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Abstract 

The goal of this project was to show that communication with a cellular base station and user 

equipment could be interfered with using narrowband jamming. Specifically, a randomized frequency 

hopping jammer was used as the main method to disrupt service. The testbed was built with 

OpenAirInterface, software-defined radios, and a Samsung s4 phone. It was found to be possible to 

greatly disrupt communications in an LTE system with a jammer. 
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Executive Summary 

Mobile devices have become integrated into all aspects of our life due to their convenience and 

versatility. Effective jamming can deny many people from gaining wireless network access, which can 

drastically affect their productivity and in some instances their safety. Most studies that are related to 

jamming attacks in the physical layer evaluate the threats and effectiveness of jamming by analyzing the 

system models. There is a need for more practical experiments on jamming attacks that can simulate 

malicious jamming towards different signals in the physical layer. The main contributions of this project 

are to implement testbed using software-defined radios, build a Single Tone Jammer (STJ), and learn 

potential vulnerabilities in LTE Network for jamming.  

Different jamming approaches were evaluated in order to find an effective and feasible jamming 

approach for the testbed, and the decision was made to do frequency hopping as the primary form of 

jamming. Frequency hopping used narrowband jamming signals and it was easier to accomplish since 

there was no need for synchronization. The testbed was built with Ubuntu 18.04.3 LTS using a USRP 

B210 for the eNodeB, a Samsung s4 for the UE, and a USRP N210 for the jammer. After downloading 

OpenAirInterface, the eNodeB, SIM card, and EPC were programmed using two online tutorials; one of 

the tutorials was provided by Open Cells Project and the other by a Ph.D. student Chance Tarver on his 

own website. GNU Radio was used to implement the frequency hopping. In order to test whether the 

jammer was having an effect on the LTE system, a program called Wireshark was used as a way to 

validate the results.  

The wideband jammer was tested first in order to verify jamming capabilities. The overall result 

was a Denial of Service (DoS) once the jammer was turned on. This was seen in Wireshark by the 

retransmission messages and eventual loss of packets. The UE detached itself from the network due to the 

quality of the channel being of such poor quality. Figure ES. 1 shows the number of packets per second 

across time. The graph has spikes of a large number of packets and then a time when no packets are being 

exchanged. This was due to the buffer that YouTube videos use. When a video was being streamed there 



 

 v 

is not a constant stream of packets needing to be received continuously because this would cause bad 

video quality if just one packet was lost or needed to be retransmitted. YouTube uses a buffer to combat 

this problem by getting a certain number of packets to fill the buffer and then when the video plays packet 

transmission is stopped until the buffer has depleted to a certain level. This is shown in Figure ES.1 by the 

spikes, when the buffer is being filled, and then the time of no packets because the buffer was filled.  

 

Figure ES.  1 Wideband jammer packet analysis results. After the jammer is on, the number of packets successfully 

transmitted drops to zero and the UE detached from the network. 

 

The frequency hopping jammer had two different effects on the LTE system; packet corruption 

and Denial of Service (DoS). The first effect was packet corruption that caused the loss of a few packets 

and showed a decrease in the number of packets being successfully transmitted. The time between packets 

increased once the jammer starts transmitting because a few packets are being dropped and 

retransmissions occurred which caused more time between packets. Packet corruption occurred but not 

DoS. Throughout the time of testing, even though packets were being dropped, the video quality remained 

the same and the user was unable to notice a difference in service. This is due to the frequency hopping 

being randomized.  

DoS was achieved by running the experiment multiple times until the phone disconnected in one 

case. This is shown in Figure ES. 3. The dashed red line indicates when the jammer was started and then 

there is one spike of delay. Then the number of packets per second dropped significantly until it went to 

zero and the UE disconnected from the network. 
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Figure ES.  2  The packet analysis result from frequency hopping jamming at 26dB, a bandwidth of 400 kHz, and at 

a clock rate of 50ms and a polling rate of 25ms. 

 

 

Figure ES.  3 Graph showing successful DoS caused by jammer at 28dB, a bandwidth of 600 kHz, and the clock at 

50ms and a polling rate of 25ms. 

 

Overall, the results showed that LTE communication is vulnerable to partial band jamming, 

which could directly create the disconnection of user equipment (UE). And frequency hopping jammer 

could affect LTE and result in packet retransmission, packet disruption, and even DoS when the power of 

the jamming signals was no less than 28 dB. 
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1. Introduction 

1.1 Motivation 

Mobile devices have become integrated into all aspects of our life due to their convenience and 

versatility. The applications on them have contributed to socio-economic development in areas of health, 

education, and finances with everything being accomplished by a few taps on a screen [1]. The number of 

cellphone users has increased partly due to the introduction of smartphones with their user-friendly interface 

[2]. The increase in people's usage of data and dependence on it creates a need for further advancement in 

technology [2]. Long Term Evolution (LTE) is a protocol for wireless broadband communications and was 

created by the 3rd Generation Partnership Project (3PP) in order to meet the data usage and total traffic 

demands in cellular networks. It enables faster data transmissions, lower latency, and increased bandwidth 

efficiency as some of its improvements [2]. As shown in Figure 1.1, the amount of wireless data traffic is 

increasing exponentially [3].  

 
Figure 1. 1 The amount of reported wireless traffic in 2019 by CTIA and the image was adapted from [3]. 
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The focus for the development of LTE was technical improvements that could be seen at the user 

end. Security against jamming attacks that can cause interruptions of service was not part of the 

development, and thus LTE networks are vulnerable to these types of attacks [2]. The motivation of this 

project is to show how jamming of an LTE network can be accomplished utilizing software-defined radios 

(SDR) and knowledge of network configurations [4]. People depend on their cellphones in everyday life, 

from getting directions to being their sole form of contact with others. Effective jamming can deny many 

people from gaining wireless network access, which can drastically affect their productivity and in some 

instances their safety.  

Denial of Service (DoS) attacks have proven to be the biggest threat to LTE networks in recent 

years; it prevents legitimate users from accessing specific services by targeting hosting computer systems, 

network resources or the user devices [5]. On October 21st, 2016, a Distributed Denial of Service (DDoS) 

attack blocked Internet services for millions of subscribers on the Eastern seaboard of the United States [6]. 

The company that provides backbone services, Dyn, was under sustained attack against their DNS 

infrastructure, causing serious interference with users' access to major services such as Twitter, Amazon, 

Tumblr, Reddit, Spotify, and Netflix. Dyn estimated that there were up to 100,000 malicious endpoints, and 

most of which were originated from Mirai-based botnets. Although this scenario was a network, it gives an 

example of how losing access to wireless communications can affect people’s lives on a large scale. Military 

LTE networks could also experience DoS attacks that could potentially result in serious security damages 

on a larger scale. Researchers suggest that LTE technology could be used for several military applications, 

including for garrison, strategic core, and tactical edge [7]; LTE is increasingly playing a crucial role in 

supporting military operations with vital enterprise services.  

1.2 Current State of the Art 

Open-source software, such as srsLTE [8] and OpenAirInterface [9], has enabled the testing, 

analysis, prototyping, and commercialization of LTE systems for researchers and other interested parties 
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[8], [9]. In combination with SDRs, these tools allow for the creation of a local LTE network that can be 

used to implement and analyze the effects of certain jamming techniques.  

Jamming can be accomplished through four main methods; partial band, single tone, multi tone, 

and asynchronous [10]. These different types of jammers are detailed in Table 1.1 and illustrated in Figure 

1.2. The timing of the jamming attacks can also vary by being either constant, random, or reactive. This 

means that the jammer could be constantly sending noise and trying to interfere, randomly interjecting noise, 

or listening to when the channel is in use to create an attack [11]. 

 

 

Table 1. 1 Description of different types of wireless jammers. Adapted from [10]. 

Jammer Type Description 

Partial Band Jamming (PBJ) Transmission of noise over a specific LTE band. 

Single Tone Jamming (STJ) Jam a single subcarrier by creating an impulse of noise.  

Multi Tone Jamming (MTJ) Jam multiple subcarriers by creating multiple impulses 

of noise.  

Asynchronous Single Tone Jamming (ASTJ) or 

Asynchronous Multi Tone Jamming (AMTJ) 
Uses a signal with frequency offset to the subcarrier in 

order to create Inter Carrier Interference. 
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Figure 1. 2 The different types of jammers. Imaged was adapted from [10]. 

 

There are many theoretical jammers that could exist given the possibilities. Practical jamming has 

also been implemented and studied. In reference [12], analysis of jamming utilizing SDRs on LTE systems 

found that certain theoretical methods were not possible. The primary findings included that the main 

synchronization signals are the most resilient to jamming while the cell reference signals, Physical 

Downlink Control Channel (PDCCH), and Physical Control Format Indicator Channel (PCFICH) are the 

most vulnerable [5]. Reference [13] studied the areas that LTE could be susceptible to jamming attacks in 

its physical channels and signals [13], while in [14] provided details about the possible places for jamming 

attacks and then implemented a jammer by raising a created signal’s power level until the connection was 

dropped for the user.  
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1.3 Technical Challenges 

 Most studies that are related to jamming attacks in the physical layer evaluate the threats and 

effectiveness of jamming by analyzing the system models [15], [16]. There needs to be more practical 

experiments on jamming attacks that can simulate malicious jamming towards different signals in the 

physical layer. This will help future researchers to acquire a better understanding of the vulnerability of 

LTE network downlink channel and how a STJ can affect communication. 

