
Worcester Polytechnic Institute Worcester Polytechnic Institute

Digital WPI Digital WPI

Major Qualifying Projects (All Years) Major Qualifying Projects

2019-12-13

LTE Frequency Hopping Jammer LTE Frequency Hopping Jammer

Cynthia Teng
Worcester Polytechnic Institute

YaYa Mao Brown
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/mqp-all

Repository Citation Repository Citation
Teng, C., & Brown, Y. M. (2019). LTE Frequency Hopping Jammer. Retrieved from
https://digitalcommons.wpi.edu/mqp-all/7264

This Unrestricted is brought to you for free and open access by the Major Qualifying Projects at Digital WPI. It has
been accepted for inclusion in Major Qualifying Projects (All Years) by an authorized administrator of Digital WPI.
For more information, please contact digitalwpi@wpi.edu.

https://digitalcommons.wpi.edu/
https://digitalcommons.wpi.edu/mqp-all
https://digitalcommons.wpi.edu/mqp
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F7264&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all/7264?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F7264&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalwpi@wpi.edu

LTE Frequency Hopping Jammer

A Major Qualifying Project submitted to the faculty of Worcester Polytechnic Institute in partial

fulfillment of the requirements for the Degree of Bachelor of Science.

Submitted on: December 13, 2019

Submitted by:

YaYa Brown,

Electrical and Computer Engineering

Cynthia Teng,

Electrical and Computer Engineering

Project Advisor:

Doctor Alexander Wyglinski,

Electrical and Computer Engineering

Worcester Polytechnic Institute

This report represents work of WPI undergraduate students submitted to the faculty as evidence of a degree

requirement. WPI routinely publishes these reports on its web site without editorial or peer review.

 ii

Abstract

The goal of this project was to show that communication with a cellular base station and user

equipment could be interfered with using narrowband jamming. Specifically, a randomized frequency

hopping jammer was used as the main method to disrupt service. The testbed was built with

OpenAirInterface, software-defined radios, and a Samsung s4 phone. It was found to be possible to

greatly disrupt communications in an LTE system with a jammer.

 iii

Acknowledgments

The success of this project was only made possible by the support and contributions of other

members of the WPI community. We would like to thank those people for their help these past few

months. We would like to thank our faculty advisor, Professor Alexander Wyglinski, for his guidance and

help throughout the course of this project. We would also like to thank Kuldeep Gill for his advice on the

LTE system, OpenAirInterface, and ways to verify our results. We would also like to thank Julien Ataya

and Matthew Farah for their help during A term in the development of the testbed.

 iv

Executive Summary

Mobile devices have become integrated into all aspects of our life due to their convenience and

versatility. Effective jamming can deny many people from gaining wireless network access, which can

drastically affect their productivity and in some instances their safety. Most studies that are related to

jamming attacks in the physical layer evaluate the threats and effectiveness of jamming by analyzing the

system models. There is a need for more practical experiments on jamming attacks that can simulate

malicious jamming towards different signals in the physical layer. The main contributions of this project

are to implement testbed using software-defined radios, build a Single Tone Jammer (STJ), and learn

potential vulnerabilities in LTE Network for jamming.

Different jamming approaches were evaluated in order to find an effective and feasible jamming

approach for the testbed, and the decision was made to do frequency hopping as the primary form of

jamming. Frequency hopping used narrowband jamming signals and it was easier to accomplish since

there was no need for synchronization. The testbed was built with Ubuntu 18.04.3 LTS using a USRP

B210 for the eNodeB, a Samsung s4 for the UE, and a USRP N210 for the jammer. After downloading

OpenAirInterface, the eNodeB, SIM card, and EPC were programmed using two online tutorials; one of

the tutorials was provided by Open Cells Project and the other by a Ph.D. student Chance Tarver on his

own website. GNU Radio was used to implement the frequency hopping. In order to test whether the

jammer was having an effect on the LTE system, a program called Wireshark was used as a way to

validate the results.

The wideband jammer was tested first in order to verify jamming capabilities. The overall result

was a Denial of Service (DoS) once the jammer was turned on. This was seen in Wireshark by the

retransmission messages and eventual loss of packets. The UE detached itself from the network due to the

quality of the channel being of such poor quality. Figure ES. 1 shows the number of packets per second

across time. The graph has spikes of a large number of packets and then a time when no packets are being

exchanged. This was due to the buffer that YouTube videos use. When a video was being streamed there

 v

is not a constant stream of packets needing to be received continuously because this would cause bad

video quality if just one packet was lost or needed to be retransmitted. YouTube uses a buffer to combat

this problem by getting a certain number of packets to fill the buffer and then when the video plays packet

transmission is stopped until the buffer has depleted to a certain level. This is shown in Figure ES.1 by the

spikes, when the buffer is being filled, and then the time of no packets because the buffer was filled.

Figure ES. 1 Wideband jammer packet analysis results. After the jammer is on, the number of packets successfully

transmitted drops to zero and the UE detached from the network.

The frequency hopping jammer had two different effects on the LTE system; packet corruption

and Denial of Service (DoS). The first effect was packet corruption that caused the loss of a few packets

and showed a decrease in the number of packets being successfully transmitted. The time between packets

increased once the jammer starts transmitting because a few packets are being dropped and

retransmissions occurred which caused more time between packets. Packet corruption occurred but not

DoS. Throughout the time of testing, even though packets were being dropped, the video quality remained

the same and the user was unable to notice a difference in service. This is due to the frequency hopping

being randomized.

DoS was achieved by running the experiment multiple times until the phone disconnected in one

case. This is shown in Figure ES. 3. The dashed red line indicates when the jammer was started and then

there is one spike of delay. Then the number of packets per second dropped significantly until it went to

zero and the UE disconnected from the network.

 vi

Figure ES. 2 The packet analysis result from frequency hopping jamming at 26dB, a bandwidth of 400 kHz, and at

a clock rate of 50ms and a polling rate of 25ms.

Figure ES. 3 Graph showing successful DoS caused by jammer at 28dB, a bandwidth of 600 kHz, and the clock at

50ms and a polling rate of 25ms.

Overall, the results showed that LTE communication is vulnerable to partial band jamming,

which could directly create the disconnection of user equipment (UE). And frequency hopping jammer

could affect LTE and result in packet retransmission, packet disruption, and even DoS when the power of

the jamming signals was no less than 28 dB.

 vii

Table of Contents

Abstract ii

Acknowledgments iii

Executive Summary iv

Table of Contents vii

List of Figures viii

List of Tables x

List of Acronyms xi

1. Introduction 1

1.1 Motivation 1

1.2 Current State of the Art 2

1.3 Technical Challenges 5

1.4 Contributions 5

1.5 Report Organization 6

2. Tutorial on LTE 7

2.1 Overview of LTE 7

2.2 LTE Physical Layer 10

2.3 LTE Vulnerabilities 15

2.4 Open Air Interface (OAI) 19

3. Proposed Approach 21

3.1 Problem Statement 21

3.2 Evaluation 21

3.3 Proposal Approach 23

3.4 Project Planning 24

4. Methodology 28

4.1 Testbed Implementation 28

4.2 Partial Band Jamming Test 30

4.3 Frequency Hopping Jamming 32

4.4 Result Verification 35

4.5 Chapter Summary 36

5. Results & Discussion 38

5.1 Partial Band Jammer 38

5.2 Packet Corruption 39

5.3 Denial of Service (DoS) 41

5.4 Chapter Summary 44

6. Conclusions/ Future work 46

6.1 Future Work 46

References 48

Appendix A: Python Code for Frequency Hopping Jammer 50

Appendix B: Python Code for Wideband Jammer 54

 viii

List of Figures

Figure ES. 1 Wideband jammer packet analysis results. After the jammer is on, the number of packets

successfully transmitted drops to zero and the UE detached from the network.. v
Figure ES. 2 The packet analysis result from frequency hopping jamming at 26dB, a bandwidth of 400 kHz,

and at a clock rate of 50ms and a polling rate of 25ms. ... vi
Figure ES. 3 Graph showing successful DoS caused by jammer at 28dB, a bandwidth of 600 kHz, and the

clock at 50ms and a polling rate of 25ms. .. vi

Figure 1. 1 The amount of reported wireless traffic in 2019 by CTIA and the image was adapted from [3]. 1
Figure 1. 2 The different types of jammers. Imaged was adapted from [10]. ... 4

Figure 2. 1 Mobile telecommunications has improved and expanded its functionalities with each new

generation. This summarization of the key features was adapted from [16]. ... 8
Figure 2. 2 The overall LTE system has three main components: the UE, eNodeB, and EPC. Adapted from [2].

 ... 8
Figure 2. 3 The network layer of the LTE network illustrating the communication lines between the different

framework components. This image was adapted from [16]. ... 9
Figure 2. 4 The general downlink frame structure of key signals in an LTE system. Adapted from [13].......... 12
Figure 2. 5 The OFDM spectrum showing different subcarriers and how they look together in the frequency

domain. .. 13
Figure 2. 6 The LTE Uplink Frame Structure that includes key signals. Adapted from [10]. 15
Figure 2. 7 Impact range of regular radio jamming versus uplink jamming. The impact of jamming the network

can cause severe consequences. Adapted from [20]. .. 17
Figure 2. 8 The emulation workflow of OpenAirInterface is divided up into these four steps emulation scene,

initialization, execution, and output. Adapted from [23]. ... 20

Figure 3. 1 Gantt Chart for A term .. 26

Figure 3. 2 Gantt Chart for B term .. 27

Figure 4. 1 The implemented testbed that was used is shown on the left. The testbed structure (right) shows

the theoretical connections from each component of the testbed. ... 29
Figure 4. 2 OAI tutorial steps flow diagrams adapted from [26]. .. 29
Figure 4. 3 The flow GNURadio flow graph for partial band jamming shows the steps of generating the signal,

modulating it, and then sending it to the USRP and GUI. .. 31
Figure 4. 4 A graph showing the partial band jammer signal that has a bandwidth of 2 MHz. 31
Figure 4. 5 The GNU Radio flowgraph for narrowband jamming via frequency hopping includes the elements

of the partial band jammer (top) with the bandwidth set to 200 kHz. The addition of the clock blocks

(bottom) served to change the center frequency of the original .. 33
Figure 4. 6 Figure 4.6 Waterfall graph for frequency hopping jamming signal that is centered at 2.68 GHz.

