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Abstract  27 

Biofilm formation of multidrug and extensively drug resistant Klebsiella pneumoniae isolates is 28 

poorly understood.  We investigated 139 diverse clinical K. pneumoniae isolates that possess 29 

various resistance patterns to evaluate the relationship between biofilm formation and resistance.  30 

Antimicrobial resistance was compared among a diverse collection of weak versus strong biofilm-31 

forming K. pneumoniae, and predictors of strong biofilm formation were identified.  Multi-drug 32 

resistant isolates were more common among weak (97.9%) versus strong biofilm formers (76%; 33 

p=0.002).  Carbapenem-resistant K. pneumoniae were 91% less likely to form strong biofilm (odds 34 

ratio 0.09; 95% confidence interval 0.02-0.33). The statistically significant inverse relationship 35 

between biofilm formation and antibiotic resistance suggests that virulence may be a trade-off for 36 

survival.  37 

 38 
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INTRODUCTION 52 

Klebsiella pneumoniae, the most common and most concerning carbapenem-resistant 53 

Enterobacteriaceae (CRE) (1), is associated with mortality rates up to 50% (2).  Adding to this 54 

challenging infection is K. pneumoniae’s high propensity to form biofilms (3, 4).  Biofilm-forming 55 

K. pneumoniae are associated with foreign indwelling device related infections (4), as well as 56 

urinary stones (5-7).  The most common K. pneumoniae infections include urinary tract infections, 57 

pneumonia, as well as intra-abdominal infections, which are prone to biofilm formation(4, 8). 58 

Biofilm eradication requires high antimicrobial concentrations (9), which often cannot be 59 

physiologically achieved in the blood stream or at the site of infection, thus potentially leading to 60 

infection recurrence (4).  Unfortunately, clinical microbiology labs cannot routinely test for biofilm 61 

formation; however, tested phenotypic characteristics may help clinicians predict biofilm potential. 62 

 63 

Multidrug-resistant (MDR) organisms have been associated with biofilm formation when 64 

Klebsiella pneumoniae (10, 11), Staphylococcus aureus (11), Acinetobacter spp. (10, 11), 65 

Pseudomonas aeruginosa (10, 11), Escherichia coli (10, 11), coagulase-negative staphylococci 66 

(10), or Enterococcus spp. (10) are assessed together (10, 11).  However, the relationship 67 

between biofilm-forming K. pneumoniae alone and antimicrobial resistance has not been fully 68 

elucidated (12-14).  The study objective was to determine whether certain antimicrobial class 69 

resistance in K. pneumoniae was predictive of strong biofilm formation.   70 

 71 

MATERIALS AND METHODS: 72 

Our study included 139 unique K. pneumoniae clinical isolates obtained from the Centers for 73 

Disease Control and Prevention (CDC; n=66), Biodefense and Emerging Infections (BEI; n=36), 74 

American Type Culture Collection (ATCC; n=3), and Providence Veterans Affairs (VA) Medical 75 

Center and Rhode Island Hospital (n=34).  These isolates were selected because they are known 76 

to be resistant to a range of antibiotic classes.    Isolates from the Providence VA Medical Center 77 
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were collected per the VA approved Institutional Review Board (IRB), Research and Development 78 

(R&D), and safety committee protocols.  79 

A previously described biofilm assay was performed to assess biofilm formation (15-19).  This 80 

assay is considered the standard for evaluation of bacterial attachment and biofilm formation in 81 

vitro (20).  Isolates were obtained from culture stocks, stored at -80oC.  After streaking on tryptic 82 

soy agar and incubating for 18 to 24 hours, an inoculum of 6 log10 CFU/mL in tryptic soy broth 83 

with added 25 mg/L calcium, 12.5 mg/L magnesium, and 1.25% total dextrose (21).  Media was 84 

selected and validated based on the greatest biofilm formation, which is consistent with previously 85 

published data for Escherichia coli (22) and Klebsiella pneumoniae (17, 18).  Each isolate was 86 

incubated in a 96-well plate (Costar 3596) for 24 hours at 37oC and 120 rpm in octuplicate (17, 87 

