilizer consideration, higher sowing densities, 

adjusted sowing techniques and sowing dates (Dukes, 2001; Marín and Weiner, 2014; Sturm et 

al., 2017; Thomsen and Hansen, 2014; Vos and van der Putten, 1997). When comparable crop 

stands in mixtures as in monocultures are targeted, sowing densities of single components need 

to be increased to improve their capability to compensate for weak performing species (Dukes, 

2001). Decreased row distance and uniform sowing patterns might improve cover crop weed 

suppression by increased competitiveness (Marín and Weiner, 2014). During sowing, all 

mixture components are usually placed in a single seed tank. Differing seed sizes induce 

dissociation in the seed tank, resulting in heterogeneous crop stands. The usual sowing depth 

of cover crop mixtures is chosen according to the average required placement depth. A drilling 

machine combining several tanks and possibilities to deposit cover crop seeds according to their 

optimal seed depth requirements might improve cover crop germination and establishment. If 

the technical equipment is not available, coarse-grained seeds may be seeded first, in a deeper 

layer, and fine-seeded seeds within an additional working step in an upper soil layer. However, 

this would result in increased costs and labor, albeit split sowing creates the opportunity to seed 

slow emerging seeds, like legumes, prior to fast-emerging seeds, which would support the 

legumes. In order to avoid supplementary drilling, cover crop seeds may be placed 

simultaneously while harvesting when the harvester is combined with a sowing appliance. A 

green bridge might be realized by broadcast sowing already before cash crop harvest. This 

might induce cover crop stands which suppress weeds more efficiently than postharvest sown 



General discussion 

94 

 

cover crops and promote seed predation (Sturm et al., 2017; Thomsen and Hansen, 2014; 

Westerman et al., 2003).  

Even if multifunctional, site-adapted mixtures are identified and the management is adapted to 

their requirements, the success of cover crops in weed suppression still relies on the 

environmental conditions during germination and establishment. If the weed control efficacy 

by cover crops within a specific season is poor, producers can easily complement additional 

weed control measures, such as tillage in spring (Chapter 6.2.1), in order to avoid increased 

weed infestations in the subsequent cash crop.  
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7 Summary 

Weed control in agricultural production systems is indispensable to achieve stable crop yields. 

Integrated cropping systems are demanding for preventive and ecologically harmless weed 

control measures in order to protect soil and water resources and to retard the selection of 

herbicide-resistant weeds. Well-established winter cover crops provide nutrient retention and 

soil protection and may effectively suppress weeds. This contributes to reduce chemical and 

mechanical fall- and spring-applied weed control practices. However, producers are cautious 

towards integrating cover crops in crop rotations, as their performance is related to 

environmental conditions and varies, therefore, significantly from season to season. To increase 

their integration into cropping systems, reliability on weed control by cover crops needs to 

improve. In the current study, management strategies such as i) the cover crop sowing method, 

ii) the selection of water deficit tolerating cover crop species, iii) cover crop species 

combinations, iv) the adjustment of the mulching date and v) tillage practices after cover crop 

cultivation were considered as possibilities to improve the effectiveness of cover crops to 

control weeds during cultivation and in the subsequent cash crop. Five field experiments and 

one greenhouse experiment were conducted from 2015-2018 to investigate the following 

objectives: 

 to assess if cover crops are as effective to control weeds and volunteer crops during the 

fall-to-winter season as chemical and mechanical weed control measures; 

 to test if cover crops are an adequate weed control measure within Alopecurus 

myosuroides Huds. infested fields; 

 to explore the effects of cover crops on weed control and yield during the cash crop 

season and to identify if the tillage system and the mulching date can, thereby, expand 

the weed suppressive effects of cover crop residues; 

 to evaluate how species selection and species diversity are stabilizing productivity and 

therefore the weed suppression efficacy of cover crop mixtures compared to pure cover 

crop stands; 

 to identify if the water requirements during cover crop establishment and water 

limitations are determining the weed control success of selected cover crops. 

The current thesis resulted in four scientific articles. Within the first and the second publication, 

the general weed and A. myosuroides control ability of a cover crops mixture during and after 

cultivation were compared in the field with various fall-applied tillage methods and glyphosate 



Summary 

97 

 

treatments. Due to the development of highly competitive cover crop stands, weeds were 

suppressed by 98% and A. myosuroides by 100% during cultivation. Therefore, cover crops 

were more efficient compared to glyphosate application(s), non-inversion and inversion tillage 

and revealed a great potential to reduce or even replace chemical and mechanical fall-applied 

weed control measures. The efficient A. myosuroides control during the cover crop cultivation 

remained until spring barley harvest. This quantifies cover crops to complement herbicide 

resistance management strategies. In contrast, due to the weak cover crop performance during 

fall-to-winter within another two experiments included in the second article, weed suppressive 

effects of cover crops disappeared after the cultivation of cover crops. This might have been the 

reason why reduced tillage and adjusted mulching dates in spring failed in contributing to 

expand weed suppressive effects of cover crops in these experiments. 

