
doc. Ing. Jan Janoušek, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague December 19, 2019

ASSIGNMENT OF BACHELOR’S THESIS
 Title: Static malware detection using recurrent neural networks

 Student: Matouš Kozák

 Supervisor: Mgr. Martin Jureček

 Study Programme: Informatics

 Study Branch: Computer Science

 Department: Department of Theoretical Computer Science

 Validity: Until the end of summer semester 2020/21

Instructions

The goal of the thesis is an application of various types of recurrent neural networks (RNN) especially Long
Short-term Memory (LSTM) to static malware detection.

Instructions:

1) study and describe the concept of RNN, focusing on LSTM
2) collect benign and download malware samples (e.g from open repository virushare.com)
3) transform the binaries to feature vectors using static analysis and perform common feature selection
and normalization methods
4) use existing machine learning libraries (Keras or TensorFlow, ...) and apply various architectures and
topologies of RNN to malware detection
5) discuss the results and compare them with results of other supervised learning algorithms
6) try to find the most appropriate structure of LSTM for the given problem of malware detection

References

Will be provided by the supervisor.

Bachelor’s thesis

Static Malware Detection using
Recurrent Neural Networks

Matouš Kozák

Department of Theoretical Computer Science
Supervisor: Mgr. Martin Jureček

June 2, 2020

Acknowledgements

Firstly, I would like to thank my supervisor Mrg. Martin Jureček for his
introduction to malware detection research and valuable guidance in this topic.
Next, I wish to thank my parents for never-ending support in my life, not only
in my pursuit of education.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipu-
lated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In accor-
dance with Article 46(6) of the Act, I hereby grant a nonexclusive authoriza-
tion (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work in any
way (including for-profit purposes) that does not detract from its value. This
authorization is not limited in terms of time, location and quantity.

In Prague on June 2, 2020

Czech Technical University in Prague
Faculty of Information Technology
c© 2020 Matouš Kozák. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Kozák, Matouš. Static Malware Detection using
Recurrent Neural Networks. Bachelor’s thesis. Czech Technical University in
Prague, Faculty of Information Technology, 2020.

Abstrakt

Neustále rostoućı počty útok̊u škodlivých programů na naši IT infrastrukturu
si žádaj́ı nové a lepš́ı metody ochrany. V této bakalářské práci se věnujeme
využit́ı rekurentńıch neuronových śıt́ı pro rychlou a přesnou detekci malwaru.
Pro reprezentaci podezřelých programů jsme využili pouze data extrahovaná
ze soubor̊u v PE formátu. Tato data jsme dále použili pro trénink r̊uzných
druh̊u rekurentńıch neuronových śıt́ı. V práci představujeme speciálńı archi-
tekturu neuronové śıtě, kombinuj́ıćı husté a LSTM vrstvy, ke klasifikaci PE
soubor̊u. Pracovali jsme s naš́ım vlastńım datasetem obsahuj́ıćı 30154 sou-
bor̊u stažených z dostupných zdroj̊u. S t́ımto datasetem, který je rovnoměrně
rozdělen mezi čisté a škodlivé soubory, jsme dosáhli přesnosti 98,41 % s pouze
0,5 % legitimńıch programů mylně klasifikovaných jako malware. K těmto vý-
sledk̊um nám stačilo pouhých 250 iteraćı přes treninkový soubor vzork̊u k
naučeńı naš́ı śıtě. Výsledky dokazuj́ı, že algoritmy strojového učeńı, hlavně
LSTM śıtě, mohou být využity jako rychlý a spolehlivý nástroj pro detekci
škodlivých soubor̊u.

Kĺıčová slova detekce malware, rekurentńı neuronové śıtě, LSTM, sta-
tická analýza, PE soubory, strojové učeńı

vii

Abstract

An ever-growing number of malicious attacks on our IT infrastructure calls for
new and better methods of protection. In this thesis, we focus on the use of
recurrent neural networks as an agile and accurate way of detecting malware.
We only used features extracted from files in the PE file format to represent
the suspicious programs which we used to train various types of recurrent
neural networks. In this work, we present unique neural network architecture
combining dense and stacked LSTM layers to classify PE files. We worked
with our dataset of 30,154 files collected from available resources with which
we achieved an accuracy of 98.41%, while only 0.5% of benign samples were
misclassified as malware on our balanced dataset. All this was accomplished
with only 250 epochs of training. These results prove that machine-learning
algorithms, especially LSTM networks, can be used as a quick and reliable
tool for malware detection.

Keywords malware detection, recurrent neural networks, LSTM, static
analysis, PE files, machine learning

viii

Contents

Introduction 1

1 Neural Networks 3
1.1 Artificial Neuron . 3

1.1.1 Perceptron . 3
1.1.2 Sigmoid Neuron . 4
1.1.3 Activation Function . 5

1.1.3.1 Sigmoid Function 5
1.1.3.2 Hyperbolic Tangent 6
1.1.3.3 Rectified Linear Unit 6
1.1.3.4 Softmax . 7

1.2 Types of Neural Networks . 7
1.2.1 Feed-Forward Networks 8

1.2.1.1 Backpropagation 8
1.2.2 Convolutional Neural Networks 9
1.2.3 Recurrent Neural Networks 10

1.2.3.1 Bidirectional Recurrent Neural Networks . . . 11
1.2.4 Long Short-Term Memory 12

1.2.4.1 Bidirectional Long Short-Term Memory 14
1.2.5 Gated Recurrent Unit 15
1.2.6 Autoencoder . 15

2 Portable Executable 17
2.1 Structure of PE File . 17

2.1.1 MS-DOS Header and Stub 17
2.1.2 File Header . 18
2.1.3 Optional Header . 18
2.1.4 Section Headers . 18
2.1.5 Section Data . 18

ix

3 Experiments 19
3.1 Dataset Description . 19

3.1.1 Our Dataset . 19
3.1.2 EMBER Malware Dataset 19

3.2 Feature Extraction . 20
3.3 Feature Preparation . 20

3.3.1 Vectorization . 21
3.3.2 Hashing . 21

3.4 Feature Selection . 22
3.5 Proposed Method . 23

3.5.1 Approximate Testing . 23
3.5.2 Promising Structures . 24

4 Results 27
4.1 Evaluation Metrics . 27

4.1.1 Confusion Matrix . 27
4.1.2 ROC Curve . 29

4.2 Supervised ML Algorithms . 29
4.3 Comparison with the State-of-the-art 32

Conclusion 33

Bibliography 35

A Acronyms 41

B Contents of enclosed CD 43

x

List of Figures

1.1 Perceptron . 4
1.2 Comparison of the sigmoid and step function 5
1.3 Comparison of the hyperbolic tangent with sigmoid function . . . 6
1.4 Rectified Linear Unit . 7
1.5 Fully connected feed-forward neural network 8
1.6 Convolution matrix . 9
1.7 Unrolled Recurrent Neural Network 10
1.8 Unrolled version of BRNN . 11
1.9 Example of LSTM architecture . 13
1.10 Structure of BLSTM network . 14
1.11 Example of autoencoder for digit compression [26] 16

2.1 Structure of a PE file . 17

3.1 ROC curve of different feature selection techniques 23
3.2 Proposed structure of LSTM network 25
3.3 Evolution of ACC, TPR and FPR over 700 epochs on the validation

set . 26
3.4 Confusion matrix presenting our results 26

4.1 Confusion matrix, 0 stands for negative and 1 for positive values . 28
4.2 ROC curve of tested ML algorithms 30
4.3 ROC curve of tested ML algorithms (EMBER) 31

xi

List of Tables

3.1 Comparison of different selection techniques 22
3.2 The most promising RNN architectures 24
3.3 Top five RNN architectures after 200 epochs 25

4.1 Comparison of our LSTM network with well-known supervised
machine-learning algorithms . 30

4.2 Comparison of our LSTM network with well-known supervised
machine-learning algorithms (EMBER) 31

xiii

Introduction

Malware is a software which conducts malicious activities on the infected
computer. Cybersecurity professionals across the globe are trying to tackle
this unwanted behaviour. Even though they are developing defence systems
on a daily basis, cybercriminals process at the same, if not, faster manner.

Antivirus programs detect more than 370,000 malicious programs each
day [1], and the number keeps rising. Although Windows remains the most
attacked platform, macOS and IoT devices are becoming attractive targets
as well. The most popular weapon for cybercriminals on Windows remains
Trojan, for instance, Emotet, WannaCry, Mirai and many others [2].

In May 2017, the world was struck by new ransomware (type of malware)
WannaCry. This virus quickly spread all around the world, infecting more
than 230,000 computers in 150 countries. Between infected organizations were,
e.g. FedEx, O2 or Britain’s NHS and the cost of damage was estimated at
around 4 billion dollars [3].

Long-established malware detection methods use signatures to identify
malicious software [4]. This approach is highly accurate on already known
malware files. The signatures can be easily generated and compared with the
database. However, they can be easily evaded by encrypting or obfuscating
the program. Another disadvantage of this technique is the encounter with
unknown files which could go undetected for some time until they’re recog-
nized as malware, and their signature is added to the database. This delay
could be crucial as malware evolves fast and zero-day attacks are as dangerous
as any.

