
Ing. Michal Valenta, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague December 20, 2019

ASSIGNMENT OF BACHELOR’S THESIS
 Title: Open-Source Legal Process Designer in .NET Blazor

 Student: Martin Drozdík

 Supervisor: Ing. Marek Skotnica

 Study Programme: Informatics

 Study Branch: Web and Software Engineering

 Department: Department of Software Engineering

 Validity: Until the end of summer semester 2020/21

Instructions

An open-source smart contract designer is an ongoing research project at the CCMi research group. The
main goal of this project is to provide a visual language to design legal contracts between parties which can
be used to generate executable blockchain smart contracts. Blazor is a technology that allows running .NET
code directly in the browser using a WebAssembly standard.
A goal of this thesis is to investigate the possibilities of the Blazor technology to design an open-source
smart contract designer and create a proof of concept prototype.

Steps to take:
- Review the Blazor framework.
- Review an existing open-source designer for the Das Contract project.
- Design and create a proof-of-concept application in Blazor.
- Summarize the benefits and potential of the Blazor compared to other approaches.

References

Will be provided by the supervisor.





Bachelor’s thesis

Open-Source Legal Process Designer in
.NET Blazor

Martin Drozd́ık

Faculty of Information Technology
Supervisor: Ing. Marek Skotnica

May 6, 2020





Acknowledgements

Thank you to my supervisor, Ing. Marek Skotnica, for providing guidance
and feedback throughout this thesis.





Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipu-
lated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In accor-
dance with Article 46 (6) of the Act, I hereby grant a nonexclusive authoriza-
tion (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work for non-
profit purposes only, in any way that does not detract from its value. This
authorization is not limited in terms of time, location and quantity.

In Prague on May 6, 2020 . . .. . .. . .. . .. . .. . .. . .



Czech Technical University in Prague
Faculty of Information Technology
© 2020 Martin Drozd́ık. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Drozd́ık, Martin. Open-Source Legal Process Designer in .NET Blazor. Bach-
elor’s thesis. Czech Technical University in Prague, Faculty of Information
Technology, 2020.



Abstract

This thesis focuses on an exploration of a single page application framework
called Blazor and a proof of concept implementation of a Blockchain Smart
Contract editor.

The Smart Contract editor has the potential to create decentralized, auto-
nomous and secure electronic contracts, using a user–friendly visual language
DasContract. Such contracts could significantly reduce various administration
tasks and in some cases eliminate the need for central authorities, such as
banks.

In this thesis, a proof of concept implementation of a Smart Contract edi-
tor is analyzed, designed and implemented. The functionality of the editor was
demonstrated in a case study of a mortgage contract. The editors’ source code
is publicly available for further research. This thesis also reviewed and summa-
rised the benefits of Blazor and compared it to other single page application
frameworks.

Keywords Proof of concept DasContract editor, Blazor summary, Blazor
comparison, Smart Contract editor, C# and JavaScript interoperability, Bla-
zor Web Assembly, client-side Blazor

vii



Abstrakt

Tato práce se zabývá pr̊uzkumem frameworku Blazor a tvorbou prototypu
editoru chytrých blockchain smluv.

Editor chytrých smluv by mohl být schopen tvořit decentralizované, au-
tonomńı a zabezpečené elektronické smlouvy, a to za použit́ı vizuálńıho a uži-
vatelsky př́ıvětivého jazyka DasContract. Chytré smlouvy mohou významně
sńıžit množstv́ı administrativńı práce a v některých př́ıpadech i eliminovat
potřebu centrálńıch autorit, např́ıklad bank.

V rámci této práce byl zanalyzován, navržen a implementován editor
chytrých smluv. Funkčnost editoru byla demonstrována vytvořeńım hypotečńı
smlouvy. Zdrojový kód editoru je veřejně dostupný pro daľśı potenciálńı
výzkum. Tato práce také posoudila a shrnula př́ınosy frameworku Blazor
a porovnala jej s ostatńımi SPA frameworky.

