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Parametric X-ray radiation produced during the interaction of charged particles with polycrystals is regarded. A 
review of the existing theories, perspectives of application and performed experiments is presented. The evolution of 
experimental capabilities as well as the progress in the process comprehension is illustrated. The state of the art of 
PXR in polycrystals is presented. 
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A large number of experimental and theoretical 

works were devoted to the research of radiation pro-
cesses that take place when a charged particle moves in 
condensed matter. The radiation is generated in a wide 
spectral region during the charged particle interaction 
with atoms and the total generated radiation consists of 
the contributions from different radiation mechanisms, 
which can occur simultaneously. In some mechanisms 
the radiation is emitted by the charged particle because 
it moves with acceleration (Bremsstrahlung, Channel-
ling Radiation), and in others the radiation is emitted by 
the polarized medium even if the particle velocity is 
constant (Transition Radiation, Cherenkov Radiation, 
Parametric X-ray Radiation, Polarization Bremsstrah-
lung) [1 - 5]. 

The mechanism describing the radiation generated 
during the interaction of charged particles with poly-
crystals was theoretically described in [6]. The Paramet-
ric X-ray radiation spectrum in polycrystals consists of a 
set of peaks which position is determined by the obser-
vation angle. Additionally, it was established that the 
intensity and the spectral width are also determined by 
the observation angle achieving interesting properties in 
the backward geometry [7]. 

Several attempts were performed to verify the theo-
retical predictions. Some properties were validated 
separately, however a complete study was not achieved 
until this year [8]. The main problem to verify experi-
mentally the theory was the presence of texture in the 
targets. Metallic polycrystalline foils have a predomi-
nant orientation of the grains according the crystallo-
graphic structure and the manufacturing process [9]. 

For the theory validation it was a problem but on the 
other hand, since PXR in polycrystals is sensitive to 
texture, grain size, lattice constant, etc., it can be used to 
measure these parameters. Possible applications of PXR 
in polycrystals have been described for structure diag-
nostics due to the spectrum dependence on the medium 
properties [10 - 14]. 

Parametric X-ray radiation in polycrystals (textured 
polycrystals and powders) has been studied experimen-
tally since 1999 [15]. Several experiments were per-
formed subsequently, mainly in three experimental 
facilities located in Russia and Japan. In Table are de-
scribed the main characteristics of the experiments. The 
evolution of the experimental setup and the progress in 
the comprehension of PXR from polycrystals can be 

observed. It is interesting to observe that unlike PXR in 
crystals [3], PXR in polycrystals was generated only by 
electrons. 

The general scheme of the experiments is presented 
in Fig. 1. Charged particles interact with polycrystalline 
targets, then the radiation is registered at the observation 
angle θ for a specific value of the orientation angle ϕ. 
The main characteristics of PXR in polycrystals were 
studied manipulating the orientation angle and the ob-
servation angle. 

 
Fig. 1. Experimental scheme: θ  – observation angle;  

ϕ  – orientation angle;  
n  – normal to the target surface plane 

In Fig. 2 is presented a spectrum of PXR in poly-
crystals. It was obtained after the interaction of a 7 MeV 
electron beam with a tungsten polycrystalline foil when 
θ = 180°. It can be observed that the intensity of the 
PXR peaks changes when φ changes. Such behaviour 
confirms that the target presents texture. Additionally, 
theory affirms that in the analysed energy region, free 
from background peaks (CXR or escape peaks), five 
PXR peaks should manifest corresponding to crystallo-
graphic planes (110), (200), (211), (220), and (310). 
However, in Fig. 2 only peaks from planes (200) and 
(310) were reliably measured. This is the result of the 
texture influence and it represented the main problem to 
verify the theory. Unfortunately, it occurs with all kind 
of metallic foils. 
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PXR experiments in polycrystals 
 

Year Country, 
Energy Target, planes θ Main findings Detector,  

Energy resolution 

2019 
[8] 

