
Kennesaw State University Kennesaw State University

DigitalCommons@Kennesaw State University DigitalCommons@Kennesaw State University

African Conference on Information Systems
and Technology The 6th Annual ACIST Proceedings (2020)

Jul 2nd, 4:00 PM - 4:15 PM

A Comprehensive Study for Modern Models: Linking A Comprehensive Study for Modern Models: Linking

Requirements with Software Architectures Requirements with Software Architectures

sisay yemata
sisay.yemata@aau.edu.et

Follow this and additional works at: https://digitalcommons.kennesaw.edu/acist

 Part of the Other Computer Engineering Commons

yemata, sisay, "A Comprehensive Study for Modern Models: Linking Requirements with Software
Architectures" (2020). African Conference on Information Systems and Technology. 8.
https://digitalcommons.kennesaw.edu/acist/2020/allpapers/8

This Event is brought to you for free and open access by the Conferences, Workshops, and Lectures at
DigitalCommons@Kennesaw State University. It has been accepted for inclusion in African Conference on
Information Systems and Technology by an authorized administrator of DigitalCommons@Kennesaw State
University. For more information, please contact digitalcommons@kennesaw.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@Kennesaw State University

https://core.ac.uk/display/326323026?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.kennesaw.edu/
https://digitalcommons.kennesaw.edu/acist
https://digitalcommons.kennesaw.edu/acist
https://digitalcommons.kennesaw.edu/acist/2020
https://digitalcommons.kennesaw.edu/acist?utm_source=digitalcommons.kennesaw.edu%2Facist%2F2020%2Fallpapers%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/265?utm_source=digitalcommons.kennesaw.edu%2Facist%2F2020%2Fallpapers%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.kennesaw.edu/acist/2020/allpapers/8?utm_source=digitalcommons.kennesaw.edu%2Facist%2F2020%2Fallpapers%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@kennesaw.edu

A comprehensive study for modern models: linking
requirements with software architectures

Sisay Yemata

School of Graduate Studies, Software

Engineering Track, Addis Ababa University,

Addis Ababa, Ethiopia

sisay.yemata@aau.edu.et

Belachew Regane

School of Graduate Studies, Software

Engineering Track, Addis Ababa University,

Addis Ababa, Ethiopia

belachew.regane@aau.edu.et

ABSTRACT

Several models recently have been addressed in software engineering for requirements

transformation. However, such transformation models have encountered many problems due to

the nature of requirements. In the classical transformation modeling, some requirements are

discovered to be missing or erroneous at later stages, in addition to major assumptions that may

affect the quality of the software. This has created a crucial need for new approaches to

requirements transformation. In this paper, a comprehensive study is presented in the main modern

models of linking requirements to software architectures. An extensive evaluation is conducted to

investigate the capabilities of such modern models to overcome those limitations when

transforming requirements, validating their consideration of bringing quality for the software

development process. Key research gaps and open issues are discussed, highlighting the possible

future directions that can be considered in this field.

Keywords

Quality requirements, software architecture, requirement engineering, software quality,

transformation models.

INTRODUCTION

One of the major issues in software systems development today is quality (Dobrica & Niemela,

2002). To bring quality software, the appropriate transformation of requirements is necessary for

the early stages of the software development life cycle. “Software Quality comprises all

characteristics and significant features of a product or an activity which relate to the satisfaction

of a given requirement (Boehm et al., 1976).” Transformation is the means of linking requirements

with software architecture and vice versa (Pimentel et al., 2012), whereas; transformation models

are the abstract graphical presentation of requirements (Chakraborty et al., 2012). Software

Architecture (SA) represents “the fundamental concepts or properties of a system in its

mailto:belachew.regane@aau.edu.et

2

environment embodied in its elements, relationships, and in the Principles of its design and

evolution” (May 2011). Requirements are expected by stakeholders “why” the developing

software system should make (Yu, 2001).

The challenge in software development is to develop software with the right quality levels (J.