Kĺıčová slova Prototyp DasContract editoru, souhrn Blazoru, porovnáńı
Blazoru, Smart Contract editor, interoperabilita C# a JavaScript, Blazor Web
Assembly, client-side Blazor

viii



Contents

Introduction 1
Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Problem statements . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Structure and Methodology . . . . . . . . . . . . . . . . . . . . . . . 2

1 Review of the Blazor framework 5
1.1 Web Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Blazor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Server-side Blazor . . . . . . . . . . . . . . . . . . . . . 6
1.2.2 Client-side Blazor . . . . . . . . . . . . . . . . . . . . . 7

1.3 Java Script and C# interoperability . . . . . . . . . . . . . . . 7
1.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Smart Contract designer 9
2.1 Blockchain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Smart Contract . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 The existing Smart Contract designer (1.0) . . . . . . . . . . . 10
2.4 The new Smart Contract designer (2.0) . . . . . . . . . . . . . 11

2.4.1 Process and activities . . . . . . . . . . . . . . . . . . . 11
2.4.2 Data model . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Analysis and design of the new editor 15
3.1 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.1 Business processes . . . . . . . . . . . . . . . . . . . . . 15
3.1.2 Use cases . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.3 Functional and nonfunctional requirements . . . . . . . 17

3.2 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.1 Package diagram . . . . . . . . . . . . . . . . . . . . . . 19

ix



3.2.2 Contract models . . . . . . . . . . . . . . . . . . . . . . 19
3.2.3 Back-end . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.4 Front-end . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Proof of concept implementation 27
4.1 Used technologies . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Development process . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2.1 JavaScript interoperability patterns . . . . . . . . . . . 28
4.3 Integration process . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.4 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.5 Case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 Benefits of Blazor 39
5.1 Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2 .NET platform . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.3 Comparison to other SPA frameworks . . . . . . . . . . . . . . 41
5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Conclusion 43
Future research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Bibliography 45

A Glossary 49

B Acronyms 51

C Contents of enclosed CD 53

x



List of Figures

1.1 Server-side communication diagram [4] . . . . . . . . . . . . . . . . 6
1.2 Client-side communication diagram [4] . . . . . . . . . . . . . . . . 7
1.3 Sequence diagram of invoking a JavaScript function with the in-

tention to callback an instance-specific C# method . . . . . . . . . 8

2.1 Screenshot of the 1.0 editors’ DEMO modeler . . . . . . . . . . . . 11

3.1 Process diagram that shows the contract creation process . . . . . 16
3.2 Editors’ use case diagram . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 Diagram of editors’ requirements . . . . . . . . . . . . . . . . . . . 18
3.4 Diagram of editors’ packages . . . . . . . . . . . . . . . . . . . . . 20
3.5 A class diagram that describes contract processes . . . . . . . . . . 21
3.6 A class diagram that describes contract entities . . . . . . . . . . . 22
3.7 A class diagram that describes the back-end . . . . . . . . . . . . . 23
3.8 A sequence diagram that describes how a file session is created . . 24
3.9 Diagram of important front-end components . . . . . . . . . . . . . 25
3.10 A service for communication with the back-end . . . . . . . . . . . 26

4.1 A diagram illustrating interoperability invokes without a mediator 29
4.2 A diagram illustrating interoperability invokes with a mediator . . 29
4.3 A class diagram of a mediator service . . . . . . . . . . . . . . . . 30
4.4 A class diagram of a mediator class capable of handling JavaScript

callbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.5 A sequence diagram that illustrates how to register a JavaScript

callback using a mediator . . . . . . . . . . . . . . . . . . . . . . . 32
4.6 A sequence diagram that illustrates how JavaScript callbacks are

handled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.7 Process diagram of a mortgage contract . . . . . . . . . . . . . . . 35
4.8 Part of a mortgage contract entities . . . . . . . . . . . . . . . . . 36
4.9 Part of a mortgage contract activities . . . . . . . . . . . . . . . . 36

xi



5.1 Component diagram of a web application with the same front-end
and back-end language . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2 Component diagram of a web application with different front-end
and back-end languages . . . . . . . . . . . . . . . . . . . . . . . . 41

xii



List of Tables

5.1 Comparison of various Single Page Application (SPA) frameworks
and libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

xiii





List of Listings

4.1 Example of a C# mediator . . . . . . . . . . . . . . . . . . . . 31
4.2 Request and deserialization of a class inside a service . . . . . . 33

xv





Introduction

DasContract is a visual language capable of defining contracts [1]. This thesis
aims to improve the usage of DasContract language by creating a proof of
concept editor.

Motivation

Current society closes deals and arrangments using contracts. These contracts
commonly take the form of signed papers with clearly stated conditions of the
arrangement. If conditions of a paper contract are broken by an interested
party, other parties must rely on a juridical system to enforce the conditions of
the contract, which can take years and cost a significant amount of resources.