Cover crop mixtures are attributed to show a greater resilience against unfavorable conditions 

than pure cover crop stands which is expected to result in an increased weed suppression ability. 

Within article three, the weed control efficacy of pure cover crop stands was compared with 

species mixtures. Pure stands of Avena strigosa Schreb. and Raphanus sativus var. oleiformis 

Pers. provided the most efficient weed control with 83% and 72%, respectively. Cover crop 

species mixtures showed a weaker weed suppression ability than the most efficient pure stand. 

In order to improve the weed control ability of cover crop mixtures, it was evaluated that the 

species selection is more relevant than the species diversity. Thereby, environmental 

requirements, such as water and temperature demand, and weed suppression mechanisms 

should be considered. Weed suppression of mixtures was improved by increasing the 

proportions of A. strigosa and R. sativus var. oleiformis, as they were showing a susceptibility 

for dry conditions and combine a strong competition for resources and allelopathic interference 

with weeds. 

Within the fourth article, it was explored whether a low susceptibility of single cover crop 

species to water-limitations accompanies an improved weed suppression ability. A. strigosa and 

Sinapis alba L. showed differing suitabilities to cope with water-deficit in the greenhouse. A 

relation between weed suppression and water demand of cover crops at the field was not 

identified. Although the weed control ability of cover crops is generally narrowed under water-

limited conditions, the weed suppression potential of individual species seems to be 

independent of their water supply. 

The adjustment of the cover crop sowing method, the consideration of species-specific 

requirements and the mixing strategies, were evaluated as being important to improve the 
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resilience of cover crops against severe environmental conditions and their weed control ability. 

Investigations of cover crop mixtures with respect to single component species, their mixing 

ratios and seed densities, might further increase the absolute and average effectiveness of cover 

crops as an integrated weed management practice.    
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7.1 Zusammenfassung 

Unkrautkontrolle in landwirtschaftlichen Produktionssystemen ist unerlässlich, um stabile 

Erträge zu erzielen. Integrierte Anbausysteme zielen darauf ab, verstärkt präventive und 

ökologisch unbedenkliche Unkrautkontrollmaßnahmen einzusetzen, um Boden- und 

Wasserressourcen zu schützen und die Selektion herbizidresistenter Unkräuter zu verzögern. 

Gut etablierte Winterzwischenfruchtbestände sorgen für einen Nährstoffrückhalt und schützen 

den Boden vor Erosion. Eine effiziente Unkrautunterdrückung durch Zwischenfrüchte kann den 

Einsatz von chemischen und mechanischen Stoppelbearbeitungsmaßnahmen reduzieren. 

Winterzwischenfrüchte sind allerdings bisher noch kein fester Bestandteil in Fruchtfolgen, da 

deren Entwicklung, von Jahr zu Jahr, stark variieren kann. Dadurch schwankt auch die 

Zuverlässigkeit der Unkrautunterdrückung. Kann diese dauerhaft gewährleistet werden, könnte 

der Anbau von Zwischenfrüchten zunehmend interessanter werden. In dieser Studie wurden 

Bewirtschaftungsstrategien wie i) die Aussaatmethode von Zwischenfrüchten, ii) die 

Berücksichtigung trockentoleranter Zwischenfrüchte, iii) Zwischenfruchtmischungen, iv) 

unterschiedliche Mulchtermine und v) die Bodenbearbeitung nach dem Zwischenfruchtanbau 

als Möglichkeiten zur Verbesserung der Unkrautkontrolle durch Zwischenfrüchte evaluiert. Mit 

den folgenden Zielsetzungen wurden von 2015-2018 fünf Feldversuche und ein 

Gewächshausversuch durchgeführt: 

 Bewertung des Unkrautunterdrückungspotentials von Zwischenfrüchten während der 

Herbst/Winter-Saison, im Vergleich zu chemischen und mechanischen 

Unkrautkontrollmaßnahmen; 

 Eignung von Zwischenfrüchten zur Kontrolle von Alopecurus myosuroides Huds;  

 Bewertung des Einflusses von Zwischenfrüchten auf die Unkrautkontrolle und den 

Ertrag in den darauffolgenden Sommerungen. Des Weiteren wurden der Einfluss der 

Bodenbearbeitung und des Mulchdatums im Frühjahr auf die unkrautunterdrückende 

Wirkung des Zwischenfruchtmulchs untersucht; 

 Entwicklung verschiedener Ansätze das Unkrautunterdrückungspotential von 

Zwischenfruchtmischungen, im Vergleich zu Reinsaaten, unter Berücksichtigung der 

Artenauswahl und Artenvielfalt, zu steigern; 

 Prüfung des Zusammenhangs zwischen dem Wasserbedarf von ausgewählten 

Zwischenfruchtarten und deren Unkrautunterdrückungserfolg. 