Bosch & Molin, 1999). To void this challenge, transformation of requirements in the early stages

of software development, the life cycle is a crucial task. However, some quality requirements are

missing during the transformation of requirements which are the primary driving force for systems

and subsystem architectures (Firesmith, 2005) and they heavily influenced by the architecture (J.

Bosch & Molin, 1999).

To discover these missing requirements and assumptions, there were classical models that used for

the transformation of requirement, such as waterfall and V-shape Software Development Life

Cycle Models. In the traditional transformation models software systems should not begin software

architecture design until complete, correct and consistent requirements the specification is

reached (Liu & Mei, n.d.)]. If some problems were revealed at the architecture phase, there were

no mechanisms to discover those missing requirements, not backward transformations (Liu & Mei,

n.d.). Backward transformation is the transformation of architecture to requirements, because they

are not following iterative way of transformation (Bhuvaneswari & Prabaharan, 2013; Forsberg &

Mooz, 1991; Larman & Basili, 2003).

In this paper, a comprehensive study is presented in the main modern models of requirements

transformation that helps to discover the missing requirements, in addition to assumptions. Modern

transformation models used iterative means of transformation between requirements and

architecture that means forward (from requirements to architecture) and backward (from

architecture to requirements) transformation. An extensive evaluation is conducted to investigate

the capabilities of such modern models to overcome those limitations when transforming

requirements, validating their consideration of bringing quality for the software development

process. Key research gaps and open issues are discussed, highlighting the possible future

directions that can be considered in this field. These modern models are used to transform

requirements form requirements to architecture and vice versa (Avgeriou et al., 2011; J. Bosch &

Molin, 1999; Yu, 2001, 2001). Some of the models transform from requirement to architecture,

while others transform from architecture to requirements by decomposing and composing of

3

problems (Avgeriou et al., 2011). These new transformation models are addressing the focus of

the software system researchers and the industry’s interest by bringing quality software

system (Alebrahim et al., 2011). Therefore, the quality requirements being discovered starting

from the initial stages of the System Development Life Cycle (SDLC) give us the following

advantages. (i) Discover the missing requirements and undocumented assumptions early, (ii)

Minimize the time required, and (iii) Minimize the cost of software development.

Those modern requirement transformation models are categorized into two. The first category is

the models are used to transform from the requirement to architecture, this category includes the

twin peaks model(Castro et al., 2012; Pimentel et al., 2012), multi-view model, goal-oriented

modeling (Hall et al., 2002), scenario-oriented model (Pimentel et al., 2012) and feature-

orientation (Liu & Mei, n.d.). The second category of models is used to transform from architecture

to requirements, such models include: Feature Solution Graph (FSG) (de Bruin & van Vliet, 2003),

problem frame (Alebrahim et al., 2011), Recover Assumption Analysis method (Roeller et al.,

2006). Evaluations of those modern models examined based on the developed criteria and research

gaps are identified. The category of modern models is presented in the following diagram.

Figure 1. categories of modern transformation models

Modern Transformation Models

Transformation models from
requirements to architecture

Twin
peaks
model

senario-
based

modelling
clustering

multi-
view

feature-
orientati

on

goal-
Oriented

model

Transformation models
from architecture to

requirements

problem
framing

feature -
solution

graph
RAAM

assignment.docx
assignment.docx

4

The remainder of the paper is organized as follows: section 2 transformation models from

requirement to architecture, section 3 transformation models from architectural to requirement,

section 4 comparisons of transformation models for emerging technologies, section 5 comparisons

and evaluations of models, section 6 discussions and research gap, section 7 conclusions and future

work, section 8 references.

 TRANSFORMATION MODELS FROM REQUIREMENTS TO ARCHITECTURE

Twin Peaks model: It is used to highlights the relationship between requirements and architecture.