The ambition of a machine learning approach to this issue is to overcome
this weakness and provide fast and accurate malware detection.

In the thesis, we focus on static analysis for multiple reasons. Firstly, ex-
tracting API calls from executable files needs to be performed in a sandbox
environment to secure leak of possible malicious activities into our system.
However, this is bypassed by unnatural behaviour of many programs in these
surroundings. Secondly, it’s time-consuming running large datasets and cap-

1

Introduction

turing their activities. These are the reasons why we focused on static malware
analysis.

The goal of this thesis is to found the most appropriate structure of long
short-term memory (LSTM) network for malware detection. This problem
will be tackled in two stages. The first stage will be collecting malware and
benign files, extracting useful information, transforming and selecting the best
features to create our dataset. The second stage will consist of testing diffe-
rent recurrent neural network architectures and evaluating our results. We
will perform static analysis, that means only working with information availa-
ble from gathered files without studying their working behaviour.

Structure of the thesis is as follows:

In Chapter 1, we introduce neural networks, explain basic terms and simple
net architectures. Further, we describe various advanced structures used
in cutting edge applications.

In Chapter 2, we briefly explain the PE file format. Where it’s used and
what structure it has.

In Chapter 3, we present the tools and techniques we used. From feature
engineering and selection to presenting our approaches to static malware
detection.

In Chapter 4, we describe metrics used for evaluating our work, demonstrate
our results and compare them with related work.

In Conclusion, we will evaluate the results of the work and suggest possibili-
ties for future research.

2

Chapter 1
Neural Networks

Neural network (NN) is a mathematical model inspired by human brains.
As described in [5], the network consists of units (neurons) and connections
(synapses). Typically, units are divided into many layers, starting with the
input layer, followed by several hidden layers and terminated with the output
layer.

Even though the first research about NN dates back to 40s when McCul-
loch and Pitts published in 1943, A logical calculus of the ideas immanent in
nervous activity [6], they didn’t gain much spotlight until recent years. Thanks
to rapidly increasing available computational power, training data and new
models, neural networks are becoming the go-to model for solving complex
tasks which we thought to be unsolvable by computers [7].

In this chapter, we are going to look at different types of neural units and
activation functions they use. Then we will briefly look at backpropagation
algorithm and go through a variety of neural network architectures, starting
with feed-forward and convolutional neural networks, finishing with different
recurrent neural nets, for instance, long short-term memory architecture.

1.1 Artificial Neuron

Artificial neurons are units which try to imitate the behaviour of real brain
neurons. Same as brain neurons, they connect with other neurons and pass
information between themselves. The simplest type of artificial neuron is
perceptron [8].

1.1.1 Perceptron

We can imagine perceptron as a node with a couple of incoming edges and
one outgoing edge [9]. Incoming edges represent a binary input, vector ~x =
(x1, x2, . . . , xn). To differentiate significance between input edges we use real-
valued numbers assigned to each edge, vector of weights ~w = (w1, w2, . . . , wn).

3

1. Neural Networks

The node also contains the parameter threshold, a real number as well. The
output is a binary value, 0 or 1.

To determine the output value, we must at first calculate the weighted
sum α =

∑
i xiwi and then check if the value exceeds the threshold value.

output =
{

1, if α ≥ threshold

0, if α < threshold
(1.1)

Figure 1.1: Perceptron

Often we represent threshold as an additional incoming edge with negative
weight −1, as shown in Figure 1.1.

This Figure 1.1 and subsequent illustrations were created using the Ipe
drawing editor [10].

1.1.2 Sigmoid Neuron

A more popular type of artificial neuron is called a sigmoid neuron [8].
Just like perceptron, the sigmoid neuron has inputs ~x and weights ~w. The
difference comes in output value and how we calculate it. Sigmoid neuron
doesn’t have binary output but a real-valued number between 0 and 1. To
compute output value, we use a sigmoid function.

σ(α) = 1
1 + e−α (1.2)

4

1.1. Artificial Neuron

(a) Step Function (b) Sigmoid Function

Figure 1.2: Comparison of the sigmoid and step function

In the Figure 1.2 we can see that sigmoid function (1.2b) is a smoothed
out version of step function (1.2a).

The sigmoid function is just one type of activation function used in artifi-
cial neurons [9]. In perceptron 1.1, we used the so-called step function. More
commonly used types include tanh, ReLU or softmax.

1.1.3 Activation Function

Activation function inside the artificial neuron is used to define the node’s
output, typically in the form of f : R→ R [11]. Important trait of many acti-
vation functions is its differentiability. Reason for that is the Backpropagation
algorithm used for learning the weights of NN. The additional necessary fea-
ture is, the derivative of the activation function doesn’t saturate nor explode,
heads towards 0 or ∞. These are the reasons why perceptrons with step
function aren’t suitable to be used in the present models [12].

1.1.3.1 Sigmoid Function

Already mentioned in 1.1.2 and described by Leskovec et al. in [11], the
sigmoid function is commonly used in artificial neurons as an alternative to
step function. Most used choice of the sigmoid function is logistic sigmoid:

σ(x) = 1
1 + e−x = ex

1 + ex
(1.3)

One of the reasons logistic sigmoid is so popular is the result of it’s deriva-
tive.

d

dx
σ(x) = ex(1 + ex)− exex

(1 + ex)2 = ex

(1 + ex)2 = σ(x)(1− σ(x)) (1.4)

5

1. Neural Networks

One complication logistic sigmoid has, its derivative quickly saturates when
we move outwards from the area around 0. This problem hinders the learning
process of NN.

1.1.3.2 Hyperbolic Tangent

As well as a logistic sigmoid, hyperbolic tangent (tanh), is a version of the
sigmoid function:

tanh(x) = ex − e−x

ex + e−x (1.5)

It’s output isn’t constrained in range 0 to 1, but between -1 and 1. Same
as with logistic sigmoid, the derivation of tanh can be calculated simply:

d

dx
tanh(x) = (ex + e−x)(ex + e−x)− (ex − e−x)(ex − e−x)

(ex + e−x)2

= 1− (ex − e−x)2

(ex + e−x)2 = 1− tanh2(x)
(1.6)

Since it is only moved and scaled version of logistic sigmoid, it shares
its problems with derivative saturation [11]. The contrast between these two
function can be seen in Figure 1.3. Pay attention to the scale of the y-axis.

(a) Hyperbolic Tangent (b) Sigmoid Function

Figure 1.3: Comparison of the hyperbolic tangent with sigmoid function

1.1.3.3 Rectified Linear Unit

Different type of activation function is rectified linear unit (ReLU). The
output of the rectified linear unit is defined as:

f(x) = max(0, x) =
{
x, if x ≥ 0
0, if x < 0

(1.7)

6

1.2. Types of Neural Networks

ReLU became very popular thanks to its ease of function and derivative
computation [11]. Also, for the positive x, the function’s gradient remains
constant.

d

dx
max(0, x) =

{
1, if x > 0
0, if x < 0

(1.8)

Figure 1.4: Rectified Linear Unit

Even though the ReLU isn’t differentiable at 0, it is everywhere else. An-
other problem the function has is saturation for negative x. This might cause
a so-called dying ReLU problem. Today, there are many variations of ReLU,
e.g. ELU, Leaky ReLU, SELU, . . .

1.1.3.4 Softmax

All the previous activation functions operated on a single input value. Soft-
max on the other hand, works with vectors. Input to the softmax function is
a vector ~x = (x1, x2, . . . , xn) and output for each xi, i ∈ 1, . . . , n is defined
as:

σ(xi) = exi∑n
j=1 e

xj
(1.9)

We can see that
∑
i σ(xi) = 1. Thus it can be interpreted as a probability

distribution as explained in [12]. For this characteristic, it’s being used in
multiclass classification task inside the output layer for dividing results into k
probability groups.

1.2 Types of Neural Networks

Nowadays, there are many varieties of neural networks, each with its own
structure and use cases. In this part, we present the most common types,
such as feed-forward or recurrent neural nets.

7

1. Neural Networks

1.2.1 Feed-Forward Networks

Feed-forward network (FFN) is named by the flow of data inside them.
All edges are oriented “forward”, from the input layer to output layer, without
cycles. They may contain a number of hidden layers with various widths. The
width and number of hidden layers are pivotal in designing FNNs, but there
isn’t a general rule to help you decide [11]. An example of FNN can be seen
in Figure 1.5 below.

Figure 1.5: Fully connected feed-forward neural network

The input layer receives input, vector ~x, and the output layer produces
output ŷ. The process of learning the weights of the network consists of
minimizing the loss function L(ŷ, y), where y is target output for input ~x [12].

1.2.1.1 Backpropagation

Backpropagation, shorting of backward propagation of errors is a common
algorithm used for learning the NN [11]. It uses gradient descent to update
the weights:

~wi+1 ← ~wi − γ∇F (~wi) (1.10)
Here, ~w are the weights (the parameters) of the network, γ is the learning

rate and ∇F (~wi) is the gradient value at current state i. The goal of gradient
descent is to get closer to the minimum of loss function L.