The narrowband jammer is shown in red due to its high power and changes every 50 ms. 35

Figure 4. 7 This image shows the Faraday cage that the experiments were completed………………………..37

 ix

Figure 5. 1 Wideband jammer packet analysis results. After the jammer is on, the number of packets

successfully transmitted drops to zero and the UE detached from the network.. 39
Figure 5. 2 The packet analysis result from frequency hopping jamming at 26dB, a bandwidth of 400 kHz, and

at a clock rate of 50ms and a polling rate of 25ms. ... 40
Figure 5. 3 The packet analysis result from frequency hopping jamming at 26dB, a bandwidth of 600 kHz, and

at a clock rate of 50ms and a polling rate of 25ms. ... 40
Figure 5. 4 The eNodeB LTE communication waterfall graph before any jamming has occurred. 42
Figure 5. 5 The waterfall graph showing the eNodeB transmission after the frequency hopping jamming. 43
Figure 5. 6 Graph showing successful DoS caused by jammer at 28dB, a bandwidth of 600 kHz, and the clock

at 50ms and a polling rate of 25ms.. 44
Figure 5. 7 Wireshark message that show the number of retransmission messages in black which indicates a

DoS situation. .. 45

 x

List of Tables

Table 1. 1 Description of different types of wireless jammers [10]. ... 3

Table 2. 1 Description of major downlink physical channels. Adapted from [10]. ... 10
Table 2. 2 Description of major downlink physical signals. Adapted from [10]. .. 11
Table 2. 3 Description of major uplink physical channels. Adapted from [10]. ... 11
Table 2. 4 Description of major uplink physical signals. Adapted from [10]. .. 11

Table 3. 1 Evaluation of different jamming types ... 24

Table 4. 1 Bandwidth of partial band jamming ... 32

 xi

List of Acronyms

Abbreviation Term
1G First-Generation Systems

3PP 3rd Generation Partnership Project

ACK Acknowledgement

AMTJ Asynchronous Multi Tone Jamming

ASTJ Asynchronous Single Tone Jamming

BW Bandwidth

C-RS Cell-specific Reference Signal

CFI Control Format Indicator

D-RS Demodulation Reference Signal

DCI Downlink Control Information

DDoS Distributed Denial of Service

DFT Discrete Fourier Transform

DL Downlink

DoS Denial of Service

eNB/ eNodeB Evolved node B

EPC Evolved Packet Core

FDD Frequency Division Duplex

GSM Global System for Mobile Communications

GUI Graphical User Interface

HARQ Hybrid Automatic Repeat Request

HHS Home Subscriber Server

HSS Home Subscriber Server

IFFT Inverse Fast Fourier Transform

IP Internet Protocol

LTE Long Term Evolution

LTE-A Long Term Evolution Advanced

MAC Medium Access Control

MBMS Multimedia Broadcast Multicast Service

MBSFN-RS Multimedia Broadcast multicast service Single Frequency Network Service Ref Sig

MCH Multicast Channel

MCH Multicast Channel

MIB Message Information Block

MIMO Multiple-Input Multiple-Output

MME Mobility Management Entity

MTJ Multi Tone Jamming

NACK Negative Acknowledgment

OAI OpenAirInterface

OFDM Orthogonal Frequency-Division Multiplexing

OFDMA Orthogonal Frequency-Division Multiple Access

P-RS Positioning Reference Signal

PBCH Physical Broadcast Channel

PBJ Partial Band Jamming

PCFICH Physical Control Format Indicator Channel

PDCCH Physical Downlink Control Channel

PDCP Packet Data Convergence Protocol

 xii

PDN Packet Data Network

PDN-GW Packet Data Network Gateway

PDSCH Physical Downlink Shared Channel

PGW Packet Data Network Gateway

PHCH Physical Multicast Channel

PHICH Physical Hybrid Arq Indicator Channel

PHY Physical Layer

PRACH Physical Random Access Channel

PSS Primary Synchronization Signal

PUCCH Physical Uplink Control Channel

PUSCH Physical Uplink Shared Channel

RACH Random Access Channel

RB Resource Block

RLC Radio Link Control

RRC Radio Resource Control

RRM Radio Research Management

S-RS Sounding Reference Signal

SC-FDMA Single Carrier Frequency Multiple Access

SDR Software-Defined Radio

SFN System Frame Number

SGW Serving Gateway

SIM Subscriber Identity Module

SMS Short Message Service

SSS Secondary Synchronization Signal

STJ Single Tone Jamming

TDD Time Division Duplex

UCI Uplink Control Information

UE User Equipment

UE-RS UE-Specific Reference Signal

UL Uplink

UL-SCH Uplink-Shared Channel

UMTS Universal Mobile Telecommunication System

USRP Universal Software Radio Peripheral

 1

1. Introduction

1.1 Motivation

Mobile devices have become integrated into all aspects of our life due to their convenience and

versatility. The applications on them have contributed to socio-economic development in areas of health,

education, and finances with everything being accomplished by a few taps on a screen [1]. The number of

cellphone users has increased partly due to the introduction of smartphones with their user-friendly interface

[2]. The increase in people's usage of data and dependence on it creates a need for further advancement in

technology [2]. Long Term Evolution (LTE) is a protocol for wireless broadband communications and was

created by the 3rd Generation Partnership Project (3PP) in order to meet the data usage and total traffic

demands in cellular networks. It enables faster data transmissions, lower latency, and increased bandwidth

efficiency as some of its improvements [2]. As shown in Figure 1.1, the amount of wireless data traffic is

increasing exponentially [3].

Figure 1. 1 The amount of reported wireless traffic in 2019 by CTIA and the image was adapted from [3].

 2

The focus for the development of LTE was technical improvements that could be seen at the user

end. Security against jamming attacks that can cause interruptions of service was not part of the

development, and thus LTE networks are vulnerable to these types of attacks [2]. The motivation of this

project is to show how jamming of an LTE network can be accomplished utilizing software-defined radios

(SDR) and knowledge of network configurations [4]. People depend on their cellphones in everyday life,

from getting directions to being their sole form of contact with others. Effective jamming can deny many

people from gaining wireless network access, which can drastically affect their productivity and in some

instances their safety.

Denial of Service (DoS) attacks have proven to be the biggest threat to LTE networks in recent

years; it prevents legitimate users from accessing specific services by targeting hosting computer systems,

network resources or the user devices [5]. On October 21st, 2016, a Distributed Denial of Service (DDoS)

attack blocked Internet services for millions of subscribers on the Eastern seaboard of the United States [6].

The company that provides backbone services, Dyn, was under sustained attack against their DNS

infrastructure, causing serious interference with users' access to major services such as Twitter, Amazon,

Tumblr, Reddit, Spotify, and Netflix. Dyn estimated that there were up to 100,000 malicious endpoints, and

most of which were originated from Mirai-based botnets. Although this scenario was a network, it gives an

example of how losing access to wireless communications can affect people’s lives on a large scale. Military

LTE networks could also experience DoS attacks that could potentially result in serious security damages

on a larger scale. Researchers suggest that LTE technology could be used for several military applications,

including for garrison, strategic core, and tactical edge [7]; LTE is increasingly playing a crucial role in

supporting military operations with vital enterprise services.

1.2 Current State of the Art

Open-source software, such as srsLTE [8] and OpenAirInterface [9], has enabled the testing,

analysis, prototyping, and commercialization of LTE systems for researchers and other interested parties

 3

[8], [9]. In combination with SDRs, these tools allow for the creation of a local LTE network that can be

used to implement and analyze the effects of certain jamming techniques.

Jamming can be accomplished through four main methods; partial band, single tone, multi tone,

and asynchronous [10]. These different types of jammers are detailed in Table 1.1 and illustrated in Figure

1.2. The timing of the jamming attacks can also vary by being either constant, random, or reactive. This

means that the jammer could be constantly sending noise and trying to interfere, randomly interjecting noise,

or listening to when the channel is in use to create an attack [11].

Table 1. 1 Description of different types of wireless jammers. Adapted from [10].

Jammer Type Description

Partial Band Jamming (PBJ) Transmission of noise over a specific LTE band.

Single Tone Jamming (STJ) Jam a single subcarrier by creating an impulse of noise.

Multi Tone Jamming (MTJ) Jam multiple subcarriers by creating multiple impulses

of noise.

Asynchronous Single Tone Jamming (ASTJ) or

Asynchronous Multi Tone Jamming (AMTJ)
Uses a signal with frequency offset to the subcarrier in

order to create Inter Carrier Interference.

 4

Figure 1. 2 The different types of jammers. Imaged was adapted from [10].

There are many theoretical jammers that could exist given the possibilities. Practical jamming has

also been implemented and studied. In reference [12], analysis of jamming utilizing SDRs on LTE systems

found that certain theoretical methods were not possible. The primary findings included that the main

synchronization signals are the most resilient to jamming while the cell reference signals, Physical

Downlink Control Channel (PDCCH), and Physical Control Format Indicator Channel (PCFICH) are the

most vulnerable [5]. Reference [13] studied the areas that LTE could be susceptible to jamming attacks in

its physical channels and signals [13], while in [14] provided details about the possible places for jamming

attacks and then implemented a jammer by raising a created signal’s power level until the connection was

dropped for the user.

 5

1.3 Technical Challenges

 Most studies that are related to jamming attacks in the physical layer evaluate the threats and

effectiveness of jamming by analyzing the system models [15], [16]. There needs to be more practical

experiments on jamming attacks that can simulate malicious jamming towards different signals in the

physical layer. This will help future researchers to acquire a better understanding of the vulnerability of

LTE network downlink channel and how a STJ can affect communication.

1.4 Contributions

Implement Software-Defined Radios:

The LTE network and jammer testbed will be implemented using SDRs. The open-source software

OpenAirInterface was used to create and program the eNodeB, User Equipment (UE), and core network.

The jammer used GNURadio [17] to interfere with the downlink communication between the UE and

eNodeB.

Build a Single Tone Jammer (STJ):

STJ was used instead of Partial Band Jamming Partial (PBJ) as previously mentioned. Despite the

fact that PBJ requires no synchronization to the network and lower power pulse, STJ would be harder to be

detected while jamming [11]. STJ also provided higher efficiency for jamming because of its characteristic

of consuming lower power jamming and high levels of DoS that could be possibly be achieved by jamming

one cell-specific reference signals, such as Primary Synchronization Signal (PSS) or Secondary

Synchronization Signal (SSS) and could reduce the overall system capacity.

Learn Potential Vulnerabilities in LTE Network for Jamming:

 The STJ method requires transmitting on top of specific physical channels, and thus, requires

synchronization with the network to determine where the physical channels and specific signals exist in the

frequency and time domain.

 6

1.5 Report Organization

This report is organized into six chapters, the Introduction, Tutorial on LTE, Proposed Approach,

Methodology, Results, and Conclusions. The Introduction chapter presents the motivation for the project,

the current state of the art for LTE technology, as well as a brief analysis of the current technical

challenges to provide context for how this project is related to prior and ongoing research. The Tutorial on

LTE chapter provides information on different uplink and downlink channels and signals in the LTE

physical layer and an analysis of the their different vulnerabilities against jamming. In the Proposed

Approach chapter, the report introduces the process of identifying and evaluating possible solutions, the

general approach to implement the project and the logistics for the project regarding time planning. The

Methodology chapter lays out the detailed implementation plan of the project and the test for result

verification. The Result chapter presents the findings. Finally, the Conclusion chapter summarizes the

project contributions and provide recommended directions for future work.