1.4 Contributions 

Implement Software-Defined Radios: 

The LTE network and jammer testbed will be implemented using SDRs. The open-source software 

OpenAirInterface was used to create and program the eNodeB, User Equipment (UE), and core network. 

The jammer used GNURadio [17] to interfere with the downlink communication between the UE and 

eNodeB.  

Build a Single Tone Jammer (STJ): 

STJ was used instead of Partial Band Jamming Partial (PBJ) as previously mentioned. Despite the 

fact that PBJ requires no synchronization to the network and lower power pulse, STJ would be harder to be 

detected while jamming [11]. STJ also provided higher efficiency for jamming because of its characteristic 

of consuming lower power jamming and high levels of DoS that could be possibly be achieved by jamming 

one cell-specific reference signals, such as Primary Synchronization Signal (PSS) or Secondary 

Synchronization Signal (SSS) and could reduce the overall system capacity.  

Learn Potential Vulnerabilities in LTE Network for Jamming: 

 The STJ method requires transmitting on top of specific physical channels, and thus, requires 

synchronization with the network to determine where the physical channels and specific signals exist in the 

frequency and time domain.  
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1.5 Report Organization 

This report is organized into six chapters, the Introduction, Tutorial on LTE, Proposed Approach, 

Methodology, Results, and Conclusions. The Introduction chapter presents the motivation for the project, 

the current state of the art for LTE technology, as well as a brief analysis of the current technical 

challenges to provide context for how this project is related to prior and ongoing research. The Tutorial on 

LTE chapter provides information on different uplink and downlink channels and signals in the LTE 

physical layer and an analysis of the their different vulnerabilities against jamming. In the Proposed 

Approach chapter, the report introduces the process of identifying and evaluating possible solutions, the 

general approach to implement the project and the logistics for the project regarding time planning. The 

Methodology chapter lays out the detailed implementation plan of the project and the test for result 

verification. The Result chapter presents the findings. Finally, the Conclusion chapter summarizes the 

project contributions and provide recommended directions for future work. 
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2. Tutorial on LTE 

 This chapter begins with an overview of the history of cellular communications. It then goes into 

detail about the different aspects of an LTE system. The physical layer with its various signals and 

channels are explained in greater detail. The next part of the chapter focuses on the vulnerabilities that 

LTE systems may have to jamming attacks. The last part presents more information about how 

OpenAirInterface operates.  

2.1 Overview of LTE 

Mobile telecommunication systems began in the 1980s and continues to evolve from then to 

present day. Figure 2.1 shows this evolution and highlights the main functions in each generation. The 

first generation systems (1G) used analog techniques to transmit. Its market was limited to business use 

due to its small capacity and the user equipment (UE) being expensive as well as bulky. More consumer 

friendly products came in the early 1990s with 2G, which consisted of voice transmission and later 

included short message service (SMS). Global System for Mobile Communications (GSM) became the 

most used 2G system [2]. 2.5G was built in order to accommodate the growth of the internet that was also 

happening during this time. It introduced a core network packet switched domain and modified the air 

interface to handle data as well as voice. 3G was developed due to the demand for increased data rates, 

and was dominated by the Universal Mobile Telecommunication System (UMTS). UMTS was developed 

from GSM with changes made to the air interface but core network remained the same. It used a different 

technique for radio transmission and reception than 2G. Upon first launch it was not able to deliver what 

was promised until 3.5G which took off around 2005. The main improvement was enhancements for data 

applications through high speed packet access [2].  

 The need for data was rapidly increasing, especially since the UEs available in the market were 

becoming more user friendly. 2G and 3G networks were getting congested and had to maintain two core 
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networks for voice and data packets [2]. The reduction of latency was also needed since delay times 

reached 100ms [2]. UMTS and GSM also were extremely complex due to the need to be backwards 

compatible with the addition of new features [2]. In 2004 3GPP began developing what is LTE today. The 

goal being to have higher data rates and reduced latency [2].  

 
Figure 2. 1 Mobile telecommunications has improved and expanded its functionalities with each new generation. 

This summarization of the key features was adapted from [16]. 

 

 The main components of an LTE network includes the UE, evolution Node B (eNodeB), and the 

Evolved Packet Core (EPC) [2]. The UE can include any mobile device that the user possesses that can 

connect to the network. Figure 2.1 shows how these components are connected.  

   

 

Figure 2. 2 The overall LTE system has three main components: the UE, eNodeB, and EPC. Adapted from [2]. 
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 The eNodeB is where the decision making and processing of data from the user occurs. It 

translates the UE data into a format that can be transmitted by the EPC and reformats data from the EPC 

to the UE. The air interface functionality is controlled by eNodeB. It handles multiple UEs and optimizes 

the quality of wireless link for each UE. The high data rates are achieved through the use of Multiple-

Input Multiple-Output (MIMO) and multiple antennas. The eNodeB does the complex computations to 

reduce the amount that would need to be performed by the UE. The framework includes the physical layer 

abstraction, medium access control (MAC), radio link control (RLC), packet data convergence protocol 

(PDCP), and radio resource control (RRC) which can be seen in Figure 2.3.  

 

Figure 2. 3 The network layer of the LTE network illustrating the communication lines between the different 

framework components. This image was adapted from [16]. 

 

The EPC has four main components that each perform different functions. The Serving Gateway 

(SGW) handles user data packets through routing and forwarding. The Packet Data Network Gateway 

(PDN-GW) provides connection to the internet by being a point of exit and entry of traffic for the UE. 
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The Mobility Management Entity (MME) is the key control node for the LTE access networks. The 

Home Subscriber Server (HSS) performs mobility management, user authentication, and access 

authorization. The type of information processed is handled by the MME and the HSS while the user data 

is handled by the SGW and the PDN-GW [16].  

2.2 LTE Physical Layer 

The LTE physical (PHY) layer creates the connection between the eNodeB and the UE through 

signals and control channels. There are two main forms of communication which are the downlink (DL), 

which is from the eNodeB to the UE, and the uplink (UL) communication from the UE to the eNodeB 

[13]. Communication in the downlink and uplink are accomplished through a variety of different signals 

and control channels as shown and described in the following tables.  

  

Table 2. 1 Description of  major downlink physical channels. Adapted from [10]. 

Physical Downlink Shared 

Channel (PDSCH) 
Carries the data and signaling messages from the Downlink-Shared Channel 

and paging messages from the Paging Channel.  

Physical Broadcast Channel 

(PBCH) 
Contains the Master Information Block  

Master Information Block 

(MIB) 
Carries information about the operating bandwidth, frame number, and 

PHICH.  

Physical Multicast Channel 

(PHCH):  
Carries multimedia broadcast/multicast service data of the Multicast Channel 

(MCH). 

Physical Downlink Control 

Channel (PDCCH):  
Carries the Downlink Control Information (DCI) which consists of mainly 

scheduling commands and scheduling grants. 

 Physical HARQ Indicator 

Channel (PHICH) 
Carries ACK/NACK information about the uplink which allows UE to decide 

whether to transmit new data or retransmit the previous data 

Physical Control Format 

Indicator Channel (PCFICH) 
Carries information about the frame structure. 
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Table 2. 2 Description of  major downlink physical signals. Adapted from [10]. 

Primary Synchronization 

Signal (PSS) 
Carries information about the physical layer cell identity and is used by the UE 

for connecting to the cell. 

Secondary Synchronization 

Signal (SSS) 
Carries information about the physical layer cell identity and is used by the UE 

to connect to the cell.  

Cell-Specific Reference Signal 

(C-RS) 
Sent by eNodeB to support channel estimation at the UE. 

MBSFN Service Ref Sig 

(MBSFN-RS) 
The reference signal for the Multimedia Broadcast Multicast Service (MBMS) 

and is used for channel estimation to the UE. 

UE-Specific Reference Signal 

(UE-RS):  
For channel estimation to the UE. 

Positioning Reference Signal 

(P-RS) 
Sent by eNodeB for location based service.  

Control Format Indicator (CFI) Carries information about the number of symbols allocated for channel control.  

 

Table 2. 3 Description of major uplink physical channels. Adapted from [10]. 

Physical Uplink Shared 

Channel (PUSCH) 
Carries the data and signaling messages from the Uplink-Shared Channel (UL-SCH) 

and carries Uplink Control Information (UCI) to ensure the UE is not transmitting at 

the same time.  

Physical Uplink Control 

Channel (PUCCH) 
Carries the UCI in case the UE needs to send only control information. 

Physical Random 

Access Channel 

(PRACH) 

Carries the random access transmissions from the Random Access Channel (RACH). 

 

Table 2. 4 Description of major uplink physical signals. Adapted from [10]. 

Demodulation Ref Signal (D-RS) Sent by the UE to the eNodeB for channel estimation. 

Sounding Ref Signal (S-RS)  Configured by the eNodeB for power reference in order to support frequency 

dependent scheduling 
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Figure 2. 4 The general downlink frame structure of key signals in an LTE system. Adapted from [13]. 