Russia, Lebedev 
Physical insti-

tute, department 
of high energy 

physics, 
7 MeV 

W powder, 
(110), (200), (211), 

(220), (310) 

150.0° 
180.0° 

Absolute comparison of experi-
ment with theory [6]. Agreement 

in position, form and amplitude for 
all peaks simultaneously 

Silicon drift detector 
145 eV at 5.9 keV 

2018 
[16] 

W textured foil 
(200) 

90.8° 
119.6° 
151.0° 
180.0° 

Dynamic verification that the PXR 
peaks intensity increases and the 
spectral width decreases when θ 

approaches 180.0°. 
Textured polycrystals can be de-
scribed by the theory of PXR for 

mosaic crystals 

Silicon drift detector 
145 eV at 5.9 keV 

2018 
[17] 

Textured foils of 
Ni 

(220) 
W 

(200), (310) 

180.0° 
Disadvantages of PXR compared 
to XRD to measure the rocking 

curves 

Silicon drift detector 
145 eV at 5.9 keV 

2016 
[18] 

W textured foil 
(200) 180.0° 

Discrimination of the contribution 
from diffraction mechanisms of 

real and virtual photons to the total 
radiation yield. 

Energy dependence of the PXR 
peak on φ was observed 

Silicon drift detector 
137 eV at 3.9 keV 

2015 
[19] 

Al 
(111), (200), (220) 

Ni 
(111), (200),(220) 

Cu 
(111), (200), (220) 

(311)  
W 

(200) 

75.0° 
90.0° 
83.0° 

180.0° 

Shift of the PXR peak position 
when θ changes. 

Agreement with theory for indi-
vidual peaks. 

Observation of several PXR peaks 
not simultaneously. 

PXR is generated in grains which 
mean size is 300 nm 

Uncooled Si(Li) 
200 eV at 5.9 keV 

and 
Silicon drift detector 
160 eV at 4.9 keV 

 

2014 
[20] 

Ni 
(111), (200), (220) 180.0° 

PXR peaks are produced in grains 
which average size is 50 nm. 

PXR spectrum changes when ϕ 
changes because of texture 

Silicon drift detector 
130 eV 

2013 
[21] 

Ni 
(111), (200), (220) 180.0° PXR peaks are produced in grains 

which average size is 300 nm 
Silicon drift detector  

130 eV 
2012 
[22] 

Cu 
(111), (220), (311) 180.0° PXR peaks are measured in the 

backward geometry. 
PIN Si 

159 eV at 5.9 keV  
2008 
[23] 

Al  
(111) 

75.0° 
90.0° 

Shift of the PXR peak position 
when θ changes 

Uncooled Si(Li) PIN 
200 eV at 5.9 keV 

2006 
[24, 25] 

Japan, REFER 
electron ring at 

Hiroshima 
University, 
150 MeV 

Mo, textured 
polycrystalline 

foil 
(110, (220), (112) 

11.2° 
25.8° 

PXR peaks from textured poly-
crystalline foil registered. 

Orientation dependence measured 
using XRD and PXR. 

Energy independence of the PXR 
peak on φ was reported 

Cooled Si(Li) 
380 eV at 17.5 keV  

2001 
[26] 25.8° 

‘‘unidentified peaks’’ were observed 
during the experiment from  

an “amorphous” molybdenum foil 

Cooled Si(Li) 
450 eV at 7.23 keV 

2004 
[27] 

Hiroshima 
University, X-ray 

diffractometer 
RIGAKU 

RINT2000,  
8 keV 

Mo, textured poly-
crystalline foil 

(110), (220), (112), 
(200) 

50°…170° 

The origin of the unidentified  
X-ray spectral peaks observed  
at the REFER was established  
as manifestation of the PXR  

from textured polycrystal 

X-ray film, scintilla-
tion X-ray detector 

1999 
[15] 

Russia, Moscow 
State University 
Linac, 2.4 Mev 

Al foil, 
(111) and (220) 90.0° PXR peaks observed. 