The algorithm terminates either when the change between the following
iterations becomes small enough or reaches the maximum number of repeti-
tions. Both conditions are heavily influenced by the size of the learning rate
γ. Since optimization of FNNs is NP-hard problem as proven by Blum and
Rivest in [13], there is no guarantee that this method hits the global minimum,

8

1.2. Types of Neural Networks

as the loss function’s surface doesn’t have to be convex, it might end up in
local minimum from which it can’t escape. However, there had been much
work on optimization techniques to achieve satisfactory results [12].

1.2.2 Convolutional Neural Networks

Specially designed type of FNN is a convolutional neural network (CNN).
These networks were found highly effective in processing images and other two-
dimensional inputs [5]. CNNs usually consist of several convolutional layers
interleaved with standard pooling layers.

In a convolutional layer, units are ordered in a two-dimensional grid. The
node at position (x, y) receives inputs from units in the previous layer at
positions (xi, yj), where x ≤ xi ≤ x+ k, y ≤ yj ≤ y+ l and k, l are constants
for a given layer. Rather than having different weights for each connection
from the previous layer, we use a single matrix Wk,l. The node’s output is
then calculated in the manner as with regular layers. In the first place, we
calculate the weighted sum of all inputs’ values with weights Wk,l and then
feed the result into any activation function.

Figure 1.6: Convolution matrix

By using single matrix Wk,l for given k and l, we radically decrease the
number of parameters network needs to learn and as a result which increases
the training speed [9]. Convolution matrix W3,3 representing identity is shown
in Figure 1.6.

The idea behind using convolutions came from the human eye, where neu-
rons are arranged in layers and only connected to close surroundings. This
arrangement is being mimicked in today’s CNNs. Same as in human eye, the
sequence of convolutional layers attempts to detect various shapes, from sim-
ple lines, up to more complex structures, such as bicycle wheel or human face
[11].

Typical components of CNNs are pooling layers. The pooling layer operates
as a function which takes as an input area of small size and returns the single
output. An example of pooling function might be max-pooling that returns
the maximum value from a given area. Other functions can be used, such as
average. Note that pooling layers reduce the dimension by summarizing the

9

1. Neural Networks

input. The intention behind this simplification is to make output invariant to
translations and other picture modifications [5].

1.2.3 Recurrent Neural Networks

Different kind of NN is a recurrent neural network (RNN). Unlike FNN,
this structure allows cycles. There isn’t a single input layer and output layer,
but input is fed and the output produced in each layer of RNN. Every node has
a self-recurring edge that passes information from the past and then to the fu-
ture. This sequential process was found exceptionally successful in processing
time, language or video data [11].

The input to RNN is a vector ~x = (x1, x2, . . .) and output of the network is
also a vector ~̂y = (ŷ1, ŷ2, . . .). We can imagine every layer of RNN as a vector
of nodes at time t, where all units at time t collect input xt and value from
the previous hidden state ht−1. The hidden state is a vector which serves as
current memory we are working with and is calculated as follows:

ht = f(Wxxt +Whht−1 + ~bh) (1.11)
Where f is the activation function, Wx,Wh are learned matrices of weights

and ~bh is a vector of bias parameters learned as well. Hidden state h0 is set
to (0, 0 . . . , 0). The output ŷt is then calculated as:

ŷt = g(Wyht +~by) (1.12)
Here g is also an activation function. Usually, we use softmax to make

sure the output is in the desired class range. Wy is a matrix of weights and
~by a vector of biases determined during the learning process.

(a) (b)

Figure 1.7: Unrolled Recurrent Neural Network

For learning a RNN, we use a modified version of the backpropagation
algorithm, backpropagation through time (BPTT). It works by unrolling
the RNN [5], calculating the losses across time steps. Then with the help of
the backpropagation algorithm updating the weights. The unrolled recurrent

10

1.2. Types of Neural Networks

neural network is shown in the Figure 1.7b above. Detailed description of
RNNs can be found in [12] by Lipton et al.

One of the significant weaknesses RNNs have is the problem of vanishing
gradient. This problem occurs when we try to detect long-distance dependen-
cies, e.g. subject-verb connexion in long sentences. Since the information in
RNNs is only passed between adjacent nodes, there is a minimal contribution
from distant layers [11].

1.2.3.1 Bidirectional Recurrent Neural Networks

For some tasks, the standard RNNs aren’t suitable as the hidden state is de-
termined only by prior states. Such tasks include text and speech recognition
or others where the output at time t depends on the past as well as future
inputs or labelling problems where the output is expected after finishing pro-
cessing the whole input sequence [14]. Bidirectional Recurrent Neural
Networks (BRNNs) try to solve this problem by introducing second back-
wards hidden state for each time t, both connected to the output. Input to the
BRNN is then presented in two rounds, once forwards as with RNN and then
in a reversed direction from the back. The two hidden states are then com-
bined to compute the output ŷt. This architecture was presented by Schuster
et al. in [15].

Figure 1.8: Unrolled version of BRNN

In Figure 1.8, the (0) and (1) in superscripts denote forwards and back-
wards flows respectively. Remark that the weight matrices are also distinct
for both hidden states as described in [12].

The hidden states are updated identically as with RNN.

h
(0)
t = f(W (0)

x xt +W
(0)
h h

(0)
t−1 +~bh(0)) (1.13)

h
(1)
t = f(W (1)

x xt +W
(1)
h h

(1)
t−1 +~bh(1)) (1.14)

11

1. Neural Networks

The output ŷt is then calculated with the use of both hidden states:

ŷt = g(W (0)
y h

(0)
t +W (1)

y h
(1)
t +~by) (1.15)

All the activation functions and parameters are the same as with vanilla
RNN. This model has its drawbacks as it needs a fixed length of the net and
introduced second hidden state increases the number of parameters needed to
be learned [12]. However, for many problems consisting of limited input size,
it achieves better results than plain RNN [14].

1.2.4 Long Short-Term Memory

Improved version of RNN solving the problem of vanishing gradient is Long
short-term memory network or shortly LSTM. This network architec-
ture was introduced in [16] by Hochreiter and Schmidhuber in 1997. The
improvement lies in replacing a simple node from RNN with a compound unit
consisting of hidden state (as with RNNs) and so-called cell state or ct. Fur-
ther, adding input node gt compiling the input for every time step t and three
gates controlling the flow of information. Gates are binary vectors, where
1 allows data to pass through, 0 blocks the circulation and operations with
gates are handled by using Hadamard (element-wise) product � with another
vector [11].

As mentioned above, LSTM cell is formed by a group of simple units. The
key difference from RNN is the addition of three gates which regulate the
input/output of the cell.

Note that Wx, Wh and ~b with subscripts in all of the equations below are
learned weights matrices and vectors respectively, and f denotes an activation
function, e.g. sigmoid. Subscripts are used to distinguish matrices and vectors
used in specific equations.

1. Input gate: Determines which information can be allowed inside the
unit:

it = f(Wxixt +Whi
ht−1 +~bi) (1.16)

2. Forget gate: Allows us to discard information from memory we don’t
longer need:

ft = f(Wxf
xt +Whf

ht−1 +~bf) (1.17)

3. Output gate: This gate learns what data is paramount at a given
moment and enables the unit to focus on it:

ot = f(Wxoxt +Whoht−1 +~bo) (1.18)

12

1.2. Types of Neural Networks

The input node takes as an input xt and previous hidden state:

gt = f(Wxgxt +Whght−1 +~bg) (1.19)
As an activation function is typically used tanh even though ReLU might

be easier to train [12].
The cell state is calculated as follows:

ct = it � gt + ft � ct−1 (1.20)
In equation 1.20, we can see the intuition behind using the input and forget

gates. The gates handle how much of the input node and previous cell state we
allow into the cell. This formula is the essential improvement to simple RNNs
as the forget gate vector applied to the previous cell state is what allows the
gradient to safely pass during backpropagation, thus abolishing the problem
of vanishing gradient [11].

The hidden state is then updated with the content of the current cell
state modified with output gate ot.

ht = f(ct � ot) (1.21)
Here, the activation function f is usually a tanh function. We can imagine

the hidden state is the short-term memory and cell state the long-term memory
of LSTM network.

The output ŷt is then computed in the same way as with RNN (1.12).

ŷt = f(Whyht +~by) (1.22)

Figure 1.9: Example of LSTM architecture

13

1. Neural Networks

Presented LSTM architecture closely maps the state-of-the-art design from
[17]. Note that we dropped the network’s parameters, matrices of weights and
vectors of biases to keep it well-arranged.

1.2.4.1 Bidirectional Long Short-Term Memory

Same as with RNN and BRNN we can imagine LSTM net having connections
both from the past and future cells. This architecture is called Bidirectional
Long Short-Term Memory (BLSTM) and was introduced by Graves and
Schmidhuber in 2005 [18].

Figure 1.10: Structure of BLSTM network

In Figure 1.10 we can see structure of BLSTM, the (0) and (1) in super-
scripts stand for forwards and backwards directions, respectively. We omitted
detailed representation of LSTM cells to make the illustration simpler. To see
the detailed illustration of LSTM cell see Figure 1.9.

BLSTMs can be used to solve similar problems as bidirectional RNNs
where we have entire input available beforehand. Training the network in a
forwards and backwards directions helps to gain context from past and future
as well [19]. In addition, having hidden and cell state enables better storage
of information across the timeline even from distant past or future.

