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Abstract

Virtual Reality is an immersive and powerful technology which is already changing computing, en-

tertainment, education, and social networking. Modern VR headsets are capable of comfortably

delivering high-resolution, high-framerate content and providing fully mobile motion tracking. Con-

sumer VR systems typically consist of a tracked headset and two tracked hand controllers. However,

the system format and technology implementation of commercial VR headsets introduce limitations

in the user experience. In this project, we identify three specific interaction limitations present in

modern VR and devise a hardware solution for each. The three issues we aim to improve are finger

presence, two-handed rigid virtual object interactions, and locomotion. The first interaction limi-

tation, finger presence, is the sense of movement control of the virtual hand’s fingers when in VR.

Another issue arises when interacting with rigid two-handed virtual objects, as the user is typically

using two separate controllers. The third limitation is in the ability to move large distances in virtual

environments while constrained to a real-world area. The result of this project is a modular and

wireless peripheral system that addresses each of the interaction limitations with a purpose-built

peripheral. Each peripheral uses a combination of capacitive touch surfaces and general purpose

inputs. The three peripherals we developed are the Multi-Digit Input Peripheral, the Hand Grip

Position Peripheral, and the Step Detection Peripheral.
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Chapter 1

Introduction

1.1 Virtual Reality

Modern Virtual Reality (VR) is an immersive technology that places users in a virtual environment.

VR can be used for games, immersive cinema, social platforms, education applications, prototyping

visualizations, and other applications. VR systems are currently implemented as head-mounted

displays, (HMDs) otherwise known as headsets, along with hand controllers. A VR system may

track the head, hand controllers, facial expressions, hand gestures, or eye movements [12]. Two

tracking configurations exist for tracking the headset and controllers. In an “outside-in” tracking

system, the sensors are static and observe the motion of mobile emitters. Similarly, in an “inside-

out” tracking system, the sensors are connected to the mobile system and the emitters are static

[28]. Besides the tracking configuration, another differentiating factor is the location of processing.

Standalone headsets refer to mobile headsets with on-board processing. One the other hand, tethered

headsets are better defined as display peripherals that connect to external processing such as a PC

or game console. High quality and immersive experiences can be built with current VR systems,

but technical and interaction based issues still arise.

1.2 Interaction Limitations in VR

The system format of a headset and two hand controllers introduces limitations in the type of

interactions a user may have in a virtual environment. This project identifies three specific user-

facing limitations that may be immersion-breaking or discomforting. The first is the ability to show

a representation of the user’s finger movement in VR. This is otherwise known as finger presence,

which can increase the immersion of the user and their acceptance of the virtual hands. Within VR,

users are not able to fully interact with the environment due to the lack of finger presence provided

by VR controllers, limiting common forms of real-world interactions, such as hand gestures and

object manipulation. Several methods of VR finger tracking are optical, mechanical, magnetic, and

capacitive. Products such as the Valve Index controllers, Leap Motion controller, and the Oculus

Touch controllers use one of these methods. Each implementation has limitations in tracking ability,
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the number of fingers tracked, and cost.

The second interaction limitation of VR arises with virtual two-handed objects. Like the real-

world, virtual objects consist of different size, texture, and shape. VR systems typically use two

separate tracked controllers, which makes interacting with a virtual object with two hands non-

trivial. Handling all these different objects with only two controllers makes the interaction with

most objects less immersive and affects the user interaction with the virtual environment. Common

software solutions are to use a distance threshold from the initial grab points or to not allow objects

to be grasped with both hands. The distance threshold method can work, but the hands naturally

separate during movement and can create the sensation of puppeting the object, as the user’s hands

are no longer in the same place as the virtual hands.

The third interaction limitation deals with locomotion, where movement within the virtual

environment is not initiated by the user’s real-world movement. Due to the VR system’s limited

hardware, the lower part of the human body is not tracked and the user is constrained within a setup

area and a maximum distance for tracking. Any action involving this area of the human body is

ignored in VR, resulting in a complex task of simulating any form of movement involving the lower

half of the body, such as walking. There are two types of solutions to this limitation. The first set

of solutions involves software such as teleportation, smooth movement, and climbing, which leads

disorientation and motion sickness. The second solution is hardware, such as the VR treadmills and

cybershoes, but they are not affordable for the average consumer and do not accurately represent a

user’s real-world movement in VR.

1.3 Proposed Solutions

We developed three peripherals to address the identified interaction limitations of the existing VR

systems.

• The first peripheral is the Multi-Digit Input Peripheral (MDIP). The MDIP includes a 3D

printed cup attached to the Oculus Touch Controller and a cord that straps around the user’s

hand when in use. It integrates three additional capacitive touch sensors to detect the presence

of the user’s remaining three fingers, middle, ring, and pinky finger.

• The second peripheral is the Hand Grip Position Peripheral (HGPP). This peripheral is

composed of various 3D printed segments and a PCB integrated with an array of capacitive

touch sensors to simulate the user’s manipulation of two-handed rigid virtual objects. Through

discrete reading, the array of capacitive touch sensors is able to detect and estimate both of

the user’s hands along the peripheral.

• The third peripheral is the Step Detection Peripheral (SDP). The SDP consists of a 3D printed

base, a force sensor, and a strap that goes around the user’s foot. The force sensor is sewed

into the strap and hidden with an extra layer of elastic band to cover it. It is used as a button

input to detect the user’s steps in the real-world environment to simulate walking in the virtual

environment.
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Chapter 2

Background

2.1 Modern Virtual Reality

Virtual Reality (VR) technology aims to provide the user with a designed experience through ar-

tificial sensory stimulation. These experiences may be games, immersive cinema, social platforms,

education applications, or prototyping visualizations. A common form of VR is the head-mounted

display (HMD), made possible by the recent advances in technology such as microprocessors, dis-

plays, and sensors. A VR system consists of input, output, and computation. The outputs are

typically a display and an audio source such as headphones, while the inputs are the position and

orientation of the user [12]. A VR system is comprised of a tracked headset and tracked controllers.

The location of processing divides VR headsets into two main categories, PC VR and standalone

VR. Devices such as the Oculus Rift S, Valve Index, Pimax headsets, Windows Mixed Reality, and

Playstation VR can be considered display peripherals driven by a PC or game console through a

wired or wireless connection. Standalone VR headsets do not require external processing and house

the entire system in the headset. This began with smartphone-based VR headsets such as the Google

Daydream and Samsung Gear VR, which are limited in tracking, computation, and thermal aspects.

A standalone device that overcomes these limitations is the Oculus Quest, displayed in Figure 2.1.

The Oculus Quest is the most recent headset from the company, Oculus, founded by Palmer

Luckey in 2012. From the launch of a development kit Kickstarter to an acquisition by Facebook,

Oculus is credited with reviving VR in modern times [12]. After introducing two development kit

headsets, Oculus released its first consumer PC VR headset, the Oculus Rift. One of Oculus’s

most recent products, the Oculus Quest has the same tracking capabilities as its PC VR equivalent,

the Oculus Rift S, but does not require a PC to operate. However, at Oculus Connect 6, Oculus

introduced a feature called Link, which allows the Quest to act as a PC VR headset through an

USB 3 cable [16]. Link transforms the Quest into a powerful hybrid headset able to run applications

natively or stream content rendered on a PC.

3



Figure 2.1: The Oculus Quest VR headset and controllers [15]

2.1.1 Tracking Methods

When a user of a VR system moves in the real world, the system must output the result of this

movement in the virtual image and do so with minimal latency. The movement may be looking

around a virtual environment, crouching, leaning, walking, or reaching out towards an object, all

of which are a change in position and orientation of the headset or hand controllers. This requires

the VR system to measure the movements of the user. A VR system may track the head, hand

controllers, facial expressions, hand gestures, or eye movements [12]. There also exist solutions for

tracking the entire body, such as the VIVE Trackers or the TESLASUIT. These however are beyond

the normal consumer use case for VR, in which a system will usually have a headset and two hand

controllers.

Tracking technologies for human motion tracking may be mechanical, magnetic, optical, acoustic,

or inertial [28]. Another differentiating factor is the configuration of the sensors and emitters. In

an “outside-in” tracking system, the sensors are static and observe the motion of mobile emitters.

Similarly, in an “inside-out” tracking system, the sensors are connected to the mobile system and

the emitters are static [28]. In the case of the “inside-out” configuration, the emitters may be

recognizable static features in the world. The two tracking configurations are shown in Figure 2.2
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Figure 2.2: Motion tracking configurations

A tracking system for VR typically uses an inertial measurement unit (IMU) in combination

with other optical components such as cameras. These components have become affordable and

small, as they have been optimized by the smartphone industry. The IMU is used for accurate and

highly sampled orientation tracking but cannot measure position alone due to a high drift error rate

[12]. To accurately track the position and orientation of an object, another tracking system must

supplement the IMU data. In the case of systems such as the Oculus Quest, Oculus Rift S, Valve

Index, and HTC Cosmos, the supplementary tracking system uses optical elements such as cameras,

lasers, or photodiodes.