Requirements describe as a problem and architecture as a solution, in between the requirement and

architecture there is a scenario which emphasizes on the incrementally elaborating details in both

artifacts (Pimentel et al., 2012). Using model transformation approaches appear as an effective

way to generate architectural models from requirements models (Pimentel et al., 2012), and it is

used for the co-development of requirements specification and architectural design

description (Firesmith, 2005; Forsberg & Mooz, 1991). Goal-Oriented Modeling (GOM), there

are goals that focus on “why” the system should do it rather than what the system should do. Unlike

the traditional requirement transformation models, approaches (Eridaputra et al., 2014). This

model is focused on functional goals of the system (Yu, 2001) and it used the two most popular

methodologies i* and Knowledge Acquisition in autOmatic Specification (KAOS). Scenario-

based modeling (SBM): scenarios are written by the user language or natural language during

requirement analysis, at the design or architectural level written by the developers in the context

of the system as Scenario-Based Modeling (SBM) that used to transform requirements into

architectural design and answer “how” and “what” questions (Yu, 2001). Then, by issuing “why”

questions referring to these scenarios and it is focusing on the functional requirements (Yu,

2001). Clustering method: is used to structuring requirements with respect to their impact on the

architecture design process. Such as gaining architecture relevant information from requirements

which might not have been discovered during requirements analysis. Identified structures help

derive strategies for the implementation of requirements in the architecture and it is used to develop

a software system from scratch (Galster, Eberlein, et al., 2013) starting from the individual

requirements by appalling the bottom-up approach and this approach treats functional and non-

functional requirements equally.

5

Multi-view model: One difficulty arising in architectural design is the different interests of the

stakeholders. This multi-view model is used to transform different stakeholder

requirements/interests (Kruchten, 1995). The most well-known model is perhaps the “4+1” view

model presented by Rational Software Corporation (Kruchten, 1995). Feature-Orientation: it is

the model that used for linking requirements to software architecture. First, it discovers the

functional requirements and then discovers the non-functional requirements by following the

iterative processes (Liu & Mei, n.d.).

TRANSFORMATION MODEL FROM ARCHITECTURE TO REQUIREMENTS

Feature solution graph: first an architecture address only functional requirements, then it is

focused on the architecture for capturing architectural knowledge by fragmented architecture that

connects quality requirements with solution fragments at the architectural level. The solution

fragments captured in this a graph is used to iteratively compose an architecture driven by the

quality requirements (de Bruin & van Vliet, 2003). Thus, the quality requirements discovered by

decomposing (top-down approach) the reference architecture and composing (bottom-up

approach) these requirements.

Problem frame: A problem frame defines the shape of a problem by capturing the characteristics

and interconnections of the parts of the world, it is concerned with, and the concerns and

difficulties that are likely to arise in discovering its solution (Cox & Phalp, n.d.; Hall et al., 2002).

With the problem frame the derivation of the software architecture is starting from the problem

diagram and then decomposing it into sub-problems in order to discover the missing quality

requirements of the software (Cox & Phalp, n.d.).

Most software development problems are complex, thus problem frame it provides a means of

analyzing by decomposing and composing those complex problems. It is also, allowing

architectural structures, services, and artifacts to be considered as part of the problem domain (Hall

et al., 2002). Most likely it is workable to the new knowledge domain to develop artifacts.

 Recover Assumption Analysis method: most of the assumption requirements are missing

during requirement specification and revealing at later stages of software development life cycle

phases and they may be invalid or the new assumptions contracted with a previous one (Roeller

et al., 2006). As the software designer and The architect considers the future requirement is a

crucial task. So, Recover Assumption Analysis Method is used to discover those hidden, implicit

6

and undocumented assumptions at early stages of software development phases by gathering

requirements from different sources using different requirement gathering methods as

stated (Roeller et al., 2006).

 In the summary of their usage and category from Requirement to Architecture (R to A) and from

architecture to requirement (A to R) transformation of models is presented

.. Model/method Usage of models Category

Multiple-view model Used to address the interest of different aspect of the

architecture (Kruchten, 1995).

R to A

Goal-oriented Modeling Scenarios and agents together to guide the RE to

architectural design process (Yu, 2001).

R to A

Scenario-based

modeling

Employs iterative evaluation and transformation of the

software architecture in order to satisfy the quality

requirements (Yu, 2001).