Bidirectional LSTMs were found to outperform standard BRNNs in many
tasks, e.g. speech recognition. This was proven in the first application of
BLSTMs by Graves et al. for phoneme classification problem [18]. Later,
they were also used for handwriting recognition where they achieved state-
of-the-art results as well [20, 21]. In [22], BLSTM was used as a parser for
effective feature representation. Sundermeyer et al. used BLSTMs for lan-

14

1.2. Types of Neural Networks

guage translation and scored good results [23]. Further, they were also used
in protein structure prediction as described in [24].

As with other bidirectional RNNs, BLSTMs aren’t suitable for problems
where we don’t know the final length of the input and the results are required
after each timestamp (online tasks).

1.2.5 Gated Recurrent Unit

Popular modification of LSTM is Gated recurrent unit (GRU). It uses only
one hidden state instead of two as found in LSTM. As a result, it contains
fewer parameters and may be easier to train than LSTM [11].

As a consequence of not having a separate cell and hidden state, it uses one
less gate. The two gates are called update and reset gate and are calculated
as follows:

1. Update gate: Selects information from the past and current input:
ut = σ(Wxzxt +Whzht−1 +~bz) (1.23)

2. Reset gate: Similarly to update gate, it determines which parts of the
previous hidden state are used for further computation:

rt = σ(Wxrxt +Whrht−1 +~br) (1.24)

The hidden state is then computed with the use of both gates:

ht = ut � ht−1 + (1− ut)� tanh(Wxh
xt +Whh

(rt � ht−1) +~bh) (1.25)
As in the previous section, Wx, Wh and ~b with subscripts in the equations

above are learned matrices and vectors respectively.
There are also other versions of GRU, where gates are computed using only

the previous hidden state ht−1 or where update and reset gates are merged
together [5].

Same as with standard RNN and LSTM, there is also bidirectional GRU
(BGRU) and is structured in the same way as BLSTM. This architecture was
used for task such as sound event detection [25].

1.2.6 Autoencoder

Autoencoder is a type of neural network that can learn a representation of
given data by compressing and decompressing the input values. As described
in [26], it consists of two parts, the encoder and decoder. The encoder is
typically a dense FNN (other types of neural networks can be used as well)
with subsequent layers shrinking in width. The decoder mirrors the structure
of encoder with expanding layers. The autoencoder is then trained with a set
of data where input matches the target output.

15

1. Neural Networks

Figure 1.11: Example of autoencoder for digit compression [26]

Although the compressed data could be used in image compression, gene-
rally autoencoders don’t outperform well-known compression algorithms. Since
the compression inside autoencoders isn’t lossless (the output is fuzzy), they
aren’t suited for practical use of image compression.

The places where autoencoders found utilization are dimension reduction
and data denoising problems. In dimension reduction, they are used either as a
preprocessing stage in machine learning algorithms or before data visualization
where large data dimension hinders the comprehension of the image. In data
denoising, the autoencoder is trained with noisy images as the input and clear
pictures being the output. It isn’t limited to images but can also be used with
audio and other problems affected by noisiness.

16

Chapter 2
Portable Executable

Portable Executable (PE) format is a file format for Windows operation
systems (Windows NT) executables, DLLs (dynamic link libraries) and other
programs. Portable denotes the transferability between 32-bit and 64-bit sys-
tems. The file format contains all basic information for the OS loader [27]. In
this chapter, we will briefly describe the structure of PE file format.

2.1 Structure of PE File

The format of PE file is strictly set as follows, starting with MS-DOS stub
and header, followed with file, optional and section headers and finished with
program sections as illustrated in Figure 2.1. The detailed description can be
found in [28].

Figure 2.1: Structure of a PE file

2.1.1 MS-DOS Header and Stub

These sections are included for compatibility with past versions of MS-DOS.
MS-DOS stub is an executable application which can be run under MS-DOS.

17

2. Portable Executable

Nowadays, it contains a default program with some variation of the message
“This program cannot be run in DOS mode”.

2.1.2 File Header

Following is the signature which classifies the file as a PE file. Immediately
after the signature is located a file header containing information such as
target machine, the size of the section table, date of file creation, size of
optional header and others.

2.1.3 Optional Header

Even though this header is called optional, every executable file has one. This
chunk encloses vital info for the loader. Holds information such as the size
of code, size of headers, and much more. The last component of this part is
a group of data directories which consist of information about the import,
export, resource, debug along with other tables.

2.1.4 Section Headers

The optional header is directly succeeded with section headers (section ta-
ble). The number of headers (rows of section table) is written in the file
header. Each header contains data like virtual address, size and pointer to
raw data, and more.

2.1.5 Section Data

Sections are located on addresses specified by their respective headers. The
typical sections are:

.text This field incorporates all code segments from the program.

.bss, .rdata, .data Here are stored information about program’s variables,
constants, . . .

.rsrc This section is structured into a resource tree which holds resource info
for an application.

.edata Data which application exports, usually found in DLLs.

.idata Opposite to .edata, this section contains imported data.

.pdata Here we can find function entries for exception handling.

.debug Any debug information from the compiler.

18

Chapter 3
Experiments

As mentioned in chapter Introduction, the goal of this thesis is to found the
most appropriate structure of LSTM network for static malware detection.
For this task, we used Python as programming language together with inter-
active computational environment Jupyter Notebook [29]. We had chosen this
language because it’s well-known inside the machine learning community and
for its ease of use and comprehension. We used several packages from Python
SciPy ecosystem [30], such as NumPy, pandas or Matplotlib.

The implementation process consists of multiple stages, which were briefly
mentioned in the Introduction. In the following sections, we thoroughly de-
scribe each part of our coding process, starting with PE file collection, through
feature engineering and finishing with the central part, testing different RNN
architectures.

3.1 Dataset Description

For training and testing, we have collected two datasets. A smaller dataset
which we gathered from available resources and EMBER dataset [31] from
Github.

3.1.1 Our Dataset

A smaller dataset consists of 30,154 samples which are evenly distributed
between malware and benign files. For amassing benign files, we searched
disks on university computers and the malware files were obtained from online
repository https://virusshare.com which we thanks for access.

3.1.2 EMBER Malware Dataset

The EMBER (Endgame Malware BEnchmark for Research) [31] dataset is a
benchmark dataset for malware detection researches. We used the 2018 version

19

https://virusshare.com

3. Experiments

which contains one million samples which are divided into train and test sets.
The train set consists of 800,000 samples with 200,000 samples without label
and the rest equally split between malware and benign programs. We left out
the unlabeled samples and worked only with the remaining 600,000 labeled
data. The test set contains 200,000 samples which are evenly partitioned amid
malware and benign. Each row of the dataset contains features extracted
from PE files with over 2,300 columns. It contains attributes such as hashed
printable strings, header and sections information or entries from import and
export tables.

3.2 Feature Extraction

For extracting features from PE files, we used Python module pefile [32].
This module extracts all PE file attributes into an object from which they can
be easily accessed. The structure of the PE file is explained in the chapter
2. We tried to use as much data as possible and reached the total number of
features of 303. Features can be divided into multiple categories based on its
origin from the PE file.

Headers Data from DOS, NT, File and Optional headers.

Data Directories Names and sizes of all data directories. Also adding de-
tailed information from prevalent directories for instance IMPORT, EX-
PORT, RESOURCE and DEBUG directories.

Sections Names, sizes, entropies of all PE sections expressed by their average,
min, max, mean and standard deviation. To cooperate with a variable
amount of section in different files, we decided to describe only the first
four and last sections individually.

Others Extra characteristics associated with a file, e.g. byte histogram,
printable strings or version information.

To see the code for this part look at features_extractor.ipynb on the
enclosed DVD.

3.3 Feature Preparation

Since machine learning models typically work with numerical features, we must
encode strings and other categorical data into numeric values. This strategy is
necessary for more than 60 out of 303 columns. We chose to perform common
transformation techniques on the entire dataset as opposed to only using the
training set. We believe that by doing so, we can better focus on designing
RNN architectures and our results won’t be affected by the capability of other
algorithms.

20

3.3. Feature Preparation

3.3.1 Vectorization

Upfront, we transformed string features into sparse matrix representation us-
ing TfidfVectorizer from the scikit-learn Python library [33]. This class
demands corpus (collection of documents) as an input. We also adjusted pa-
rameters stop_words and max_df that influence which words to exclude from
further calculations, because they are either commonly used in a given lan-
guage and don’t bear any meaning, or occur with such high frequencies that
they aren’t statistically interesting for us. To eliminate the massive rise of di-
mensionality, we set max_features parameter according to the feature’s car-
dinality. The transformation itself consists of converting sentences to vectors
of token counts. Then they are transformed into tf-idf representation. Tf-idf
is an abbreviation for term frequency times inverse document frequency. It is
a way to express the weight of a single word in the corpus [34].

Term frequency is the frequency of a word inside the document. The
formula is:

tf(w, d) = nw,d∑
k nk,d

(3.1)

Where nw,d is the number of times word w appears in document d and the
denominator is the sum of all words found in d.