 7

2. Tutorial on LTE

 This chapter begins with an overview of the history of cellular communications. It then goes into

detail about the different aspects of an LTE system. The physical layer with its various signals and

channels are explained in greater detail. The next part of the chapter focuses on the vulnerabilities that

LTE systems may have to jamming attacks. The last part presents more information about how

OpenAirInterface operates.

2.1 Overview of LTE

Mobile telecommunication systems began in the 1980s and continues to evolve from then to

present day. Figure 2.1 shows this evolution and highlights the main functions in each generation. The

first generation systems (1G) used analog techniques to transmit. Its market was limited to business use

due to its small capacity and the user equipment (UE) being expensive as well as bulky. More consumer

friendly products came in the early 1990s with 2G, which consisted of voice transmission and later

included short message service (SMS). Global System for Mobile Communications (GSM) became the

most used 2G system [2]. 2.5G was built in order to accommodate the growth of the internet that was also

happening during this time. It introduced a core network packet switched domain and modified the air

interface to handle data as well as voice. 3G was developed due to the demand for increased data rates,

and was dominated by the Universal Mobile Telecommunication System (UMTS). UMTS was developed

from GSM with changes made to the air interface but core network remained the same. It used a different

technique for radio transmission and reception than 2G. Upon first launch it was not able to deliver what

was promised until 3.5G which took off around 2005. The main improvement was enhancements for data

applications through high speed packet access [2].

 The need for data was rapidly increasing, especially since the UEs available in the market were

becoming more user friendly. 2G and 3G networks were getting congested and had to maintain two core

 8

networks for voice and data packets [2]. The reduction of latency was also needed since delay times

reached 100ms [2]. UMTS and GSM also were extremely complex due to the need to be backwards

compatible with the addition of new features [2]. In 2004 3GPP began developing what is LTE today. The

goal being to have higher data rates and reduced latency [2].

Figure 2. 1 Mobile telecommunications has improved and expanded its functionalities with each new generation.

This summarization of the key features was adapted from [16].

 The main components of an LTE network includes the UE, evolution Node B (eNodeB), and the

Evolved Packet Core (EPC) [2]. The UE can include any mobile device that the user possesses that can

connect to the network. Figure 2.1 shows how these components are connected.

Figure 2. 2 The overall LTE system has three main components: the UE, eNodeB, and EPC. Adapted from [2].

 9

 The eNodeB is where the decision making and processing of data from the user occurs. It

translates the UE data into a format that can be transmitted by the EPC and reformats data from the EPC

to the UE. The air interface functionality is controlled by eNodeB. It handles multiple UEs and optimizes

the quality of wireless link for each UE. The high data rates are achieved through the use of Multiple-

Input Multiple-Output (MIMO) and multiple antennas. The eNodeB does the complex computations to

reduce the amount that would need to be performed by the UE. The framework includes the physical layer

abstraction, medium access control (MAC), radio link control (RLC), packet data convergence protocol

(PDCP), and radio resource control (RRC) which can be seen in Figure 2.3.

Figure 2. 3 The network layer of the LTE network illustrating the communication lines between the different

framework components. This image was adapted from [16].

The EPC has four main components that each perform different functions. The Serving Gateway

(SGW) handles user data packets through routing and forwarding. The Packet Data Network Gateway

(PDN-GW) provides connection to the internet by being a point of exit and entry of traffic for the UE.

 10

The Mobility Management Entity (MME) is the key control node for the LTE access networks. The

Home Subscriber Server (HSS) performs mobility management, user authentication, and access

authorization. The type of information processed is handled by the MME and the HSS while the user data

is handled by the SGW and the PDN-GW [16].

2.2 LTE Physical Layer

The LTE physical (PHY) layer creates the connection between the eNodeB and the UE through

signals and control channels. There are two main forms of communication which are the downlink (DL),

which is from the eNodeB to the UE, and the uplink (UL) communication from the UE to the eNodeB

[13]. Communication in the downlink and uplink are accomplished through a variety of different signals

and control channels as shown and described in the following tables.

Table 2. 1 Description of major downlink physical channels. Adapted from [10].

Physical Downlink Shared

Channel (PDSCH)
Carries the data and signaling messages from the Downlink-Shared Channel

and paging messages from the Paging Channel.

Physical Broadcast Channel

(PBCH)
Contains the Master Information Block

Master Information Block

(MIB)
Carries information about the operating bandwidth, frame number, and

PHICH.

Physical Multicast Channel

(PHCH):
Carries multimedia broadcast/multicast service data of the Multicast Channel

(MCH).

Physical Downlink Control

Channel (PDCCH):
Carries the Downlink Control Information (DCI) which consists of mainly

scheduling commands and scheduling grants.

 Physical HARQ Indicator

Channel (PHICH)
Carries ACK/NACK information about the uplink which allows UE to decide

whether to transmit new data or retransmit the previous data

Physical Control Format

Indicator Channel (PCFICH)
Carries information about the frame structure.

 11

Table 2. 2 Description of major downlink physical signals. Adapted from [10].

Primary Synchronization

Signal (PSS)
Carries information about the physical layer cell identity and is used by the UE

for connecting to the cell.

Secondary Synchronization

Signal (SSS)
Carries information about the physical layer cell identity and is used by the UE

to connect to the cell.

Cell-Specific Reference Signal

(C-RS)
Sent by eNodeB to support channel estimation at the UE.

MBSFN Service Ref Sig

(MBSFN-RS)
The reference signal for the Multimedia Broadcast Multicast Service (MBMS)

and is used for channel estimation to the UE.

UE-Specific Reference Signal

(UE-RS):
For channel estimation to the UE.

Positioning Reference Signal

(P-RS)
Sent by eNodeB for location based service.

Control Format Indicator (CFI) Carries information about the number of symbols allocated for channel control.

Table 2. 3 Description of major uplink physical channels. Adapted from [10].

Physical Uplink Shared

Channel (PUSCH)
Carries the data and signaling messages from the Uplink-Shared Channel (UL-SCH)

and carries Uplink Control Information (UCI) to ensure the UE is not transmitting at

the same time.

Physical Uplink Control

Channel (PUCCH)
Carries the UCI in case the UE needs to send only control information.

Physical Random

Access Channel

(PRACH)

Carries the random access transmissions from the Random Access Channel (RACH).

Table 2. 4 Description of major uplink physical signals. Adapted from [10].

Demodulation Ref Signal (D-RS) Sent by the UE to the eNodeB for channel estimation.

Sounding Ref Signal (S-RS) Configured by the eNodeB for power reference in order to support frequency

dependent scheduling

 12

Figure 2. 4 The general downlink frame structure of key signals in an LTE system. Adapted from [13].

The downlink uses orthogonal frequency-division multiplexing (OFDM) modulation on the

downlink and an orthogonal frequency-division multiple access scheme (OFDMA) [14]. OFDM, is a

spectrally efficient way to transmit data because it uses different subcarriers to transmit a set amount of

symbols. This is accomplished on the transmitter by first taking in a data stream from the upper layers and

doing a serial to parallel conversion after modulation. This results in multiple different sine waves that

can be added together to transmit one signal carrier waveform that contains all the data

information. Figure 2.5 shows what an OFDM signal looks like in the frequency domain.

 13

Figure 2. 5 The OFDM spectrum showing different subcarriers and how they look together in the frequency domain.

The frame structure of the DL is shown in Figure 2.2. It consists of multiple subcarriers, each a

180 kHz block, that are spaced 15 kHz apart from each other with a cyclic prefix of 5 us. OFDM symbols

are transmitted in 0.5 ms slots and two slot forms a 1ms subframe and 10 subframes is a 10 ms frame

[10]. All the symbols transmitted in a single slot on all the subcarriers forms a Resource Block [14]. The

bandwidth can vary from 1.4 MHz to 20 MHz and thus the number of resource blocks available in a

single slot varies from 6 to 110 [14].

The frame structure of the downlink in LTE consists of the control channels, reference signals,

and synchronization signals transmitted at specific times and intervals. The PSS and SSS are transmitted

two times per frame at the center 62 subcarriers and the PBCH is transmitted once in a frame at the center

72 subcarriers [14]. The RS are distributed throughout the frame to enable channel estimation in both the

time and frequency domain. The control channels are transmitted at the start of every subframe with a

width varying from 1 to 4 OFDM symbols depending on the channel bandwidth and the control

information in that subframe. This structure can be seen in Figure 2.2 and shows the different signals and

what they look like in a frame and then at a specific subcarrier.

 14

 The UE goes through a procedure in order to connect to the eNodeB. The PSS is first searched for

and must be obtained in order to detect the Physical Layer Identity and symbol timing. The UE, once

gaining information about the symbol timing, can detect the SSS in order to get the cell identity group and

subframe number in order to derive the cell-ID of the eNodeB to which it is attached. Once the cell-ID

has been obtained, the UE performs channel estimation and equalization by finding the C-RS. After, it

decodes the PBCH to get the MIB which carries information about the operating bandwidth, frame

number, and PHICH duration and resources configurations. The UE now has broadcast messages

available to decode the PCFICH to get the CFI value. The UE has enough information about the lattice in

the frame where it has to search for PHICH and PDCCH. The UE then decodes the PDCCH in order to

gain information about the resources allocated in the PDSCH and will be able to decode the data [13].

The uplink uses single carrier frequency multiple access (SC-FDMA) [18]. This is similar to

OFDMA, except the discrete Fourier transform (DFT) is done prior to the inverse fast Fourier transform

(IFFT) causing the spread of data symbols over all subcarriers creating a virtual single carrier structure.

This results is a lower peak-to-average power ratio which benefits the UE in its power efficiency [18].

The frame structure of the UE is shown in Figure 2.3. The D-RS, which is utilized by the PUSCH and

PUCCH for channel estimation, is distributed throughout the frame. The SRS is transmitted in one OFDM

symbol to help the eNodeB to measure the received power across a wide transmission bandwidth. The

PUCCH symmetrically transmits at both edges of the BW and the PRACH transmits over a bandwidth of

6 resource blocks with a duration from 1 to 3 subframes with its position being configured by the eNodeB

[10]. The rest of the block consists of the PUSCH.

 15

Figure 2. 6 The LTE Uplink Frame Structure that includes key signals. Adapted from [10].

2.3 LTE Vulnerabilities

As mentioned in the previous chapter, several ways of jamming are partial band jamming (PBJ),

single tone jamming (STJ), multi tone jamming (MTJ), asynchronous single tone jamming (ASTJ), and

asynchronous multi tone jamming (AMTJ). In this section, the vulnerabilities of different channels and

signals in both uplink (UL) and downlink (DL) are analyzed, as well as potential methods of jamming and

their evaluation, in order to find the suitable “weak spot” for efficient jamming in the LTE

communication.

Two potential signals that could be jammed are the PSS and SSS which are the synchronization

signals in the downlink. Since the positions of these two signals are fixed in the frame structure, PSS and

SSS can be jammed by a continuous jammer that transmits at the desired frequency [10]. However, this

strategy requires the highest power of the jamming signal, which makes it easy to detect the jammer. A

more effective method of corrupting the PSS, mentioned in [13] and [14], is RF spoofing, referring to

transmitting a fake signal meant to masquerade as an actual signal. The jammer will transmit a bogus PSS

asynchronously to the LTE frame at higher power that prevents the terminal from detecting the SSS or

decoding the Master Information Block (MIB) of the network. Even though disrupting the PSS or SSS

 16

will not cause an immediate Denial of Service (DoS), but it could instead prevent new UEs from

accessing the cell and idle UEs from re-synchronizing with the cell [12].