 

The downlink uses orthogonal frequency-division multiplexing (OFDM) modulation on the 

downlink and an orthogonal frequency-division multiple access scheme (OFDMA) [14]. OFDM, is a 

spectrally efficient way to transmit data because it uses different subcarriers to transmit a set amount of 

symbols. This is accomplished on the transmitter by first taking in a data stream from the upper layers and 

doing a serial to parallel conversion after modulation. This results in multiple different sine waves that 

can be added together to transmit one signal carrier waveform that contains all the data 

information. Figure 2.5 shows what an OFDM signal looks like in the frequency domain. 
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Figure 2. 5 The OFDM spectrum showing different subcarriers and how they look together in the frequency domain. 

 

The frame structure of the DL is shown in Figure 2.2. It consists of multiple subcarriers, each a 

180 kHz block, that are spaced 15 kHz apart from each other with a cyclic prefix of 5 us. OFDM symbols 

are transmitted in 0.5 ms slots and two slot forms a 1ms subframe and 10 subframes is a 10 ms frame 

[10]. All the symbols transmitted in a single slot on all the subcarriers forms a Resource Block [14]. The 

bandwidth can vary from 1.4 MHz to 20 MHz and thus the number of resource blocks available in a 

single slot varies from 6 to 110 [14].  

The frame structure of the downlink in LTE consists of the control channels, reference signals, 

and synchronization signals transmitted at specific times and intervals. The PSS and SSS are transmitted 

two times per frame at the center 62 subcarriers and the PBCH is transmitted once in a frame at the center 

72 subcarriers [14]. The RS are distributed throughout the frame to enable channel estimation in both the 

time and frequency domain. The control channels are transmitted at the start of every subframe with a 

width varying from 1 to 4 OFDM symbols depending on the channel bandwidth and the control 

information in that subframe. This structure can be seen in Figure 2.2 and shows the different signals and 

what they look like in a frame and then at a specific subcarrier.  
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 The UE goes through a procedure in order to connect to the eNodeB. The PSS is first searched for 

and must be obtained in order to detect the Physical Layer Identity and symbol timing. The UE, once 

gaining information about the symbol timing, can detect the SSS in order to get the cell identity group and 

subframe number in order to derive the cell-ID of the eNodeB to which it is attached. Once the cell-ID 

has been obtained, the UE performs channel estimation and equalization by finding the C-RS. After, it 

decodes the PBCH to get the MIB which carries information about the operating bandwidth, frame 

number, and PHICH duration and resources configurations. The UE now has broadcast messages 

available to decode the PCFICH to get the CFI value. The UE has enough information about the lattice in 

the frame where it has to search for PHICH and PDCCH. The UE then decodes the PDCCH in order to 

gain information about the resources allocated in the PDSCH and will be able to decode the data [13]. 

The uplink uses single carrier frequency multiple access (SC-FDMA) [18]. This is similar to 

OFDMA, except the discrete Fourier transform (DFT) is done prior to the inverse fast Fourier transform 

(IFFT) causing the spread of data symbols over all subcarriers creating a virtual single carrier structure. 

This results is a lower peak-to-average power ratio which benefits the UE in its power efficiency [18]. 

The frame structure of the UE is shown in Figure 2.3. The D-RS, which is utilized by the PUSCH and 

PUCCH for channel estimation, is distributed throughout the frame. The SRS is transmitted in one OFDM 

symbol to help the eNodeB to measure the received power across a wide transmission bandwidth. The 

PUCCH symmetrically transmits at both edges of the BW and the PRACH transmits over a bandwidth of 

6 resource blocks with a duration from 1 to 3 subframes with its position being configured by the eNodeB 

[10]. The rest of the block consists of the PUSCH.  
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Figure 2. 6 The LTE Uplink Frame Structure that includes key signals. Adapted from [10]. 

2.3  LTE Vulnerabilities 

As mentioned in the previous chapter, several ways of jamming are partial band jamming (PBJ), 

single tone jamming (STJ), multi tone jamming (MTJ), asynchronous single tone jamming (ASTJ), and 

asynchronous multi tone jamming (AMTJ). In this section, the vulnerabilities of different channels and 

signals in both uplink (UL) and downlink (DL) are analyzed, as well as potential methods of jamming and 

their evaluation, in order to find the suitable “weak spot” for efficient jamming in the LTE 

communication.  

Two potential signals that could be jammed are the PSS and SSS which are the synchronization 

signals in the downlink. Since the positions of these two signals are fixed in the frame structure, PSS and 

SSS can be jammed by a continuous jammer that transmits at the desired frequency [10]. However, this 

strategy requires the highest power of the jamming signal, which makes it easy to detect the jammer. A 

more effective method of corrupting the PSS, mentioned in [13] and [14], is RF spoofing, referring to 

transmitting a fake signal meant to masquerade as an actual signal. The jammer will transmit a bogus PSS 

asynchronously to the LTE frame at higher power that prevents the terminal from detecting the SSS or 

decoding the Master Information Block (MIB) of the network. Even though disrupting the PSS or SSS 
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will not cause an immediate Denial of Service (DoS), but it could instead prevent new UEs from 

accessing the cell and idle UEs from re-synchronizing with the cell [12].  

Another potential weakness in LTE signals are the Cell-Specific Reference Signals (C-RS) which 

carries downlink pilot symbols that are used for channel estimation, quality assessment, and equalization 

[10]. C-RS is located throughout the frame in both time and frequency domain, based on the cell ID as 

well as antenna port number (MIMO). If C-RS is jammed, the bit error rate of the complete network 

would increase tremendously. Studies in [12] have proven that configuring perfect synchronization is 

difficult to achieve for a sparse and non-contiguously distributed signal such as the C-RS. It is suggested 

that the jammer can target CRS subcarriers with MTJ instead since the C-RS subcarrier locations depend 

on the cell ID and remain constant for all users of the cell. Jamming C-RS also requires the jammer to 

synchronize with the LTE network and knowledge of PSS and SSS. Due to the long symbol duration (71 

microseconds), one benefit for jamming C-RS is that there will be a short propagation delay, for example, 

if there are approximately 5 miles between the jammer and the UE, there would only be a propagation 

delay of 27 microseconds [19]. Researchers have recommended that the jammer could start transmitting a 

fraction of a symbol early to compensate for this delay [16].  

Channels that contain important information are also vulnerable to jamming attacks. The Physical 

Broadcast Channel (PBCH) contains the Master Information Block (MIB), which is required by the UE to 

gain information about the downlink bandwidth, resource length of the Hybrid ARQ (HARQ) Indicator 

Channel (PHICH), and the System Frame Number (SFN) for frame synchronization. Thus, the UE could 

get initial access to the cell [12]. As shown in Figure 2.2, PBCH is located at center 72 subcarriers and 

appears in the first subframe of every frame. Without PBCH, the UE will not be able to decode PHICH, 

which carries ACK/NACK information for the uplink. Researchers in [10] and [20] suggest that jamming 

PBCH does not necessarily require the jammer to synchronize with the cell if the jammer is continuously 

transmitting at center 72 subcarriers, and this jamming attack is characterized by a low duty cycle and a 

fairly low bandwidth. Since the characteristics of the PBCH requires a fairly high-power interfering signal 

to deny the service to non cell edge users, the jammer using the method will be bounded by the large 
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transmitted power at the eNodeB and the potentially low transmitted power of the jamming device in 

order to outpower the legitimate signal [20]. 

Another channel that is susceptible to jamming attacks is the Physical Uplink Control Channel 

(PUCCH) which is used to send the eNodeB a variety of control information. Due to its feature of 

mapped to the resource blocks on the edges of the system bandwidth jamming attacks can be 

implemented after acquiring knowledge of the LTE system bandwidth and center frequency [13], [14], 

[19] (see Figure 2.3). It is important to note that uplink jamming has an impact on the entire cell as 

opposed to locally around the jammer [13]. This is because when the jammer attacks PUCCH, it prevents 

the eNodeB from receiving essential uplink signaling messages required for the correct operation of the 

cell, and overwhelms eNodeB reception. In such a way, the jammer will effectively prevent the base 

station to communicate with every user equipment (UE) in the cell, and thus, extending the range of the 

attack to the entire cell, as shown in Figure 2.7 below.  

 

Figure 2. 7 Impact range of regular radio jamming versus uplink jamming. The impact of jamming the network can 

cause severe consequences. Adapted from [20]. 
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LTE has three control channels in downlink, namely; Physical Control Format Indicator Channel 

(PCFICH), Physical Downlink Control Channel (PDCCH), and Physical Hybrid ARQ Indicator Channel 

(PHICH). Although it is possible to jam the PDCCH directly, we will first analyze the possible jamming 

method of the PCFICH. PCFICH is the key to the process of transmitting and decoding the information as 

mentioned above. It appears infrequently in the downlink frame structure; only in the first orthogonal 

frequency-division multiple access (OFDM) symbol in each subframe and occupies a total of 16 resource 

elements (RE) [13]. Since the location of the 16 subcarriers is determined by the eNodeB’s complete cell 

ID, jamming the PCFICH requires the jammer to synchronize to both downlink synchronization signals 

PSS and SSS. This also limits the jamming to only one cell [19]. The PDCCH carries critical control 

information, [13] and [20] have suggested that successful jamming the PDCCH requires transmitting at 

high power as well as synchronization with the cell. In addition, since the PDCCH size varies between 

one and three OFDM symbols, the jammer needs to decode the PCFICH first in order to launch an 

effective attack with the least amount of power [13]. Through experiments, [12] implies that since 

jamming the PCFICH has the same outcome as jamming the PDCCH, jamming the PDCCH seems to be 

more impractical for the jammer since the PCFICH’s sparsity makes the jamming attack more complex, 

and thus, less likely to be anti-jammed. If PHICH is jammed, the downlink communication will not 

suffer, but the uplink communication will because it carries ACK/NACK information of the uplink which 

enables the UE to make decisions [10]. It is worth mentioning that although PHICH jamming requires the 

jammer to synchronize with the cell, its sparsity location on the frame structures makes the jamming more 

complex and threatening.  