Inverse document frequency is a scale of how much a word is rare
across the whole corpus:

idf(w,D) = log |D|
|d ∈ D : w ∈ d| (3.2)

It is a fraction of the total number of documents in corpus D divided by
the number of documents containing the specific word.

Tf-idf is then calculated as a multiplication of these two values [35]:

tf-idf(w, d) = tf(w, d) · idf(w,D) (3.3)
All of this is done by the aforementioned class TfidfVectorizer, and

as a result, we get a matrix of tf-idf features which can be used in further
computations.

3.3.2 Hashing

For non-string values, we used a technique called feature hashing. This
approach turns the column of values into a sparse matrix using the value’s hash
as an index to the matrix. For this task, we used FeatureHasher also from
scikit-learn. The class takes as an optional argument n_features which
limits the number of columns in the output matrix. We set this argument
dynamically according to the size of the feature’s value set.

21

3. Experiments

Full code with vectorization and feature hashing is available in notebook
features_transformation.ipynb on the attached DVD.

3.4 Feature Selection

Even though we tried to limit the rise of new features, we ended up with
1488 columns. To speed up the forthcoming training process, we tried several
feature selection techniques to reduce the dimensionality of the dataset.

Before all else, we filled missing values by column’s mean and divided data
into train and test splits to ensure correct evaluation of the model’s perfor-
mance. For this, we used train_test_split from sklearn.model_selection
with test split taking 20% of the dataset. Afterwards, we transformed fea-
tures to stretch across a smaller range. For this task, we looked for another
class from sklearn.preprocessing library and selected MinMaxScaler. This
scaler turns each feature x to lie between zero and one. The transformation
is calculated as:

xi −min(x)
max(x)−min(x) (3.4)

For feature selection, we tried multiple methods. Namely, PCA (Principal
Component Analysis), autoencoder and SelectFromModel . All selectors were
limited to the maximum number of 200 features. The first two mentioned
methods were outperformed by SelectFromModel from scikit-learn, thus
we used it in future tests. Full results are shown in Table 3.1 below.

Table 3.1: Comparison of different selection techniques

technique ACC TPR FPR

Autoencoder 0.8420 0.8169 0.1332
PCA 0.9783 0.9727 0.0162
SelectFromModel (ExtraTree) 0.9803 0.9730 0.0125
SelectFromModel (RandomForest) 0.9823 0.9780 0.0135
SelectFromModel (LogisticRegression) 0.9823 0.9780 0.0135

SelectFromModel is a selector that picks features based on their impor-
tance. The importance is established by an estimator which can be, for ex-
ample, extra-trees classifier or logistic regression. We chose random forest
classifier as it had high accuracy while relatively low false-positive rate. More
about evaluation metrics can be found in 4.1. This classifier works as an en-
semble of decision trees. The trees are fitted on a random subgroup of samples,
and results are then averaged to get the final answer.

22

3.5. Proposed Method

Figure 3.1: ROC curve of different feature selection techniques

Table 3.1 and Figure 3.1 describe the performance of LSTM network on
datasets created by different selection techniques.

The source code can be found in features_selection.ipynb located on
enclosed DVD.

3.5 Proposed Method

For modelling various types of recurrent neural networks, we chose Keras,
the Python deep learning library [36]. To explore the performance of dif-
ferent RNN architectures, we ran widespread testing from which we selected
the best performing designs. With those, we ran further experiments with
slight adjustments to fine-tune their structure to maximize the classification
performance.

3.5.1 Approximate Testing

The experimentation consisted of testing more than 300 different architectures
of RNN on our training dataset, which we further split into train and validation
groups. Training each model up to 50 epochs with the batch size of 128.
Entire testing was run with models compiled under Adam optimizer. Adam,
an abbreviation of adaptive moment estimation, is an optimization algorithm

23

3. Experiments

which computes adaptive learning rates for each parameter. It was presented
by Kingma and Ba in 2014 [37].

We analysed standard RNN (1.2.3), LSTM (1.2.4) and GRU (1.2.5) units
and also included bidirectional version of these architectures. We tried various
heights and widths of the networks. With the number of units in layer ranging
between 1 and 128 and the number of stacked layers from 1 up to 7. We also
experimented with added dropout regularization between layers. Dropout is
a technique used during the training process of a neural network. It makes
changes to random sub-sample of neural network which reduce net’s overfitting
to the training data [11].

From these trials, we selected structures which performed the best on the
validation set. The results for the top performing nets can be found in Table
3.2. The results are sorted by accuracy (ACC), the last column shows training
time (in seconds) needed to achieve these results.

Table 3.2: The most promising RNN architectures

type bidirectional num layers num units in layer ACC TPR FPR train time (s)

LSTM True 5 16 0.9853 0.9835 0.0129 141.0
LSTM True 6 32 0.9851 0.9839 0.0137 157.9
GRU True 5 32 0.9849 0.9859 0.0162 155.3
LSTM False 5 64 0.9847 0.9789 0.0096 84.2
GRU False 3 32 0.9847 0.9847 0.0154 64.4
LSTM True 7 32 0.9847 0.9797 0.0104 185.7
GRU True 4 32 0.9845 0.9855 0.0166 130.6
LSTM False 4 32 0.9845 0.9810 0.0121 73.6
LSTM True 3 64 0.9845 0.9814 0.0125 93.0
GRU True 6 16 0.9845 0.9818 0.0129 174.8
LSTM True 5 32 0.9842 0.9868 0.0183 139.5
LSTM True 2 128 0.9840 0.9843 0.0162 71.6
GRU False 6 64 0.9840 0.9835 0.0154 107.2
GRU True 4 16 0.9840 0.9797 0.0116 125.8
GRU True 6 64 0.9840 0.9826 0.0145 177.1

3.5.2 Promising Structures

The structures with the most potential we farther tuned-up in order to boost
their performance. We found that LSTM and GRU networks performed well,
while standard RNN lagged behind with only one representative found at the
end of top 50. Henceforward, we focused mainly on LSTM networks as they
had the best results overall. The ubiquitous trend between tested networks
has shown that deeper architectures seem to comprehend data better, yet
there were huge fluctuation in achieved FPR.

From Table 3.2, we selected structures with the best accuracy which was
more than 98% for the most performing networks. We reran the first five
architectures through our benchmark, but now up to 200 epochs to see if they
could benefit from further learning.

24

3.5. Proposed Method

Table 3.3: Top five RNN architectures after 200 epochs

type bidirectional num layers num units in layer ACC TPR FPR train time (s)

LSTM True 5 16 0.9834 0.9773 0.0104 555.5
LSTM True 6 32 0.9845 0.9785 0.0096 624.3
GRU True 5 32 0.9855 0.9806 0.0096 593.2
LSTM False 5 64 0.9859 0.9814 0.0096 332.7
GRU False 3 32 0.9842 0.9785 0.0100 251.0

From the results in Table 3.3, we can see that some architectures increased
their accuracy while some didn’t improve further. Where as some networks
recorded rising TPR, it was usually at the expense of higher FPR and vice
versa.

We carried more experiments, training networks up to 2,000 epochs, adding
extra hidden layers or using different optimizers. In the end, we came up with
a combination of dense (layer of FNN) and LSTM layers, compiled with Adam
optimizer that achieved reasonably good results on our dataset.

Figure 3.2: Proposed structure of LSTM network

In Figure 3.2, we loosely illustrated the architecture of the best performing
LSTM network we found. Combining dense neural layers with bidirectional
LSTM. The output layer consists of sigmoid neuron unit, as it’s typical for
binary classification problems. In addition to the image, the layers are inter-
leaved with the dropout set to 35%.

The graph in Figure 3.3 illustrates how our LSTM architecture compre-
hended the dataset over 700 epochs. We can see that accuracy remained
similar during the whole training process. Model maintained low FPR until
200 epochs after which started to overfit to positive samples and increased
TPR at the cost of higher FPR. For our task the malware detection, the
sweet spots are located where we can found nearly the highest accuracy while
maintaining a low false-positive rate.

25

3. Experiments

Figure 3.3: Evolution of ACC, TPR and FPR over 700 epochs on the valida-
tion set

Figure 3.4: Confusion matrix presenting our results

The results on the test set after 250 epochs are shown by the confusion
matrix in Figure 3.4.

26

Chapter 4
Results

In this chapter, we analysed the performance of our LSTM architecture from
Chapter 3 and compared it with other machine learning models.

In the first place, we describe the metrics used for model evaluation. Next,
we evaluate our LSTM architecture against other supervised machine learning
algorithms. In the end, we compare our results with related work on the topic
of static malware detection using neural networks.

4.1 Evaluation Metrics

The crucial part of designing machine learning algorithms is evaluation. Evalua-
tion needs to be standardized yet personalized to the problem. In our case,
malware detection, the target is to detect as much malware as possible, while
minimizing the number of false alarms (false positives).

4.1.1 Confusion Matrix

The basis for evaluating classifiers is the confusion matrix. This matrix is
used as a foundation for calculating other metrics such as accuracy, precision,
sensitivity, specificity or ROC Curve [38].

True Positive Prediction says positive, and it’s correct.

True Negative Prediction says negative, and it’s correct.

False Positive Prediction says positive but actual value is negative.

False Negative Prediction says negative but actual value is positive.