Aus den Ergebnissen entstanden vier wissenschaftliche Artikel. In der ersten und zweiten 

Veröffentlichung wurde die Unterdrückung von Unkräutern und A. myosuroides durch 
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Zwischenfrüchte, im Vergleich zu verschiedenen im Herbst durchgeführten 

Bodenbearbeitungsvarianten und Glyphosatbehandlungen, beurteilt. Durch die Etablierung von 

konkurrenzfähigen Zwischenfruchtbeständen konnten Unkräuter und A. myosuroides während 

der Zwischenfruchtsaison um 98% bzw. 100% reduziert werden. Behandlungen, bei denen 

Glyphosat appliziert oder (wende und nicht-wendende) Bodenbearbeitung durchgeführt 

worden war, wiesen eine schlechtere Unkrautkontrolle auf, als Behandlungen mit 

Zwischenfrüchten.  Der Einfluss des Zwischenfruchtanbaus auf A. myosuroides war auch noch 

während des Anbaus der Sommergerste erheblich. Dies bestätigt die Annahme, dass der 

Zwischenfruchtanbau als Maßnahme im Herbizidresistenzmanagement eingesetzt werden 

kann. Im Gegensatz dazu, konnten die Zwischenfrüchte, die in zwei weiteren Versuchen 

verwendet wurden, keine unkrautunterdrückende Wirkung in der Sommerung erzielen. 

Reduzierte Bodenbearbeitung und angepasste Mulchtermine im Frühjahr konnten ebenfalls 

nicht dazu beigetragen, die unkrautunterdrückende Wirkung des Zwischenfruchtmulchs zu 

verbessern. 

Im dritten Artikel wurde überprüft, ob Zwischenfruchtmischungen, im Vergleich zu 

Zwischenfruchtreinsaaten, durch ihre höhere Widerstandsfähigkeit gegenüber ungünstigen 

Witterungsbedingungen, eine effizientere Unkrautunterdrückung aufweisen. Reinbestände von 

Avena strigosa Schreb. und Raphanus sativus var. oleiformis Pers. erzielten mit 83% bzw. 72% 

die effizienteste Unkrautunterdrückung. Mischungen zeigten eine schwächere Unkrautunter-

drückung als der effizienteste Reinbestand. Um das Unkrautunterdrückungspotential von 

Mischungen zu verbessern, wurde evaluiert, dass die Berücksichtigung der Artenauswahl 

bedeutender ist, als die Artenvielfalt. Mit zunehmenden Anteilen von A. strigosa und R. sativus 

var. oleiformis in der Mischung, stieg die unkrautunterdrückende Wirkung. Beide Arten zeigten 

eine Toleranz gegenüber Trockenheit und unterdrücken Unkräuter durch physikalische und 

chemische Mechanismen.  

Im vierten Artikel wurde untersucht, ob eine geringe Sensibilität ausgewählter 

Zwischenfruchtarten gegenüber Wassermangel mit einer verbesserten Unkrautunterdrückung 

bei Trockenheit einhergeht. Dabei wurden unterschiedliche Sensibilitäten für A. strigosa und 

Sinapis alba L. im Gewächshaus ermittelt. Obwohl die Unkrautkontrollfähigkeit von 

Zwischenfrüchten unter wasserlimitierten Bedingungen generell eingeschränkt ist, korrelierte 

das Unkrautunterdrückungspotenzial einzelner Arten im Feldversuch nicht mit der 

Wasserverfügbarkeit. 
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Die Anpassung der Zwischenfruchtaussaat, die Berücksichtigung art-spezifischer 

Anforderungen und die Herangehensweise Zwischenfruchtarten zu kombinieren, stellen 

potentielle Ansatzpunkte dar, um die Widerstandsfähigkeit von Zwischenfrüchten gegenüber 

ungünstigen Bedingungen zu verbessern. Damit einhergehend, kann das Unkrautunter-

drückungspotential von Zwischenfrüchten gesteigert werden. Um die absolute sowie 

durchschnittliche Wirksamkeit von Zwischenfrüchten als integrierte Unkrautkontroll-

maßnahme zu steigern, sollten Zwischenfruchtmischungen, unter Beachtung von 

Einzelkomponenten sowie deren Mischungsverhältnissen und Saatstärken, weiter untersucht 

werden. 
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