Another potential weakness in LTE signals are the Cell-Specific Reference Signals (C-RS) which

carries downlink pilot symbols that are used for channel estimation, quality assessment, and equalization

[10]. C-RS is located throughout the frame in both time and frequency domain, based on the cell ID as

well as antenna port number (MIMO). If C-RS is jammed, the bit error rate of the complete network

would increase tremendously. Studies in [12] have proven that configuring perfect synchronization is

difficult to achieve for a sparse and non-contiguously distributed signal such as the C-RS. It is suggested

that the jammer can target CRS subcarriers with MTJ instead since the C-RS subcarrier locations depend

on the cell ID and remain constant for all users of the cell. Jamming C-RS also requires the jammer to

synchronize with the LTE network and knowledge of PSS and SSS. Due to the long symbol duration (71

microseconds), one benefit for jamming C-RS is that there will be a short propagation delay, for example,

if there are approximately 5 miles between the jammer and the UE, there would only be a propagation

delay of 27 microseconds [19]. Researchers have recommended that the jammer could start transmitting a

fraction of a symbol early to compensate for this delay [16].

Channels that contain important information are also vulnerable to jamming attacks. The Physical

Broadcast Channel (PBCH) contains the Master Information Block (MIB), which is required by the UE to

gain information about the downlink bandwidth, resource length of the Hybrid ARQ (HARQ) Indicator

Channel (PHICH), and the System Frame Number (SFN) for frame synchronization. Thus, the UE could

get initial access to the cell [12]. As shown in Figure 2.2, PBCH is located at center 72 subcarriers and

appears in the first subframe of every frame. Without PBCH, the UE will not be able to decode PHICH,

which carries ACK/NACK information for the uplink. Researchers in [10] and [20] suggest that jamming

PBCH does not necessarily require the jammer to synchronize with the cell if the jammer is continuously

transmitting at center 72 subcarriers, and this jamming attack is characterized by a low duty cycle and a

fairly low bandwidth. Since the characteristics of the PBCH requires a fairly high-power interfering signal

to deny the service to non cell edge users, the jammer using the method will be bounded by the large

 17

transmitted power at the eNodeB and the potentially low transmitted power of the jamming device in

order to outpower the legitimate signal [20].

Another channel that is susceptible to jamming attacks is the Physical Uplink Control Channel

(PUCCH) which is used to send the eNodeB a variety of control information. Due to its feature of

mapped to the resource blocks on the edges of the system bandwidth jamming attacks can be

implemented after acquiring knowledge of the LTE system bandwidth and center frequency [13], [14],

[19] (see Figure 2.3). It is important to note that uplink jamming has an impact on the entire cell as

opposed to locally around the jammer [13]. This is because when the jammer attacks PUCCH, it prevents

the eNodeB from receiving essential uplink signaling messages required for the correct operation of the

cell, and overwhelms eNodeB reception. In such a way, the jammer will effectively prevent the base

station to communicate with every user equipment (UE) in the cell, and thus, extending the range of the

attack to the entire cell, as shown in Figure 2.7 below.

Figure 2. 7 Impact range of regular radio jamming versus uplink jamming. The impact of jamming the network can

cause severe consequences. Adapted from [20].

 18

LTE has three control channels in downlink, namely; Physical Control Format Indicator Channel

(PCFICH), Physical Downlink Control Channel (PDCCH), and Physical Hybrid ARQ Indicator Channel

(PHICH). Although it is possible to jam the PDCCH directly, we will first analyze the possible jamming

method of the PCFICH. PCFICH is the key to the process of transmitting and decoding the information as

mentioned above. It appears infrequently in the downlink frame structure; only in the first orthogonal

frequency-division multiple access (OFDM) symbol in each subframe and occupies a total of 16 resource

elements (RE) [13]. Since the location of the 16 subcarriers is determined by the eNodeB’s complete cell

ID, jamming the PCFICH requires the jammer to synchronize to both downlink synchronization signals

PSS and SSS. This also limits the jamming to only one cell [19]. The PDCCH carries critical control

information, [13] and [20] have suggested that successful jamming the PDCCH requires transmitting at

high power as well as synchronization with the cell. In addition, since the PDCCH size varies between

one and three OFDM symbols, the jammer needs to decode the PCFICH first in order to launch an

effective attack with the least amount of power [13]. Through experiments, [12] implies that since

jamming the PCFICH has the same outcome as jamming the PDCCH, jamming the PDCCH seems to be

more impractical for the jammer since the PCFICH’s sparsity makes the jamming attack more complex,

and thus, less likely to be anti-jammed. If PHICH is jammed, the downlink communication will not

suffer, but the uplink communication will because it carries ACK/NACK information of the uplink which

enables the UE to make decisions [10]. It is worth mentioning that although PHICH jamming requires the

jammer to synchronize with the cell, its sparsity location on the frame structures makes the jamming more

complex and threatening.

The user data could also be potentially jammed. The Physical Downlink Shared Channel

(PDSCH) and Physical Uplink Shared Channel (PUSCH) are used to transmit user data to and from the

eNodeB, which means that the jammer can eavesdrop and take the advantage to get the complete system

information. While it is possible to jam these two channels, it is suggested that the jamming process

requires the jammer to extensively decode the protocol with control information and user information,

which almost equals the effort to jam the entire LTE signal [10], [13]. This makes it an extremely

 19

complex attack that might be considered a combination of jamming and cyber-attack. Therefore, it is not

recommended to jam the PDSCH and PUSCH [13].

2.4 Open Air Interface (OAI)

The OpenAirInterface (OAI) emulation platform is an open-source software platform developed

based on real 3GPP LTE protocols that provide a better approach to testing, evaluating, and validating

wireless communications and signal processing. It is written in C and provides a complete wireless

protocol stack that implements the PHY, MAC, RLC, PDCP, RRC as well as providing an IPv4/IPv6

network device interface under Linux [21]. There are two different modes that can be used, either single

state machine or multi-state machine emulation [4]. Single state machine has virtualization of network

nodes within one physical computer. The multi-state machine uses distributed deployment on so that

multiple machines can be used and transmits information via IP address. For example, the eNodeB could

be on one machine while the UE is on another and they would need to be on the same local network and

communicate via their machine’s IP address.

The source code can be found on OpenAirInterferace’s Github and is divided into three main

folders. The PHY layer and other related parameters resides in the Openair1 folder and it also provides

interface to the MAC layer. The hardware interface can be found in this folder and its main function is to

realize the baseband signal process. The Openair2 folder contains the realization for the upper network

layer including the MAC, RLC, PDPC and RRC. The folder Openair3 has network modules that uses the

IP protocol. It offers interfaces to the applications which makes the whole platform more complete and

practical. The EPC resides in another folder called openair-cn and this is where the MME, SPGW, and

HSS can be run.

The working procedure of the emulator can be divided into four steps, as shown in Figure 2.5

[22]. The four consecutive can be defined as Emulation Scene Description, Initialization, Execution, and

Output.

 20

Figure 2. 8 The emulation workflow of OpenAirInterface is divided up into these four steps emulation scene,

initialization, execution, and output. Adapted from [23].

The first step of emulation is to build an emulation scenario depending on the users’ input. The

parameters include single or multi- channel modes, the number of eNodeB and user equipment (UE),

working mode (TDD, FDD) and many other systems and environment variables [23]. The next step is

initialization. This is the emulation platform procedure of configuration which uses the user defined

parameters from the previous step [4]. It contains emulation scenario initialization and each layer of eNB

and UE configuration [4]. Also, it includes traffic and mobility initialization [24]. The execution step

indicates the execution of the emulator, and the synchronization of the emulated nodes will be run in the

experiment. The last step is the monitoring which is done through an outputted log file. The file contains

the whole procedure of emulation that has been collected, labeled and archive for the usage of analyzing

the emulator and evaluating the experiment. Through experiments, [23] tested the feature of OAI on

testing LTE systems and concluded that this platform can be useful and helpful for the learning and

researching of LTE and LTE-A standards, performance evaluation of new scheduling algorithms,

improving the accuracy of link-level simulation by using the whole protocol stack, mobility management

protocols in cellular networks, etc.

 21

3. Proposed Approach

3.1 Problem Statement

 In this project, the objective was to effectively jam an LTE system to disrupt or deny service to

the user equipment (UE) using Software Defined Radios (SDRs). The selection process for which types of

jamming to implement depended on its efficiency and complexity. Efficiency refers to the power level of

the jamming signal that was being transmitted in comparison to the effectiveness of jamming, namely the

amount of transmission disruption that was caused by it. Complexity measured the level of difficulty that

the jamming would cause to mitigate LTE communication or anti-jam. Despite the goals, due to the

budget, time limitation, and feasibility consideration was given to factors such as whether synchronization

was needed when selecting the most suitable jamming approach.

3.2 Evaluation

In order to effectively jam an LTE system to cause a denial of service to the UE, there are several

possible approaches:

1. Sniffing

2. Spoofing

3. Jamming uplink channels

4. Jamming downlink channels

Sniffing involves eavesdropping on important signals which could potentially give valuable

information leading to more efficient attacks. Spoofing is able to create a jamming attack by making a

signal that masquerades as legitimate LTE signal. Jamming of the uplink channels would involve creating

another signal and transmitting at the same time as the actual signals to cause interference. Jamming of

the downlink channels is similar to that of the uplink signals except the downlink signals would be

targeted.

 22

Each approach was analyzed by its efficiency, complexity, and feasibility. Spoofing was

recommended to target the synchronization signals in the downlink, primary synchronization signal (PSS)

and secondary synchronization signal (SSS) [13]. In the simulation, [13] observed that the UE lose

connection with the eNodeB when the spoofing attack maintained at a high power level. Thus, spoofing

was not considered efficient due to its high ratio of the received jamming signal power to the received

LTE signal power. On the other hand, sniffing created a denial of service (DoS) scenario by producing an

eavesdropping environment using other low-cost software radios. It was recommended in [13] that

sniffing techniques should be used during the downlink Physical Broadcast Channel (PBCH) phase in

order to acquire system information block (SIB) that indicated the complete configuration of the cell and

other critical information of the mobile network, and thus, to identify the specific cells that are deployed

for critical communications and distinguish them from mobile operator eNodeBs. However, due to the

fact that there was only one UE in the LTE testbed, user-targeted DoS would not provide additional

benefits compared with other approaches. Furthermore, the decoding process of the SIB would be more

focused on software rather than the LTE physical layer.

As mentioned in the previous chapter, the LTE physical layer possesses many vulnerable

channels to jamming attacks. The uplink jamming would be able to effectively prevent the base station to

communicate with every UEs in the cell, as well as extending the range of the attack to the entire cell.