Blockchain Smart Contracts are a form of secure code, that has the po-
tential to replace common paper contracts and eliminate the need of central
authorities, because is it capable of enforcing certain conditions on its own [1].

Making Smart Contracts using a software code can be difficult, especially
for non-technical people. Additionally, a code can contain issues and bugs.
Errors in a Smart Contract, that is capable of handling money, can cause
significant financial losses [2]. This issue can be potentially solved by replacing
the contract creation process with a visual-driven and user-friendly language
called DasContract [1].

Potentially beneficial technology, used for the editors’ front-end develop-
ment, would be the Blazor framework. Blazor is a SPA front-end framework
developed using C# and Razor languages.

If Blazor would prove to be a functioning framework with rich and reliable
features, it would be the first SPA framework embedded directly into the
.NET ecosystem, developed by C# and capable of utilizing existing JavaScript
packages and libraries [3]. This would make the Blazor framework a strong
competitor against vast amount of existing JavaScript SPA frameworks.

1



Introduction

Problem statements

Currently, there are no DasContract editors, that are capable of creating
Smart Contracts using the newest version of the DasContract language. This
thesis aims to create a proof of concept editor of Smart Contracts using the
DasContract language.

The DasContract editor could enable lawyers and other non-programmers
to create Smart Contracts with easy to use interface and without the need to
learn complex programming languages.

Blazor is a SPA framework used in this thesis, but it is uncertain if it
currently offers all the required features on high enough standards. By making
a project entirely based on the Blazor framework, that has high demands on
the User Interface (UI), it would thoroughly test the framework and suggest,
if Blazor is ready for production development or not.

Objectives

The main objective of this thesis is to investigate the possibilities of the Bla-
zor technology, analyze, design and implement an open-source DasContract
designer and create a proof of concept prototype.

The output of the Smart Contract designer must be data, structured in
a universal format, such as Extensible Markup Language (XML) or Java-
Script Object Notation (JSON), so it can be easily understood by diverse
DasContract interpreters.

Blazor possibilities investigation must cover JavaScript interoperability
and evaluate if the Blazor framework is capable of using existing JavaScript
packages and technologies, that are not available for Blazor. Good practice
approaches must be thought out and summarized.

Objectives of this thesis do not include developing the DasContract lan-
guage, creating DasContract interpreters or stores, working with Blockchain or
Smart Contracts, interpreting or simulating process models besides extracting
activities and their information.

Structure and Methodology

The thesis is organized as follows:

• In chapter 1, the Blazor framework and some of its libraries, such as
JavaScript interoperability, are investigated.

• In chapter 2, Smart Contract technology is briefly mentioned, the exist-
ing editor is briefly analyzed and DasContract language foundations are
defined.

2



Structure and Methodology

• In chapter 3, analysis and design of the new DasContract editor are
described.

• In chapter 4, implementation of the new DasContract editor is summa-
rized.

• In chapter 5, advantages of using Blazor are summarized and a compar-
ison of Blazor to other frameworks is presented.

3





Chapter 1
Review of the Blazor framework

Blazor is a single page application front-end framework directly embedded
in the .NET ecosystem and recently partially released in the ASP.NET Core
MVC 3.1 framework [4], [5]. Blazor is capable of compiling into the Web
Assembly (WASM) format, making it capable of running in browsers and being
developed using .NET languages. This makes it fundamentally different from
frameworks such as Angular [6] or Vue.js [7]. Having a variety of .NET libraries
and shared language between front-end and back-end can make a positive
impact in the front-end development process.

1.1 Web Assembly

WASM is a standard that defines an executable binary instruction format
for a stack-based virtual machine and interfaces for communication between
a program and its hosting environment. WASM is currently shipped in Firefox,
Google Chrome, Safari, Edge and other less mainstream browsers [8], [9].

The power of Web Assembly is the universality. Any code can be compiled
into the WASM format, given that the language of the code provides a WASM
compiler. Any browser that understands WASM can run any language that
can compile into WASM. Such languages include C# (and .NET standard in
general), C++, C or Rust [9], [4].

1.2 Blazor

Thanks to the Web Assembly standard, any language that provides a WASM
compiler can be compiled and executed in a web browser. This opens the
possibility of creating new front-end frameworks, which are not entirely based
on JavaScript or TypeScript. One of these new frameworks is Blazor.