For example, the Valve Index Base Stations use IR lasers that rotate at 100Hz to track photodi-

odes on the headset and controllers [27]. The current Oculus products, the Rift S and the Quest, use

Oculus Insight for headset and controller tracking. A headset with Oculus Insight uses 4 or more

ultra-wide-angle cameras and computer vision algorithms for tracking [15]. Oculus Insight computes

a 3D map of the user’s surroundings in real-time and uses simultaneous localization and mapping

(SLAM) algorithms for tracking [6]. A visualization of the feature identification used to create the

3D map is illustrated in a visualization in Figure 2.3. The cameras on the headset optically track

the controllers as well, which are constellation-based controllers [13]. That is, an array of active IR

LEDs is placed within the tracked device behind IR sensitive plastic [12]. A visualization of the

constellation-based controller tracking is shown in Figure 2.4.
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Figure 2.3: Oculus Insight headset tracking visualization [6]

Figure 2.4: Oculus Insight controller tracking visualization [6]

2.2 Interaction Limitations

Virtual Reality is a relatively new technology. Although it is convincing enough to human sight and

hearing, it has limitations that affect immersiveness and interaction. There are several companies

developing new technologies that address interaction issues in VR. The following sections present

relevant info regarding the particular interaction limitations addressed by this project, followed by

the evaluations of current technologies and solutions that aim to solve these issues.

2.2.1 Finger Presence

For various games and social VR applications, the control of hands and fingers and the presence of

haptics are important to interact with the virtual environment. Within VR, users are not able to

fully interact with the environment due to the lack of finger presence provided by VR controllers.

The absence of finger presence limits the use of hand gestures and manipulation of virtual objects.

This is a problem in the user’s immersiveness in VR since it is an important part of daily human

interaction. There are several solutions to this problem, such as the optical finger tracking solution

in the Leap Motion and the Oculus Quest, the magnetic solution presented by the HaptX glove, the
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mechanical solution shown in the Dexmo and the Wolverine, and the capacitive touch solution in

the Oculus Touch and the Valve Index Controllers.

The Leap Motion is a device that uses optical tracking to capture the movements of hands and

small objects. An example of its use is shown in Figure 2.5 where the Leap motion tracks the

movement of a hand. The Leap Motion contains three infrared (IR) light emitters and two IR

stereo cameras. The IR emitters from the Leap Motion flood the scene with IR lights [22]. The

device reads the data and sends it to the Leap Motion tracking software through USB. Since the

Leap Motion tracks infrared lights, it produces grayscale images of the light intensities, shown in

Figure 2.6. Then, a software in the computer, Leap Motion Service, processes these images, analyzes

the images, and reconstructs a 3D representation of the scene [2]. The tracking layer extracts the

tracking information, containing palm and finger position, direction, and velocity [22]. The tracking

algorithm interprets the data and infers the position of the objects shown on the scene [2]. The

detection accuracy of the Leap Motion is about 200µm, but with occlusion, the tracking data quality

is affected [22]. Occlusion is the most severe issue with optical tracking methods, as the fingers are

often occluded by the hands and the hands may be blocked by other objects in the environment.

Figure 2.5: Leap Motion connected to a computer and tracking hand [22]

Figure 2.6: The Leap Motion produces grayscale images due to infrared tracking [2]

One of the latest updates released by Oculus on the Oculus Quest is the optical finger tracking

released in December 2019. This update allows the Oculus Quest to track the position of the user’s

hands and fingers without the need for outside external sensors or cameras and tracked controllers.

The hand-tracking system uses deep learning and model-based tracking to understand the position

of the user’s hands and fingers by using the monochrome cameras integrated within the Oculus

Quest, shown in Figure 2.7. This system uses deep neural networks to predict the position of the
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user’s hands and joints to reconstruct a 26 degree-of-freedom pose of the user’s hands and fingers

[8]. An example of the reconstruction of the user’s hand model is shown in Figure 2.8.

Figure 2.7: The Oculus optical finger tracking uses the headset’s cameras to track the user’s hands
and fingers [8]

Figure 2.8: The user’s hands and fingers are modeled by predicting the position of the user’s hands
and joints [8]

The HaptX glove is a device that provide precise haptic feedback and tracks finger movements

by using magnetic sensors. The HaptX glove presents a smart silicon-based textile and integrated

air channels that contain 130 pneumatic actuators throughout the entire glove to provide tactile

feedback on the user’s hand. It also contains an exoskeleton that provides resistive force feedback

up to four pounds of force to each finger. The HaptX glove can track 6 DOF through its integrated

motion capture that allows occlusion-free interaction [9]. An example of the HaptX glove can be

shown in Figure 2.9.
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Figure 2.9: The HaptX glove [9]

The Dexmo is a wireless mechanical exoskeleton that provides both force feedback and motion

capture. The most recent version of the Dexmo, shown in Figure 2.10, features servomotors that

allow variable force feedback, which is limited to one DOF per finger [19]. It contains two rotational

sensors that T the user’s hand movement to build a virtual hand model corresponding to the user’s

hand motion. This device imitates the sensation of touching objects by using mechanical brakes to

apply force to the user’s fingertips [20].

Figure 2.10: The Dexmo Gloves [21]

The Wolverine is an exoskeleton device that provides haptic feedback by simulating the grasp of

virtual rigid objects. Sensors are integrated within the device to provide feedback control and user

input by tracking the position of each finger and the overall orientation with an IMU. The Wolverine

generates force between the thumb and three fingers from the hand to simulate the handling of any

object. It uses a braked-based locking slider where the thumb is connected to the index, middle,

and ring fingers through connected rods [1]. Figure 2.11 provides an example where the Wolverine

is used to simulate the grasp of mug.
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Figure 2.11: The Wolverine simulates the grasping of a mug [1]

The Oculus Touch controllers are tracked controllers that contain capacitive sensors that can

detect the presence of the user’s fingers. The most recent version of the Oculus Touch controllers

used for the Oculus Quest and the Oculus Rift S, shown in Figure 2.12. Each controller includes

an analog stick, a trigger for the index finger, a trigger for the middle finger, and two face buttons.

The Oculus Touch controllers contain capacitive sensor in all its inputs except for the trigger for the

middle finger. In other words, the Oculus Touch controller is only capable of detecting the presence

of the thumb and the index finger of the user. An array of active IR LEDs is placed within the

controllers to track its position [12].

Figure 2.12: The Oculus Quest/Rift S controllers [15]

The Valve Index controllers use the same capacitive sensor solution as the Oculus Touch con-

trollers. Unlike the Oculus Touch Controllers, the Valve Index Controllers contain capacitive sensors

to detect the presence of all the user’s fingers, which includes the pinky, ring, and middle fingers.

A significant difference between the Oculus Touch and Valve Index controllers is that the Oculus

Touch controllers uses the trigger for the middle finger to grab objects in VR, whereas the user can

grab the objects with the Valve Index controllers by squeezing the grip. Figure 2.13 shows the Valve

Index controllers.
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Figure 2.13: The Valve Index controllers [24]

2.2.2 Two-Handed Rigid Virtual Object Interactions

One of the most important aspects of user interaction within the virtual world is the manipulation

and handling of virtual objects. Objects consist of different size, texture, and shape. Handling

all these different objects with only two controllers makes the interaction with most objects less

immersive and affects the user interaction with the virtual environment. This problem is most

common in two-handed objects where people use both hands to interact with it. There have been

a few solutions to deal with this problem. These solutions include software solutions, such as using

one or two hands to handle virtual objects, and hardware solutions, such as the Haptics Link and

the Dragon:on VR Controller.

A software solution to this problem includes the use of one hand to handle two-handed rigid

virtual objects. By using only one hand, this would require the user to handle all objects with

only one hand, being an easy and simple solution. If the user would use both hands to handle a

two-handed rigid object, the object would only be attached on one hand under any circumstances.

The second software solution to deal with two-handed rigid virtual objects is using both hands. This

involves the use of a distance threshold relative to a point within the virtual object. The user would

only be able to handle an object with both hands if both hands are within a distance between each

other. If the distance between both hands is past the threshold, the object would be attached to

only one hand instead of both. An example of this software solution can be shown in Figure 2.14,

where a player within the game Echo VR is only able to handle an object with two hands if both

hands are within a distance between each other. As one hand moves farther apart from the other

hand, the object is affixed to only one hand.
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Figure 2.14: An example of virtual two-handed object interaction in Echo VR

One of the hardware solutions to deal with two-handed rigid objects is presented by the device

Haptic Links. Haptic Links is a device that is electro-mechanically actuated by using physical

connections between two controllers to simulate the stiffness and shape of different virtual objects

and interactions. It locks both controllers depending on the configuration, constrain certain DOF or

motion, and dynamically set the stiffness of the device. The type of configurations includes: Chain,

Layer-Hinge, and Ratchet-Hinge. The Chain configuration uses an articulated chain composed of

ball-and-socket elements with a cable along the length the of the chain and attached to a linear

actuator on each end, extending or retracting the cable to increase or decrease the friction at each

joint [23]. Figure 2.15 displays the elements that compose the Chain configuration. The Layer-Hinge

configuration uses ball joints and hinge connected by rods to control the distance and rotation of

both controllers. The hinge consists of a series of layers that are compressed by a bolt threaded

through the layers to increase the friction of the hinge. This configuration has three distinct points

of actuation that can lock a particular DOF based on the motion of the controllers [23]. Figure 2.16

displays the organization of each component that form the Layer-Hinge configuration. The Ratchet-

Hinge configuration consists of ball joints and a dual-ratchet mechanism that contains two pawls

set against a central gear at opposite angles. The Ratchet-Hinge configuration allows force-feedback

configurations, but unlike the Layer-Hinge configuration, it provides no stiffness capability between

the controllers [23]. Figure 2.17 provides a layout of the Ratchet Hinge configuration.