The user data could also be potentially jammed. The Physical Downlink Shared Channel 

(PDSCH) and Physical Uplink Shared Channel (PUSCH) are used to transmit user data to and from the 

eNodeB, which means that the jammer can eavesdrop and take the advantage to get the complete system 

information. While it is possible to jam these two channels, it is suggested that the jamming process 

requires the jammer to extensively decode the protocol with control information and user information, 

which almost equals the effort to jam the entire LTE signal [10], [13]. This makes it an extremely 
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complex attack that might be considered a combination of jamming and cyber-attack. Therefore, it is not 

recommended to jam the PDSCH and PUSCH [13].   

2.4 Open Air Interface (OAI) 

The OpenAirInterface (OAI) emulation platform is an open-source software platform developed 

based on real 3GPP LTE protocols that provide a better approach to testing, evaluating, and validating 

wireless communications and signal processing. It is written in C and provides a complete wireless 

protocol stack that implements the PHY, MAC, RLC, PDCP, RRC as well as providing an IPv4/IPv6 

network device interface under Linux [21]. There are two different modes that can be used, either single 

state machine or multi-state machine emulation [4]. Single state machine has virtualization of network 

nodes within one physical computer. The multi-state machine uses distributed deployment on so that 

multiple machines can be used and transmits information via IP address. For example, the eNodeB could 

be on one machine while the UE is on another and they would need to be on the same local network and 

communicate via their machine’s IP address.  

The source code can be found on OpenAirInterferace’s Github and is divided into three main 

folders. The PHY layer and other related parameters resides in the Openair1 folder and it also provides 

interface to the MAC layer. The hardware interface can be found in this folder and its main function is to 

realize the baseband signal process. The Openair2 folder contains the realization for the upper network 

layer including the MAC, RLC, PDPC and RRC. The folder Openair3 has network modules that uses the 

IP protocol. It offers interfaces to the applications which makes the whole platform more complete and 

practical. The EPC resides in another folder called openair-cn and this is where the MME, SPGW, and 

HSS can be run. 

The working procedure of the emulator can be divided into four steps, as shown in Figure 2.5 

[22]. The four consecutive can be defined as Emulation Scene Description, Initialization, Execution, and 

Output.  
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Figure 2. 8 The emulation workflow of OpenAirInterface is divided up into these four steps emulation scene, 

initialization, execution, and output. Adapted from [23]. 

 

The first step of emulation is to build an emulation scenario depending on the users’ input. The 

parameters include single or multi- channel modes, the number of eNodeB and user equipment (UE), 

working mode (TDD, FDD) and many other systems and environment variables [23]. The next step is 

initialization. This is the emulation platform procedure of configuration which uses the user defined 

parameters from the previous step [4]. It contains emulation scenario initialization and each layer of eNB 

and UE configuration [4]. Also, it includes traffic and mobility initialization [24]. The execution step 

indicates the execution of the emulator, and the synchronization of the emulated nodes will be run in the 

experiment. The last step is the monitoring which is done through an outputted log file. The file contains 

the whole procedure of emulation that has been collected, labeled and archive for the usage of analyzing 

the emulator and evaluating the experiment. Through experiments, [23] tested the feature of OAI on 

testing LTE systems and concluded that this platform can be useful and helpful for the learning and 

researching of LTE and LTE-A standards, performance evaluation of new scheduling algorithms, 

improving the accuracy of link-level simulation by using the whole protocol stack, mobility management 

protocols in cellular networks, etc. 
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3. Proposed Approach 

3.1 Problem Statement 

 In this project, the objective was to effectively jam an LTE system to disrupt or deny service to 

the user equipment (UE) using Software Defined Radios (SDRs). The selection process for which types of 

jamming to implement depended on its efficiency and complexity. Efficiency refers to the power level of 

the jamming signal that was being transmitted in comparison to the effectiveness of jamming, namely the 

amount of transmission disruption that was caused by it. Complexity measured the level of difficulty that 

the jamming would cause to mitigate LTE communication or anti-jam. Despite the goals, due to the 

budget, time limitation, and feasibility consideration was given to factors such as whether synchronization 

was needed when selecting the most suitable jamming approach.  

3.2 Evaluation  

In order to effectively jam an LTE system to cause a denial of service to the UE, there are several 

possible approaches: 

1. Sniffing 

2. Spoofing 

3. Jamming uplink channels  

4. Jamming downlink channels  

Sniffing involves eavesdropping on important signals which could potentially give valuable 

information leading to more efficient attacks. Spoofing is able to create a jamming attack by making a 

signal that masquerades as legitimate LTE signal. Jamming of the uplink channels would involve creating 

another signal and transmitting at the same time as the actual signals to cause interference. Jamming of 

the downlink channels is similar to that of the uplink signals except the downlink signals would be 

targeted. 
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Each approach was analyzed by its efficiency, complexity, and feasibility. Spoofing was 

recommended to target the synchronization signals in the downlink, primary synchronization signal (PSS) 

and secondary synchronization signal (SSS) [13]. In the simulation, [13] observed that the UE lose 

connection with the eNodeB when the spoofing attack maintained at a high power level. Thus, spoofing 

was not considered efficient due to its high ratio of the received jamming signal power to the received 

LTE signal power. On the other hand, sniffing created a denial of service (DoS) scenario by producing an 

eavesdropping environment using other low-cost software radios. It was recommended in [13] that 

sniffing techniques should be used during the downlink Physical Broadcast Channel (PBCH) phase in 

order to acquire system information block (SIB) that indicated the complete configuration of the cell and 

other critical information of the mobile network, and thus, to identify the specific cells that are deployed 

for critical communications and distinguish them from mobile operator eNodeBs. However, due to the 

fact that there was only one UE in the LTE testbed, user-targeted DoS would not provide additional 

benefits compared with other approaches. Furthermore, the decoding process of the SIB would be more 

focused on software rather than the LTE physical layer.  

As mentioned in the previous chapter, the LTE physical layer possesses many vulnerable 

channels to jamming attacks. The uplink jamming would be able to effectively prevent the base station to 

communicate with every UEs in the cell, as well as extending the range of the attack to the entire cell. 

However, due to the fact that there was only one UE in the LTE testbed, the uplink jamming would not be 

as effective as it should be. Additionally, successfully jamming the uplink control channels requires 

transmitting at high power as well as synchronization with the cell, which makes this approach not 

efficient enough compared with others [13], [24]. 

As mentioned in the previous chapter, downlink jamming possesses several options that included 

PSS, and SSS, Physical Broadcast Channel (PBCH). PSS carries information about the physical layer cell 

identity and plays an essential role in the process of UE connecting to the cell. Consequently, jamming 

the PSS would prevent new UEs from accessing the cell and re-synchronizing with the cell, which assures 

the complexity of the attack. Due to the fact that it is transmitted once in a frame at the center of 72 
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subcarriers, the PSS jamming attack only would require narrowband jamming signals, which means this 

attack is highly efficient [10]. Therefore, it was decided to use synchronized signal-tone jamming on the 

PSS in the downlink.  

3.3 Proposal Approach 

An initial plan was devised after considering the advantages and disadvantages of each potential 

type of jamming. The first decision was to begin with partial band jamming because it was easy to 

implement and also allowed us to test and confirm that the equipment was working as anticipated. The 

next step was to determine how to measure the success of the jamming. The method that was chosen was 

to count how many packets were received and compare that to the number transmitted. This would have 

made it possible to determine the effect of the jamming via a quantitative approach. After this initial 

testing of the verification and jamming were completed, it would then be beneficial to move to more 

complex jamming attacks. This would involve setting up the synchronization of the jammer to the 

eNodeB. However, due to time constraints and the complexity of synchronization, different jamming 

approaches were evaluated again in order to find a more effective and feasible jamming approach for the 

testbed, as shown below in Table 3.1. After the evaluation, the decision was made to do frequency 

hopping as the primary form of jamming. Frequency hopping could still be narrow band jamming but it is 

easier to accomplish since there is no need for synchronization. It would also be more difficult to anti-jam 

because the frequencies it hops to would to randomized.  
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Table 3. 1 Evaluation of different jamming types 

Types of Jamming  Pros  Cons 

Partial Band Jamming 
(Wideband Jamming) 

• No synchronization required  • Easy to be detected  

• Need constantly high power  

Synchronized Jamming • Know the signal or channel that is 

being attacked 
•  Requires synchronization 
•  Requires the knowledge of the exact 

frequency of the subcarrier 
•  LTE could easily recover by transmitting 

at another frequency 

Asynchronized 

Jamming  
• No synchronization required  • Do not know the signal or channel that is 

being attacked 

Frequency Hopping 

Jamming 
• No synchronization required  

• Hard for anti-jam because of its 

unpredictability 

• Do not know the signal or channel that is 

being attacked  

3.4 Project Planning 

Microsoft Excel was used to plan out objectives throughout the project. The Gantt Chart in Figure 

3.1 and Figure 3.2 shows the tasks and timeline. WPI has a quarter system with each academic year made 

up of four seven-week terms, and this project was conducted throughout the first two terms, A-term 2019 

and B-term 2019. Throughout the design stage of the project, several deadlines are mentioned and noted 

in red on the Gantt Chart. The project team size changed from four members in the first term to two 

members in second term. In the first term, the focus was on designing and building the testbed. 