Blazor is a single page application front-end framework developed by Mi-
crosoft [4]. Blazor is currently partially released in the ASP.NET Core frame-

5



1. Review of the Blazor framework

Figure 1.1: Server-side communication diagram [4]

work (version 3.1) [5].
Blazor applications are primarily developed using Razor language. Razor

language can be described as a mixture of dynamically generated Hypertext
Markup Language (HTML) using C# language and directives. Razor within
the Visual Studio IDE offers strongly typed syntax, which makes it an excellent
language for big–scaled and long–time projects.

Blazor currently supports two modes:

• Client-side

• Server-side

1.2.1 Server-side Blazor

Server-side Blazor, as shown at figure 1.1, computes all Document Object
Model (DOM) related changes on the server-side and the client receives only
DOM change commands. The communication between the server and the
client is handled using SingnalR and uses a blazorpack protocol. This ap-
proach does not require Web Assembly support and offloads the DOM and
virtual DOM difference computations to the server [4].

Server-side approach can bring better performance to the client. Unfor-
tunately, it works well only if the latency is not slowing down the SignalR
communication [4].

The major property of the server-side Blazor is that it does not require to
be compiled into WASM, making is perfectly capable of utilizing any .NET
Core library. In other words, the whole front-end can be in the same project
as the back-end. Server-side Blazor can for example directly invoke a database
query or safely handle authorization [4].

The capability of server-side Blazor being and executing all while within a
.NET Core project also means, that existing ASP.NET Core applications, that
use Razor views or Razor pages can load and easily use Blazor components in

6



1.3. Java Script and C# interoperability

Figure 1.2: Client-side communication diagram [4]

the server-side mode. This means extending older applications using server-
side Blazor is very approachable.

1.2.2 Client-side Blazor

Client-side Blazor, as shown at figure 1.2, is a more “traditional” Hypertext
Transfer Protocol (HTTP) approach, where the entire page and resources are
sent to the user. This requires browser Web Assembly support because the
C# libraries and Razor language are compiled into WASM to be able to be
executed within the clients’ browser [4].

Client-side Blazor must be in a project that targets .NET Standard 2.0 or
.NET Standard 2.1 framework. This project is being compiled into WASM [4].
This means that it cannot be in the same project as a server, that is, for
example, an ASP.NET Core. Because of that, the client-side Blazor cannot
directly invoke the back-ends’ methods or safely handle validation, like for
example the server-side Blazor. Communication between those two layers can
be established for example with an Representational State Transfer (REST)
Application Programming Interface (API) interface and JSON.

1.3 Java Script and C# interoperability

Blazor is unable to do everything JavaScript can. Furthermore, existing pow-
erful JavaScript libraries cannot be compiled to or understood by C#. That
is why .NET provides interoperability for JavaScript (JS interop).

It is possible to invoke JavaScript function by name, all within the Blazor
framework and Blazor components. Those functions must be available in the

7



1. Review of the Blazor framework

Figure 1.3: Sequence diagram of invoking a JavaScript function with the in-
tention to callback an instance-specific C# method

global JavaScript scope. The JavaScript function call is weakly typed [4].
It is also possible to invoke C# methods from within JavaScript, but it

requires extra steps since C# is not an interpreted language (like for example
JavaScript). First of all, C# methods to be invoked from JavaScript must
be provided with the JSInvokable attribute. Secondly, if it is required to
call a non-static method, C# must firstly provide a class callback reference,
meaning it is required to call the JavaScript method with callback reference
as a parameter first and only then can JavaScript invoke the method earlier
referenced by C# (as shown at figure 1.3) [4].

1.4 Summary

Blazor is a single page application front-end framework directly embedded
in the .NET ecosystem and recently partially released in the ASP.NET Core
MVC 3.1 framework.

Blazor applications are written in Razor and C# languages. It can com-
pute all operations on the server-side or it can be compiled into the WASM
format and executed directly in a browser.

Blazor provides two-way interoperability with JavaScript to support Java-
Script libraries and not (yet) implemented functionalities.

8



Chapter 2
Smart Contract designer

The DasContract designer is the first step in creating fully-fledged automated
model-driven Smart Contracts. The designer can enable lawyers, amongst
other users, to design a Smart Contract [1].