Another hardware solution is the Drag:on VR Controller. The Drag:on VR controller is a device

that uses a dual folding fan-like system that outputs different configurations based on the surface
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Figure 2.15: The chain config-
uration [23]

Figure 2.16: The layer-hinge
configuration [23]

Figure 2.17: The ratchet-
hinge configuration [23]

area adjusted by each fan providing a dynamic passive haptic feedback based on air resistance

and weight shift [29]. It provides different levels of haptic feedback based on the change in drag

and rotational inertia provided by the controller [29]. Figure 2.18 shows the different configuration

outputs of the Drag:on VR controller.

Figure 2.18: Different Output Configurations of the Drag:on VR controller [29]

2.2.3 Locomotion

In the VR industry locomotion is defined as “Acceleration, rotation, or movement not initiated by

real-world movement of a user” [14]. Users of VR are limited by the dimensions of the setup area

and the maximum distance for tracking. The maximum tracking distance is especially important for

headsets that require external sensors or emitters, such as the Valve Index. The Valve Index Base

Station 2.0 tracking devices can track within a 10 square meter area when using 4 Base Stations

[27]. The limitations in physical and tracking area dimensions means that VR applications must

implement a form of locomotion to move through a vast virtual environment. Locomotion methods

can be differentiated by their use of external hardware.

Locomotion methods that use only the data from the headset and controllers are the most com-

mon form of locomotion. Some forms of locomotion are teleportation, smooth movement, climbing,

and jogging on the spot [14]. Teleportation is a comfortable movement method in which the user
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indicates a location with a visual marker and teleports to that destination. Teleportation avoids

motion sickness inducing acceleration, but significant distance changes may be disorienting [18]. Tele-

portation also has the downside of not feeling like realistic and immersive movement [14]. Smooth

movement is another common form of locomotion in which the user provides a speed input from the

controllers and moves in the direction of either the headset facing direction or hand facing direction.

Although more immersive, the smooth camera movement creates a disconnect between the visual

and vestibular system, potentially inducing motion sickness. Climbing or grabbing the world is a

situation specific method that is immersive and natural feeling but is not a general solution for

moving around a virtual world [14]. Jogging in place involves physical movement to convince the

vestibular system that actual walking is taking place through the small accelerations of the head

while walking or jogging in place. The direction of movement is determined from a joystick or similar

input of the controllers [14]. Another method of moving in VR is room-scale movement. Although

technically not considered locomotion, room-scale movement is the lack of locomotion, in which the

user physically walks in the play area. This is the most immersive but distance limited form of

movement in VR [14]. Additional solutions to VR locomotion involve external hardware other than

the headset and controllers. The Cybershoes are mobile treadmill devices worn on the feet. Each

device has a roller for measuring foot movement on the ground and an IMU for estimating foot

orientation. The user must sit down on a swivel stool and use an appropriate carpet underneath the

stool [3]. A user wearing the Cybershoes in a VR game can be seen in Figure 2.19.

Figure 2.19: VR users wearing the Cybershoes [4]

Another class of VR movement devices is treadmills, which are either active or passive. Passive

VR treadmills have curved, low friction surfaces for walking and a harness to hold the user upright.

Such devices are the KAT Walk and the Virtuix Omni, as shown in Figure 2.20. Active VR treadmills

are those that counter user motion with a moving platform. The Infinadeck is an omnidirectional

treadmill that does not require a harness and allows for a natural walking movement [10]. A user

on the Infinadeck can be seen in Figure X. Note that VR treadmills, whether active or passive, are

marketed towards the enterprises and are out of reach of the average consumer in terms of size and

cost.
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Figure 2.20: The KAT Walk (left) [11], Virtuix Omni (middle) [17], and Infinadeck (right) [10]

15



Chapter 3

Technical Design

To solve interaction limitations with current VR external hardware devices are needed to augment

the capabilities of the VR system. In this chapter we detail our solution, a wireless and modu-

lar peripheral system that connects to the Oculus Quest VR headset. We targeted three specific

interaction problems to address, which are finger presence, two-handed object manipulation, and

locomotion. The peripherals may be rigidly connected to the controllers for tracking and each use a

main module for computation and communication. Each peripheral uses the same sensing technolo-

gies which are capacitive touch and button-like inputs. The input types are used in various ways

and customized for each application. We use the Unity game engine to develop demo applications

for each peripheral.

3.1 Core Module

The core module houses the power, sensing, and communications for each peripheral. Adhering

to the design paradigm of modularity, the core module is reused for each peripheral. Most of the

peripherals require left and right versions, so two identical core modules are used in each peripheral.

A modular system is advantageous because the same core module and sensing capabilities can be

reused by peripherals that solve many different interaction issues. This also opens up the possibility

for user-created peripherals.
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Figure 3.1: System level diagram of the core module

The system level of the core module is displayed in Figure 3.1. Its schematic can been in

Appendix A. Starting with the power system, each module is powered by a small 400mAh lithium

ion polymer battery which is regulated down to 3.3V for the ESP32 module and other components.

For processing and BLE communications we use the ESP32-WROOM-32D module from Espressif

Systems, detailed in Figure 3.2.

Figure 3.2: ESP32 functional block diagram [5]

The ESP32 module is also responsible for configuring and reading data from the capacitive touch

IC. The core module supports up to eight capacitive touch inputs and two general purpose inputs

(GPI). These inputs as well as a debug port are routed through the peripheral connector. The

peripheral connector is the standard connection to each peripheral, though each peripheral may not

use all of the inputs. Using Autodesk Eagle, a PCB layout design tool, we prototyped the board

for the core module and arrived at the device in Figure 3.3. The board is a small 66 by 24 mm

two-layer board manufactured at Oshpark. It features a USB micro-b connector for charging and a
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series of pin headers for the peripheral connector. The peripherals themselves feature a small pcb

and female pin header connector, shown in Figure X, in which each core module attaches to. The

connector PCB has pads exposed for the electrode and button wires on the bottom. Depending on

the peripheral, the pads may not be used, which allows for multiple peripherals to use the same

connector but for customized input types.

Figure 3.3: The core modules shown in housing cases

3.1.1 Software Implementation

We developed an embedded BLE application on the ESP32 with the ESP-IDF from Espressif Sys-

tems. The ESP32 uses FreeRTOS, a popular and open source real-time operating system for mi-

crocontrollers that is distributed under the MIT license [7]. The application configures the module

as an HID gamepad. Using HID for the core module allows it to be easily recognizable as an input

device and does not require any BLE specific custom application on the Oculus Quest. Since the

Oculus Quest runs Android, HID gamepads, keyboards, and mouses are natively supported. The

final version of the core module has 10 inputs, specifically 8 capacitive touch inputs and 2 buttons.

Earlier versions of the core module board supported 20 inputs broken down into 16 capacitive touch

inputs and 4 buttons inputs. When developing peripherals with the 20 input core module, the la-

tency of the inputs was noticeable relative to the native Touch controller inputs. However, the final

core module with only 10 inputs does not exhibit noticeable latency. In HID, the report descriptor

describes to the host the type of input device, type of inputs, and number of inputs. For the core

module we designed the report descriptor in Figure 3.4.
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1 static const uint8_t hidReportMap [] = {

2 0x05 , 0x01 , // Usage Page (Generic Desktop)

3 0x09 , 0x05 , // Usage (Gamepad)

4 0xA1 , 0x01 , // Collection (Application)

5 0x85 , 0x01 , // Report Id (1)

6 0xA1 , 0x00 , // Collection (Physical)

7

8 0x05 , 0x09 , // Usage Page (Buttons)

9 0x19 , 0x01 , // Usage Minimum (01) - Button 1

10 0x29 , 0x02 , // Usage Maximum (2) - Button 2

11 0x15 , 0x00 , // Logical Minimum (0)

12 0x25 , 0x01 , // Logical Maximum (1)

13 0x95 , 0x02 , // Report Count (2)

14 0x75 , 0x01 , // Report Size (1)

15 0x81 , 0x02 , // Input (Data , Variable , Absolute) - Button states

16

17 0x75 , 0x06 , // Report Size (6)

18 0x95 , 0x01 , // Report Count (1)

19 0x81 , 0x01 , // Input (Constant) - Padding or Reserved bits

20

21 0x05 , 0x09 , // Usage Page (Buttons)

22 0x19 , 0x01 , // Usage Minimum (01) - Button 1

23 0x29 , 0x08 , // Usage Maximum (8) - Button 8

24 0x15 , 0x00 , // Logical Minimum (0)

25 0x25 , 0x01 , // Logical Maximum (1)

26 0x95 , 0x08 , // Report Count (8)

27 0x75 , 0x01 , // Report Size (1)

28 0x81 , 0x02 , // Input (Data , Variable , Absolute) - Button states

29 0xC0 , // End Collection

30 0xC0 , // End Collection

31 };

Figure 3.4: Core Module HID Report Descriptor

This report descriptor sets the usage of the ESP32 as a gamepad, meaning any connecting device

will use it as an gamepad input device. The series of lines from 8-15 detail the two button inputs as

one bit each, followed by six bits of padding in lines 17-19. Lines 21-28 describe the eight capacitive

touch inputs as buttons, due to the binary nature of touched/not touch. Once again, each HID

button is a single bit, so the eight capacitive touch inputs are defined as a full byte. Once this

report descriptor is known to the host device, it can interpret the reports sent by the input device.

The core module sends the sensor and button data to the Oculus Quest through HID reports.

This process happens mainly between two FreeRTOS tasks. Task1 is responsible for reading the

state of the two buttons on the GPI pins and reading the AT42QT touch sensing IC through I2C.