Specifically, it was broken into multiple subtasks, such as setting up the software interaction between the 

transceiver, USRP B210, UE, and the jamming device, USRP N210. After each segment has been set up 

separately, they have to be consolidated into the testbed, in which they were evaluated using a spectrum 

analyzer in order to ensure the transmission.  The Agilent CSA Spectrum Analyzer N1996A was used and 

it has a frequency range from 100 kHz to 3 GHz. From then on, the project moved to the jamming stage 

during B-term 2019, as shown in Figure 3.2. After acquiring information on the network, the USRP N210 

was synchronized with the eNodeB and partial band jamming (PBJ) was then performed to collect the 

effect of the jammer. Then, the frequency hopping jamming approach was implemented with GNU Radio. 
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The results of jamming attempts were collected and evaluated to determine whether it was effective by 

analyzing the throughput before and after the jammer. During the process of setting up the testbed and 

testing jamming, the report recorded the work done in the implementation and testing stages. A live demo 

was shown to conclude the project. 
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Figure 3. 1 Gantt Chart for A term 2019 
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Figure 3. 2 Gantt Chart for B term 2019 
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4. Methodology 

This chapter describes the methods that were used to successfully jam LTE communications. The 

first section focuses on the creation of an LTE testbed using two USRPs and a Samsung s4 phone. It also 

includes information about OpenAirInterface. The next section goes into detail about partial band 

jamming and how that was implemented through GNU Radio. The section afterward explains how 

frequency hopping was achieved and provides insight into the GNU Radio code. Lastly, the method that 

was used to verify the results of the jammer is discussed.  

4.1 Testbed Implementation 

The testbed consisted of an eNodeB, User Equipment (UE), and jammer which is shown in 

Figure 4.1. A USRP B210 was used for the eNodeB, a Samsung S4 for the UE, and a USRP N210 for the 

jammer. The whole testbed was built on a 64-bit computer with an Intel Core i7-4770K CPU @ 3.50 GHz 

x8 processor with Ubuntu 18.04.3 LTS operating system. The B210 was connected to the computer 

through USB 3.0 and the USRP N210 was connected through a 1 Gigabit ethernet cord. The UE was 

connected to the network by an open-cell SIM card that was programmed and its information inputted 

into the Home Subscriber Server (HSS) in OpenAirInterface (OAI). The testbed setup was located in a 

Faraday cage due to the restriction of frequency bandwidths in the U.S. The Faraday cage works as an 

enclosure to block electromagnetic fields, and thus the wireless transmission was limited within the cage 

and not interfering with other signals of the same frequency.  
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Figure 4.  1 The implemented testbed that was used is shown on the left. The testbed structure (right) shows the 

theoretical connections from each component of the testbed. 

 

The testbed was built following the two tutorials available online [25], [26], and the overall steps 

are shown below in the flow diagram Figure 4.2. Reference [25], [26] provided instructions for the 

installation of the original files on Github, configuration, and Linux command lines to run for each step. 

For the network setup, each node in the EPC network was on a separate IP address as shown below.  

HSS is on localhost: 127.0.0.1 
eNodeB is on 127.0.0.10 
MME is on 127.0.0.20 
SPGW is on 127.0.0.30 

 Due to the fact that the UE was a smartphone device, a SIM card purchased from Open Cells was 

used for the UE [27]. The SIM card is configured for 3GPP: GSM, WCDMA, LTE with a mileage 

algorithm to perform 3GPP standard subscriber identification and it came with a card reader/writer to 

personalize and configure the card [27]. The SIM card was then programmed (instructions on [25]) and 

then its information was added into the network match with the HSS database.  

 

Figure 4.  2 OAI tutorial steps flow diagrams adapted from [26]. 
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 In order to run the testbed, each node (HHS, MME, SPGW) needs to be turned on separately 

before the eNodeB. Four different command windows were opened and each of the command lines are 

the following [26]: 

cd openair-cn; source oaienv; cd scripts; ./run_hss 
cd openair-cn; source oaienv; cd scripts; ./run_mme 
cd openair-cn; source oaienv; cd scripts; sudo -E ./run_spgw 
sudo bash; cd ~/openairinterface5g; source oaienv; cd cmake_targets/lte_build_oai/build./lte-

softmodem -O ~/opencells-mods/enb.10MHz.b200 
 

After which the UE should be connected and it should attach to the network and be able to reach 

the internet through the OAI network. 

4.2 Partial Band Jamming Test 

GNU Radio was used to implement the partial band jammer. The output of this jammer was a 

signal that was spread across many frequencies and jammed any signals that operated at those frequency 

levels. The flow graph that was created in GNU Radio to generate a particular partial band jamming 

signal is shown below in Figure 4.3. The sample rate was chosen to be 20 MHz for the USRP N210 to be 

able to operate properly. If the sampling rate was lowered it caused an error stating that there were not 

enough samples for the N210 to transmit a signal.  

The first block in the flowgraph is a signal source that was chosen to be a cosine wave and its 

parameters were unchanged. The signal was then passed through the OFDM Modulation block in GNU 

Radio. This would allow the signal source to be spread across multiple frequencies. The parameters of the 

block were changed in order to change the bandwidth of the signal. The parameters that changed the 

bandwidth were the FFT length and occupied tones. The FFT length was set to 4096 because it was a 

large enough length to have a satisfactory resolution but not enough to overwhelm the computer. The 

occupied tones parameter was modified to change the bandwidth. Through testing, it was found that as the 

number of occupied tones decreased the bandwidth of the signal increased. The Frequency Sink GUI 

block was added to the output of the modulated signal to determine the value of the occupied tones in 

order to obtain the desired bandwidth. Table 4.1 shows each of the bandwidths that were tested and the 
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occupied tones that were used accordingly. The general method to obtain a certain bandwidth was adding 

or subtracting at increments of 30 to the occupied tones. This would then respectively add or subtract 200 

kHz to the bandwidth.  

The UHD USRP Sink block was connected to the resulting modulated signal which had the 

address of the N210 was specified in order for GNU Radio to connect to the radio and output the signal. 

The center frequency was chosen to be 2.56 GHz because that is the center frequency of the LTE 

downlink signal. The gain value was set to 28 dB because it was the highest power level the N210 could 

transmit.

 

Figure 4.  3 The flow GNURadio flow graph for partial band jamming shows the steps of generating the signal, 

modulating it, and then sending it to the USRP and GUI. 

 

 

Figure 4.  4 A graph showing the partial band jammer signal that has a bandwidth of 2 MHz. 
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Table 4. 1 Bandwidth of partial band jamming 

Occupied Tone Jamming Signals Bandwidth 

90 600 kHz 

120 800 kHz 

150 1 MHz 

300 2 MHz 

 

4.3 Frequency Hopping Jamming 

Frequency hopping was implemented in order to achieve narrowband jamming. Narrowband 

jamming would decrease the number of frequency levels that the outputted signal occupies and be harder 

to detect. The wideband jamming GNU Radio blocks were utilized and the bandwidth was set to 400 kHz 

and 600 kHz for two different tests. A visual of the GNU Radio flowgraph for the frequency hopping 

jammer can be seen in Figure 4.5. The original flow graph was modified by the addition of another signal 

source, a probe block, and a function probe block. The probe signal block is able to take measurements of 

a signal at a poll rate specified in the function probe block. The type of measurement was also specified in 

the function probe block to be amplitude levels. The signal source added was set to be a square wave and 

acted as a clock for the probe. This was needed for the probe signal to have a reliable source to take 

amplitude measurements since a square wave can only have amplitude measures of 1 or 0. A sine wave, if 

not sampled at exactly the peaks and valleys, might be slightly off from an exact value of 1 or 0. The 
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values needed to be exact for the function probe block and it stored these values of the polled 

measurement from the probe signal to a variable called val. 