R to A

Twin Peaks model Single goal model to express both requirements and

architectural concerns and approach based on model

transformations to derive architectural, structural

specifications from system goals (Forsberg & Mooz,

1991; Galster, Mirakhorli, et al., 2013; Pimentel et al.,

2012).

R to A

Clustering method Gaining architecture relevant information from

requirements to design the architecture (Galster, Eberlein,

et al., 2013).

R to A

Feature-Orientation Used to map requirements to architecture (Liu & Mei,

n.d.).

R to A

7

Feature solution (FS)

graph

Used for composition and decompose software

architecture (de Bruin & van Vliet, 2003).

A to R

RAAM Method to recover assumptions (implicit or

undocumented.) from an existing software

product(Roeller et al., 2006).

A to R

Problem Frames Model- and pattern-based method that allows software

engineers to take quality requirements into account right

from the beginning of the software development process

and extend problem frames, allowing architectural

structures, services and artifacts to be considered as part

of the problem domain (Cox & Phalp, n.d.; Hall et al.,

2002).

A to R

Table 1. Transformation models from requirements to architecture and vis versa.

8

APPLICABILITY OF TRANSFORMATION MODELS FOR EMERGING TECHNOLOGIES

Nowadays, the developments and enhancement of emerging technologies are increasing in computing. The development of emerging

technologies has its own advantages and challenges. To address their challenges transforming the requirements to architecture and vis

versa is a crucial task. Therefore, from the identified modern transformation models which are applicable in specific technologies

requirements transformation is necessary to address the requirements transformation process to identify and incorporate quality

requirements to the developed technologies. To do this, the following table shows the applicability of the transformation model to

emerging technologies.

Types of emerging

technologies

Transformation models

Twin Peaks Multi-view Clusterin

g

Goal-

oriented

Scenario

-based

Feature-

Orientation

Feature-Solution

Graph

Problem

frame

RAAM

Used for IoT system

requirement transformation

No No No No No No No No No

Used for cloud-based system

requirement transformation

No No No No No No No No No

Used for big data

requirement transformation

No No No Yes

No No No No No

Used for cyber-physical

system requirement

transformation.

No No No No No No No No No

Table 2. comparison of transformation models for emerging technologies

9

COMPARISON AND EVALUATION OF TRANSFORMATION MODELS

The transformation models are compared and evaluated using the set of criteria which develops based on the comparison and evaluation

relevance’s.

Comparison/ evaluation

criteria

Model/method

Transformation models from requirements to architecture Transformation models from architecture to requirements

Twin

Peaks

Multi-view Clustering Goal-

oriented

Scenario

-based

Feature-

Orientation

Feature-Solution

Graph

Problem

frame

RAAM

Level of decomposition and

composition

No No Less No No No High High No

Addressing the range of

stakeholder interests

Less High Less Less Less Less Less Less Less

Level of addressing NFR Less Less High Less Less High High High High

Level of addressing FR High High High High High High Less Less Less

Time required Less High High Less Less High High High High

Cost Low High High Low Low High High High High

Level of Discover

assumptions

Less Less Less Less Less Less Less Less High

Table 3. Comparison and evaluation models

10

DISCUSSION AND RESEARCH GAP

The focus of this discussion is on the presentation of the requirements transformation models which bring

quality on the software development. In table 5.1 the main issues were examined that is the comparison

of modern transformation models from requirements to software architecture and Vis versa to discover

the missing requirements. In addition to undiscovered the missing requirements undiscovered

assumptions cause for poor quality software development. In this paper, the new transformation models

that used for transforming requirements were compared by using extensive evaluation criteria and

presented as follows:

Level of decomposing and composing: the aim of decomposing and composing requirements and

software architectures is to discover the missing requirements specially, quality requirements/ non-

functional requirements. So, based on the comparison table 5.1 transformation models from architecture

to requirements have high capabilities to discover the missing requirements.

Level of addressing non-functional requirements: non-functional requirements also known as quality

requirements which have been a high effect on software quality (Yu, 2001). Therefore, software

development required transformation models to discover quality requirements/ NFR. Based on the

comparison table all transformation models in the second category have a high capability of discovering

quality requirements.