However, due to the fact that there was only one UE in the LTE testbed, the uplink jamming would not be

as effective as it should be. Additionally, successfully jamming the uplink control channels requires

transmitting at high power as well as synchronization with the cell, which makes this approach not

efficient enough compared with others [13], [24].

As mentioned in the previous chapter, downlink jamming possesses several options that included

PSS, and SSS, Physical Broadcast Channel (PBCH). PSS carries information about the physical layer cell

identity and plays an essential role in the process of UE connecting to the cell. Consequently, jamming

the PSS would prevent new UEs from accessing the cell and re-synchronizing with the cell, which assures

the complexity of the attack. Due to the fact that it is transmitted once in a frame at the center of 72

 23

subcarriers, the PSS jamming attack only would require narrowband jamming signals, which means this

attack is highly efficient [10]. Therefore, it was decided to use synchronized signal-tone jamming on the

PSS in the downlink.

3.3 Proposal Approach

An initial plan was devised after considering the advantages and disadvantages of each potential

type of jamming. The first decision was to begin with partial band jamming because it was easy to

implement and also allowed us to test and confirm that the equipment was working as anticipated. The

next step was to determine how to measure the success of the jamming. The method that was chosen was

to count how many packets were received and compare that to the number transmitted. This would have

made it possible to determine the effect of the jamming via a quantitative approach. After this initial

testing of the verification and jamming were completed, it would then be beneficial to move to more

complex jamming attacks. This would involve setting up the synchronization of the jammer to the

eNodeB. However, due to time constraints and the complexity of synchronization, different jamming

approaches were evaluated again in order to find a more effective and feasible jamming approach for the

testbed, as shown below in Table 3.1. After the evaluation, the decision was made to do frequency

hopping as the primary form of jamming. Frequency hopping could still be narrow band jamming but it is

easier to accomplish since there is no need for synchronization. It would also be more difficult to anti-jam

because the frequencies it hops to would to randomized.

 24

Table 3. 1 Evaluation of different jamming types

Types of Jamming Pros Cons

Partial Band Jamming
(Wideband Jamming)

• No synchronization required • Easy to be detected

• Need constantly high power

Synchronized Jamming • Know the signal or channel that is

being attacked
• Requires synchronization
• Requires the knowledge of the exact

frequency of the subcarrier
• LTE could easily recover by transmitting

at another frequency

Asynchronized

Jamming
• No synchronization required • Do not know the signal or channel that is

being attacked

Frequency Hopping

Jamming
• No synchronization required

• Hard for anti-jam because of its

unpredictability

• Do not know the signal or channel that is

being attacked

3.4 Project Planning

Microsoft Excel was used to plan out objectives throughout the project. The Gantt Chart in Figure

3.1 and Figure 3.2 shows the tasks and timeline. WPI has a quarter system with each academic year made

up of four seven-week terms, and this project was conducted throughout the first two terms, A-term 2019

and B-term 2019. Throughout the design stage of the project, several deadlines are mentioned and noted

in red on the Gantt Chart. The project team size changed from four members in the first term to two

members in second term. In the first term, the focus was on designing and building the testbed.

Specifically, it was broken into multiple subtasks, such as setting up the software interaction between the

transceiver, USRP B210, UE, and the jamming device, USRP N210. After each segment has been set up

separately, they have to be consolidated into the testbed, in which they were evaluated using a spectrum

analyzer in order to ensure the transmission. The Agilent CSA Spectrum Analyzer N1996A was used and

it has a frequency range from 100 kHz to 3 GHz. From then on, the project moved to the jamming stage

during B-term 2019, as shown in Figure 3.2. After acquiring information on the network, the USRP N210

was synchronized with the eNodeB and partial band jamming (PBJ) was then performed to collect the

effect of the jammer. Then, the frequency hopping jamming approach was implemented with GNU Radio.

 25

The results of jamming attempts were collected and evaluated to determine whether it was effective by

analyzing the throughput before and after the jammer. During the process of setting up the testbed and

testing jamming, the report recorded the work done in the implementation and testing stages. A live demo

was shown to conclude the project.

 26

Figure 3. 1 Gantt Chart for A term 2019

 27

Figure 3. 2 Gantt Chart for B term 2019

 28

4. Methodology

This chapter describes the methods that were used to successfully jam LTE communications. The

first section focuses on the creation of an LTE testbed using two USRPs and a Samsung s4 phone. It also

includes information about OpenAirInterface. The next section goes into detail about partial band

jamming and how that was implemented through GNU Radio. The section afterward explains how

frequency hopping was achieved and provides insight into the GNU Radio code. Lastly, the method that

was used to verify the results of the jammer is discussed.

4.1 Testbed Implementation

The testbed consisted of an eNodeB, User Equipment (UE), and jammer which is shown in

Figure 4.1. A USRP B210 was used for the eNodeB, a Samsung S4 for the UE, and a USRP N210 for the

jammer. The whole testbed was built on a 64-bit computer with an Intel Core i7-4770K CPU @ 3.50 GHz

x8 processor with Ubuntu 18.04.3 LTS operating system. The B210 was connected to the computer

through USB 3.0 and the USRP N210 was connected through a 1 Gigabit ethernet cord. The UE was

connected to the network by an open-cell SIM card that was programmed and its information inputted

into the Home Subscriber Server (HSS) in OpenAirInterface (OAI). The testbed setup was located in a

Faraday cage due to the restriction of frequency bandwidths in the U.S. The Faraday cage works as an

enclosure to block electromagnetic fields, and thus the wireless transmission was limited within the cage

and not interfering with other signals of the same frequency.

 29

Figure 4. 1 The implemented testbed that was used is shown on the left. The testbed structure (right) shows the

theoretical connections from each component of the testbed.

The testbed was built following the two tutorials available online [25], [26], and the overall steps

are shown below in the flow diagram Figure 4.2. Reference [25], [26] provided instructions for the

installation of the original files on Github, configuration, and Linux command lines to run for each step.

For the network setup, each node in the EPC network was on a separate IP address as shown below.

HSS is on localhost: 127.0.0.1
eNodeB is on 127.0.0.10
MME is on 127.0.0.20
SPGW is on 127.0.0.30

 Due to the fact that the UE was a smartphone device, a SIM card purchased from Open Cells was

used for the UE [27]. The SIM card is configured for 3GPP: GSM, WCDMA, LTE with a mileage

algorithm to perform 3GPP standard subscriber identification and it came with a card reader/writer to

personalize and configure the card [27]. The SIM card was then programmed (instructions on [25]) and

then its information was added into the network match with the HSS database.

Figure 4. 2 OAI tutorial steps flow diagrams adapted from [26].

 30

 In order to run the testbed, each node (HHS, MME, SPGW) needs to be turned on separately

before the eNodeB. Four different command windows were opened and each of the command lines are

the following [26]:

cd openair-cn; source oaienv; cd scripts; ./run_hss
cd openair-cn; source oaienv; cd scripts; ./run_mme
cd openair-cn; source oaienv; cd scripts; sudo -E ./run_spgw
sudo bash; cd ~/openairinterface5g; source oaienv; cd cmake_targets/lte_build_oai/build./lte-

softmodem -O ~/opencells-mods/enb.10MHz.b200

After which the UE should be connected and it should attach to the network and be able to reach

the internet through the OAI network.

4.2 Partial Band Jamming Test

GNU Radio was used to implement the partial band jammer. The output of this jammer was a

signal that was spread across many frequencies and jammed any signals that operated at those frequency

levels. The flow graph that was created in GNU Radio to generate a particular partial band jamming

signal is shown below in Figure 4.3. The sample rate was chosen to be 20 MHz for the USRP N210 to be

able to operate properly. If the sampling rate was lowered it caused an error stating that there were not

enough samples for the N210 to transmit a signal.

The first block in the flowgraph is a signal source that was chosen to be a cosine wave and its

parameters were unchanged. The signal was then passed through the OFDM Modulation block in GNU

Radio. This would allow the signal source to be spread across multiple frequencies. The parameters of the

block were changed in order to change the bandwidth of the signal. The parameters that changed the

bandwidth were the FFT length and occupied tones. The FFT length was set to 4096 because it was a

large enough length to have a satisfactory resolution but not enough to overwhelm the computer. The

occupied tones parameter was modified to change the bandwidth. Through testing, it was found that as the

number of occupied tones decreased the bandwidth of the signal increased. The Frequency Sink GUI

block was added to the output of the modulated signal to determine the value of the occupied tones in

order to obtain the desired bandwidth. Table 4.1 shows each of the bandwidths that were tested and the

 31

occupied tones that were used accordingly. The general method to obtain a certain bandwidth was adding

or subtracting at increments of 30 to the occupied tones. This would then respectively add or subtract 200

kHz to the bandwidth.

The UHD USRP Sink block was connected to the resulting modulated signal which had the

address of the N210 was specified in order for GNU Radio to connect to the radio and output the signal.

The center frequency was chosen to be 2.56 GHz because that is the center frequency of the LTE

downlink signal. The gain value was set to 28 dB because it was the highest power level the N210 could

transmit.

Figure 4. 3 The flow GNURadio flow graph for partial band jamming shows the steps of generating the signal,

modulating it, and then sending it to the USRP and GUI.

Figure 4. 4 A graph showing the partial band jammer signal that has a bandwidth of 2 MHz.

 32

Table 4. 1 Bandwidth of partial band jamming

Occupied Tone Jamming Signals Bandwidth

90 600 kHz

120 800 kHz

150 1 MHz

300 2 MHz

4.3 Frequency Hopping Jamming

Frequency hopping was implemented in order to achieve narrowband jamming. Narrowband

jamming would decrease the number of frequency levels that the outputted signal occupies and be harder

to detect. The wideband jamming GNU Radio blocks were utilized and the bandwidth was set to 400 kHz

and 600 kHz for two different tests. A visual of the GNU Radio flowgraph for the frequency hopping

jammer can be seen in Figure 4.5. The original flow graph was modified by the addition of another signal

source, a probe block, and a function probe block. The probe signal block is able to take measurements of

a signal at a poll rate specified in the function probe block. The type of measurement was also specified in

the function probe block to be amplitude levels. The signal source added was set to be a square wave and

acted as a clock for the probe. This was needed for the probe signal to have a reliable source to take

amplitude measurements since a square wave can only have amplitude measures of 1 or 0. A sine wave, if

not sampled at exactly the peaks and valleys, might be slightly off from an exact value of 1 or 0. The

 33

values needed to be exact for the function probe block and it stored these values of the polled

measurement from the probe signal to a variable called val.