Once both input types are read, the data is place appropriately into a 16-bit unsigned integer and

put on a FreeRTOS queue. Task2 then reads from the queue and if any of the 10 inputs changed

state, Task2 sends an HID report. This process can be seen in Figure 3.5.
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Figure 3.5: Core module task flowchart

Once the Oculus Quest receives an input report, the Unity application maps these inputs to a

virtual joystick. Each core module is mapped to a joystick in the order in which Unity first received

input. For example, if core module 2 sends input to the Unity application before core module 1, core

module 2 will be mapped to joystick 0. It is then necessary to devise a way to order the core modules

so that input from a specific device may be checked. The ordering of core module to peripheral to

joystick is solved by connecting the core modules to certain peripherals by convention. For example,

if a peripheral has a left and right version, core module 1 is connected to the left and core module 2

is connected to the right. Then by using the method from the Unity Input API, GetJoystickNames,

which returns an array of the device names in the order of the joystick assignment, the full input

mapping is complete [25]. Once the device assignment is known, we use it in the input manager

layer, another layer of virtual inputs we built that combines a mapping of the inputs from the core

modules and the Touch controllers. Applications are then able to use the input manager to check

sensor states.

3.2 Multi-Digit Input Peripheral

A common limitation in VR is finger presence due to the tracking absence of all the fingers within

the VR system. This limits the user’s interaction with the virtual environment by limiting common

forms of human interaction such as hand gestures. The Multi-Digit Input Peripheral (MDIP) solves

this issue. It extends the user’s finger presence in VR by adding three capacitive touch sensors in

addition to the sensors present in the Oculus Touch controller. The sensors in the buttons and the

index trigger of each Oculus Touch controller only read the user’s thumb and index finger. The

MDIP allows additional discrete finger input for the user by reading the three remaining fingers,
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middle, ring, and pinky finger. Unlike the Oculus Optical Finger Tracking, the MDIP keeps the

presence of both Oculus Touch controllers’ inputs for the user. This extends the input capabilities

the user can use within the VR system.

3.2.1 MDIP Hardware Implementation

The system level for the MDIP is shown in Figure 3.6. The MDIP receives input from three electrodes

attached to the peripheral by sensing the user’s finger placement, middle, ring, or pinky finger, on

each sensor. The electrodes act as capacitive touch sensors for the MDIP. Each of these are made

up of copper covered with polyamide tape to prevent the copper from oxidizing. The input received

from each capacitor is read by the core module. Based on the input received by the electrodes, the

core module calculates the state of each finger, opened or closed, based on the previous state of

each corresponding finger. This data is then outputted to the Unity application through HID over

BLE. Along with the data obtained from the sensors in the Oculus Touch controller, within Unity,

each finger input from the MDIP and the Oculus Touch controller is mapped to the Oculus Quest’s

inputs through the input manager. By mapping these inputs, we are able to move each finger of the

hand model representation made in Unity based on the discrete readings received by the MDIP and

the Oculus Touch controller of each of the user’s fingers.

Figure 3.6: System level diagram of the Multi-Digit Input Peripheral
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Figure 3.7: Multi-Digit Input Peripheral attached to the Oculus Touch Controllers

The hardware for the MDIP is shown in Figure 3.7. The MDIP consists of a 3D printed sleeve,

three electrodes, and a cord. By using Autodesk Fusion 360, we designed and modeled a tight fit

sleeve for each Oculus Touch controller. The MDIP sleeve serves as the base for the Oculus Touch

controller and it is where the other components of the MDIP and the peripheral connector are

attached to. It keeps the shape of the Oculus Touch controller’s handle. The three electrodes that

work as capacitive touch sensors for the MDIP are embedded through a small gap at the front of the

3D printed sleeve. The length and width of each electrode is 10mm and 5mm, respectively. Each

one is covered with polyamide tape to prevent the copper from oxidizing. To hide the electrodes

from the user’s sight, we covered the electrodes with white adhesive vinyl. Since the electrodes are

also accessible within the sleeve, each electrode is soldered and wired within the peripheral to the

peripheral connector, which is attached at the base of the sleeve. Additionally, each Oculus Touch

controller contains a cord that runs from a hole at the base of the MDIP sleeve to and round the

ring of the controller and back to a second hole at the base of the sleeve. This allows the user to

safely keep both controllers on each hand, including when all the user’s fingers are fully extended or

open.

3.2.2 MDIP Unity Application

We created a demo application in Unity to test the functionality of the MDIP and represent the

user’s finger placement on the device within the virtual environment, displayed in Figure 3.9. Within

the MDIP demo, the input states of each finger is read in each frame from a boolean array where

the state of each finger is represented as either true or false, opened or closed. During each frame,

the code checks if a finger has changed its state by comparing its current state with its previous

state. For any input that has changed its state, a coroutine for the finger movement animation in

the correct direction is executed to rotate each finger individually. This process is shown in Figure

3.8. The complete Unity script for MDIP demo application can be seen in Appendix B.1.
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1 // Update is called once per frame

2 void Update ()

3 {

4 // read all input states

5 read_inputs(ref finger_states);

6 for (int i=0; i<10; i++)

7 {

8 if (finger_states[i] != prev_finger_states[i] && !cr_running[i])

9 {

10 // Turn towards our target rotation.

11 float dir = finger_states[i] ? -1f : 1f;

12 StartCoroutine(AnimateFinger(dir , i));

13 prev_finger_states[i] = finger_states[i];

14 }

15 }

16 }

Figure 3.8: Update function for MDIP application

Within the coroutine, the overall rotation of each finger is divided into three separate rotations

corresponding to the three joints of each finger. During the coroutine, each individual joint is rotated

by a certain angle and speed for each frame until it reaches a predefined target rotation. The overall

rotation of a finger is completed after all the joints of the finger reach its target rotation, the joint

located in the knuckle being the last one.

Figure 3.9: User with the MDIP (left) and the demo representing the user’s finger placement (right)

3.3 Hand Grip Position Peripheral

Virtual Reality applications typically involve manipulating virtual objects with the hands. Objects

held with one hand work well, but two-handed virtual object interaction is non-trivial due to the

user’s hands holding two separate controllers. Developers make a design choice to either not allow

objects to be held with more than one hand, or to set a distance threshold from the initial grab

points of a two-handed object. The former is not a common implementation, though it can be done
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with some success. The ideal solution in terms of immersion is to have the user grip a real world

two-handed object and see a virtual object in VR, which is what the Hand Grip Position Peripheral

(HGPP) achieves. The HGPP is cylindrical handle object with a Touch controller mounted to it

for motion tracking. The HGPP then detects the number of and position of the hands along the

sensing area. With this, the device is capable of providing a rigid object to grasp with a visual

representation of the grip position. The HGPP is designed to be a generic controller for a variety of

virtual two-handed objects such as a sword or tennis racket.

3.3.1 HGPP Hardware Implementation

On a system level, the HGPP uses the 8 capacitive touch inputs from two core modules, for a total

of 16 touch sensors, as shown in Figure 3.10. It also has two buttons for general input, though the

Unity application we developed does not use the buttons. The 16 touch sensors form a large touch

sensitive area on the handle to sense the hand grip position. The core modules send the touch sensor

data to the Unity application where they are mapped and processed to determine the grip positions.

Figure 3.10: System level diagram of the Grip Position Peripheral

The HGPP, shown in Figure 3.11 is built upon a 300mm long piece of extruded aluminum.

We designed a stacking sleeve system to hold the sensor array PCB and conceal wires. The ends

of the aluminum are capped with 3D printed mounts for the core modules and Touch controller.

One core module is placed at the top of peripheral close to the Touch controller, with the second

mounted to the bottom of the peripheral. Note that the Touch controller is only used for tracking

and haptic vibration feedback in this peripheral. The Touch controller sits in a cup and is secured
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Figure 3.11: The HGPP design (left), and completed version (right)

down with hook and loop fastener strips. The two buttons are located at the top of the peripheral

below the core module mount and are accessible by the thumb when the hand is at the top of the

sensor array. As in all of the peripherals, the core modules are secured by thumb screws, which is

especially important for this peripheral since the peripheral connectors may be subject to relatively

large forces. The PCB was designed in Autodesk Eagle and cut at WPI’s Foisie Innovation Studio

Prototyping Lab. It is a single sided PCB with 16, copper pads that serve as the touch sensors. The

PCB is covered with polyamide tape to protect the exposed copper.

3.3.2 HGPP Unity Application

We developed a demo application on the Oculus Quest to show a potential use case for the HGPP.

The demo shows the peripheral as a two-handed sword, displays the user’s current grip position, and

produces acceleration-based haptic feedback. As shown in Figure 3.10, the application first receives

input from the device and sends it through the input manager code. The input manager creates

another layer of virtual input mappings for the core modules. After the inputs have been mapped,

the position of the user’s hands is estimated. First, the data from the capacitive touch inputs are

stored in an array, with 0 being not touch and 1 being touched. With this format, a hand gripping

near the middle of the device may look like the following.

[0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0]

To recognize groups of ones and determine the centers of the groups, 1D convolution is performed

on the array. Note that the array is padded to 18 elements for convolution. Convolving this example

array with a filter of [1, 1, 1] yields the following.

[0, 0, 0, 0, 0, 1, 2, 3, 3, 3, 2, 1, 0, 0, 0, 0, 0, 0]

Consecutive threes in the array are matches for the filter of [1, 1, 1] and denote areas near the center

of the group. The filter was chosen as [1, 1, 1] through trial and error, as hand grip activations can

be groups of 3-7 elements. After convolution, the number of groups of threes and their lengths are
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determined. Doing so allows the system to differentiate between array states of one hand, two hands

separate, and two hands combined, as shown in Figure 3.12. The presence of two groups correlates

to two separate grips while one group may be one hand grip or two hands close together. In the case

of one group, a threshold of the group length determines the number of hands forming the group.