 Addressing the range of stakeholders’ interests: In any of the software project development, different

stakeholders who have different interests/ expectations are participating. So, modern transformation

models required to respect all stakeholders’ interests during the transformation of requirements. Among

the transformation models from table 5.1, the multi-view transformation model from the first category has

a higher chance to satisfy different stakeholder interests.

Level of addressing Functional Requirements: functional requirements are the goals of the system (Yu,

2001). Transformation models are required to transform those requirements into architecture and

discovered the missing requirements. So, it needs modern transformation models in order to discover the

missing requirements. The first categories of the transformation models have higher capabilities to

discover the functional requirements.

11

Level of discovering assumptions: in addition to discovering functional and non-functional

requirements, discovering assumptions in software development is essential to bring the quality of the

software. Thus, from the category table 5.1 only one modern transformation model is presented to discover

missing assumptions. Even if, RAAM is used to transform the requirement starting from early-stage up to

later stages of software development that requires more cost and time.

Generally, the second category that means transformation models from architecture to requirements has a

higher level of discovering assumptions and quality requirements/ non-functional requirements. As a

result, it requires more time and cost. Whereas, the first categories of the transformation model more

focused on discovering the functional requirements and give less attention to quality requirements. Thus,

when we compare requirements to architecture transformation models and architecture to requirements

models, requirements to architecture transformation models require less time and cost to discover missing

requirements.

Since the quality of a software system is more depends on the non-functional requirement or quality

requirements and they are more addressing by transforming architecture (Jan Bosch & Molin, 1999;

Dobrica & Niemela, 2002; Yu, 2001). Thus, the second category is giving more focus to addressing the

quality of the software system according to the evaluation criteria and the existing kinds of literature.

Research gaps identified from the discussion are: (i) kinds of literature focus only on the structural

transformation of requirements, not focus on the behavioral aspect of the transformation models (ii) there

are no requirements transformation models for Internet of thing, cloud-based systems, and cyber-physical

systems (iii) recovering assumptions before the implementation phase are not considered by more kinds

of literature, even if, recover the assumption from the starting phase of System Analysis and Design Life

Cycle phase up to implementation stages is addressed. This requires investing in additional cost and time.

CONCLUSION AND FUTURE WORK

There are several models in the area of software engineering that used for transforming requirements to

architecture. However, problems exist during the transformation of requirements by the nature of the

model during the transforming of requirements. In the classical transformation modeling requirements are

missing and uncovered, in addition to this, undiscovered assumptions are affecting the quality of the

software. In this work, we presented new models which help overcome those limitations by transforming

requirements during the development of the software starting from the early stages of the software

development life cycle. Most of the models transform from requirements to architecture, some of them

12

transform from architecture to the requirements in order to recover the missing requirements and

assumptions.

Based on the research gap discussed in the discussion section of this paper, the following activities will

be addressed in the future work. (i) The behavioral aspect of the transformation models will be presented.

(ii) Requirement transformation models will be presented for Internet of things, cloud-based system and

cyber physical systems (iii) recover assumptions before the implementation and deployment stages of the

software development life cycle will be presented.

REFERENCES

Alebrahim, A., Hatebur, D., & Heisel, M. (2011). A Method to Derive Software Architectures from Quality

Requirements. 2011 18th Asia-Pacific Software Engineering Conference, 322–330.

https://doi.org/10.1109/APSEC.2011.29

Avgeriou, P., Grundy, J., Hall, J. G., Lago, P., & Mistrík, I. (2011). Relating software requirements and

architectures. Springer Science & Business Media.

Bhuvaneswari, T., & Prabaharan, S. (2013). A survey on software development life cycle models.

International Journal of Computer Science and Mobile Computing, 2(5), 262–267.

Boehm, B. W., Brown, J. R., & Lipow, M. (1976). Quantitative evaluation of software quality. Proceedings

of the 2nd International Conference on Software Engineering, 592–605.