 

Figure 4.  5 The GNU Radio flowgraph for narrowband jamming via frequency hopping includes the elements of the 

partial band jammer (top) with the bandwidth set to 200 kHz. The addition of the clock blocks (bottom) served to 

change the center frequency of the original 

 

After setting up the flowgraph in the GNU Radio Companion the top_block code, that was 

generated from the flowgraph, was modified to change the center frequency of the USRP sink to a 

random value relative to the clock rate. The justification for making these changes include the need to 

change the center frequency in order to “hop” to different frequencies. Without this block the frequency 

would stay at one value and never change. The function probe block function, as shown below in its 

original form, was modified. 

def _variable_function_probe_0_probe(): 
     while True: 
  val = self.probe.level() 
  try: 
      self.set_variable_function_probe_0(val) 
  except AttributeError: 
      pass 
  time.sleep(1.0 / (10)) 

 

The modified function, that changes the center frequency randomly according to the clock is 

shown below with the changes highlighted. The addition included an if statement that depended on the 
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value of the amplitude measurement the probe signal obtained, hence why these measurements had to be 

exact values. If the value of the amplitude (val) was a 0 then the center frequency would change 

randomly, using the python random function, otherwise, it would remain unchanged from its previous 

value. As shown in the code, the range of the center frequency was from 2.677 GHz to 2.6825 GHz at a 

step size of 1 kHz. The module for random functions needed to be added to the top_block as well thus the 

call import random was also added at the beginning of the file.  

def _variable_function_probe_0_probe(): 
     while True: 
  val = self.probe.level() 
  if val == 0:     

    self.set_center_freq(random.randrange(2.6775e9,2.6825e9,1e3)) 
  try: 
      self.set_variable_function_probe_0(val) 
  except AttributeError: 
      pass 
  time.sleep(1.0 / (40)) 

 

The relationship of the signal clock rate, f clock, and the probe polling rate, f polling, is shown in 

Equations (1) and (2). The clock signal source is the f clock parameter and the f polling parameter is found in the 

python code top_block in the function probe function line time.sleep(1.0/(40)) where the value of 40, in 

this instance, is the f polling rate. These parameters were used to determine how often the center frequency 

would change. The value of f polling was designed to be twice the value of f clock so that the center frequency 

would change only when the amplitude of the clock signal was 0.  

fclock= 1T  (1) 

fpolling=2*fclock (2) 

A waterfall plot was generated after the frequency hopping jammer code was executed to verify 

the signal jumped from different frequency levels as shown in Figure 4.6. This figure shows time across 

frequency and as expected the signal changed frequency as time increased. The frequency hopping 

jammer was changing the frequency of the signal at a rate of 50ms. The reason that the signals are a dark 

red color is being they are being transmitted at a high power, specifically 28 dB.  
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Figure 4.  6 Waterfall graph for frequency hopping jamming signal that is centered at 2.68 GHz. The narrowband 

jammer is shown in red due to its high power and changes every 50 ms. 

 

4.4 Result Verification 

The indication and evaluation of jamming attack effects were accomplished by measuring the 

packet receiving rate by the UE and analyzing packet loss. Packet loss occurs when one or more packets 

of data traveling across the LTE testbed network fails to reach the UE due to poor connection or inference 

from an outside source such as a jammer. When packet loss happens, the throughput from the eNodeB 

data is reduced because the packets were never received by the UE and the number of packets 

successfully received decreases. Packet loss causes retransmission of the packets, and a great amount of 

loss could result in delays of the network and even disconnection. The correlation between the jammer 

effects and LTE network packet loss was therefore utilized to prove whether the jammer could cause any 

damage to the network, and if so, to measure the damage the jammer caused. 
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In order to test whether the jammer was having an effect on the LTE system, several mobile 

applications on the UE that indicate the number of packets that were received from eNodeB were tested, 

such as Mobile Insight and iPerf. These applications all required rooting the phone and were not 

compatible with the Samsung s4. It was then decided to browse and analyze the transmission traffic from 

the eNodeB using Wireshark [28]. Wireshark is an open-source software, which can be used as a network 

protocol analyzer. It was compatible with Ubuntu and used to analyze the packets that the UE was 

attempting to receive and showed when a packet was dropped or when retransmission occurred. The 

packet information outputs messages as well as a graph that showed the number of packets per second 

across time. Both these methods were used to analyze the jamming effects. A YouTube video was 

streamed on the UE for each jamming test in order to keep the transmission consistent. 

 

4.5 Chapter Summary 

In this chapter, details about the testbed and the jamming methods used in this project were 

discussed. Once the LTE testbed was built, the eNodeB and UE were connected and the partial band 

jamming approach was implemented through GNU Radio. After successfully verifying that a partial band 

signal was produced by the testbed, the frequency hopping jamming was implemented through GNU 

Radio with different power levels and different bandwidths. All the results of jamming were measured by 

WireShark from the eNodeB by analyzing the rate of packets being received by the UE before and after 

the jammer was turned on.   
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Figure 4.  7 This image shows the Faraday cage that the experiments were completed.  
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5. Results & Discussion 

In this chapter, the results and findings of the project are explained in detail. The chapter begins 

with the results of the partial band jammer and how much of an effect that had on the LTE system. It then 

moves to explain how well the frequency hopping jammer did in regards to packet corruption and the 

reasoning for this result. Lastly, the result and reasoning for the frequency hopping jammer to cause DoS 

is described in further detail.  

5.1 Partial Band Jammer  

The wideband jammer was tested first in order to verify jamming capabilities. The overall result 

was a Denial of Service (DoS) once the jammer was turned on. This was seen in WireShark by the 

retransmission messages and eventual loss of packets. The UE detached itself from the network due to the 

poor quality of the channel. Figure 5.1 shows the number of packets per second over time. The spikes in 

the graph represent a large number of packets following a time when no packets were being exchanged. 

This is due to the buffer used by YouTube. When a video is being streamed, bursts of packets are needed 

to be received instead of continuously since this would cause poor video quality if just one packet was 

lost or needed to be retransmitted. YouTube uses a buffer to combat this problem by getting a certain 

number of packets to fill the buffer and then when the video plays, packet transmission is stopped until 

the buffer has depleted to below a certain level [29]. This is shown in Figure 5.1 by the spikes, when the 

buffer is being filled, and then the time of no packets because the buffer is filled.  

The jammer starts at the indicated dashed redline and very quickly the number of packets 

successfully received drops. It then eventually stops altogether indicating that the partial band was 

effective in causing a DoS scenario. Different bandwidths caused the signal to be completely lost or only 

degraded the channel but did not affect the UE enough for service to stop. 
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Figure 5.  1 Wideband jammer packet analysis results. After the jammer is on, the number of packets successfully 

transmitted drops to zero and the UE detached from the network. 

 

5.2 Packet Corruption 

The frequency hopping jammer had two different effects on the LTE system. Specifically, it 

achieved packet corruption and DoS. The first effect was packet corruption that caused the loss of a few 

packets and showed a decrease in the number of packets being successfully transmitted. This can be seen 

in Figure 5.2, where the jammer was started at the time indicated by the dashed red line. There is some 

delay when the jammer code was executed and when the device actually started transmitting, which is the 

cause for the delay in the effect. The time between packets increased once the jammer starts transmitting 

because a few packets are being dropped and retransmissions occur, which caused more time between 

packets. 
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Figure 5.  2 The packet analysis result from frequency hopping jamming at 26dB, a bandwidth of 400 kHz, and at a 

clock rate of 50ms and a polling rate of 25ms. 

 

 

Figure 5.  3 The packet analysis result from frequency hopping jamming at 26dB, a bandwidth of 600 kHz, and at a 

clock rate of 50ms and a polling rate of 25ms. 

  

Although packet corruption occurred the same could not be said about DoS. Throughout the time 

of testing, even though packets were being dropped, the video quality remained the same and the user was 

unable to notice a difference in service. This is due to the frequency hopping being randomized. There 

was no prior knowledge about which subcarriers the UE was using which means the frequency hopping 

was done by running through randomized subcarriers.  
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The randomness of the frequency hopping is illustrated in Figures 5.4 and 5.5. Figure 5.4 shows 

the waterfall graph of the LTE system with the darker orange parts being the PSS and SSS 

synchronization signals. The lighter yellow parts spread throughout the graph are the data signals. In 

Figure 5.5, the frequency hopping jammer had been turned on and the red spots are the jammer’s signals. 

The signal is randomly scattered throughout the LTE system and the likelihood that it would drastically 

interfere with the phone signal, which is using one subcarrier of the LTE signal for communication, is 

small.  

 

 

 

5.3 Denial of Service (DoS) 

DoS was achieved by running the experiment multiple times until the phone disconnected in one 

case. This is shown in Figure 5.6 where the dashed red line indicates when the jammer was started and 

then there is one spike of delay. Then, the number of packets per second drops significantly until it drops 

to zero and the UE disconnected from the network. Figure 5.6 shows the output of the WireShark 

messages that shows an increasing amount of attempted retransmissions, which is consistent with the 

graph. This occurrence was due to chance because the frequency hopping was random and it just so 

happened to hit the subcarrier the UE was operating at and an important signal that caused the DoS.  
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Figure 5.  4 The eNodeB LTE communication waterfall graph before any jamming has occurred. 
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Figure 5.  5 The waterfall graph showing the eNodeB transmission after the frequency hopping jamming. 
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Figure 5.  6 Graph showing successful DoS caused by jammer at 28dB, a bandwidth of 600 kHz, and the clock at 

50ms and a polling rate of 25ms. 