2.1 Blockchain

Blockchain technology introduced by Satoshi Nakamoto is a type of trustless
network. The technology and its underlying properties offer a simplistic, yet
robust peer-to-peer network structure [10], [11].

A research article “A visual domain-specific language for modeling Block-
chain Smart Contracts”, that introduces the first public version of DasContract,
summarized Blockchain as:

“Blockchain is a technology introduced by Satoshi Nakamoto. It is mostly
known for its use with Bitcoin as it is its underlying technology. It is a new
way of looking at transactions, assets exchange or even whole organizations. It
introduces a decentralized, autonomous, replicated and secure database. Based
on cryptography offers a trustless network with no need for an intermediary,
resulting in major resource and also time-saving. The possibilities of applying
this technology are very broad and it could be effectively used in most of the
parts of our world.” [1]

As the research article states, Blockchain provides “a decentralized, au-
tonomous, replicated and secure database”, which are qualities especially re-
quired when dealing with electronically operated legal contracts.

2.2 Smart Contract

Smart Contracts, as described by Nick Szabo, are a new form of contract, that
is smarter and more functional than commonly used paper contracts [12].

9



2. Smart Contract designer

A research article “A visual domain-specific language for modeling Block-
chain Smart Contracts”, that introduces the first public version of DasContract,
summarized Smart Contracts as:

“The idea of Smart Contracts is to offer more complex solutions than just
sell/buy transactions. A Smart Contract is a transaction embedded in the
Blockchain that contains enhanced logic – an executable contract, has its data
storage and can access other resources to evaluate its current state and perform
actions – a contract made of code.” [1]

Smart contracts are – simply put – an extension of Blockchain, that enables
programmers to write and run more complex code. Smart Contracts are an
essential tool for creating electronic legal contracts, that are decentralized,
autonomous and secured.

Blockchain and Smart Contract properties implicate almost impossible
tempering with already deployed legal contracts. This means deployed con-
tracts are secured from harmful or vicious intentions from any entities, even
the ones that deployed the contract in the first place.

One of the major Smart Contract disadvantages is difficult bug handling
on deployed contracts, which can be hard to fix without precautions (such as
kill-switches). These bugs can cause significant financial losses [2].

2.3 The existing Smart Contract designer (1.0)

By the time of making this thesis, a 1.0 version of a Smart Contract designer
exists. The newly developed editors’ version is 2.0.

The 1.0 editor uses:

• Design and Engineering Methodology for Organizations (DEMO) mod-
eling to define contract processes,

• Object Fact Diagram to define contract data models,

• Blockly editor with Solidity support for defining action rules.

The primary reason the 2.0 version of a DasContract designer being devel-
oped is due to the fact, that the 1.0 version implements an older DasContract
language, which heavily depends on DEMO models to define contract pro-
cesses [13]. The current DasContract model replaced the DEMO models for
a subset of Business Process Model and Notation (BPMN) models, which
makes the 1.0 version outdated [14].

The second reason for upgrading the 1.0 DasContract designer is the ar-
chitecture and framework changes. The 1.0 DasContract designer follows the
Flux design pattern, which enables it to let multiple users work on the same
contract, with Angular as its SPA front-end framework [13]. The new Das-
Contract editor will be designed more towards the Model-View-Controller

10



2.4. The new Smart Contract designer (2.0)

Figure 2.1: Screenshot of the 1.0 editors’ DEMO modeler

(MVC) design pattern to maintain the approach as simple as possible. The
front-end SPA framework will be swapped for the Blazor framework. The Bla-
zor framework with ASP.NET Core as the back-end will enable shared models
between those two layers and exploration of the Blazor framework properties
and possibilities.

2.4 The new Smart Contract designer (2.0)

The new Smart Contract designer (version 2.0) uses the latest DasContract
language to defined Smart Contracts. DasContract is a visual model-driven
language that dictates, how contracts should be structured and what diagrams
should be used [1].

The 2.0 Smart Contract designer can be separated into two main editors:

• Contract processes and activities

• Contract data model

2.4.1 Process and activities

A contract can be described by a process. The process is composed of activities
and their relations.

11



2. Smart Contract designer

To describe a process and its activities, the 2.0 Smart Contract editor uses
a subset of a BPMN language [14]. The BPMN offers a great modeling lan-
guage for business processes, which can be translated into useful and universal
code structures [15].