18).  Wells were stained with 0.1% crystal violet (CV) and resolubilized with 33% glacial acetic 88 

acid (19).  K. pneumoniae (ATCC 700603) served as the biofilm positive control and media alone 89 

was the negative control (12, 23-25).   90 

Biofilm formation was measured as an optical density (OD570).  We further categorized isolates 91 

as either weak, moderate, or strong biofilm formers based on tertiles of OD570.  In order to assess 92 

differences between the highest and lowest OD570, we removed isolates in the moderate range 93 

(19, 26).   94 

Organism susceptibility was obtained from the site of collection (eg. CDC, BEI).  When results 95 

were unavailable testing was performed by E-test or Kirby-Bauer disc diffusion on Mueller-Hinton 96 

agar, and were interpreted according to 2017 CLSI susceptibility breakpoints (27, 28).  The FDA 97 

package insert for tigecycline (E-test MIC ≤2) (29) and EUCAST breakpoints for colistin (E-test 98 

MIC ≤2) and fosfomycin (E-test MIC ≤32 and disc diffusion ≥24; both contained glucose-6-99 

phosphate) (30) were used as CLSI breakpoints were not available.  Isolates were categorized 100 

as multi-drug resistant (MDR), extensively drug-resistant (XDR), or resistant to specific 101 
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antimicrobial classes/agents, according to CDC and European CDC expert consensus definitions 102 

for Enterobacteriaceae (31).  MDR isolates demonstrated non-susceptibility to at least one agent 103 

in three or more antimicrobial categories out of 16 antimicrobial categories and XDR isolates 104 

demonstrated susceptibility to at least one agent in less than or equal to two out of 16 antimicrobial 105 

categories (31).  106 

To assess the relationship between biofilm formation and resistance to specific antimicrobial 107 

classes/agents, we grouped the 16 antimicrobial categories into 12 categories based on 108 

mechanism of action (Table 1).  Piperacillin/tazobactam and penicillin/β-lactamase inhibitors were 109 

grouped as penicillins plus β-lactamase inhibitors, and non-extended spectrum cephalosporins, 110 

extended-spectrum cephalosporins, cephamycins, and ceftaroline were grouped as 111 

cephalosporins. This allowed us to avoid collinearity in our statistical models due to overlap in 112 

resistance between antimicrobial categories.   113 

Differences in antimicrobial resistance among the weak and strong biofilm formation groups were 114 

assessed with chi-square, Fisher’s exact, or t-test as appropriate.  Predictors of strong biofilm 115 

formation were identified from a logistic regression model.  A p-value of 0.1 was used for initial 116 

inclusion in the model (Table 1) and stepwise backward elimination was used to identify 117 

statistically significant predictors of strong biofilm formation (all p-values <0.05).  We assessed 118 

multicollinearity between potential predictors in the initial model from variance inflation factors, 119 

and confirmed the absence of collinearity.  A sensitivity analysis was conducted to identify 120 

predictors of biofilm formation as a continuous measure (OD570) using linear regression. 121 

 122 

RESULTS 123 

Optical density (OD570) for all 139 isolates were divided using tertiles as follows: weak (n=47; 124 

OD570 ≤ 0.16), moderate (n=46; 0.16 < OD570 < 0.59), and strong biofilm formers (n=46; OD570 ≥ 125 

0.59) (26).  This method was internally validated as the positive control was consistently 126 
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categorized as a strong biofilm former (OD570 ≥ 0.59) (26).  Moderate isolates were removed for 127 

a total cohort of 93 isolates (Table 1) to best predict biofilm formation extremes (26).   128 

