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Abstract:  The paper proposes a numerical solution for the mixed problem concerning a three-dimensional heat transfer 

fractional differential equation, based on the finite difference method. To solve this problem, an explicit difference scheme 

described in the paper is used. The stability of a proposed difference scheme is proved. The case of homogeneous medium and a 

square grid is considered. 

 

Keywords:fractional differential equations; heat and mass transfer equation; numerical methods; approximation with fractional derivatives.

I. INTRODUCTION 

The development of the fractional integration and 

differentiation apparatus technique is of interest both in 

terms of the development of the fractional 

integrodifferentiation theory itself and for solving practical 

problems. 

 

Fractional integrals and derivatives and fractional 

integrodifferential equations find their application in 

theoretical physics, mechanics, applied mathematics, where 

their application allows a deeper understanding of known 

results and obtaining a new class of solutions, and cover a 

wide range of problems not previously explained from the 

standpoint of traditional approaches. Fractional 

integrodifferentiation is a powerful tool for describing 

physical systems with memory and non locality 

characteristics. 

Despite the long history of the development of the fractional 

differentiation mathematical apparatus technique, analytical 

methods for solving fractional derivative equations have 

been obtained only for a narrow circle of problems [1–5]. At 

the same time, numerical methods for solving such 

problems are being actively developed now [6–8]. 

 

 

 

II. METHOD 

Formulation of the problem 

Parabolic equations with fractional derivatives [9-11] are 

used in the study of heat transfer problems. We consider a 
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non stationary three-dimensional heat transfer equation 

with fractional derivatives. 

 

),,,,(),,,(),,,(),,,( zyxtTDCzyxtTDCzyxtTDCzyxtTD zzyyxxt
   

 

Where xC  , yC , 
zC  are heat conductivity coefficients, 

10   , 21  , 

 

We find a solution to this equation )(
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Where  is a parallelepiped with the border . 
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of Riemann-Liouville: 
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III. RESULT AND DISCUSSION 

We describe the numerical scheme used to solve the 

equation and introduce a grid in the region D: 

We divide the region  a;0   to 1L   segments with nodes  

L)0,...,( ,  lxlxl
 where 

L

a
x    is a step along x   . 

Then we divide the region  b;0     to  1M  segments 

with nodes M)0,...,( ,  mymym   where 

M

b
y    is a step along y  . Then we divide the region  

 c;0   to  1N  segments with nodes  

N)0,...,( ,  nznzn  where 
N

c
z  is a step along

z   . Split the time interval  T;0    into parts with a step 

t   and time nodes K)0,...,( ,  ktktk
 . 

For convenience, we denote ),,,(,,, nmlknmlk zyxtTT    and 

use the Grünwald formula [ 12 ] to approximate the 

fractional Riemann – Liouville derivative. 

It is known [12, p. 280] that for any function )(tf  which 

allows decomposition in power series, a fractional 

derivative of order 1   at any point of convergence of 

this series can be written as a Grünwald-Letnikov 

derivative: 
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If the function   is continuous and its derivative is 

integrable over the segment  t;0   , then Riemann-Liouville 

and Grünwald-Letnikov derivatives of any order 

110     exist and match for any point in time from

 t;0    [ 9 ]. 

The Grunwald-Letnikov definition allows us to numerically 

find the Riemann-Liouville derivative: 
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Using the formula (5) for the fractional Riemann-Liouville 

derivatives with respect to the spatial variables, we obtain: 
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Considering that ,xjxx LjL  ,yjyy MjM 

,zjzz NjN  we will present Riemann-Liouville 

derivative at 10    in the form [6]: 
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We present the derivative 
ds

dT   z)y,x,(s,
 on the segment 

 1; kk tt   in the form of a finite difference [13, p.47]: 
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In view of (6), the Riemann-Liouville derivative of fractional 

order  1; kk tt at the interval   can be approximated by the finite 

difference: 
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As a result, for the heat transfer equation (1), we write the 

explicit difference scheme:   
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The decision ),,,( 1 zyxtT k
can be represented as: 

),,,,(),,,( 1 zyxtSTzyxtT kk 
 

Where S is the operator for a transition from onetime layer 

to another. 

Then we find out the stability of the scheme. We have 
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From where it follows, that the initial disturbances fade out. 

Given the initial data, the stability condition of the 

difference scheme (8) is   [14]. This means that the 

spectrum of the operator   lies inside a circle of a unit 

radius on the complex plane. From there,  , where   is any 

eigenvalue of the transition operator. We find the 

eigenvalues of the transition operator, for this, we will 

present the solution  ),,,( zyxtT k
in the form of 

disturbance. 
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Where i  is an imaginary unit, and   is an eigenvalue 

of the transition operator [14]. 
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From where we have, that all the eigenvalues of the 

transition operator do not exceed 1 in absolute value. We 

get: 
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IV. CONCLUSION 

Thus, the following assertion is proved.Statement 1. 

Explicit difference scheme 
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We consider the case of a homogeneous medium  

CCCC zyx   and a square grid when 

zyx   . The difference scheme (8) will be: 
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(12) 

An explicit difference scheme (12) is stable when: 
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A great difficulty is inherent in a computational experiment 

based on the obtained difference scheme due to an increase 

in the volume of computations as the value of the time 

variable increases. As a result, the computation time of 

even a one-dimensional problem on a relatively coarse grid 

takes several hours. Therefore, for such calculations, it 

seems reasonable to use multiprocessor computing, which 

entails the need to appropriately adapt existing methods 

and algorithms. 
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