The selected subset of BPMN contains the following types of modified
activities:

• User

• Business rule

• Script [14]

The User activity is defined by a form, which needs to be filled and sub-
mitted, to continue to the next activity. The form fields must be bound to
data model properties. The field–property binding determines the field data
type and provides easy and intuitive access to the form data [14].

The Business rule activity is defined by a Decision Model and Notation
(DMN) diagram. The DMN diagram is simply a table of inputs and their
corresponding outputs [16].

The Script activity is defined by a manually written script.

2.4.2 Data model

The 2.0 Smart Contract editor handles data access, persistence, and manipu-
lation using data models and their properties [14]. Data models can be also
known as classes or entities.

Data models contain one or more properties. These properties can be one
of the following data types:

• Integer

• Unsigned Integer

• Boolean

• String

• Date and time

• Address

• Billable address

• Data

• Reference to other model [14]

These models can be instantiated within the contract process and their
properties can be manipulated using scripts or bound to a form field.

12



2.5. Summary

2.5 Summary

The new Smart Contract editor is a 2.0 version of an existing 1.0 version Smart
Contract editor.

There are two main reasons for making a completely new editor. The first
reason is that the DasContract language, used to define Smart Contracts,
changed. It swapped model to defined processes from DEMO to a subset of
BPMN. The second main reason is changing the application design from Flux
to MVC and replacing the front-end framework with Blazor.

The 2.0 editor uses a subset of BPMN to describe processes. A process
can be described as activities with relations between them. The BPMN subset
defines three types of activities:

• User activity is a form that users must fill out.

• Business activity is defined by the DMN model.

• Script activity is defined by a code.

The 2.0 editor uses data models (classes/entities) to handle data persis-
tence, data binding, and data handling. A data model editor is also a part of
the 2.0 Smart Contract editor.

13





Chapter 3
Analysis and design of the new

editor

This chapter describes an analysis and design of the new DasContract editor.
The analysis includes functional and non-functional requirements, business
processes and use cases. The design focuses on high-level planning, layout,
layering and class diagrams.

3.1 Analysis

The analysis of the proof of concept implementation consists of Unified Mod-
eling Language (UML) activity diagrams, use case diagrams and functional
and non-functional requirement diagrams.

3.1.1 Business processes

The DasContract editor can be described with only one business process,
which is creating and editing a contract. This is due to the fact that the
editor is only a proof of concept implementation and is supposed to offer
only essential functionalities required for it to work, which is simply editing
contracts.

The contract creating and editing process is described in figure 3.1 using
UML activity diagram.

3.1.2 Use cases

Based on the business process from figure 3.1, a UML use case diagram could
be thought out and drawn. Use cases are:

• Create contract

• Publish contract

15



3. Analysis and design of the new editor

Figure 3.1: Process diagram that shows the contract creation process

• Upload existing contract

• Edit contract

– Edit contract data models

– Edit contract process

– Edit contract activities

• Save contract

Relationships between use cases are visualized using the use case diagram
in figure 3.2.

16



3.2. Design

Figure 3.2: Editors’ use case diagram

3.1.3 Functional and nonfunctional requirements

Requirements are categorized into business requirements, functional require-
ments, usability requirements, reliability requirements, performance require-
ments, and supportability requirements.

Most of the requirements are business requirements, since the result of this
thesis is supposed to be a proof of concept implementation, and it does not
require any properties expected in a commercial environment.

A requirements diagram can be seen at figure 3.3.

3.2 Design

The application is designed as an MVC application. It creates several layers
to eliminate as much potential refactoring and spaghetti code as possible. The
front-end uses components to simplify complicated tasks, remove redundancies
and maximalize reusability.

17



3. Analysis and design of the new editor

Figure 3.3: Diagram of editors’ requirements

18



3.2. Design

3.2.1 Package diagram

The editor is designed as an MVC application. The editor contains 6 essential
packages:

• DataPersistence

• AppLogic (business logic)

• Server

• Pages

• Components

• Entities

The DataPersistence package contains repositories, that provide access to
persistent data storage. This layer ensures that in case of a persistent data
storage change, the rest of the application would not have to be refactored.

The AppLogic package contains applications’ business logic.
The Server package uses business logic to provide an API. The API is

consumed by various pages in the Pages package.
The Pages package contains services for communication with the Server

API and page components, that are served to the user.
The Components package contains razor components used by various pages,

such as a component “ContractEditor”.
The Entities package contains all entity models shared across the editor.