Figure 4. 5 The GNU Radio flowgraph for narrowband jamming via frequency hopping includes the elements of the

partial band jammer (top) with the bandwidth set to 200 kHz. The addition of the clock blocks (bottom) served to

change the center frequency of the original

After setting up the flowgraph in the GNU Radio Companion the top_block code, that was

generated from the flowgraph, was modified to change the center frequency of the USRP sink to a

random value relative to the clock rate. The justification for making these changes include the need to

change the center frequency in order to “hop” to different frequencies. Without this block the frequency

would stay at one value and never change. The function probe block function, as shown below in its

original form, was modified.

def _variable_function_probe_0_probe():
 while True:
 val = self.probe.level()
 try:
 self.set_variable_function_probe_0(val)
 except AttributeError:
 pass
 time.sleep(1.0 / (10))

The modified function, that changes the center frequency randomly according to the clock is

shown below with the changes highlighted. The addition included an if statement that depended on the

 34

value of the amplitude measurement the probe signal obtained, hence why these measurements had to be

exact values. If the value of the amplitude (val) was a 0 then the center frequency would change

randomly, using the python random function, otherwise, it would remain unchanged from its previous

value. As shown in the code, the range of the center frequency was from 2.677 GHz to 2.6825 GHz at a

step size of 1 kHz. The module for random functions needed to be added to the top_block as well thus the

call import random was also added at the beginning of the file.

def _variable_function_probe_0_probe():
 while True:
 val = self.probe.level()
 if val == 0:

 self.set_center_freq(random.randrange(2.6775e9,2.6825e9,1e3))
 try:
 self.set_variable_function_probe_0(val)
 except AttributeError:
 pass
 time.sleep(1.0 / (40))

The relationship of the signal clock rate, f clock, and the probe polling rate, f polling, is shown in

Equations (1) and (2). The clock signal source is the f clock parameter and the f polling parameter is found in the

python code top_block in the function probe function line time.sleep(1.0/(40)) where the value of 40, in

this instance, is the f polling rate. These parameters were used to determine how often the center frequency

would change. The value of f polling was designed to be twice the value of f clock so that the center frequency

would change only when the amplitude of the clock signal was 0.

fclock= 1T (1)

fpolling=2*fclock (2)

A waterfall plot was generated after the frequency hopping jammer code was executed to verify

the signal jumped from different frequency levels as shown in Figure 4.6. This figure shows time across

frequency and as expected the signal changed frequency as time increased. The frequency hopping

jammer was changing the frequency of the signal at a rate of 50ms. The reason that the signals are a dark

red color is being they are being transmitted at a high power, specifically 28 dB.

 35

Figure 4. 6 Waterfall graph for frequency hopping jamming signal that is centered at 2.68 GHz. The narrowband

jammer is shown in red due to its high power and changes every 50 ms.

4.4 Result Verification

The indication and evaluation of jamming attack effects were accomplished by measuring the

packet receiving rate by the UE and analyzing packet loss. Packet loss occurs when one or more packets

of data traveling across the LTE testbed network fails to reach the UE due to poor connection or inference

from an outside source such as a jammer. When packet loss happens, the throughput from the eNodeB

data is reduced because the packets were never received by the UE and the number of packets

successfully received decreases. Packet loss causes retransmission of the packets, and a great amount of

loss could result in delays of the network and even disconnection. The correlation between the jammer

effects and LTE network packet loss was therefore utilized to prove whether the jammer could cause any

damage to the network, and if so, to measure the damage the jammer caused.

 36

In order to test whether the jammer was having an effect on the LTE system, several mobile

applications on the UE that indicate the number of packets that were received from eNodeB were tested,

such as Mobile Insight and iPerf. These applications all required rooting the phone and were not

compatible with the Samsung s4. It was then decided to browse and analyze the transmission traffic from

the eNodeB using Wireshark [28]. Wireshark is an open-source software, which can be used as a network

protocol analyzer. It was compatible with Ubuntu and used to analyze the packets that the UE was

attempting to receive and showed when a packet was dropped or when retransmission occurred. The

packet information outputs messages as well as a graph that showed the number of packets per second

across time. Both these methods were used to analyze the jamming effects. A YouTube video was

streamed on the UE for each jamming test in order to keep the transmission consistent.

4.5 Chapter Summary

In this chapter, details about the testbed and the jamming methods used in this project were

discussed. Once the LTE testbed was built, the eNodeB and UE were connected and the partial band

jamming approach was implemented through GNU Radio. After successfully verifying that a partial band

signal was produced by the testbed, the frequency hopping jamming was implemented through GNU

Radio with different power levels and different bandwidths. All the results of jamming were measured by

WireShark from the eNodeB by analyzing the rate of packets being received by the UE before and after

the jammer was turned on.

 37

Figure 4. 7 This image shows the Faraday cage that the experiments were completed.

 38

5. Results & Discussion

In this chapter, the results and findings of the project are explained in detail. The chapter begins

with the results of the partial band jammer and how much of an effect that had on the LTE system. It then

moves to explain how well the frequency hopping jammer did in regards to packet corruption and the

reasoning for this result. Lastly, the result and reasoning for the frequency hopping jammer to cause DoS

is described in further detail.

5.1 Partial Band Jammer

The wideband jammer was tested first in order to verify jamming capabilities. The overall result

was a Denial of Service (DoS) once the jammer was turned on. This was seen in WireShark by the

retransmission messages and eventual loss of packets. The UE detached itself from the network due to the

poor quality of the channel. Figure 5.1 shows the number of packets per second over time. The spikes in

the graph represent a large number of packets following a time when no packets were being exchanged.

This is due to the buffer used by YouTube. When a video is being streamed, bursts of packets are needed

to be received instead of continuously since this would cause poor video quality if just one packet was

lost or needed to be retransmitted. YouTube uses a buffer to combat this problem by getting a certain

number of packets to fill the buffer and then when the video plays, packet transmission is stopped until

the buffer has depleted to below a certain level [29]. This is shown in Figure 5.1 by the spikes, when the

buffer is being filled, and then the time of no packets because the buffer is filled.

The jammer starts at the indicated dashed redline and very quickly the number of packets

successfully received drops. It then eventually stops altogether indicating that the partial band was

effective in causing a DoS scenario. Different bandwidths caused the signal to be completely lost or only

degraded the channel but did not affect the UE enough for service to stop.

 39

Figure 5. 1 Wideband jammer packet analysis results. After the jammer is on, the number of packets successfully

transmitted drops to zero and the UE detached from the network.

5.2 Packet Corruption

The frequency hopping jammer had two different effects on the LTE system. Specifically, it

achieved packet corruption and DoS. The first effect was packet corruption that caused the loss of a few

packets and showed a decrease in the number of packets being successfully transmitted. This can be seen

in Figure 5.2, where the jammer was started at the time indicated by the dashed red line. There is some

delay when the jammer code was executed and when the device actually started transmitting, which is the

cause for the delay in the effect. The time between packets increased once the jammer starts transmitting

because a few packets are being dropped and retransmissions occur, which caused more time between

packets.

 40

Figure 5. 2 The packet analysis result from frequency hopping jamming at 26dB, a bandwidth of 400 kHz, and at a

clock rate of 50ms and a polling rate of 25ms.

Figure 5. 3 The packet analysis result from frequency hopping jamming at 26dB, a bandwidth of 600 kHz, and at a

clock rate of 50ms and a polling rate of 25ms.

Although packet corruption occurred the same could not be said about DoS. Throughout the time

of testing, even though packets were being dropped, the video quality remained the same and the user was

unable to notice a difference in service. This is due to the frequency hopping being randomized. There

was no prior knowledge about which subcarriers the UE was using which means the frequency hopping

was done by running through randomized subcarriers.

 41

The randomness of the frequency hopping is illustrated in Figures 5.4 and 5.5. Figure 5.4 shows

the waterfall graph of the LTE system with the darker orange parts being the PSS and SSS

synchronization signals. The lighter yellow parts spread throughout the graph are the data signals. In

Figure 5.5, the frequency hopping jammer had been turned on and the red spots are the jammer’s signals.

The signal is randomly scattered throughout the LTE system and the likelihood that it would drastically

interfere with the phone signal, which is using one subcarrier of the LTE signal for communication, is

small.

5.3 Denial of Service (DoS)

DoS was achieved by running the experiment multiple times until the phone disconnected in one

case. This is shown in Figure 5.6 where the dashed red line indicates when the jammer was started and

then there is one spike of delay. Then, the number of packets per second drops significantly until it drops

to zero and the UE disconnected from the network. Figure 5.6 shows the output of the WireShark

messages that shows an increasing amount of attempted retransmissions, which is consistent with the

graph. This occurrence was due to chance because the frequency hopping was random and it just so

happened to hit the subcarrier the UE was operating at and an important signal that caused the DoS.

 42

Figure 5. 4 The eNodeB LTE communication waterfall graph before any jamming has occurred.

 43

Figure 5. 5 The waterfall graph showing the eNodeB transmission after the frequency hopping jamming.

 44

Figure 5. 6 Graph showing successful DoS caused by jammer at 28dB, a bandwidth of 600 kHz, and the clock at

50ms and a polling rate of 25ms.

5.4 Chapter Summary

 In this chapter, the results obtained from this project were discussed. Through experiments, it was

discovered that the frequency hopping jamming approach could disturb the testbed by causing packet

retransmission or packet disruption at a lower power of 26 dB. When jamming signal power was 28 dB,

frequency hopping jamming attack was able to create a DoS for the network. Overall, it had been proven

that the frequency hopping jamming attack can be destructive to the LTE network when the power is 26

dB or higher.

 45

 Figure 5. 7 Wireshark message that show the number of retransmission messages in black which indicates

a DoS situation.

 46

6. Conclusions/ Future work

This project analyzed the LTE physical layer vulnerability to jamming regarding various channels

and signals in the uplink and downlink. In order to perform jamming, the LTE testbed was built on the

OpenAirInterface platform, using a USRP B210 as the eNodeB transceiver. After comparing possible

jamming approaches and testing with a partial band jammer, the project implemented the frequency

hopping jamming approach with a USRP N210. The result showed that LTE communication is vulnerable

to partial band jamming, which could directly create the disconnection of the user equipment (UE).

Furthermore, a frequency hopping jammer could affect the LTE system and result in packet

retransmission, packet disruption, and even Denial of Service (DoS) when the power of the jamming

signals was no less than 28 dB. An LTE cellular network is susceptible to jamming from relatively

inexpensive equipment. The partial band jammer was effective in creating a DoS situation, however, it

would be easily detected. The frequency hopping jammer would not be as easy to detect since it utilizes

narrowband jamming.

6.1 Future Work

The focus of this project was to create an LTE testbed and effectively disrupt the communication

link through a jamming attack. However, additional approaches can be conducted to analyze those

scenarios. One possibility is to create a reactive jammer that is synchronized with the LTE system and

only transmits when the target wireless system is active, or even more specifically, when crucial signals

and channels in LTE transmission are active, making it more difficult to detect and defend. There is a

theoretical synchronization algorithm for LTE systems that allows the jammer to locate the Primary

Synchronization Signal (PSS) and Secondary Synchronization Signal (SSS) within the LTE downlink

frame and decode the information contained in them [30]. In short, the algorithm utilizes the outputs

 47

corresponding to the received signal vectors that do not correspond to PSS transmission to detect the

location of the PSS signal within the received LTE downlink signal [30]. Once obtaining the correct cell

identity, duplex mode, and CP mode from PSS and SSS, the jammer could decode the information for the

whole LTE testbed downlink and thus perform more signal-targeted jamming for possibly better results.