After the grip case has been determined, the position of the hands is calculated as the center of

the group, if applicable. Note that the position of the hands in the case of two hands combined is

calculated as 1/3 and 2/3 of the full length of the group.

Figure 3.12: Hand activation group cases

At this point, the system is aware of the number of hands on the device and where the hands

are placed, though the results can be noisy. The noise is reduced with a moving average filter with

samples N=5. The filter does introduce a slight latency but the response time of a change in hand

position is still acceptable. So far the system has read the sensor states, convolved the sensor data,

computed hand positions and updated the moving average. This occurs in lines 3 through 9 in the

frame update function shown in Figure 3.13. The last task is to display a meaningful representation

of the user’s hands along the virtual two-handed object. That is the purpose of lines 11-12 in Figure

3.13, which pass the hand positions to a vertex displacement shader. Appendix B.2 provides the

Unity script used to develop the HGPP demo application.
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1 void Update (){

2 // read sensors into an array

3 byte[] raw = GetRawSensors ();

4 // convolve the data to look for 111

5 byte[] feature_map = Convolve(raw);

6 // compute hand position(s) 0.01:0.99

7 Vector2 pos = GetPos(feature_map);

8 // update the moving average

9 UpdateMA(pos);

10 // show visual feedback of hand positions

11 hand1.GetComponent <Renderer >().material.SetFloat("_distance", pos.x);

12 hand2.GetComponent <Renderer >().material.SetFloat("_distance", pos.y);

13 }

14

Figure 3.13: Update function for HGPP application

Using Unity’s built-in visual shader programming tool, Shader Graph, we designed a shader that

moves a mesh along its local y-axis by some input distance. The shader also styles the mesh as a

transparent blue object for a ’hologram’ effect. The mesh in particalar is a symetric hand model,

since this peripheral cannot distinguish the left hand from the right hand. The vertex displacement

section of the shader is shown in Figure 3.14 where the input scalar dist is built into a vector3,

scaled by some distance, and the vertices are moved relative to object space.

Figure 3.14: Vertex displacement in Unity Shader Graph
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Figure 3.15: Hand grip visualization

The effect created from this can be seen in Figure 3.15, where the hand is shown gripping a

sword. In this visual, the dist parameter is defaulted to 0.5 and the effect of the vertex displacement

is shown by change in position from the objects local origin. Note that two hands are actually

displayed in the same place in Figure 3.15. For the demo application we mapped a two-handed

sword to the dimensions of the handle peripheral. The user is able to see a representation of their

hand positions as shown in Figure 3.16.

Figure 3.16: User with the HGPP (left) and the demo representing the user’s hand positions (right)

3.4 Step Detection Peripheral

The user’s real-world movement in VR is mainly limited due to the current hardware in the VR

system, a headset and two controllers. This leads to a tracking absence of the user’s lower half of the

body as well as a maximum tracking distance and a restricted setup area for the user. Any action
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involving this area of the human body is ignored in VR, resulting in a complex task of simulating any

form of movement involving the lower half of the body, such as walking. With all these constraints,

there are a few solutions to this problem, such as teleportation and smooth movement, but such

solutions also come with their own problems, disorientation and motion sickness. Due to these

problems, a better solution would be to develop a device that could track the user’s movement of

the lower part of the body within a restricted tracking area. In other words, the user would have

to move without displacing from its current position in the real world. Few solutions, such as the

cybershoes and the VR treadmills, have addressed this issue, but they also have some limitations

themselves. The cybershoes do not accurately represent real-world movement in VR, whereas VR

treadmills are not affordable for average customers. Our device, the Step Detection Peripheral

(SDP), solves the constraints imposed by the current VR system. The SDP allows the user to

move within its current position while accurately representing the user’s real-world movement in the

virtual environment and being affordable for the average customer.

3.4.1 SDP Hardware Implementation

The system level diagram of the SDP, shown in Figure 3.17, includes one force sensor and one core

module for each SDP. In the SDP, each force sensor is located under the user’s foot and works as a

button input to detect any of the user’s steps. In other words, any force sensor data read under a

certain force threshold is detected as 0, whereas force sensor data above the threshold is detected as

1. The core module on each SDP sends the force sensor data to the Unity application. The inputs

are mapped within the Unity application to determine any step detection from the SDP of either

user’s foot.

Figure 3.17: System level diagram of the Step Detection Peripheral

The SDP is a small device that is placed on top of the user’s foot and is secured by using a

custom-made strap that wraps around it, shown in Figure 3.18. The SDP consists of a 3D printed

base, a force sensor, and a strap made up of hook-and-loop fastener and elastic band. The 3D print

is about 85mm long and 37mm wide and houses the core module for the SDP. The 3D print is

curved underneath the base which can be seen in Figure 3.18 and covered with foam to adjust to
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the user’s foot while taking into account different foot sizes. The top of the 3D print contains a hole

that is aligned with the hole present in the core module. This is to affix the core module to the

3D print with a thumbscrew. The 3D print contains two other holes that are essential for the SDP.

The first hole runs through the length of the SDP about 2.50mm above the curved base of the 3D

print. This allows the strap to go through the 3D printed base and secure the SDP to the user’s

foot. The second hole is located at the side of the SDP where it initially merges with the strap hole

and runs through to the inside of the 3D printed base where the peripheral connector, attached to

the 3D print of the SDP with bolts, and the core module are located. The second hole allows us to

connect the force sensor to the peripheral connector through a wire which is soldered to the pads

of the peripheral connector. The strap of the SDP consists of segments of hook-and-loop fasteners

sewed into the ends of an elastic band. The force sensor is sewed in the middle of the strap and

covered with an additional layer of elastic band to hide the force sensor from the user’s view. Due

to the elasticity of the strap, we also took into account adding slack to the wire. This allows the

user to keep the force sensor centered underneath their foot, shown in Figure 3.18.

Figure 3.18: The SDP design (left), user with SDP (center), and force sensor location (right)

3.4.2 SDP Unity Application

We created a demo application in the Oculus Quest to test the SDP’s functionality. This test

allows us to verify that the SDP is able to recreate the user’s real-world movement in the virtual

environment. Within the SDP demo application, detailed in Appendix B.3, the state of each foot

is read during each frame with a boolean variable where false means that the user’s foot is off the

ground and true means that the foot is in contact with the ground. The user is able to move within

the virtual application regardless of which foot the user steps with. This user’s movement in the

virtual application depends on a single boolean variable that represents this situation. During each

frame, a comparison case is done between the current state and the previous state for each foot to

determine if the user has stepped with either foot, shown in lines 6-9 and 13-17 from Figure 3.19.

After comparing the current and previous state, if it is determined that the user has stepped with

either foot, the boolean variable is set to true and the user moves within the virtual environment.
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1 void Update (){

2 bool either_lift = false;

3 bool left_lift = input_manager.GetButton("button2", "VRCORE1");

4 if (! left_lift && prev_left_lift) { // new step

5 either_lift = true;

6 }

7 prev_left_lift = left_lift;

8 bool right_lift = input_manager.GetButton("button2", "VRCORE2");

9

10 if (! right_lift && prev_right_lift) { // new step

11 either_lift = true;

12 }

13 prev_right_lift = right_lift;

14

15 if (either_lift){

16 gameObject.GetComponent <Rigidbody >().AddForce(torso.forward.normalized *

speed , ForceMode.VelocityChange);

17 }

18 }

19

Figure 3.19: Update function for SDP application

The user’s movement in the virtual environment is based on the the forward direction of the

torso based on the user’s head and hands. A model of the user’s arm was created in the SDP demo

application to represent the user in the virtual environment. By using an Inverse Kinematics (IK)

system in the demo application, the user moves within the virtual environment based on the user’s

tracked head and hands. In other words, the position and orientation of the Oculus Quest VR

headset and touch controllers serve as the inputs for the IK system. The system determines the

front-facing direction of the torso. This is done by having the torso direction following the head

when the hand are near the player and following the hands when the arms are extended. Within

the system, there are three vectors that are taken into consideration: the head’s constant magnitude

forward vector and two vectors starting from the head to one in each hand. After resolving the

each vector, the system calculates the weighted combination of the vectors based on magnitude to

determine the forward direction of the torso. The system avoids any incorrect torso direction by

ignoring the hands whenever they are located behind the user’s head.
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Chapter 4

Conclusions

4.1 Project Contributions

In this MQP, the team identified three interaction limitations with current VR products and devised

solutions for each limitation. The result is a wireless and modular peripheral system that can be

extended to create other interaction devices. The three peripherals realized in this project are

the Multi-Digit Input Peripheral (MDIP), Hand Grip Position Peripheral (HGPP), and the Step

Detection Peripheral (SDP).

The MDIP aims to provide an increased sense of finger presence with the Oculus Touch controllers

by sensing the state of all fingers. This allows users to form basic hand gestures using all fingers

and more immersive grabbing/releasing of virtual objects. Open-palm interactions are also possible,

such as pushing an object with the palms of the hands. The demo application for the MDIP maps

the 10 finger inputs to tracked hand models and animates each finger according to the device input.

The MDIP is a balanced combination of solutions for finger presence in VR. Optical solutions can

provide quality tracking but are heavily affected by occlusion and may have a low tracking frequency.