 129 

MDR isolates (n=81) were more common among weak biofilm formers (n=46, 97.9%) versus 130 

strong biofilm formers (n=35, 76.1%; p=0.002), and XDR (n=25) isolates were similar between 131 

the groups (n=12, 25.5% vs. n=13, 28.3% p=0.77).  Number of resistant antimicrobial categories 132 

and OD570 are shown in Figure 1.  Resistance to all classes of beta-lactams (i.e. penicillins plus 133 

β-lactamase inhibitors, cephalosporins, monobactams, and carbapenems), aminoglycosides, 134 

chloramphenicol, and fluoroquinolones were more common among weak biofilm formers 135 

(p<0.05).  In the multivariate model, the only predictor of biofilm formation was carbapenem 136 

resistance, which was inversely associated with strong biofilm formation (odds ratio, OR 0.09; 137 

95% confidence interval, CI 0.02-0.33).  Therefore, carbapenem-resistant K. pneumoniae were 138 

91% less likely to form strong biofilm.   139 

 140 

As the proportion of XDR isolates did not vary between weak and strong biofilm formers, we 141 

conducted a post-hoc sensitivity subgroup analysis excluding XDR isolates (n=68) (Table 2).  142 

Predictors of strong biofilm formation were again identified from a stepwise backward elimination 143 

logistic regression model, with a p-value of 0.1 used for initial inclusion in the model (Table 2).  144 

The only predictor of strong biofilm formation was the number of resistant categories, with an 145 

odds ratio of 0.70 (95% CI 0.56-0.86), where the odds of strong biofilm formation decreased by 146 

30% with each increase in the number of resistant categories.  147 

 148 

In the sensitivity analysis of the continuous measure of biofilm formation, only fluoroquinolone 149 

resistance was predictive of the OD570, with a parameter estimate of -0.44 and an intercept of 0.86 150 

(p<0.001).  According to this model, fluoroquinolone susceptibility had an OD570 of 0.86, while 151 

fluoroquinolone resistance had an OD570 of 0.42.  In other words, fluoroquinolone susceptible 152 
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isolates were predicted to be strong biofilm formers, and fluoroquinolone resistant isolates were 153 

predicted to be moderate biofilm formers.   154 

 155 

DISCUSSION 156 

This is the first study to our knowledge, to identify a statistically significant inverse relationship 157 

between K. pneumoniae antimicrobial resistance and biofilm formation, where carbapenem-158 

resistant K. pneumoniae isolates were 91% less likely to be strong biofilm formers. Several 159 

published studies have described higher biofilm formation in resistant K. pneumoniae isolates, 160 

however, these descriptive studies did not assess whether resistance was predictive of  biofilm 161 

formation in multivariate analyses (10-14).  This is also the first study to assess resistance and 162 

biofilm formation of a diverse collection of K. pneumoniae isolates from multiple sources and 163 

centers.  Inclusion of isolates only from a single-center introduces potential bias if patients are 164 

infected with the same organism, especially if isolates are from an outbreak (14).  Additional 165 

rationale for the difference in findings requires further research.     166 

 167 

Potential limitations of our study include the overall resistance patterns of our isolates.  The 168 

majority of our isolates (n=81, 87.1%) were MDR, with the most isolates (n=64, 68.8%) resistant 169 

to at least 12 out of 16 antimicrobial classes, but only 26.9% (n=25) were XDR.  Inclusion of more 170 

susceptible or XDR isolates may have resulted in different predictors of biofilm formation. As a 171 

post-hoc sensitivity analysis we excluded XDR isolates, which support the findings from the weak 172 

versus strong analysis, where strong biofilm formation was 30% less likely with each increase in 173 

the number of resistant categories.  174 

 175 

Findings from previous studies may also be limited by misclassification of biofilm formation, which 176 

may affect conclusions that biofilm formation is more common among resistant isolates. The 177 

definition of biofilm formation varies across studies but the most common definition was originally 178 
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described for Staphylococcus spp. (15, 16).  This method utilizes an OD cut-off (ODc), defined as 179 

three standard deviations above the average OD of the negative control, to determine biofilm 180 

formation.  Isolates are either non-adherent (OD ≤ ODc), weakly adherent (ODc < OD ≤ 2xODc), 181 

moderately adherent (2xODc < OD ≤ 4xODc), or strongly adherent (4x ODc < OD).  182 