This package imports the Migrator package, which enables entities to be ver-
sioned.

Packages are visualized in figure 3.4.

3.2.2 Contract models

Figures 3.5 and 3.6 describe contract entities and their relations. The model is
based on the newest DasContract specifications on the official repository [17].
The contract consists of two major parts: a data model and processes.

The data model is a collection of entities. Entities consist of properties,
which can be primitive (such as numbers, strings, ...) or reference (pointing
to another contract entity).

The processes currently support only one main process described by a
subset of a BPMN diagram. The process consists of process elements and
their connections – sequence flows. Process elements can be events, gateway
or activities. Activities are an important part of the editor since their behavior
must be further edited. Activities are either default, script, business or user
activities. Their meaning and details are described in chapter 2.

19

https://github.com/CCMiResearch/DasContract


3. Analysis and design of the new editor

Figure 3.4: Diagram of editors’ packages

20



3.2. Design

Figure 3.5: A class diagram that describes contract processes

3.2.3 Back-end

The back-end of the editor offers mainly persistent manipulation of file ses-
sions. When a user wants to edit their contract, they will be able to upload
the contracts’ file and start editing. The upload invokes the creation of a new
file session, that the server keeps track of. Sessions expire over time, which is
handled by the DataPersistence layer.

File sessions exist so that when users accidentally refresh or close their
browser window, the last saved contract from their session can be loaded and
they do not lose all their progress. Furthermore, file sessions can offer features
such as sharing contracts via a link, but that is not the intended nor safe to
use functionality.

21



3. Analysis and design of the new editor

Figure 3.6: A class diagram that describes contract entities

22



3.3. Summary

Figure 3.7: A class diagram that describes the back-end

Figure 3.7 shows a class diagram of the back-end. The repository handles
communication with a persistent data storage and provides an interface. This
interface is consumed by a facade, that provides access to entities within the
AppLogic package via an interface. This interface is further consumed by a
controller, that provides a REST API to be consumed by the front-end.

Figure 3.8 show an example of creating a new file session.

3.2.4 Front-end

Editors’ front-end consists of components. The most complicated and impor-
tant component is the contract editor. This editor accepts a contract instance
as a parameter and renders the whole UI necessary to edit the contract.

The front-end uses injectable services for communication with the server
API. In this case, there is only one service for handling file sessions, as shown
in figure 3.10.

3.3 Summary

In this chapter, basic analysis and design of the proof of concept editor have
been done.

23



3. Analysis and design of the new editor

Figure 3.8: A sequence diagram that describes how a file session is created

The analysis includes functional and non-functional requirements, business
processes and use cases. Business process is only one – editing a contract. This
is since the implementation is only a proof of concept. For the same reason,
the requirements consist mostly of business requirements, that state how the
contract must be edited and structured.

The design established applications’ layering, back-end functionalities and
front-end structure, services, and main components’ decomposition. The ap-
plication consists of 5 major packages – DataPersistence, AppLogic (business
logic), Server, Pages, Components and Entities (models). Data persistence
allows access to persistent data storage/storages, application logic provides
business methods and operations, server provides a REST API and Compo-
nents are consumed by Pages, that are served to the user. Entities are shared
across all layers.

24



3.3. Summary

Figure 3.9: Diagram of important front-end components

25



3. Analysis and design of the new editor

Figure 3.10: A service for communication with the back-end

26



Chapter 4
Proof of concept

implementation

In this chapter, the implementation of the proof of concept editor is discussed
and some unique details and facts that are not describable in the design from
chapter 3 are presented.

Firstly, used technologies and important libraries are mentioned. Then,
the development process and underlining details are described, including the
JavaScript interoperability. After that, the integration between the front-
end and the back-end is described. Testing the application is also mentioned,
including selected testing details. At last, one contract case study is presented.

4.1 Used technologies

The back-end of the application is implemented using the ASP.NET Core
MVC 3.1, which is a “rich framework for building web apps and APIs using
the MVC design pattern” [18]. This version is currently the latest and it
fully integrates the server-side Blazor. The client-side Blazor is currently in
the preview, but since the server-side Blazor shares Razor syntax and service
interfaces with the client-side Blazor, it is safe to say, that there is little to no
risk of complicated refactoring with the first stable release of the client-side
Blazor [5].