Another possible direction for future work is to explore techniques for mitigating jamming

attacks, especially, the frequency hopping jamming attack. Reference [31] introduces a method called RF

Frequency, which uses frequency hopping strategy on the combined channels in the downlink, uplink or

both, to avoid jamming attacks. This mechanism will be simply performed by RF switches or

reconfiguration commands, which does not result in any system performance degradation [31]. In such an

approach, if jamming occurs at constant frequencies with a period smaller than 10 ms, communication

will not be disrupted due to the Hybrid Automatic Repeat Request (HARQ) message retransmission

process [31].

 48

References

[1] J. Donner, “Blurring Livelihoods and Lives: The Social Uses of Mobile Phones and

Socioeconomic Development,” Innov. Technol. Governance, Glob., vol. 4, pp. 91–101, 2009.

[2] C. Cox, An introduction to LTE: LTE, LTE-advanced, SAE, VoLTE and 4G Mobile
Communications. John Wiley & Sons Ltd., 2014.

[3] “2019 CTIA Annual Survey Highlights,” CTIA. [Online]. Available:

https://www.ctia.org/news/2019-annual-survey-highlights.

[4] T. Collins, R. Getz, D. Pu, and A. M. Wyglinski, Software-Defined Radio for Engineers. Artech

House, 2018.

[5] R. Ghannam, F. Sharevski, and A. Chung, “User-targeted Denial-of-Service Attacks in LTE

Mobile Networks,” Int. Conf. Wirel. Mob. Comput. Netw. Commun., vol. 2018-Octob, pp. 1–8,

2018.

[6] S. Hilton, “Dyn Analysis Summary Of Friday October 21 Attack: Dyn Blog.” [Online]. Available:

https://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/.

[7] T. C. Clancy, M. Norton, and M. Lichtman, “Security challenges with LTE-advanced systems and

military spectrum,” Proc. - IEEE Mil. Commun. Conf. MILCOM, pp. 375–381, 2013.

[8] “Home,” OpenAirInterface. Available: https://www.openairinterface.org/.

[9] “Software Radio Systems,” SRS. Available: https://www.softwareradiosystems.com/#.

[10] T. Pushpalata and S. Y. Chaudhari, “Need of Physical Layer Security in LTE : Analysis of

Vulnerabilities in LTE Physical Layer,” pp. 1722–1727, 2017.

[11] L. Wang and A. M. Wyglinski, “A combined approach for distinguishing different types of

jamming attacks against wireless networks,” IEEE Pacific RIM Conf. Commun. Comput. Signal

Process. - Proc., pp. 809–814, 2011.

[12] R. M. Rao, S. Ha, V. Marojevic, and J. H. Reed, “LTE PHY layer vulnerability analysis and

testing using open-source SDR tools,” Proc. - IEEE Mil. Commun. Conf. MILCOM, vol. 2017-

Octob, pp. 744–749, 2017.

[13] M. Lichtman, R. P. Jover, M. Labib, R. Rao, V. Marojevic, and J. H. Reed, “LTE/LTE-a jamming,

spoofing, and sniffing: Threat assessment and mitigation,” IEEE Commun. Mag., vol. 54, no. 4,

pp. 54–61, 2016.

[14] R. Krenz, “Jamming LTE signals,” 2015 IEEE Int. Black Sea Conf. Commun. Netw., pp. 72–76,

2015.

[15] K. Pelechrinis, M. Iliofotou, and S. V. Krishnamurthy, “Denial of service attacks in wireless

networks: The case of jammers,” IEEE Commun. Surv. Tutorials, vol. 13, no. 2, pp. 245–257,

2011.

[16] A. M. Wyglinski, “Fundamentals of LTE-A: Upper Layer Functionality and Evolved Packet

Core,” TechOnline, 2016. Available: https://www.youtube.com/watch?v=2RULSah9fXY.

[17] “About GNU Radio · GNU Radio,” About GNU Radio. Available:

https://www.gnuradio.org/about/ .

[18] E. Yaacoub and Z. Dawy, “Joint uplink scheduling and interference mitigation in multicell LTE

networks,” IEEE Int. Conf. Commun., pp. 1–5, 2011.

[19] M. Lichtman, J. H. Reed, T. C. Clancy, and M. Norton, “Vulnerability of LTE to hostile

interference,” 2013 IEEE Glob. Conf. Signal Inf. Process. Glob. 2013 - Proc., pp. 285–288, 2013.

[20] R. P. Jover, J. Lackey, and A. Raghavan, “Enhancing the security of LTE networks against

jamming attacks,” Eurasip J. Inf. Secur., vol. 2014, pp. 1–14, 2014.

[21] A. Hafsaoui, N. Nikaein, and L. Wang, “OpenAirInterface Traffic Generator (OTG): A realistic

traffic generation tool for emerging application scenarios,” Proc. 2012 IEEE 20th Int. Symp.

Model. Anal. Simul. Comput. Telecommun. Syst. MASCOTS 2012, pp. 492–494, 2012.

[22] W. Stallings, Dara and Computer Communications, 10th ed. Pearson, 2013.

 49

[23] R. Wang, Y. Peng, H. Qu, W. Li, H. Zhao, and B. Wu, “OpenAirInterface-An effective emulation

platform for LTE and LTE-Advanced,” Int. Conf. Ubiquitous Futur. Networks, ICUFN, pp. 127–

132, 2014.

[24] H. Anouar, C. Bonnet, D. Câmara, F. Fillali, and R. Knopp, “OpenAirInterface Simulation

Platform,” Time, pp. 1–2.

[25] C. Tarver, “OAI Tutorial,” 2018. Available: https://chancetarver.com/oai/.

[26] A. Laurent, “All in one OpenAirInterfact,” 4G and 5G reference software, 2019. [Online].

Available: https://open-cells.com/index.php/2019/09/22/all-in-one-openairinterface/.

[27] “SIM cards,” Open Cells Project. [Online]. Available: https://open-cells.com/index.php/sim-

cards/.

[28] “WireShark.” Available: https://www.wireshark.org/.

[29] M. Haddad et al., “A Survey on YouTube Streaming Service,” in Proceedings of the 5th

International ICST Conference on Performance Evaluation Methodologies and Tools, 2011.

[30] A. El-Keyi, O. Ureten, H. Yanikomeroglu, and T. Yensen, “LTE for Public Safety Networks:

Synchronization in the Presence of Jamming,” IEEE Access, vol. 5, pp. 20800–20813, 2017.

[31] S. Barros, J. Bazzo, R. Takaki, D. Carrillo, and J. Seki, “LTE jamming mitigation based on

frequency hopping strategies,” 2016 8th IEEE Latin-American Conf. Commun. LATINCOM 2016,

pp. 1–6, 2016.

 50

Appendix A: Python Code for Frequency Hopping

Jammer
#!/usr/bin/env python2

-*- coding: utf-8 -*-

GNU Radio Python Flow Graph

Title: Top Block

Generated: Tue Nov 19 13:53:59 2019

if __name__ == '__main__':

 import ctypes

 import sys

 if sys.platform.startswith('linux'):

 try:

 x11 = ctypes.cdll.LoadLibrary('libX11.so')

 x11.XInitThreads()

 except:

 print "Warning: failed to XInitThreads()"

from PyQt4 import Qt

from gnuradio import analog

from gnuradio import blocks

from gnuradio import digital

from gnuradio import eng_notation

from gnuradio import gr

from gnuradio import uhd

from gnuradio.eng_option import eng_option

from gnuradio.filter import firdes

from grc_gnuradio import blks2 as grc_blks2

from optparse import OptionParser

import sys

import threading

import time

import random

from gnuradio import qtgui

class top_block(gr.top_block, Qt.QWidget):

 def __init__(self):

 gr.top_block.__init__(self, "Top Block")

 Qt.QWidget.__init__(self)

 self.setWindowTitle("Top Block")

 qtgui.util.check_set_qss()

 try:

 self.setWindowIcon(Qt.QIcon.fromTheme('gnuradio-grc'))

 except:

 pass

 self.top_scroll_layout = Qt.QVBoxLayout()

 self.setLayout(self.top_scroll_layout)

 51

 self.top_scroll = Qt.QScrollArea()

 self.top_scroll.setFrameStyle(Qt.QFrame.NoFrame)

 self.top_scroll_layout.addWidget(self.top_scroll)

 self.top_scroll.setWidgetResizable(True)

 self.top_widget = Qt.QWidget()

 self.top_scroll.setWidget(self.top_widget)

 self.top_layout = Qt.QVBoxLayout(self.top_widget)

 self.top_grid_layout = Qt.QGridLayout()

 self.top_layout.addLayout(self.top_grid_layout)

 self.settings = Qt.QSettings("GNU Radio", "top_block")

self.restoreGeometry(self.settings.value("geometry").toByteArray())

 ##

 # Variables

 ##

 self.variable_function_probe_0 = variable_function_probe_0 = 0

 self.samp_rate = samp_rate = 10e6

 self.center_freq = center_freq = 0

 ##

 # Blocks

 ##

 self.probe = blocks.probe_signal_f()

 self._center_freq_tool_bar = Qt.QToolBar(self)

 self._center_freq_tool_bar.addWidget(Qt.QLabel("center_freq"+":

"))

 self._center_freq_line_edit = Qt.QLineEdit(str(self.center_freq))

 self._center_freq_tool_bar.addWidget(self._center_freq_line_edit)

 self._center_freq_line_edit.returnPressed.connect(

 lambda:

self.set_center_freq(int(str(self._center_freq_line_edit.text().toAscii())

)))

 self.top_grid_layout.addWidget(self._center_freq_tool_bar)

 self.uhd_usrp_sink_0 = uhd.usrp_sink(

 ",".join(("addr=192.168.50.2", "")),

 uhd.stream_args(

 cpu_format="fc32",

 channels=range(1),

),

)

 self.uhd_usrp_sink_0.set_samp_rate(samp_rate)

 self.uhd_usrp_sink_0.set_center_freq(center_freq, 0)

 self.uhd_usrp_sink_0.set_gain(28, 0) #gain of Jammer

 self.digital_ofdm_mod_0 = grc_blks2.packet_mod_c(digital.ofdm_mod(

 options=grc_blks2.options(

 modulation="qpsk",

 fft_length=4096,

 occupied_tones=60,#Frequency BW

 cp_length=128,

 52

 pad_for_usrp=True,

 log=None,

 verbose=None,

),

),

 payload_length=16,

)

 self.blocks_throttle_0 = blocks.throttle(gr.sizeof_float*1,

samp_rate,True)

 self.analog_sig_source_x_0 = analog.sig_source_c(samp_rate,

analog.GR_COS_WAVE, 1000, 1, 0)

 self.Clock = analog.sig_source_f(samp_rate, analog.GR_SQR_WAVE,

20, 1, 0)

 def _variable_function_probe_0_probe():

 while True:

 val = self.probe.level()

 if val ==0:

 self.set_center_freq(random.randrange(2.6775e9,2.6825e9,1e3))

 try:

 self.set_variable_function_probe_0(val)

 except AttributeError:

 pass

 time.sleep(1.0 / (40))