 

 

 

 

5.4 Chapter Summary 

 In this chapter, the results obtained from this project were discussed. Through experiments, it was 

discovered that the frequency hopping jamming approach could disturb the testbed by causing packet 

retransmission or packet disruption at a lower power of 26 dB. When jamming signal power was 28 dB, 

frequency hopping jamming attack was able to create a DoS for the network. Overall, it had been proven 

that the frequency hopping jamming attack can be destructive to the LTE network when the power is 26 

dB or higher.  
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 Figure 5.  7 Wireshark message that show the number of retransmission messages in black which indicates 

a DoS situation.
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6. Conclusions/ Future work 

This project analyzed the LTE physical layer vulnerability to jamming regarding various channels 

and signals in the uplink and downlink. In order to perform jamming, the LTE testbed was built on the 

OpenAirInterface platform, using a USRP B210 as the eNodeB transceiver. After comparing possible 

jamming approaches and testing with a partial band jammer, the project implemented the frequency 

hopping jamming approach with a USRP N210. The result showed that LTE communication is vulnerable 

to partial band jamming, which could directly create the disconnection of the user equipment (UE). 

Furthermore, a frequency hopping jammer could affect the LTE system and result in packet 

retransmission, packet disruption, and even Denial of Service (DoS) when the power of the jamming 

signals was no less than 28 dB. An LTE cellular network is susceptible to jamming from relatively 

inexpensive equipment. The partial band jammer was effective in creating a DoS situation, however, it 

would be easily detected. The frequency hopping jammer would not be as easy to detect since it utilizes 

narrowband jamming. 

6.1 Future Work 

The focus of this project was to create an LTE testbed and effectively disrupt the communication 

link through a jamming attack. However, additional approaches can be conducted to analyze those 

scenarios. One possibility is to create a reactive jammer that is synchronized with the LTE system and 

only transmits when the target wireless system is active, or even more specifically, when crucial signals 

and channels in LTE transmission are active, making it more difficult to detect and defend. There is a 

theoretical synchronization algorithm for LTE systems that allows the jammer to locate the Primary 

Synchronization Signal (PSS) and Secondary Synchronization Signal (SSS) within the LTE downlink 

frame and decode the information contained in them [30]. In short, the algorithm utilizes the outputs 
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corresponding to the received signal vectors that do not correspond to PSS transmission to detect the 

location of the PSS signal within the received LTE downlink signal [30]. Once obtaining the correct cell 

identity, duplex mode, and CP mode from PSS and SSS, the jammer could decode the information for the 

whole LTE testbed downlink and thus perform more signal-targeted jamming for possibly better results.  

Another possible direction for future work is to explore techniques for mitigating jamming 

attacks, especially, the frequency hopping jamming attack. Reference [31] introduces a method called RF 

Frequency, which uses frequency hopping strategy on the combined channels in the downlink, uplink or 

both, to avoid jamming attacks. This mechanism will be simply performed by RF switches or 

reconfiguration commands, which does not result in any system performance degradation [31]. In such an 

approach, if jamming occurs at constant frequencies with a period smaller than 10 ms, communication 

will not be disrupted due to the Hybrid Automatic Repeat Request (HARQ) message retransmission 

process [31].  
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Appendix A: Python Code for Frequency Hopping 

Jammer 
#!/usr/bin/env python2 

# -*- coding: utf-8 -*- 

################################################## 

# GNU Radio Python Flow Graph 

# Title: Top Block 

# Generated: Tue Nov 19 13:53:59 2019 

################################################## 

 

if __name__ == '__main__': 

    import ctypes 

    import sys 

    if sys.platform.startswith('linux'): 

        try: 

            x11 = ctypes.cdll.LoadLibrary('libX11.so') 

            x11.XInitThreads() 

        except: 

            print "Warning: failed to XInitThreads()" 

 

from PyQt4 import Qt 

from gnuradio import analog 

from gnuradio import blocks 

from gnuradio import digital 

from gnuradio import eng_notation 

from gnuradio import gr 

from gnuradio import uhd 

from gnuradio.eng_option import eng_option 

from gnuradio.filter import firdes 

from grc_gnuradio import blks2 as grc_blks2 

from optparse import OptionParser 

import sys 

import threading 

import time 

import random 

from gnuradio import qtgui 

 

 

class top_block(gr.top_block, Qt.QWidget): 

 

    def __init__(self): 

        gr.top_block.__init__(self, "Top Block") 

        Qt.QWidget.__init__(self) 

        self.setWindowTitle("Top Block") 

        qtgui.util.check_set_qss() 

        try: 

            self.setWindowIcon(Qt.QIcon.fromTheme('gnuradio-grc')) 

        except: 

            pass 

        self.top_scroll_layout = Qt.QVBoxLayout() 

        self.setLayout(self.top_scroll_layout) 
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        self.top_scroll = Qt.QScrollArea() 

        self.top_scroll.setFrameStyle(Qt.QFrame.NoFrame) 

        self.top_scroll_layout.addWidget(self.top_scroll) 

        self.top_scroll.setWidgetResizable(True) 

        self.top_widget = Qt.QWidget() 

        self.top_scroll.setWidget(self.top_widget) 

        self.top_layout = Qt.QVBoxLayout(self.top_widget) 

        self.top_grid_layout = Qt.QGridLayout() 

        self.top_layout.addLayout(self.top_grid_layout) 

 

        self.settings = Qt.QSettings("GNU Radio", "top_block") 

        

self.restoreGeometry(self.settings.value("geometry").toByteArray()) 

 

 

        ################################################## 

        # Variables 

        ################################################## 

        self.variable_function_probe_0 = variable_function_probe_0 = 0 

        self.samp_rate = samp_rate = 10e6 

        self.center_freq = center_freq = 0 

 

        ################################################## 

        # Blocks 

        ################################################## 

        self.probe = blocks.probe_signal_f() 

        self._center_freq_tool_bar = Qt.QToolBar(self) 

        self._center_freq_tool_bar.addWidget(Qt.QLabel("center_freq"+": 

")) 

        self._center_freq_line_edit = Qt.QLineEdit(str(self.center_freq)) 

        self._center_freq_tool_bar.addWidget(self._center_freq_line_edit) 

        self._center_freq_line_edit.returnPressed.connect( 

         lambda: 

self.set_center_freq(int(str(self._center_freq_line_edit.text().toAscii())

))) 

        self.top_grid_layout.addWidget(self._center_freq_tool_bar) 

 

 

        self.uhd_usrp_sink_0 = uhd.usrp_sink( 

         ",".join(("addr=192.168.50.2", "")), 

         uhd.stream_args( 

          cpu_format="fc32", 

          channels=range(1), 

         ), 

        ) 

        self.uhd_usrp_sink_0.set_samp_rate(samp_rate) 

        self.uhd_usrp_sink_0.set_center_freq(center_freq, 0) 

        self.uhd_usrp_sink_0.set_gain(28, 0) #gain of Jammer 

        self.digital_ofdm_mod_0 = grc_blks2.packet_mod_c(digital.ofdm_mod( 

          options=grc_blks2.options( 

           modulation="qpsk", 

           fft_length=4096, 

           occupied_tones=60,#Frequency BW 

           cp_length=128, 
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           pad_for_usrp=True, 

           log=None, 

           verbose=None, 

          ), 

         ), 

         payload_length=16, 

        ) 

        self.blocks_throttle_0 = blocks.throttle(gr.sizeof_float*1, 

samp_rate,True) 

        self.analog_sig_source_x_0 = analog.sig_source_c(samp_rate, 

analog.GR_COS_WAVE, 1000, 1, 0) 

        self.Clock = analog.sig_source_f(samp_rate, analog.GR_SQR_WAVE, 

20, 1, 0) 

 

 def _variable_function_probe_0_probe(): 

     while True: 

 

  val = self.probe.level() 

  if val ==0: 

  

 self.set_center_freq(random.randrange(2.6775e9,2.6825e9,1e3)) 

  try: 

      self.set_variable_function_probe_0(val) 

  except AttributeError: 

      pass 

  time.sleep(1.0 / (40)) 

 _variable_function_probe_0_thread = 

threading.Thread(target=_variable_function_probe_0_probe) 

 _variable_function_probe_0_thread.daemon = True 

 _variable_function_probe_0_thread.start() 

 

 

        ################################################## 

        # Connections 

        ################################################## 

        self.connect((self.Clock, 0), (self.blocks_throttle_0, 0)) 

        self.connect((self.analog_sig_source_x_0, 0), 

(self.digital_ofdm_mod_0, 0)) 

        self.connect((self.blocks_throttle_0, 0), (self.probe, 0)) 

        self.connect((self.digital_ofdm_mod_0, 0), (self.uhd_usrp_sink_0, 

0)) 

 

    def closeEvent(self, event): 

        self.settings = Qt.QSettings("GNU Radio", "top_block") 

        self.settings.setValue("geometry", self.saveGeometry()) 

        event.accept() 

 

    def get_variable_function_probe_0(self): 

        return self.variable_function_probe_0 

 

    def set_variable_function_probe_0(self, variable_function_probe_0): 

        self.variable_function_probe_0 = variable_function_probe_0 

 

    def get_samp_rate(self): 
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        return self.samp_rate 