Additionally, controllers are not held with optical methods, which can create interaction issues when

grabbing objects. For example, reaching out and grabbing a virtual cube can feel strange because

the hand does not grab onto anything physically. When holding a controller, this same action can

be more immersive due to the presence of the controller, which provides a form of passive haptic

feedback. In essence, the controller can feel like many different objects when grabbing onto it.

The MDIP uses this observation and provides basic finger tracking simultaneously. Another design

decision and benefit of the MDIP is that the controller remains held in the normal position so that

the controller inputs may still be used.

The second peripheral, the HGPP, is a solution to the two-handed virtual rigid object problem.

Commercial VR systems typically use two separate tracked controllers, which makes interacting

with a virtual object with two hands non-trivial. One common software-only solution is to use a

threshold for the relative distance change from the initial grab points. The effect is that two handed

interactions become possible, but can feel like the user is puppeting the object, since the hands are

bound to move away from the initial grab points during movement. Another common solution is to
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not allow objects to be held with two hands at a time. A true solution to this problem is to create

a real-world rigid constraint between the hands, which is the approach taken by the HGPP. The

HGPP is a cylindrical peripheral with 250mm of touch sensitive pads for tracking the grip position

of both hands. A Touch controller is mounted to the top of the peripheral for 6 DOF tracking. It

also includes two buttons near the top of the touch sensitive area for general input. The HGPP

is a generic device that can become many two-handed virtual objects and display the approximate

position of where the hand grip the device. For example, the HGPP can become a virtual sword,

tennis racket, or magical staff. The demo we created for the HGPP showed a sword in place of

the peripheral with the handle of the sword mapped to the peripheral’s length. The user can see

representations of their hand position on the handle in real time.

The final peripheral developed in this project is the SDP. The SDP is a solution to the walking

movement problem in VR, in which the user must be able to traverse large virtual distances while

remaining in a small real-world play area. The most immersive movement is room-scale movement, in

which the user physically walks within the tracked space. Software devised locomotion methods allow

the user to move larger distances but may be disorienting or motion-sickness inducing. Common

locomotion methods are teleportation, smooth movement, and world-grabbing. The SDP is a device

worn on each foot that detects foot lift. The SDP only measures the act of stepping while the

direction of movement is estimated as the direction of the torso, which is derived from the head

and hand positions. To move in the virtual world, the user walks or jogs in place, creating natural-

feeling movement that is initiated by the legs instead of hand controller input. The head bobbing

introduced from the motion of walking in place can also reduce motion sickness as the vestibular

system experiences real-world motion and reduces the visual acceleration disconnect.

4.2 Recommendations

Although we were able to address the identified VR interaction limitations, our system could still

be improved to better solve these limitations. The system itself and the three peripherals in this

project, Multi-Digit Input Peripheral (MDIP), Hand Grip Position Peripheral (HGPP), and the

Step Detection Peripheral (SDP), have room for improvements.

Our system is based on the concept of modularity where the core module is able to interact with

the different peripherals to solve interaction limitations. Instead of having purpose-built peripherals,

an improvement to our system is using interlocking components, a method similar to The Lego

Group’s interlocking blocks. These interlocking components can be used to build the different

peripherals and recreate the same functions. The current system can also be expanded to include

more inputs for each core module and use proximity sensors to detect the user’s finger and hand

movement along the peripheral. Another improvement would be to expand the data type to include

a more analog user input from the current discrete button and capacitive touch input, such as

integrating a capacitive touch slider instead of an array of capacitive touch sensors to detect the

user’s hand movement along the peripheral.

The improvements for the core module include its electrical and mechanical connections. Due

to prototype purposes, the core module uses pin headers for electrical connection. An improvement
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to this would be to use a better and more reliable connector, such as USB-C or pogo pins. An

improvement for its mechanical connection would to be securely insert the core module into the

peripheral instead of fastening it to the peripheral with a thumbscrew.

The improvements for the MDIP include sensor type, strap, and sensor configuration. The

MDIP could use proximity sensors, substituting the capacitive touch sensors to detect the user’s

finger movement. The configuration of these sensor could also be improved by integrating a flexible

PCB containing these sensors instead of individual sensors attached to the peripheral. Another

improvement is replacing the MDIP’s cord with a band as a strap.

The improvements for the HGPP include its grip position tracking, number of modules, and

peripheral configuration. The current HGPP uses an array of capacitive touch sensors to approximate

the user’s hand position. A better implementation of this function would be to use a touch pad as

a continuous capacitive touch slider. An important improvement for the HGPP is to reduce the

number of modules to make the peripheral simpler. Another improvement to consider would be able

to configure the peripheral. This involves having detachable segments for the HGPP, being able to

change the configuration of two handed objects.

Finally, the improvements for the SDP include size and weight, orientation tracking, and un-

wanted movement suppression. The current SDP is still big and its size and weight can be reduced

by reducing the size of the core module. Another improvement would be to include an IMU in the

SDP to detect the orientation of the user’s feet. The SDP could also ignore unwanted movement

suppression by detecting any successive steps of a single foot or its unrealistic orientation while

walking.
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Appendix B

Unity Scripts

B.1 MDIP

handAnimationController.cs

1 using System.Collections;

2 using System.Collections.Generic;

3 using UnityEngine;

4

5 public class hand_ani_controller : MonoBehaviour

6 {

7 public Transform thumb;

8 public Transform index;

9 public Transform middle;

10 public Transform ring;

11 public Transform pinkie;

12 public Transform right_thumb;

13 public Transform right_pointer;

14 public Transform right_middle;

15 public Transform right_ring;

16 public Transform right_pinkie;

17

18 private input_mapper input_manager;

19 private Transform [] finger_transforms;

20 private bool[] cr_running; // array for coroutine status for each finger

21 private bool[] finger_states; // array for finger states

22 private bool[] prev_finger_states; // array for previous finger states to detect

state transitions

23

24 IEnumerator AnimateFinger(float dir , int idx)

25 {

26 cr_running[idx] = true;

27 float rotation_speed = 300f;

28 Transform joint1 = finger_transforms[idx];

29 Transform joint2 = joint1.GetChild (0);

30 Transform joint3 = joint2.GetChild (0);
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31 Quaternion target1 = new Quaternion ();

32 Quaternion target2 = new Quaternion ();

33 Quaternion target3 = new Quaternion ();

34

35 // different rotations for each finger

36 switch (idx)

37 {

38 case 0: // thumb

39 target1 = joint1.localRotation * Quaternion.Euler(new Vector3 (0f, 0f,

7.5f * dir));

40 target2 = joint2.localRotation * Quaternion.Euler(new Vector3 (0f, 0f,

25f * dir));

41 target3 = joint3.localRotation * Quaternion.Euler(new Vector3 (0f, 0f,

15f * dir));

42 break;

43 case 1: // pointer

44 target1 = joint1.localRotation * Quaternion.Euler(new Vector3 (0f, 0f,

30f * dir));

45 target2 = joint2.localRotation * Quaternion.Euler(new Vector3 (0f, 0f,

25f * dir));

46 target3 = joint3.localRotation * Quaternion.Euler(new Vector3 (0f, 0f,

15f * dir));

47 break;

48 case 2: // middle

49 target1 = joint1.localRotation * Quaternion.Euler(new Vector3 (0f, 0f,

40f * dir));

50 target2 = joint2.localRotation * Quaternion.Euler(new Vector3 (0f, 0f,

30f * dir));

51 target3 = joint3.localRotation * Quaternion.Euler(new Vector3 (0f, 0f,

20f * dir));

52 rotation_speed = 600f;

53 break;

54 case 3: // ring

55 target1 = joint1.localRotation * Quaternion.Euler(new Vector3 (0f, 0f,

40f * dir));

56 target2 = joint2.localRotation * Quaternion.Euler(new Vector3 (0f, 0f,

30f * dir));

57 target3 = joint3.localRotation * Quaternion.Euler(new Vector3 (0f, 0f,

20f * dir));

58 rotation_speed = 500f;

59 break;

60 case 4: // pinkie

61 target1 = joint1.localRotation * Quaternion.Euler(new Vector3 (0f, 0f,

40f * dir));

62 target2 = joint2.localRotation * Quaternion.Euler(new Vector3 (0f, 0f,

30f * dir));

63 target3 = joint3.localRotation * Quaternion.Euler(new Vector3 (0f, 0f,

20f * dir));

64 rotation_speed = 500f;

65 break;

66 case 5: // thumb
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67 target1 = joint1.localRotation * Quaternion.Euler(new Vector3 (0f, 0f,

7.5f * dir));

68 target2 = joint2.localRotation * Quaternion.Euler(new Vector3 (0f, 0f,

25f * dir));

69 target3 = joint3.localRotation * Quaternion.Euler(new Vector3 (0f, 0f,

15f * dir));

70 break;

71 case 6: // pointer

72 target1 = joint1.localRotation * Quaternion.Euler(new Vector3 (0f, 0f,

30f * dir));

73 target2 = joint2.localRotation * Quaternion.Euler(new Vector3 (0f, 0f,

25f * dir));

74 target3 = joint3.localRotation * Quaternion.Euler(new Vector3 (0f, 0f,

15f * dir));

75 break;

76 case 7: // middle

77 target1 = joint1.localRotation * Quaternion.Euler(new Vector3 (0f, 0f,

40f * dir));

78 target2 = joint2.localRotation * Quaternion.Euler(new Vector3 (0f, 0f,

30f * dir));

79 target3 = joint3.localRotation * Quaternion.Euler(new Vector3 (0f, 0f,

20f * dir));