27

4. Results

Figure 4.1: Confusion matrix, 0 stands for negative and 1 for positive values

Figure 4.1 shows the composition of a confusion matrix where each field
contains the number of samples belonging to a given class. The matrix can be
extended to cover more than 2 classes for multi-classification problems. For
our case, we stay with binary classification.

Many metrics can be calculated from the confusion matrix, for instance:

Accuracy (ACC) Proportion of correctly classified samples out of all predic-
tions:

ACC = TP + TN

TP + TN + FP + FN
(4.1)

Precision (PPV) Ratio of true positives to all samples predicted as positive:

PPV = TP

TP + FP
(4.2)

Sensitivity (TPR, Recall) How many samples from the positive class were
predicted correctly:

TPR = TP

TP + FN
(4.3)

Combination of precision and recall is called f-score, which maximizes
both metrics.

Specificity Alike sensitivity, number of samples from the negative class which
were classified correctly:

Specificity = TN

TN + FP
(4.4)

28

4.2. Supervised ML Algorithms

Fall-out (FPR) Probability of predicting samples from the negative class as
positives:

FPR = FP

FP + TN
= 1− Specificity (4.5)

In the definitions above, the TN , FP , FN and TP refers to the number
of samples belonging to their respective class [39].

4.1.2 ROC Curve

ROC curve, shorten from receiver operating characteristic curve is a graph
comparing the FPR on the x-axis with TPR on the y-axis at different classi-
fication thresholds. An example of ROC curve can be seen in Figure 3.1.

To evaluate and compare the performance of the model, we can calculate
the area under the curve (AUC). The area ranges between zero and one. A
model with AUC equal to zero means that all predictions were wrong. In fact,
it means that model is predicting exactly opposite values. Area of the size one
denotes perfect model, and random predictions would lead to an area of 0.5
[40]. It is important to understand that AUC score is only useful in problems
where we don’t prioritize prediction of either class. In the field of malware
detection, the goal is typically to maximize accuracy while minimizing false-
positive rate.

4.2 Supervised ML Algorithms

In this section, we present the performance of our architecture against other
supervised machine learning algorithms. After multiple testing stages, we
found the random forest classifier to consistently outperform simple decision
trees, k-nearest neighbours, logistic regression and other classifiers from the
scikit-learn library we tried. Possible explanation of superb random for-
est and other ensemble models results might lie in the feature selection ap-
proach we used. The SelectFromModel technique selected features based on
importance weights computed by the given estimator, as which we used the
RandomForestClassifier.

29

4. Results

Table 4.1: Comparison of our LSTM network with well-known supervised
machine-learning algorithms

ML algorithm accuracy TPR FPR TN FP FN TP

LSTM 0.9841 0.9780 0.0099 0.4978 0.0050 0.0109 0.4863
Feed-ForwardNetwork 0.9859 0.9840 0.0122 0.4966 0.0061 0.0080 0.4893
DecisionTree 0.9851 0.9870 0.0168 0.4943 0.0085 0.0065 0.4908
RandomForest 0.9884 0.9897 0.0129 0.4963 0.0065 0.0051 0.4921
AdaBoost 0.9801 0.9807 0.0204 0.4925 0.0103 0.0096 0.4876
kNN 0.9778 0.9763 0.0208 0.4923 0.0104 0.0118 0.4855
NaiveBayesGaussian 0.9275 0.8756 0.0211 0.4921 0.0106 0.0618 0.4354
LogisticRegression 0.9650 0.9617 0.0317 0.4868 0.0159 0.0191 0.4782

From the Table 4.1 we can see that, even though our LSTM architecture
didn’t score the best in terms of accuracy, it achieved the lowest FPR with only
around 0.5% samples from entire dataset classified as false positive. Figure
4.2 below compares ROC curves of these algorithms.

Figure 4.2: ROC curve of tested ML algorithms

The results above were carried out on our dataset described in 3.1.1. Later,
we reran all models on EMBER dataset described in 3.1.2. We didn’t optimize
our approach in the same way as we did for our dataset, so we used the same
standardization and feature selection techniques as described in chapter 3.

30

4.2. Supervised ML Algorithms

Table 4.2: Comparison of our LSTM network with well-known supervised
machine-learning algorithms (EMBER)

ML algorithm accuracy TPR FPR TN FP FN TP

LSTM 0.9452 0.9387 0.0483 0.4758 0.0242 0.0307 0.4693
Feed-ForwardNetwok 0.9440 0.9463 0.0583 0.4709 0.0291 0.0268 0.4732
DecisionTree 0.9077 0.9066 0.0912 0.4544 0.0456 0.0467 0.4533
RandomForest 0.9525 0.9502 0.0452 0.4774 0.0226 0.0249 0.4751
AdaBoost 0.8327 0.9045 0.2391 0.3805 0.1195 0.0478 0.4522
kNN 0.9204 0.9103 0.0695 0.4653 0.0347 0.0448 0.4552
NaiveBayesGaussian 0.6707 0.5919 0.2506 0.3747 0.1253 0.2040 0.2960
LogisticRegression 0.7817 0.8952 0.3317 0.3341 0.1659 0.0524 0.4476

The results from Table 4.2 didn’t end up as great as results with our
dataset shown in Table 4.1. But as we mentioned before, we didn’t optimize
our approach to this dataset. In Figure 4.3 below you can see a comparison
of ROC curves on EMBER dataset.

Figure 4.3: ROC curve of tested ML algorithms (EMBER)

31

4. Results

4.3 Comparison with the State-of-the-art

In this part, we compare our results with related research in the field of static
malware detection. We focused on the papers linked to neural networks, no-
tably recurrent neural networks.

In [41], they used opcodes (operation code, part of machine language in-
struction [42]) extracted from a disassembled binary file. From those opcodes,
they created a language with the help of word embedding. Word embed-
ding is a technique consisting of converting words to vector representations.
This method groups similar words together, which helps in training of natural
language processing models [43]. The language is then processed by LSTM
network to get the prediction. They achieved an AUC-ROC score of 0.99, but
their dataset consisted of only 1,092 samples.

Much larger dataset of 90,000 samples was used in [44]. They used a
LSTM network to process API call sequences combined with CNN to detect
malicious files. While also using dynamic and static features, they managed
an accuracy of 97.3%.

Deep neural networks were also used in [45] with the help of Bayesian
statistics. They worked with a large dataset of more than 400 thousands
binaries. With fixed FPR at 0.1%, they reported AUC-ROC of 0.99964 with
TPR of 95.2%.

Hardy et al. in [46] used stacked autoencoders for malware classification
and achieved an accuracy of 95.64% on 50,000 samples.

In terms of attitude to malware detection, Vinayakumar et al. [47] are the
closest to our solution. They trained stacked LSTM network and achieved an
accuracy of 97.5% with AUC-ROC score of 0.998. That said they focused on
android file and collected only 558 APKs (Android application package).

It’s hard to compare our results with these works due to everyone using
different datasets for evaluation. We tried to confront this problem by also
evaluating our proposed method on freely available, EMBER dataset. While
using our dataset, we can see that in terms of accuracy, our combination of
dense and stacked LSTM layers surpassed most of the other works, while main-
taining a low number of falsely classified benign files. However, on EMBER
dataset, our results didn’t come out as brilliant, but as we mentioned earlier,
we didn’t optimize our approach to this dataset and more research needs to
be done in this field.

32

Conclusion

The goal of this thesis was to study various RNN architectures with a focus
on LSTM and apply them in static malware detection. We collected a large
number of PE binaries from available resources. From these binaries, we ex-
tracted as many features as possible. With these features, we ran feature
selection algorithms to reduce the dimension of our dataset. Later, we con-
ducted extensive testing with the goal of founding the most appropriate RNN
architectures, which we further fine-tuned to enhance their performance. In
the end, we compared our best performing architecture with other supervised
ML models and related research.

We found that bidirectional LSTM neural networks outperformed other
tested recurrent neural networks, notably standard and gated recurrent units.
We experimented with various structures of LSTM networks and came up with
a combination of dense and LSTM layers. The input firstly goes through the
fully connected dense layer, which is followed by stacked bidirectional LSTM
layers with 64 units each and finished with another dense layer and output
neuron with the sigmoid activation function.

This structure achieved an accuracy of 98.41%, with 97.80% TPR and
0.99% FPR after being trained on our training dataset for 250 epochs.

To summarize this work, we managed to train the LSTM network to
achieve reasonably good detection rate at only 0.5% false positives. Thus
we proved that RNNs could be used as a reliable malware detection method.
However, more improvement can be made, especially in the feature engineering
of PE files, where we foresee vast improvements. Also, we limited our research
to only static analysis and didn’t study LSTM performance while using dy-
namic features such as API calls, which could lead to further improvements.

33

Bibliography

1. AV-TEST. SECURITY REPORT 2018/19 [online]. 2019 [visited on
04/30/2020]. Available from: https://www.av-test.org/fileadmin/
pdf/security_report/AV- TEST_Security_Report_2018- 2019.
pdf.

2. SYMANTEC, C. Internet security threat report 2019 [online]. 2014
[visited on 04/30/2020]. Available from: https://www-west.symantec.
com/content/dam/symantec/docs/reports/istr-24-2019-en.
pdf.