 _variable_function_probe_0_thread =

threading.Thread(target=_variable_function_probe_0_probe)

 _variable_function_probe_0_thread.daemon = True

 _variable_function_probe_0_thread.start()

 ##

 # Connections

 ##

 self.connect((self.Clock, 0), (self.blocks_throttle_0, 0))

 self.connect((self.analog_sig_source_x_0, 0),

(self.digital_ofdm_mod_0, 0))

 self.connect((self.blocks_throttle_0, 0), (self.probe, 0))

 self.connect((self.digital_ofdm_mod_0, 0), (self.uhd_usrp_sink_0,

0))

 def closeEvent(self, event):

 self.settings = Qt.QSettings("GNU Radio", "top_block")

 self.settings.setValue("geometry", self.saveGeometry())

 event.accept()

 def get_variable_function_probe_0(self):

 return self.variable_function_probe_0

 def set_variable_function_probe_0(self, variable_function_probe_0):

 self.variable_function_probe_0 = variable_function_probe_0

 def get_samp_rate(self):

 53

 return self.samp_rate

 def set_samp_rate(self, samp_rate):

 self.samp_rate = samp_rate

 self.uhd_usrp_sink_0.set_samp_rate(self.samp_rate)

 self.blocks_throttle_0.set_sample_rate(self.samp_rate)

 self.analog_sig_source_x_0.set_sampling_freq(self.samp_rate)

 self.Clock.set_sampling_freq(self.samp_rate)

 def get_center_freq(self):

 return self.center_freq

 def set_center_freq(self, center_freq):

 self.center_freq = center_freq

 Qt.QMetaObject.invokeMethod(self._center_freq_line_edit,

"setText", Qt.Q_ARG("QString", str(self.center_freq)))

 self.uhd_usrp_sink_0.set_center_freq(self.center_freq, 0)

def main(top_block_cls=top_block, options=None):

 from distutils.version import StrictVersion

 if StrictVersion(Qt.qVersion()) >= StrictVersion("4.5.0"):

 style = gr.prefs().get_string('qtgui', 'style', 'raster')

 Qt.QApplication.setGraphicsSystem(style)

 qapp = Qt.QApplication(sys.argv)

 tb = top_block_cls()

 tb.start()

 tb.show()

 def quitting():

 tb.stop()

 tb.wait()

 qapp.connect(qapp, Qt.SIGNAL("aboutToQuit()"), quitting)

 qapp.exec_()

if __name__ == '__main__':

 main()

 54

Appendix B: Python Code for Wideband Jammer
#!/usr/bin/env python2

-*- coding: utf-8 -*-

GNU Radio Python Flow Graph

Title: Wd Top Block

Generated: Wed Dec 4 15:37:30 2019

if __name__ == '__main__':

 import ctypes

 import sys

 if sys.platform.startswith('linux'):

 try:

 x11 = ctypes.cdll.LoadLibrary('libX11.so')

 x11.XInitThreads()

 except:

 print "Warning: failed to XInitThreads()"

from PyQt4 import Qt

from gnuradio import analog

from gnuradio import digital

from gnuradio import eng_notation

from gnuradio import gr

from gnuradio import qtgui

from gnuradio import uhd

from gnuradio.eng_option import eng_option

from gnuradio.filter import firdes

from grc_gnuradio import blks2 as grc_blks2

from optparse import OptionParser

import sip

import sys

import time

from gnuradio import qtgui

class wd_top_block(gr.top_block, Qt.QWidget):

 def __init__(self):

 gr.top_block.__init__(self, "Wd Top Block")

 Qt.QWidget.__init__(self)

 self.setWindowTitle("Wd Top Block")

 qtgui.util.check_set_qss()

 try:

 self.setWindowIcon(Qt.QIcon.fromTheme('gnuradio-grc'))

 except:

 pass

 self.top_scroll_layout = Qt.QVBoxLayout()

 self.setLayout(self.top_scroll_layout)

 self.top_scroll = Qt.QScrollArea()

 self.top_scroll.setFrameStyle(Qt.QFrame.NoFrame)

 self.top_scroll_layout.addWidget(self.top_scroll)

 55

 self.top_scroll.setWidgetResizable(True)

 self.top_widget = Qt.QWidget()

 self.top_scroll.setWidget(self.top_widget)

 self.top_layout = Qt.QVBoxLayout(self.top_widget)

 self.top_grid_layout = Qt.QGridLayout()

 self.top_layout.addLayout(self.top_grid_layout)

 self.settings = Qt.QSettings("GNU Radio", "wd_top_block")

self.restoreGeometry(self.settings.value("geometry").toByteArray())

 ##

 # Variables

 ##

 self.samp_rate = samp_rate = 20e6

 ##

 # Blocks

 ##

 self.uhd_usrp_sink_0 = uhd.usrp_sink(

 ",".join(("addr=192.168.50.2", "")),

 uhd.stream_args(

 cpu_format="fc32",

 channels=range(1),

),

)

 self.uhd_usrp_sink_0.set_samp_rate(samp_rate)

 self.uhd_usrp_sink_0.set_center_freq(2.56e9, 0)

 self.uhd_usrp_sink_0.set_gain(28, 0)

 self.qtgui_freq_sink_x_0 = qtgui.freq_sink_c(

 1024, #size

 firdes.WIN_RECTANGULAR, #wintype

 0, #fc

 samp_rate, #bw

 "Partial Band Jammer", #name

 1 #number of inputs

)

 self.qtgui_freq_sink_x_0.set_update_time(0.10)

 self.qtgui_freq_sink_x_0.set_y_axis(-140, 10)

 self.qtgui_freq_sink_x_0.set_y_label('Relative Gain', 'dB')

 self.qtgui_freq_sink_x_0.set_trigger_mode(qtgui.TRIG_MODE_FREE,

0.0, 0, "")

 self.qtgui_freq_sink_x_0.enable_autoscale(False)

 self.qtgui_freq_sink_x_0.enable_grid(False)

 self.qtgui_freq_sink_x_0.set_fft_average(0.05)

 self.qtgui_freq_sink_x_0.enable_axis_labels(True)

 self.qtgui_freq_sink_x_0.enable_control_panel(False)

 if not True:

 self.qtgui_freq_sink_x_0.disable_legend()

 if "complex" == "float" or "complex" == "msg_float":

 self.qtgui_freq_sink_x_0.set_plot_pos_half(not True)

 56

 labels = ['', '', '', '', '',

 '', '', '', '', '']

 widths = [1, 1, 1, 1, 1,

 1, 1, 1, 1, 1]

 colors = ["blue", "red", "green", "black", "cyan",

 "magenta", "yellow", "dark red", "dark green", "dark

blue"]

 alphas = [1.0, 1.0, 1.0, 1.0, 1.0,

 1.0, 1.0, 1.0, 1.0, 1.0]

 for i in xrange(1):

 if len(labels[i]) == 0:

 self.qtgui_freq_sink_x_0.set_line_label(i, "Data

{0}".format(i))

 else:

 self.qtgui_freq_sink_x_0.set_line_label(i, labels[i])

 self.qtgui_freq_sink_x_0.set_line_width(i, widths[i])

 self.qtgui_freq_sink_x_0.set_line_color(i, colors[i])

 self.qtgui_freq_sink_x_0.set_line_alpha(i, alphas[i])

 self._qtgui_freq_sink_x_0_win =

sip.wrapinstance(self.qtgui_freq_sink_x_0.pyqwidget(), Qt.QWidget)

 self.top_grid_layout.addWidget(self._qtgui_freq_sink_x_0_win)

 self.digital_ofdm_mod_0 = grc_blks2.packet_mod_c(digital.ofdm_mod(

 options=grc_blks2.options(

 modulation="qpsk",

 fft_length=4096,

 occupied_tones=90,

 cp_length=128,

 pad_for_usrp=True,

 log=None,

 verbose=None,

),

),

 payload_length=16,

)

 self.analog_sig_source_x_0 = analog.sig_source_c(samp_rate,

analog.GR_COS_WAVE, 1000, 1, 0)

 ##

 # Connections

 ##

 self.connect((self.analog_sig_source_x_0, 0),

(self.digital_ofdm_mod_0, 0))

 self.connect((self.digital_ofdm_mod_0, 0),

(self.qtgui_freq_sink_x_0, 0))

 self.connect((self.digital_ofdm_mod_0, 0), (self.uhd_usrp_sink_0,

0))

 def closeEvent(self, event):

 self.settings = Qt.QSettings("GNU Radio", "wd_top_block")

 self.settings.setValue("geometry", self.saveGeometry())

 57

 event.accept()

 def get_samp_rate(self):

 return self.samp_rate

 def set_samp_rate(self, samp_rate):

 self.samp_rate = samp_rate

 self.uhd_usrp_sink_0.set_samp_rate(self.samp_rate)

 self.qtgui_freq_sink_x_0.set_frequency_range(0, self.samp_rate)

 self.analog_sig_source_x_0.set_sampling_freq(self.samp_rate)

def main(top_block_cls=wd_top_block, options=None):

 from distutils.version import StrictVersion

 if StrictVersion(Qt.qVersion()) >= StrictVersion("4.5.0"):

 style = gr.prefs().get_string('qtgui', 'style', 'raster')

 Qt.QApplication.setGraphicsSystem(style)

 qapp = Qt.QApplication(sys.argv)

 tb = top_block_cls()

 tb.start()

 tb.show()

 def quitting():

 tb.stop()

 tb.wait()

 qapp.connect(qapp, Qt.SIGNAL("aboutToQuit()"), quitting)

 qapp.exec_()

if __name__ == '__main__':

 main()

	LTE Frequency Hopping Jammer
	Repository Citation

	Abstract
	Acknowledgments
	Executive Summary
	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms
	1. Introduction
	1.1 Motivation
	1.2 Current State of the Art
	1.3 Technical Challenges
	1.4 Contributions
	1.5 Report Organization

	2. Tutorial on LTE
	2.1 Overview of LTE
	2.2 LTE Physical Layer
	2.3 LTE Vulnerabilities
	2.4 Open Air Interface (OAI)

	3. Proposed Approach
	3.1 Problem Statement
	3.2 Evaluation
	3.3 Proposal Approach
	3.4 Project Planning

	4. Methodology
	4.1 Testbed Implementation
	4.2 Partial Band Jamming Test
	4.3 Frequency Hopping Jamming
	4.4 Result Verification
	4.5 Chapter Summary

	5. Results & Discussion
	5.1 Partial Band Jammer
	5.2 Packet Corruption
	5.3 Denial of Service (DoS)
	5.4 Chapter Summary

	6. Conclusions/ Future work
	6.1 Future Work

	References
	Appendix A: Python Code for Frequency Hopping Jammer
	Appendix B: Python Code for Wideband Jammer