80 rotation_speed = 600f;

81 break;

82 case 8: // ring

83 target1 = joint1.localRotation * Quaternion.Euler(new Vector3 (0f, 0f,

40f * dir));

84 target2 = joint2.localRotation * Quaternion.Euler(new Vector3 (0f, 0f,

30f * dir));

85 target3 = joint3.localRotation * Quaternion.Euler(new Vector3 (0f, 0f,

20f * dir));

86 rotation_speed = 500f;

87 break;

88 case 9: // pinkie

89 target1 = joint1.localRotation * Quaternion.Euler(new Vector3 (0f, 0f,

40f * dir));

90 target2 = joint2.localRotation * Quaternion.Euler(new Vector3 (0f, 0f,

30f * dir));

91 target3 = joint3.localRotation * Quaternion.Euler(new Vector3 (0f, 0f,

20f * dir));

92 rotation_speed = 500f;

93 break;

94

95 default:

96 break;

97 }

98

99 while (Quaternion.Angle(joint1.localRotation , target1) > 0.1f)

100 {

101 float step = rotation_speed * Time.deltaTime;

102 if (idx == 0)
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103 {

104 step *= 0.5f;

105 }

106 joint1.localRotation = Quaternion.RotateTowards(joint1.localRotation ,

target1 , step);

107 joint2.localRotation = Quaternion.RotateTowards(joint2.localRotation ,

target2 , step);

108 joint3.localRotation = Quaternion.RotateTowards(joint3.localRotation ,

target3 , step);

109

110 yield return null;

111 }

112

113 joint1.localRotation = target1;

114 joint2.localRotation = target2;

115 joint3.localRotation = target3;

116 cr_running[idx] = false;

117 }

118

119 void read_inputs(ref bool[] states)

120 {

121

122 states [0] = input_manager.ReadTouchController("x_button_cap", "left") ||

123 input_manager.ReadTouchController("y_button_cap", "left") ||

124 input_manager.ReadTouchController("joy_cap", "left");

125 states [1] = input_manager.ReadTouchController("front_trigger", "left");

126 states [2] = input_manager.ReadModule("top", "VRCORE1");

127 states [3] = input_manager.ReadModule("middle", "VRCORE1");

128 states [4] = input_manager.ReadModule("bottom", "VRCORE1");

129 states [5] = input_manager.ReadTouchController("a_button_cap", "right") ||

130 input_manager.ReadTouchController("b_button_cap", "right") ||

131 input_manager.ReadTouchController("joy_cap", "right");

132 states [6] = input_manager.ReadTouchController("front_trigger", "right");

133

134 states [7] = input_manager.ReadModule("top", "VRCORE2");

135 states [8] = input_manager.ReadModule("middle", "VRCORE2");

136 states [9] = input_manager.ReadModule("bottom", "VRCORE2");

137 }

138

139 // Start is called before the first frame update

140 void Start()

141 {

142 // init

143 prev_finger_states = new bool[] { true , false , false , false , false , true ,

false , false , false , false};

144 cr_running = new bool[] { false , false , false , false , false , false , false ,

false , false , false };

145 finger_states = new bool[] { true , false , false , false , false , true , false ,

false , false , false };

146 finger_transforms = new Transform [] { thumb , index , middle , ring , pinkie ,

147 right_thumb , right_pointer , right_middle , right_ring , right_pinkie };
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148 input_manager = gameObject.GetComponent <input_mapper >();

149 }

150

151 // Update is called once per frame

152 void Update ()

153 {

154 // read all input states

155 read_inputs(ref finger_states);

156 for (int i=0; i<10; i++)

157 {

158 if (finger_states[i] != prev_finger_states[i] && !cr_running[i])

159 {

160 // Turn towards our target rotation.

161 float dir = finger_states[i] ? -1f : 1f;

162 StartCoroutine(AnimateFinger(dir , i));

163 prev_finger_states[i] = finger_states[i];

164 }

165 }

166 }

167 }

168

169

B.2 HGPP

gripPositionController.cs

1 using System.Collections;

2 using System.Collections.Generic;

3 using UnityEngine;

4 using UnityEngine.UI;

5 using TMPro;

6

7 public class input_mapper : MonoBehaviour

8 {

9 [HideInInspector] public int[] mapping;

10 // public TextMeshProUGUI log1;

11 // public TextMeshProUGUI log2;

12 // public Transform debug_object1;

13 // public Transform debug_object2;

14 public GameObject hand1;

15 public GameObject hand2;

16

17 private Vector2 [] ma_buffer; // stores the moving average , latest value is at

index 0

18 private string [] joys;

19 private string [] prev_joys;

20 private int frame_count = 72;

21 private input_mapper input_manager;

22 private const int NUM_SENSORS = 16;
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23 private const int NUM_MA = 5;

24 private readonly string [] handle_raw_mapping = { "13", "2", "3", "14", "4", "5",

"6", "7", "7", "6", "5", "4", "14", "3", "2", "13" };

25

26 private void Log(string mesg , TextMeshProUGUI log)

27 {

28 log.text = mesg;

29 }

30

31 public bool ReadTouchController(string input_name , string controller)

32 {

33 bool state = false;

34 string left_mapping = "joystick " + mapping [0]. ToString () + " button ";

35 string right_mapping = "joystick " + mapping [1]. ToString () + " button ";

36 if (controller.Equals("left"))

37 {

38 switch (input_name)

39 {

40 case "x_button":

41 state = Input.GetKey(left_mapping + "2");

42 break;

43 case "x_button_cap":

44 state = Input.GetKey(left_mapping + "12");

45 break;

46 case "y_button":

47 state = Input.GetKey(left_mapping + "3");

48 break;

49 case "y_button_cap":

50 state = Input.GetKey(left_mapping + "13");

51 break;

52 case "joy_button":

53 state = Input.GetKey(left_mapping + "8");

54 break;

55 case "joy_cap":

56 state = Input.GetKey(left_mapping + "16");

57 break;

58 case "front_trigger":

59 state = Input.GetKey(left_mapping + "14");

60 break;

61 case "middle_trigger":

62 state = Input.GetKey(left_mapping + "4");

63 break;

64 case "menu_button":

65 state = Input.GetKey(left_mapping + "6");

66 break;

67 default:

68 break;

69 }

70 }

71 else if (controller.Equals("right"))

72 {
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73

74 switch (input_name)

75 {

76 case "a_button":

77 state = Input.GetKey(right_mapping + "0");

78 break;

79 case "a_button_cap":

80 state = Input.GetKey(right_mapping + "10");

81 break;

82 case "b_button":

83 state = Input.GetKey(right_mapping + "1");

84 break;

85 case "b_button_cap":

86 state = Input.GetKey(right_mapping + "11");

87 break;

88 case "joy_button":

89 state = Input.GetKey(right_mapping + "9");

90 break;

91 case "joy_cap":

92 state = Input.GetKey(right_mapping + "17");

93 break;

94 case "front_trigger":

95 state = Input.GetKey(right_mapping + "15");

96 break;

97 case "middle_trigger":

98 state = Input.GetKey(right_mapping + "5");

99 break;

100 default:

101 break;

102 }

103 }

104 return state;

105 }

106

107 public string ReadModuleAll(string module_name)

108 {

109 string module_1_mapping = "joystick " + mapping [2]. ToString () + " button ";

110 string module_2_mapping = "joystick " + mapping [3]. ToString () + " button ";

111 string module = "";

112 if (module_name.Equals("VRCORE1"))

113 {

114 module = module_1_mapping;

115 }

116 else if(module_name.Equals("VRCORE2"))

117 {

118 module = module_2_mapping;

119 }

120 string pressed = "";

121 for (int i=0; i<20; i++)

122 {

123 if(Input.GetKey(module + i.ToString ()))

viii



124 {

125 // Log(i.ToString ());

126 pressed = module + i.ToString ();

127 break;

128 }

129 }

130 return pressed;

131

132 }

133

134 private void Remap()

135 {

136 //Log("remap ");

137 string [] devices = Input.GetJoystickNames ();

138 for (int i = 0; i < devices.Length; i++)

139 {

140 switch (devices[i])

141 {

142 case "Oculus Quest Controller - Left":

143 mapping [0] = i + 1;

144 break;

145 case "Oculus Quest Controller - Right":

146 mapping [1] = i + 1;

147 break;

148 case "VRCORE1":

149 mapping [2] = i + 1;

150 break;

151 case "VRCORE2":

152 mapping [3] = i + 1;

153 break;

154 default:

155 break;

156 }

157 }

158 }

159

160 private byte[] GetRawSensors ()

161 {

162 string module1 = "joystick " + mapping [2]. ToString () + " button ";

163 string module2 = "joystick " + mapping [3]. ToString () + " button ";

164 byte[] sensors = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };

165 string raw = "";

166 for (int i=0; i<16; i++)

167 {

168 if (i<=7)

169 {

170 if (Input.GetKey(module1 + handle_raw_mapping[i]))

171 {

172 sensors[i] = 1;

173 }

174 else
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175 {

176 sensors[i] = 0;

177 }

178 }

179 else

180 {

181 if (Input.GetKey(module2 + handle_raw_mapping[i]))

182 {

183 sensors[i] = 1;

184 }

185 else

186 {

187 sensors[i] = 0;

188 }

189 }

190 raw += sensors[i]. ToString ();

191

192 }

193 // Log(raw , log1);

194 return sensors;

195 }

196

197 private byte[] Convolve(byte[] raw)