3. LATTO, Nica. What is WannaCry? [online]. 2020 [visited on 04/30/2020].
Available from: https://www.avast.com/c-wannacry.

4. CLOONAN, John. Advanced malware detection-signatures vs. behav-
ior analysis. Infosecurity Magazine. 2017, vol. 11. ISSN 1878-741X.

5. BENGIO, Yoshua; GOODFELLOW, Ian; COURVILLE, Aaron. Deep
learning. Citeseer, 2017. ISBN 0262035618.

6. MCCULLOCH, Warren S; PITTS, Walter. A logical calculus of the
ideas immanent in nervous activity. The bulletin of mathematical bio-
physics. 1943, vol. 5, no. 4, pp. 115–133. ISSN 0007-4985.

7. KRISHTOPA. What Are Neural Networks, Why They Are So Popular
And What Problems Can Solve [online]. 2016 [visited on 03/23/2020].
Available from: https : / / steemit . com / academia / @krishtopa /
what- are- neural-networks- why- they- are-so- popular- and-
what-problems-can-solve.

8. ROJAS, Raúl. Neural networks: a systematic introduction. Springer
Science & Business Media, 2013. ISBN 9783642610684.

9. NIELSEN, Michael A. Neural networks and deep learning [online]. De-
termination press San Francisco, CA, USA: 2015 [visited on 12/26/2019].
Available from: http://neuralnetworksanddeeplearning.com/.

35

https://www.av-test.org/fileadmin/pdf/security_report/AV-TEST_Security_Report_2018-2019.pdf
https://www.av-test.org/fileadmin/pdf/security_report/AV-TEST_Security_Report_2018-2019.pdf
https://www.av-test.org/fileadmin/pdf/security_report/AV-TEST_Security_Report_2018-2019.pdf
https://www-west.symantec.com/content/dam/symantec/docs/reports/istr-24-2019-en.pdf
https://www-west.symantec.com/content/dam/symantec/docs/reports/istr-24-2019-en.pdf
https://www-west.symantec.com/content/dam/symantec/docs/reports/istr-24-2019-en.pdf
https://www.avast.com/c-wannacry
https://steemit.com/academia/@krishtopa/what-are-neural-networks-why-they-are-so-popular-and-what-problems-can-solve
https://steemit.com/academia/@krishtopa/what-are-neural-networks-why-they-are-so-popular-and-what-problems-can-solve
https://steemit.com/academia/@krishtopa/what-are-neural-networks-why-they-are-so-popular-and-what-problems-can-solve
http://neuralnetworksanddeeplearning.com/

Bibliography

10. OTFRIED, Cheong. Ipe Drawing Editor [online]. 2019. 7.2.13/7 [vis-
ited on 12/26/2019]. Available from: http://ipe.otfried.org/.

11. LESKOVEC, Jure; RAJARAMAN, Anand; ULLMAN, Jeffrey David.
Mining of massive data sets. Cambridge university press, 2020. ISBN
9781108476348.

12. LIPTON, Zachary C; BERKOWITZ, John; ELKAN, Charles. A crit-
ical review of recurrent neural networks for sequence learning. arXiv
preprint arXiv:1506.00019 [online]. 2015, pp. 5–25 [visited on 12/20/2019].
ISSN 2331-8422. Available from: https://arxiv.org/pdf/1506.
00019.pdf.

13. BLUM, Avrim L; RIVEST, Ronald L. Training a 3-node neural net-
work is NP-complete. In: Machine learning: From theory to applica-
tions. Springer, 1993, pp. 9–28. ISBN 9783540564836.

14. GRAVES, Alex. Supervised sequence labelling. In: Supervised sequence
labelling with recurrent neural networks. Springer, 2012, pp. 13–39.
ISBN 9783642247965.

15. SCHUSTER, Mike; PALIWAL, Kuldip K. Bidirectional recurrent neu-
ral networks. IEEE transactions on Signal Processing. 1997, vol. 45,
no. 11, pp. 2673–2681. ISSN 1053-587X.

16. HOCHREITER, Sepp; SCHMIDHUBER, Jürgen. Long short-term
memory. Neural computation. 1997, vol. 9, no. 8, pp. 1735–1780. ISSN
0899-7667.

17. ZAREMBA, Wojciech; SUTSKEVER, Ilya; VINYALS, Oriol. Recur-
rent neural network regularization. arXiv preprint arXiv:1409.2329
[online]. 2014, pp. 1–3 [visited on 12/15/2019]. ISSN 2331-8422. Avail-
able from: https://arxiv.org/pdf/1409.2329.pdf.

18. GRAVES, Alex; SCHMIDHUBER, Jürgen. Framewise phoneme clas-
sification with bidirectional LSTM and other neural network archi-
tectures. Neural networks. 2005, vol. 18, no. 5-6, pp. 602–610. ISSN
2161-4393.

19. BROWNLEE, Jason. How to Develop a Bidirectional LSTM For Se-
quence Classification in Python with Keras [online]. 2019 [visited on
05/30/2020]. Available from: https://machinelearningmastery.
com/develop-bidirectional-lstm-sequence-classification-
python-keras/.

20. LIWICKI, Marcus; GRAVES, Alex; FERNÀNDEZ, Santiago; BUNKE,
Horst; SCHMIDHUBER, Jürgen. A novel approach to on-line hand-
writing recognition based on bidirectional long short-term memory
networks. In: Proceedings of the 9th International Conference on Doc-
ument Analysis and Recognition, ICDAR 2007 [online]. 2007 [visited

36

http://ipe.otfried.org/
https://arxiv.org/pdf/1506.00019.pdf
https://arxiv.org/pdf/1506.00019.pdf
https://arxiv.org/pdf/1409.2329.pdf
https://machinelearningmastery.com/develop-bidirectional-lstm-sequence-classification-python-keras/
https://machinelearningmastery.com/develop-bidirectional-lstm-sequence-classification-python-keras/
https://machinelearningmastery.com/develop-bidirectional-lstm-sequence-classification-python-keras/

Bibliography

on 05/29/2020]. Available from: http : / / www . cs . toronto . edu /
˜graves/icdar_2007.pdf.

21. GRAVES, Alex; LIWICKI, Marcus; FERNÁNDEZ, Santiago; BERTO-
LAMI, Roman; BUNKE, Horst; SCHMIDHUBER, Jürgen. A novel
connectionist system for unconstrained handwriting recognition. IEEE
transactions on pattern analysis and machine intelligence. 2008, vol. 31,
no. 5, pp. 855–868. ISSN 0162-8828.

22. KIPERWASSER, Eliyahu; GOLDBERG, Yoav. Simple and Accurate
Dependency Parsing Using Bidirectional LSTM Feature Representa-
tions. Transactions of the Association for Computational Linguistics
[online]. 2016, vol. 4, pp. 313–327 [visited on 05/30/2020]. ISSN 2307-
387X. Available from DOI: 10.1162/tacl_a_00101.

23. SUNDERMEYER, Martin; ALKHOULI, Tamer; WUEBKER, Joern;
NEY, Hermann. Translation Modeling with Bidirectional Recurrent
Neural Networks. In: Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP) [online]. Doha,
Qatar: Association for Computational Linguistics, 2014, pp. 14–25
[visited on 05/30/2020]. Available from DOI: 10.3115/v1/D14-1003.

24. JIANG, Junshu; ZOU, Shangjie; SUN, Yu; ZHANG, Shengxiang. GL-
BLSTM: a novel structure of bidirectional long-short term memory for
disulfide bonding state prediction. arXiv preprint arXiv:1808.03745
[online]. 2018 [visited on 05/29/2020]. ISSN 2331-8422. Available from:
https://arxiv.org/pdf/1808.03745.pdf.

25. LU, Rui; DUAN, Zhiyao. Bidirectional GRU for sound event de-
tection. Detection and Classification of Acoustic Scenes and Events.
2017. ISSN 2329-9290.

26. CHOLLET, Francois. Building autoencoders in keras [online]. 2016
[visited on 04/16/2020]. Available from: https://blog.keras.io/
building-autoencoders-in-keras.html.

27. KOWALCZYK, Krzysztof. Portable Executable File Format [online].
2018 [visited on 04/05/2020]. Available from: https://blog.kowalczyk.
info/articles/pefileformat.html.

28. KARL BRIDGE, Microsoft. PE Format - Win32 apps [online]. 2019
[visited on 04/05/2020]. Available from: https://docs.microsoft.
com/en-us/windows/win32/debug/pe-format.

29. KLUYVER, Thomas et al. Jupyter Notebooks-a publishing format
for reproducible computational workflows. In: ELPUB [online]. 2016,
pp. 87–90 [visited on 01/05/2020]. Available from DOI: http : / /
eprints.soton.ac.uk/id/eprint/403913.