 

    def set_samp_rate(self, samp_rate): 

        self.samp_rate = samp_rate 

        self.uhd_usrp_sink_0.set_samp_rate(self.samp_rate) 

        self.blocks_throttle_0.set_sample_rate(self.samp_rate) 

        self.analog_sig_source_x_0.set_sampling_freq(self.samp_rate) 

        self.Clock.set_sampling_freq(self.samp_rate) 

 

    def get_center_freq(self): 

        return self.center_freq 

 

    def set_center_freq(self, center_freq): 

        self.center_freq = center_freq 

        Qt.QMetaObject.invokeMethod(self._center_freq_line_edit, 

"setText", Qt.Q_ARG("QString", str(self.center_freq))) 

        self.uhd_usrp_sink_0.set_center_freq(self.center_freq, 0) 

 

 

def main(top_block_cls=top_block, options=None): 

 

    from distutils.version import StrictVersion 

    if StrictVersion(Qt.qVersion()) >= StrictVersion("4.5.0"): 

        style = gr.prefs().get_string('qtgui', 'style', 'raster') 

        Qt.QApplication.setGraphicsSystem(style) 

    qapp = Qt.QApplication(sys.argv) 

 

    tb = top_block_cls() 

    tb.start() 

    tb.show() 

 

    def quitting(): 

        tb.stop() 

        tb.wait() 

    qapp.connect(qapp, Qt.SIGNAL("aboutToQuit()"), quitting) 

    qapp.exec_() 

 

 

if __name__ == '__main__': 

    main() 
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Appendix B: Python Code for Wideband Jammer 
#!/usr/bin/env python2 

# -*- coding: utf-8 -*- 

################################################## 

# GNU Radio Python Flow Graph 

# Title: Wd Top Block 

# Generated: Wed Dec  4 15:37:30 2019 

################################################## 

 

if __name__ == '__main__': 

    import ctypes 

    import sys 

    if sys.platform.startswith('linux'): 

        try: 

            x11 = ctypes.cdll.LoadLibrary('libX11.so') 

            x11.XInitThreads() 

        except: 

            print "Warning: failed to XInitThreads()" 

 

from PyQt4 import Qt 

from gnuradio import analog 

from gnuradio import digital 

from gnuradio import eng_notation 

from gnuradio import gr 

from gnuradio import qtgui 

from gnuradio import uhd 

from gnuradio.eng_option import eng_option 

from gnuradio.filter import firdes 

from grc_gnuradio import blks2 as grc_blks2 

from optparse import OptionParser 

import sip 

import sys 

import time 

from gnuradio import qtgui 

 

 

class wd_top_block(gr.top_block, Qt.QWidget): 

 

    def __init__(self): 

        gr.top_block.__init__(self, "Wd Top Block") 

        Qt.QWidget.__init__(self) 

        self.setWindowTitle("Wd Top Block") 

        qtgui.util.check_set_qss() 

        try: 

            self.setWindowIcon(Qt.QIcon.fromTheme('gnuradio-grc')) 

        except: 

            pass 

        self.top_scroll_layout = Qt.QVBoxLayout() 

        self.setLayout(self.top_scroll_layout) 

        self.top_scroll = Qt.QScrollArea() 

        self.top_scroll.setFrameStyle(Qt.QFrame.NoFrame) 

        self.top_scroll_layout.addWidget(self.top_scroll) 
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        self.top_scroll.setWidgetResizable(True) 

        self.top_widget = Qt.QWidget() 

        self.top_scroll.setWidget(self.top_widget) 

        self.top_layout = Qt.QVBoxLayout(self.top_widget) 

        self.top_grid_layout = Qt.QGridLayout() 

        self.top_layout.addLayout(self.top_grid_layout) 

 

        self.settings = Qt.QSettings("GNU Radio", "wd_top_block") 

        

self.restoreGeometry(self.settings.value("geometry").toByteArray()) 

 

 

        ################################################## 

        # Variables 

        ################################################## 

        self.samp_rate = samp_rate = 20e6 

 

        ################################################## 

        # Blocks 

        ################################################## 

        self.uhd_usrp_sink_0 = uhd.usrp_sink( 

         ",".join(("addr=192.168.50.2", "")), 

         uhd.stream_args( 

          cpu_format="fc32", 

          channels=range(1), 

         ), 

        ) 

        self.uhd_usrp_sink_0.set_samp_rate(samp_rate) 

        self.uhd_usrp_sink_0.set_center_freq(2.56e9, 0) 

        self.uhd_usrp_sink_0.set_gain(28, 0) 

        self.qtgui_freq_sink_x_0 = qtgui.freq_sink_c( 

         1024, #size 

         firdes.WIN_RECTANGULAR, #wintype 

         0, #fc 

         samp_rate, #bw 

         "Partial Band Jammer", #name 

         1 #number of inputs 

        ) 

        self.qtgui_freq_sink_x_0.set_update_time(0.10) 

        self.qtgui_freq_sink_x_0.set_y_axis(-140, 10) 

        self.qtgui_freq_sink_x_0.set_y_label('Relative Gain', 'dB') 

        self.qtgui_freq_sink_x_0.set_trigger_mode(qtgui.TRIG_MODE_FREE, 

0.0, 0, "") 

        self.qtgui_freq_sink_x_0.enable_autoscale(False) 

        self.qtgui_freq_sink_x_0.enable_grid(False) 

        self.qtgui_freq_sink_x_0.set_fft_average(0.05) 

        self.qtgui_freq_sink_x_0.enable_axis_labels(True) 

        self.qtgui_freq_sink_x_0.enable_control_panel(False) 

 

        if not True: 

          self.qtgui_freq_sink_x_0.disable_legend() 

 

        if "complex" == "float" or "complex" == "msg_float": 

          self.qtgui_freq_sink_x_0.set_plot_pos_half(not True) 
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        labels = ['', '', '', '', '', 

                  '', '', '', '', ''] 

        widths = [1, 1, 1, 1, 1, 

                  1, 1, 1, 1, 1] 

        colors = ["blue", "red", "green", "black", "cyan", 

                  "magenta", "yellow", "dark red", "dark green", "dark 

blue"] 

        alphas = [1.0, 1.0, 1.0, 1.0, 1.0, 

                  1.0, 1.0, 1.0, 1.0, 1.0] 

        for i in xrange(1): 

            if len(labels[i]) == 0: 

                self.qtgui_freq_sink_x_0.set_line_label(i, "Data 

{0}".format(i)) 

            else: 

                self.qtgui_freq_sink_x_0.set_line_label(i, labels[i]) 

            self.qtgui_freq_sink_x_0.set_line_width(i, widths[i]) 

            self.qtgui_freq_sink_x_0.set_line_color(i, colors[i]) 

            self.qtgui_freq_sink_x_0.set_line_alpha(i, alphas[i]) 

 

        self._qtgui_freq_sink_x_0_win = 

sip.wrapinstance(self.qtgui_freq_sink_x_0.pyqwidget(), Qt.QWidget) 

        self.top_grid_layout.addWidget(self._qtgui_freq_sink_x_0_win) 

        self.digital_ofdm_mod_0 = grc_blks2.packet_mod_c(digital.ofdm_mod( 

          options=grc_blks2.options( 

           modulation="qpsk", 

           fft_length=4096, 

           occupied_tones=90, 

           cp_length=128, 

           pad_for_usrp=True, 

           log=None, 

           verbose=None, 

          ), 

         ), 

         payload_length=16, 

        ) 

        self.analog_sig_source_x_0 = analog.sig_source_c(samp_rate, 

analog.GR_COS_WAVE, 1000, 1, 0) 

 

 

 

        ################################################## 

        # Connections 

        ################################################## 

        self.connect((self.analog_sig_source_x_0, 0), 

(self.digital_ofdm_mod_0, 0)) 

        self.connect((self.digital_ofdm_mod_0, 0), 

(self.qtgui_freq_sink_x_0, 0)) 

        self.connect((self.digital_ofdm_mod_0, 0), (self.uhd_usrp_sink_0, 

0)) 

 

    def closeEvent(self, event): 

        self.settings = Qt.QSettings("GNU Radio", "wd_top_block") 

        self.settings.setValue("geometry", self.saveGeometry()) 



 

 57 

        event.accept() 

 

    def get_samp_rate(self): 

        return self.samp_rate 

 

    def set_samp_rate(self, samp_rate): 

        self.samp_rate = samp_rate 

        self.uhd_usrp_sink_0.set_samp_rate(self.samp_rate) 

        self.qtgui_freq_sink_x_0.set_frequency_range(0, self.samp_rate) 

        self.analog_sig_source_x_0.set_sampling_freq(self.samp_rate) 

 

 

def main(top_block_cls=wd_top_block, options=None): 

 

    from distutils.version import StrictVersion 

    if StrictVersion(Qt.qVersion()) >= StrictVersion("4.5.0"): 

        style = gr.prefs().get_string('qtgui', 'style', 'raster') 

        Qt.QApplication.setGraphicsSystem(style) 

    qapp = Qt.QApplication(sys.argv) 

 

    tb = top_block_cls() 

    tb.start() 

    tb.show() 

 

    def quitting(): 

        tb.stop() 

        tb.wait() 

    qapp.connect(qapp, Qt.SIGNAL("aboutToQuit()"), quitting) 

    qapp.exec_() 

 

 

if __name__ == '__main__': 

    main()  
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