Categorization by this method however, is limited when the negative control has a negligible OD 183 

reading, which was the case for our study and previously described literature (12, 13).  Applying 184 

this method to our cohort, zero isolates were non-adherent, two weak, 12 moderate, and 125 185 

strong biofilm formers.  Therefore, we divided biofilm formation into tertiles (26), to overcome 186 

potential bias of overestimating strong biofilm formation (12).  Previous utilization of tertile biofilm 187 

categorization was also utilized for S. aureus, however categorization should not be affected by 188 

organism as our biofilm quantification method utilized was adapted for K. pneumoniae.  We also 189 

assessed biofilm formation as a continuous variable since there is no standard categorization.  190 

However, interpretation of resulting odds ratios is challenging when compared to a dichotomous 191 

variable of resistance versus susceptible, and is less clinically meaningful. 192 

 193 

Optical density remains an indirect measurement of biofilm formation and standardized methods 194 

for both quantification and categorization of K. pneumoniae biofilm formation are needed.  Varied 195 

definitions of biofilm formation are utilized, making direct comparisons across studies difficult.  It 196 

is imperative to standardize biofilm quantification to allow for accurate assessment of predictors 197 

of biofilm across settings and to quantify the relationship between biofilm forming isolates and 198 

clinical outcomes.   199 

 200 

In our study, strong biofilm formation was 91% less likely with carbapenem-resistant K. 201 

pneumoniae, which allows clinicians to better predict K. pneumoniae’s ability to produce biofilm 202 

by phenotypic resistance. This inverse relationship between biofilm formation and antibiotic 203 

resistance suggests that virulence may be a trade-off for bacterial survival.  204 
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Table 1. Klebsiella pneumoniae: antimicrobial resistance and biofilm formation 342 

Variable 

Total 

Cohort 

(n=93) 

Weak 

Biofilm 

Formation 

(n=47) 

Strong 

Biofilm 

Formation 

(n=46) 

p-value 

Number of Resistant Categories (n=16), 

Median, (IQR) 

13 (11-

14) 

13 (12-14) 11.5 (3-14) 0.01 

Multidrug-resistant (MDR), n (%)* 81 (87.1) 46 (97.9) 35 (76.1) 0.002 

Extensively drug-resistant (XDR), n (%)** 25 (26.9) 12 (25.5) 13 (28.3) 0.77 

Penicillins + β-lactamase inhibitors, n 

(%)ǂ 

79 (84.9) 46 (97.9) 33 (71.7) 0.0004 

Cephalosporins, n (%) 82 (88.2) 46 (97.9) 36 (78.3) 0.003 

Monobactam, n (%)  73 (78.5) 45 (95.7) 28 (60.9) <0.0001 

Carbapenems, n (%)ǂ ǂ 70 (75.3) 44 (93.6) 26 (56.5) <0.0001 

Aminoglycosides, n (%) 72 (77.4) 43 (91.5) 29 (63.0) 0.001 

Chloramphenicol, n (%) 65 (69.9) 38 (80.9) 27 (58.7) 0.02 

Fluoroquinolones, n (%) 73 (78.5) 45 (95.7) 28 (60.9) <0.0001 

Tigecycline, n (%) 13 (14.0) 6 (12.8) 7 (15.2) 0.73 

Tetracyclines, n (%) 44 (47.3) 23 (48.9) 21 (45.7) 0.75 

Folate pathway inhibitor, n (%) 66 (71.0) 37 (78.7) 29 (63.0) 0.09 

Fosfomycin, n (%) 61 (65.6) 29 (61.7) 32 (69.6) 0.42 

Colistin, n (%) 11 (11.8) 8 (17.0) 3 (6.5) 0.12 

Bolded p-values indicate potential predictors of strong biofilm formation included in the initial 343 