198 {

199 byte[] filter = new byte[] { 1, 1, 1};

200 byte[] expanded = new byte [18];

201 byte[] convolved = new byte [16];

202 string output = "";

203 raw.CopyTo(expanded , 1);

204 for (int i=0; i<NUM_SENSORS; i++)

205 {

206 convolved[i] = (byte) (expanded[i] * filter [0] + expanded[i + 1] * filter

[1] + expanded[i + 2] * filter [2]);

207 output += convolved[i]. ToString ();

208 }

209 // Log(output , log2);

210

211 return convolved;

212 }

213

214 private Vector2 GetPos(byte[] feature_map)

215 {

216 Vector2 hand_pos = new Vector2 ();

217 int count = 0;

218 int groups = 0;

219 float[] starts = new float [2];

220 float[] lengths = new float [2];

221 for (int i=0; i<NUM_SENSORS; i++)

222 {

223 // count consecutive threes

224 // count groups
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225 // count total number of threes

226 if (feature_map[i] == 3)

227 {

228 if (count == 0) // this is a new edge , mark the index

229 {

230 starts[groups] = i;

231 }

232 count ++; // count number of threes

233 }

234 else if(count > 0)

235 {

236 lengths[groups] = count;

237 count = 0; // reset count

238 groups = 1; // increment groups , only expect 2

239 }

240 }

241

242 // cases are one hand , two hands , and two hands together

243 float pos1 = 0;

244 float pos2 = 0;

245 if (lengths [0] > 0 && lengths [1] > 0) // two hands seperate

246 {

247 pos1 = (starts [0] + (( lengths [0] - 1f) / 2f)) * 1f / 16f;

248 pos2 = (starts [1] + (( lengths [1] - 1f) / 2f)) * 1f / 16f;

249 hand_pos.x = pos1;

250 hand_pos.y = pos2;

251 }

252 else if (lengths [1] == 0 && lengths [0] <= 7) // one hand

253 {

254 pos1 = (starts [0] + (( lengths [0] - 1f) / 2f)) * 1f / 16f;

255 pos2 = 0f;

256 hand_pos.x = pos1;

257 hand_pos.y = pos2;

258 }

259 else if (lengths [1] == 0 && lengths [0] > 7) // two combined

260 {

261 pos1 = (starts [0] + (( lengths [0] - 1f) / 4f)) * 1f / 16f;

262 pos2 = pos1 + (( lengths [0] - 1f) / 2f * 1f / 16f);

263 hand_pos.x = pos1;

264 hand_pos.y = pos2;

265 }

266 hand_pos.x = Mathf.Clamp(hand_pos.x, 0.01f, 0.99f);

267 hand_pos.y = Mathf.Clamp(hand_pos.y, 0.01f, 0.99f);

268 return hand_pos;

269 }

270

271 private void UpdateMA(Vector2 last_pos)

272 {

273

274 Vector2 newest = new Vector2 ();
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275 newest = (last_pos + ma_buffer [0] + ma_buffer [1] + ma_buffer [2] + ma_buffer

[3] + ma_buffer [4]) / (NUM_MA + 1);

276 newest.x = Mathf.Clamp(newest.x, 0.01f, 0.99f);

277 newest.y = Mathf.Clamp(newest.y, 0.01f, 0.99f);

278

279 // shift the array right and update newest value

280 ma_buffer [4] = ma_buffer [3];

281 ma_buffer [3] = ma_buffer [2];

282 ma_buffer [2] = ma_buffer [1];

283 ma_buffer [1] = ma_buffer [0];

284 ma_buffer [0] = newest;

285 // Log(newest.x.ToString () + " " + newest.y.ToString (), log2);

286 }

287

288 public bool GetButton(string button_name)

289 {

290 bool btn = false;

291 string module1 = "joystick " + mapping [2]. ToString () + " button ";

292 if (button_name.Equals("button1"))

293 {

294 btn = Input.GetKey(module1 + "0");

295 }

296 else if (button_name.Equals("button2"))

297 {

298 btn = Input.GetKey(module1 + "1");

299 }

300 return btn;

301 }

302 // Start is called before the first frame update

303 void Start()

304 {

305 ma_buffer = new Vector2[NUM_MA ];

306 mapping = new int[] { 1, 2, 3, 4 };

307 frame_count = 0;

308 joys = Input.GetJoystickNames ();

309 prev_joys = joys;

310 Remap();

311 }

312

313 // Update is called once per frame

314 void Update ()

315 {

316 if (frame_count == 72)

317 {

318 joys = Input.GetJoystickNames ();

319

320 bool input_dif = (

321 !prev_joys [0]. Equals(joys [0]) ||

322 !prev_joys [1]. Equals(joys [1]) ||

323 !prev_joys [2]. Equals(joys [2]) ||

324 !prev_joys [3]. Equals(joys [3])
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325 );

326 if (input_dif)

327 {

328 Remap();

329 prev_joys = joys;

330 }

331 frame_count = 0;

332 }

333 frame_count ++;

334 // read sensors into an array

335 byte[] raw = GetRawSensors ();

336 // convolve the data to look for 111

337 byte[] feature_map = Convolve(raw);

338 // compute hand position(s) 0.01:0.99

339 Vector2 pos = GetPos(feature_map);

340 // update the moving average

341 UpdateMA(pos);

342 // show visual feedback of hand positions

343 hand1.GetComponent <Renderer >().material.SetFloat("_distance", pos.x);

344 hand2.GetComponent <Renderer >().material.SetFloat("_distance", pos.y);

345 }

346 }

347

348

B.3 SDP

torsoDirectionEstimation.cs

1 using UnityEngine;

2

3 public class TorsoRot : MonoBehaviour

4 {

5

6 public float pole_dist;

7 public float speed = 4.0f;

8

9 public Transform head;

10 public Transform neck;

11 public Transform lhand;

12 public Transform rhand;

13 public Transform pole;

14

15 private Quaternion torso_rotation;

16

17 private void Start()

18 {

19 torso_rotation = new Quaternion ();

20 }

21
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22 private void Update ()

23 {

24 // head facing vector

25 float head_ang = Vector3.Angle(Vector3.up, head.forward);

26 Vector3 head_look = new Vector3 ();

27 if (head_ang > 135.0f)

28 {

29 head_look = head.position - transform.position;

30 }

31 else if (head_ang < 45.0f)

32 {

33 head_look = -(head.position - transform.position);

34

35 }

36 else

37 {

38 head_look = pole.position - head.position;

39 }

40 float relative_pole_magnitude = Mathf.Sqrt(Mathf.Pow(head_look.x, 2) + Mathf.

Pow(head_look.z, 2));

41 Vector2 scaled_pole_2d = new Vector2(head_look.x * pole_dist /

relative_pole_magnitude , head_look.z * pole_dist / relative_pole_magnitude);

42 Vector3 pole_3d = new Vector3(scaled_pole_2d.x + head.position.x, transform.

position.y, scaled_pole_2d.y + head.position.z);

43

44 // hand average vector

45 Vector3 lhand_relative = lhand.position - head.position;

46 Vector3 rhand_relative = rhand.position - head.position;

47

48 Vector3 hand_avg = (lhand_relative + rhand_relative) / 2.0f;

49 Vector2 avg_hand_2d = new Vector2(hand_avg.x, hand_avg.z);

50

51 float w_hand = avg_hand_2d.magnitude / (avg_hand_2d.magnitude +

scaled_pole_2d.magnitude);

52 float w_head = scaled_pole_2d.magnitude / (avg_hand_2d.magnitude +

scaled_pole_2d.magnitude);

53

54 // determine if hands are behind the user’s head

55 if (Vector2.Angle(scaled_pole_2d , avg_hand_2d) >= 90.0f)

56 {

57 w_hand = 0.0f;

58 w_head = 1.0f;

59 }

60

61 hand_avg += head.position;

62

63 // new rotation

64 Vector3 new_torso_facing = new Vector3(pole_3d.x * w_head + hand_avg.x *

w_hand , transform.position.y, pole_3d.z * w_head + hand_avg.z * w_hand);

65

66 // update
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67 torso_rotation.SetLookRotation(new_torso_facing - transform.position);

68 transform.rotation = Quaternion.Lerp(transform.rotation , torso_rotation , Time

.deltaTime * speed);

69 transform.position = neck.position;

70

71

72 }

73

74 }

75

76

77

78

MovePlayer.cs

1 using System.Collections;

2 using System.Collections.Generic;

3 using UnityEngine;

4

5 public class MovePlayer : MonoBehaviour

6 {

7 public Transform torso;

8 public input_mapper input_manager;

9 public float speed = 1f;

10 private bool prev_left_lift = false;

11 private bool prev_right_lift = false;

12

13

14

15 // Start is called before the first frame update

16 void Start()

17 {

18

19 }

20

21 // Update is called once per frame

22 void Update ()

23 {

24

25 bool either_lift = false;

26

27 bool left_lift = input_manager.GetButton("button2", "VRCORE1");

28 if (! left_lift && prev_left_lift) // new step

29 {

30 either_lift = true;

31 }

32 prev_left_lift = left_lift;

33

34 bool right_lift = input_manager.GetButton("button2", "VRCORE2");

35 if (! right_lift && prev_right_lift) // new step

36 {
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37 either_lift = true;

38 }

39 prev_right_lift = right_lift;

40

41 if (either_lift)

42 {

43 gameObject.GetComponent <Rigidbody >().AddForce(torso.forward.normalized *

speed , ForceMode.VelocityChange);

44 }

45

46

47

48 }

49 }

50

51
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