37

http://www.cs.toronto.edu/~graves/icdar_2007.pdf
http://www.cs.toronto.edu/~graves/icdar_2007.pdf
http://dx.doi.org/10.1162/tacl_a_00101
http://dx.doi.org/10.3115/v1/D14-1003
https://arxiv.org/pdf/1808.03745.pdf
https://blog.keras.io/building-autoencoders-in-keras.html
https://blog.keras.io/building-autoencoders-in-keras.html
https://blog.kowalczyk.info/articles/pefileformat.html
https://blog.kowalczyk.info/articles/pefileformat.html
https://docs.microsoft.com/en-us/windows/win32/debug/pe-format
https://docs.microsoft.com/en-us/windows/win32/debug/pe-format
http://dx.doi.org/http://eprints.soton.ac.uk/id/eprint/403913
http://dx.doi.org/http://eprints.soton.ac.uk/id/eprint/403913

Bibliography

30. VIRTANEN, Pauli et al. SciPy 1.0: Fundamental Algorithms for Sci-
entific Computing in Python. Nature Methods [online]. 2020, vol. 17,
pp. 261–272 [visited on 03/30/2020]. ISSN 1548-7105. Available from
DOI: https://doi.org/10.1038/s41592-019-0686-2.

31. ANDERSON, H. S.; ROTH, P. EMBER: An Open Dataset for Train-
ing Static PE Malware Machine Learning Models. ArXiv e-prints [on-
line]. 2018 [visited on 02/25/2020]. ISSN 2331-8422. Available from
arXiv: 1804.04637 [cs.CR].

32. CARRERA, E. Pefile [online]. 2017 [visited on 01/15/2020]. Available
from: https://github.com/erocarrera/pefile.

33. PEDREGOSA, F. et al. Scikit-learn: Machine Learning in Python.
Journal of Machine Learning Research. 2011, vol. 12, pp. 2825–2830.
ISSN 1533-7928.

34. MAKLIN, Cory. TF IDF: TFIDF Python Example [online]. 2019 [vis-
ited on 04/25/2020]. Available from: https://towardsdatascience.
com/natural-language-processing-feature-engineering-using-
tf-idf-e8b9d00e7e76.

35. KLOUDA, Karel; VAŠATA, Daniel. Neuronové śıtě: NLP [online].
2019 [visited on 04/25/2020]. Available from: https://courses.fit.
cvut.cz/BI-VZD/lectures/files/BI-VZD-11-cs-handout.pdf.

36. CHOLLET, François et al. Keras [https://keras.io]. 2015 [visited
on 03/02/2020].

37. KINGMA, Diederik P; BA, Jimmy. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980 [online]. 2014 [visited
on 04/27/2020]. ISSN 2331-8422. Available from: https://arxiv.
org/pdf/1412.6980.pdf.

38. NARKHEDE, Sarang. Understanding Confusion Matrix [online]. 2019
[visited on 05/29/2020]. Available from: https://towardsdatascience.
com/understanding-confusion-matrix-a9ad42dcfd62.

39. MARKHAM, Kevin. Simple guide to confusion matrix terminology
[online]. 2014 [visited on 04/16/2020]. Available from: https : / /
www . dataschool . io / simple - guide - to - confusion - matrix -
terminology/.

40. BROWNLEE, J. How and when to use ROC curves and precision-
recall curves for classification in Python [online]. 2018 [visited on
04/17/2020]. Available from: https://machinelearningmastery.
com/roc-curves-and-precision-recall-curves-for-classification-
in-python/.

38

http://dx.doi.org/https://doi.org/10.1038/s41592-019-0686-2
https://arxiv.org/abs/1804.04637
https://github.com/erocarrera/pefile
https://towardsdatascience.com/natural-language-processing-feature-engineering-using-tf-idf-e8b9d00e7e76
https://towardsdatascience.com/natural-language-processing-feature-engineering-using-tf-idf-e8b9d00e7e76
https://towardsdatascience.com/natural-language-processing-feature-engineering-using-tf-idf-e8b9d00e7e76
https://courses.fit.cvut.cz/BI-VZD/lectures/files/BI-VZD-11-cs-handout.pdf
https://courses.fit.cvut.cz/BI-VZD/lectures/files/BI-VZD-11-cs-handout.pdf
https://keras.io
https://arxiv.org/pdf/1412.6980.pdf
https://arxiv.org/pdf/1412.6980.pdf
https://towardsdatascience.com/understanding-confusion-matrix-a9ad42dcfd62
https://towardsdatascience.com/understanding-confusion-matrix-a9ad42dcfd62
https://www.dataschool.io/simple-guide-to-confusion-matrix-terminology/
https://www.dataschool.io/simple-guide-to-confusion-matrix-terminology/
https://www.dataschool.io/simple-guide-to-confusion-matrix-terminology/
https://machinelearningmastery.com/roc-curves-and-precision-recall-curves-for-classification-in-python/
https://machinelearningmastery.com/roc-curves-and-precision-recall-curves-for-classification-in-python/
https://machinelearningmastery.com/roc-curves-and-precision-recall-curves-for-classification-in-python/

Bibliography

41. LU, Renjie. Malware Detection with LSTM using Opcode Language.
arXiv preprint arXiv:1906.04593 [online]. 2019 [visited on 11/15/2019].
ISSN 2331-8422. Available from: https://arxiv.org/pdf/1906.
04593.pdf.

42. BARRON, David William. Assemblers and loaders. Elsevier Science
Inc., 1978. ISBN 9780130525642.

43. MIKOLOV, Tomas; SUTSKEVER, Ilya; CHEN, Kai; CORRADO,
Greg S; DEAN, Jeff. Distributed representations of words and phrases
and their compositionality. In: Advances in neural information pro-
cessing systems. 2013, pp. 3111–3119. ISBN 9781632660244.

44. ZHOU, Huan. Malware Detection with Neural Network Using Com-
bined Features. In: China Cyber Security Annual Conference [online].
2018, pp. 96–106 [visited on 11/15/2019]. Available from: https://
link.springer.com/chapter/10.1007/978-981-13-6621-5_8.

45. SAXE, Joshua; BERLIN, Konstantin. Deep neural network based
malware detection using two dimensional binary program features.
In: 2015 10th International Conference on Malicious and Unwanted
Software (MALWARE). 2015, pp. 11–20. ISBN 9781509003174.

46. HARDY, William; CHEN, Lingwei; HOU, Shifu; YE, Yanfang; LI,
Xin. DL4MD: A deep learning framework for intelligent malware de-
tection. In: Proceedings of the International Conference on Data Min-
ing (DMIN). 2016, p. 61. ISBN 9781601324313.

47. VINAYAKUMAR, R; SOMAN, KP; POORNACHANDRAN, Praba-
haran; SACHIN KUMAR, S. Detecting Android malware using long
short-term memory (LSTM). Journal of Intelligent & Fuzzy Systems.
2018, vol. 34, no. 3, pp. 1277–1288. ISSN 1875-8967.

39

https://arxiv.org/pdf/1906.04593.pdf
https://arxiv.org/pdf/1906.04593.pdf
https://link.springer.com/chapter/10.1007/978-981-13-6621-5_8
https://link.springer.com/chapter/10.1007/978-981-13-6621-5_8

Appendix A
Acronyms

ACC Accuracy

AUC Area Under Curve

BGRU Bidirectional Gated Recurrent Unit

BLSTM Bidirectional Long Short-Term Memory

BPTT Backpropagation Through Time

BRNN Bidirectional Recurrent Neural Network

CNN Convolution Neural Network

FFN Feed-Forward Network

FN False Negative

FP False Positive

FPR False Positive Rate

GRU Gated Recurrent Unit

LSTM Long Short-Term Memory

ML Machine Learning

NN Neural Network

PCA Principal Component Analysis

PE Portable Executable

PPV Positive Predictive Values

ReLU Rectified Linear Unit

41

A. Acronyms

RNN Recurrent Neural Network

ROC Receiver Operating Characteristic

tanh Hyperbolic Tangent

TN True Negative

TP True Positive

TPR True Positive Rate

42

Appendix B
Contents of enclosed CD

README.md the Markdown file with description
src the directory of implementation source codes

models...............................the directory of trained model
resources.................................the directory of datasets
results.....................................the directory of results

text.................the directory of thesis text and LATEX source codes
bib the directory of bibliography files
fig ... the directory of figures
tex..............................the directory of LATEX source codes
presentation....................the directory of thesis presentation
BP Kozak Matous 2020.pdf................ the thesis in PDF format

43

	Introduction
	Neural Networks
	Artificial Neuron
	Perceptron
	Sigmoid Neuron
	Activation Function
	Sigmoid Function
	Hyperbolic Tangent
	Rectified Linear Unit
	Softmax

	Types of Neural Networks
	Feed-Forward Networks
	Backpropagation

	Convolutional Neural Networks
	Recurrent Neural Networks
	Bidirectional Recurrent Neural Networks

	Long Short-Term Memory
	Bidirectional Long Short-Term Memory

	Gated Recurrent Unit
	Autoencoder

	Portable Executable
	Structure of PE File
	MS-DOS Header and Stub
	File Header
	Optional Header
	Section Headers
	Section Data

	Experiments
	Dataset Description
	Our Dataset
	EMBER Malware Dataset

	Feature Extraction
	Feature Preparation
	Vectorization
	Hashing

	Feature Selection
	Proposed Method
	Approximate Testing
	Promising Structures

	Results
	Evaluation Metrics
	Confusion Matrix
	ROC Curve

	Supervised ML Algorithms
	Comparison with the State-of-the-art

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed CD