logistic regression model 344 
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*MDR isolates demonstrated non-susceptibility to at least one agent in three or more 345 

antimicrobial categories out of 16 antimicrobial categories  346 

**XDR isolates demonstrated susceptibility to at least one agent in less than or equal to two out 347 

of 16 antimicrobial categories 348 

ǂpenicillin + β-lactamase inhibitors category includes piperacillin/tazobactam and penicillin/ β-349 

lactamase inhibitors 350 

ǂ ǂcephalosporins category includes non-extended spectrum cephalosporins, extended-351 

spectrum cephalosporins, cephamycins, and ceftaroline 352 

 353 

 354 

 355 

 356 

 357 

 358 

 359 

 360 

 361 

 362 

 363 

 364 

 365 

 366 

 367 
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Table 2. Sensitivity analysis of non-XDR Klebsiella pneumoniae: antimicrobial 368 

resistance and biofilm formation 369 

Variable 

Total 

Cohort 

(n=68) 

Weak 

Biofilm 

Formation 

(n=35) 

Strong 

Biofilm 

Formation 

(n=33) 

p-value 

Number of Resistant Categories (n=16), 

Median, (IQR)  

12 (8-13) 13 (12-13) 9 (1-12) <0.0001 

Multidrug-resistant (MDR), n (%)* 56 (82.4) 34 (97.1) 22 (66.7) 0.001 

Extensively drug-resistant (XDR), n (%)** 0 0 0 --- 

Penicillins + β-lactamase inhibitors, n (%) 54 (79.4) 34 (97.1) 20 (60.6) 0.0002 

Cephalosporins, n (%) 57 (83.8) 34 (97.1) 23 (69.7) 0.002 

Monobactam, n (%)  48 (70.6) 33 (94.3) 15 (45.5) <0.0001 

Carbapenems, n (%) 45 (66.2) 32 (91.4) 13 (39.4) <0.0001 

Aminoglycosides, n (%) 48 (70.6) 32 (91.4) 16 (48.5) 0.001 

Chloramphenicol, n (%) 40 (58.8) 26 (74.3) 14 (42.4) 0.008 

Fluoroquinolones, n (%) 48 (70.6) 33 (94.3) 15 (45.5) <0.001 

Tigecycline, n (%) 6 (8.8) 4 (11.4) 2 (6.1) 0.67 

Tetracyclines, n (%) 20 (29.4) 12 (34.3) 8 (24.2) 0.36 

Folate pathway inhibitor, n (%) 41 (60.3) 25 (71.4) 16 (48.5) 0.053 

Fosfomycin, n (%) 41 (60.3) 19 (54.3) 22 (66.7) 0.30 

Colistin, n (%) 6 (8.8) 4 (11.4) 2 (6.1) 0.44 

Bolded p-values indicate potential predictors of strong biofilm formation included in the initial 370 

logistic regression model 371 
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*MDR isolates demonstrated non-susceptibility to at least one agent in three or more 372 

antimicrobial categories out of 16 antimicrobial categories  373 

**XDR isolates demonstrated susceptibility to at least one agent in less than or equal to two out 374 

of 16 antimicrobial categories 375 

ǂpenicillin + β-lactamase inhibitors category includes piperacillin/tazobactam and penicillin/ β-376 

lactamase inhibitors 377 

ǂ ǂcephalosporins category includes non-extended spectrum cephalosporins, extended-378 

spectrum cephalosporins, cephamycins, and ceftaroline 379 

 380 

 381 

 382 

 383 

 384 

 385 

 386 

 387 
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 388 

(2 column fitting image) 389 
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