Bosch, J., & Molin, P. (1999). Software architecture design: Evaluation and transformation. Proceedings

ECBS’99. IEEE Conference and Workshop on Engineering of Computer-Based Systems, 4–10.

https://doi.org/10.1109/ECBS.1999.755855

Bosch, Jan, & Molin, P. (1999). Software architecture design: Evaluation and transformation.

Proceedings ECBS’99. IEEE Conference and Workshop on Engineering of Computer-Based

Systems, 4–10.

Castro, J., Lucena, M., Silva, C., Alencar, F., Santos, E., & Pimentel, J. (2012). Changing attitudes

towards the generation of architectural models. Journal of Systems and Software, 85(3), 463–479.

https://doi.org/10.1016/j.jss.2011.05.047

Chakraborty, A., Baowaly, M. K., Arefin, A., & Bahar, A. N. (2012). The role of requirement engineering

in software development life cycle. Journal of Emerging Trends in Computing and Information

Sciences, 3(5), 723–729.

Cox, K., & Phalp, K. (n.d.). From Process Model to Problem Frame – A Position Paper. 4.

de Bruin, H., & van Vliet, H. (2003). Quality-driven software architecture composition. Journal of Systems

and Software, 66(3), 269–284. https://doi.org/10.1016/S0164-1212(02)00079-1

Dobrica, L., & Niemela, E. (2002). A survey on software architecture analysis methods. IEEE

Transactions on Software Engineering, 28(7), 638–653.

Eridaputra, H., Hendradjaya, B., & Danar Sunindyo, W. (2014). Modeling the requirements for big data

application using goal oriented approach. 2014 International Conference on Data and Software

Engineering (ICODSE), 1–6. https://doi.org/10.1109/ICODSE.2014.7062702

Firesmith, D. (2005). Quality Requirements Checklist. The Journal of Object Technology, 4(9), 31.

https://doi.org/10.5381/jot.2005.4.9.c4

Forsberg, K., & Mooz, H. (1991). The relationship of system engineering to the project cycle. INCOSE

International Symposium, 1(1), 57–65.

13

Galster, M., Eberlein, A., & Jiang, L. (2013). Structuring Software Requirements for Architecture Design.

2013 20th IEEE International Conference and Workshops on Engineering of Computer Based

Systems (ECBS), 119–128. https://doi.org/10.1109/ECBS.2013.14

Galster, M., Mirakhorli, M., Cleland-Huang, J., Burge, J. E., Franch, X., Roshandel, R., & Avgeriou, P.

(2013). Views on software engineering from the twin peaks of requirements and architecture. ACM

SIGSOFT Software Engineering Notes, 38(5), 40–42. https://doi.org/10.1145/2507288.2507323

Hall, J. G., Jackson, M., Laney, R. C., Nuseibeh, B., & Rapanotti, L. (2002). Relating software

requirements and architectures using problem frames. Proceedings Ieee Joint International

Conference on Requirements Engineering, 137–144.

Kruchten, P. (1995). Reference: Title: Architectural Blueprints—The “4+ 1” View Model of Software

Architecture. IEEE Software, 12, 6.

Larman, C., & Basili, V. R. (2003). Iterative and incremental developments. A brief history. Computer,

36(6), 47–56.

Liu, D., & Mei, H. (n.d.). Mapping requirements to software architecture by feature-orientation. 8.

May, I. S. O. (2011). Systems and software engineering–architecture description. Technical Report.

ISO/IEC/IEEE 42010.

Pimentel, J., Castro, J., Santos, E., & Finkelstein, A. (2012). Towards Requirements and Architecture Co-

evolution. In M. Bajec & J. Eder (Eds.), Advanced Information Systems Engineering Workshops

(Vol. 112, pp. 159–170). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-31069-

0_14

Roeller, R., Lago, P., & van Vliet, H. (2006). Recovering architectural assumptions. 22.

Yu, L. L. E. (2001). From requirements to architectural design–using goals and scenarios. First

International Workshop From Software Requirements to Architectures-STRAW, 1, 22.

	A Comprehensive Study for Modern Models: Linking Requirements with Software Architectures
	

	tmp.1589801900.pdf.lDjYu