Cooled Si(Li) 
Energy resolution not 
reported, estimation 

500 eV at 6 keV 
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Fig. 2. PXR from a tungsten textured polycrystalline foil 

measured for two orientation angles ϕ = 2°  
and ϕ = -10° 

To solve this inconvenient, experiments with pow-
ders were performed [8]. Unlike metallic foils, powders 
are constituted of randomly oriented grains. In this case, 
the manifestation of all PXR peaks was reliably fixed as 
shown in Fig. 3. The measurements were performed for 
two observation angles to highlight that the PXR peaks 
positions depends on θ. 

Fig. 3 PXR from tungsten powder measured  
for observation angles of θ = 150° and θ = 180° 
The main differences of PXR from crystals and pol-

ycrystals can be observed in the spectra, the orientation 
dependences and the intensity.  

For example, the PXR spectrum from crystals pre-
sents only one peak and its harmonics while the spec-
trum from polycrystals presents a set of peaks from 
different crystallographic planes. The case of texture 
polycrystals can be regarded as a transition, then the 
spectrum can present one or more peaks depending on 
the texture degree. The dependence of PXR yield on the 
orientation angle differs substantially also. The rocking 
curve for crystals presents two peaks symmetrically 
distributed around the specular condition at ϕ = γ -1, for 
textured polycrystal metallic foils it was observed only 
one peak at the specular condition and finally it is a 
constant for polycrystals. The PXR energy peak de-
pendence on the orientation angle can be listed as the 
last example of the differences. It changes for crystals 
and textured polycrystals but remain a constant for pol-
ycrystals. 

It is important to mention that despite the perspec-
tives to apply PXR in polycrystals some disadvantages 
have been already reported. For example, it was pro-
posed [25] that polycrystals can be used instead of crys-

tals to generate quasimonochromatic X-ray beams be-
cause of a higher resistance to mechanical damage pro-
duced by the charged particle beam. However, it was 
shown that the destruction of Si crystals is related to the 
heating during one micropulse, if the micro pulse dura-
tion is smaller than 5 μs, currents of 300 mA can be 
achieved [28]. Similarly, it was shown that the rocking 
curves obtained by PXR are wider than those obtained 
by commonly used diffraction methods because of the 
influence of the initial angular divergence of the 
charged particle Coulomb field [17]. 

Even though some limitations have been reported 
additional studies should be performed to explore the 
possibilities for applications and to clarify fundamental 
questions such as the radiation formation length, the 
differences in the diffraction mechanisms of virtual and 
real photons and others. 
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ИССЛЕДОВАНИЕ ПАРАМЕТРИЧЕСКОГО РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ  

В ПОЛИКРИСТАЛЛАХ 
В.И. Алексеев, А.Н. Елисеев, Е.Ф. Иррибарра, И.А. Кищин, А.С. Кубанкин, Р.М. Нажмудинов  

Рассмотрено параметрическое рентгеновское излучение (ПРИ), возникающее при взаимодействии заря-
женных частиц с поликристаллическими мишенями. Представлен обзор современного состояния исследова-
ния ПРИ в поликристаллах: существующих теорий, перспектив применения и проведенных экспериментов с 
учетом развития экспериментальных возможностей. 

ДОСЛІДЖЕННЯ ПАРАМЕТРИЧНОГО РЕНТГЕНІВСЬКОГО ВИПРОМІНЮВАННЯ  
В ПОЛІКРИСТАЛАХ 

В.І. Алексєєв, А.Н. Єлисєєв, Е.Ф. Іррібарра, І.А. Кищин, А.С. Кубанкін, Р.М. Нажмудинов 
Розглянуто параметричне рентгенівське випромінювання (ПРВ), що виникає при взаємодії заряджених 

частинок з полікристалічними мішенями. Представлено огляд сучасного стану дослідження ПРВ в полікрис-
талах: існуючих теорій, перспектив застосування і проведених експериментів з урахуванням розвитку екс-
периментальних можливостей. 