Persistent data in the development environment is stored in a local Mi-
crosoft Structured Query Language (SQL) database and the production en-
vironment uses an SQLite database. “SQLite is a C-language library that
implements a small, fast, self-contained, high-reliability, full-featured, SQL
database engine.” [19]

The front-end of the application is implemented using a SPA framework
Blazor. This framework is described in chapter 1.

Blazor components are accompanied by stylesheets and scripts. Stylesheets

27



4. Proof of concept implementation

are developed using Syntactically Awesome Style Sheets (SASS). SASS is
a Cascading Style Sheets (CSS) preprocessor, that extends the CSS syn-
tax [20]. Scripts are developed using TypeScript. “TypeScript is a language
for application-scale JavaScript. TypeScript adds optional types to JavaScript
that support tools for large-scale JavaScript applications for any browser, for
any host, on any OS. TypeScript compiles to readable, standards-based Java-
Script.” [21]

Front-end resources, such as stylesheets and scripts are compiled and
packed using webpack. “At its core, Webpack is a static module bundler for
modern JavaScript applications. When Webpack processes an application, it
internally builds a dependency graph that maps every module a project needs
and generates one or more bundles.” [22]

The front-end UI is build on a Material Bootstrap framework. This frame-
work expands the Bootstrap framework by restyling it as material design and
adding components iconic for material design, such as the ripple effect [23].

For BPMN and DMN editors, bpmn-js and dmn-js libraries were used.
These libraries are Open Source libraries developed by Camunda [24].

4.2 Development process

The development process of the back-end went smoothly. Using already es-
tablished patterns and design, no unexpected errors, bugs or design flaws were
found. The back-end of the application is implemented according to the design
created in chapter 3.

The front-end is implemented according to the design created in chapter 3,
but during the development, some issues were encountered.

The biggest and still existing issue is with the BPMN and DMN editors.
The packages work fine, without any known bugs. The problem is the lack
of documentation of the editors. Since the contract process is defined by a
subset of BPMN, some features need to be cut from the BPMN editor. This is
however very difficult without any documentation or existing examples. Hotfix
of this problem, currently implemented in the contract editor, is to hide extra
features using stylesheets. Other development issues caused by the lack of
documentation and typings include unknown configuration settings, unknown
event loops, unknown list of files that need to be included and much more.

No issues or bugs were encountered with the Blazor framework.

4.2.1 JavaScript interoperability patterns

Since the Blazor is unable to do everything JavaScript can, as described in
chapter 1, interoperability invokes between Blazor and JavaScript must be
utilized. This consumes extra development time, if proper and strongly typed
development process needs to be maintained. For this thesis, best practice
approaches for several use cases were thought out and summarized.

28

https://fezvrasta.github.io/bootstrap-material-design/
https://getbootstrap.com/


4.2. Development process

Figure 4.1: A diagram illustrating interoperability invokes without a mediator

Figure 4.2: A diagram illustrating interoperability invokes with a mediator

JavaScript functions can be invoked using an implementation of the IJS-
Runtime interface. This implementation is provided by the Blazor framework
and injected if required.

JavaScript functions can be invoked by simply invoking a method on the
IJSRuntime interface, but the invoke is weakly typed. This means poten-
tial problems with using, maintaining and refactoring, such as typos, data
type mismatches and more. This issue can be partially resolved by adding a
“mediator” layer between C# and JavaScript.

The mediator layer simply streamlines the JavaScript invokes through a
C# interface. This prevents multiple weak invokes, as shown in figure 4.1. The
only weakly typed invoke is done inside the mediator, as shown in figure 4.2.

Situations with JavaScript interoperability, encountered while developing
the Smart Contract editor, can be categorized into two groups:

• Calling a JavaScript function with parameters,

• Calling a JavaScript function with parameters and requesting a callback.

29



4. Proof of concept implementation

Figure 4.3: A class diagram of a mediator service

To simply call a JavaScript function, one possible approach is to create
an injectable singleton service, that acts as a mediator. The service mediator
ensures strongly typed streamlined invokes, easy extendability, shareability,
and refactoring. An example can be seen in figure 4.3.

To invoke a JavaScript function with expected callback back to C#, one
possible approach is to create a new transient mediator class, with a lifespan
of each invoke and callback (or callbacks) with the following methods:

• A method that invokes the JavaScript function and requests a callback.

• A method with “JSInvokable” attribute that is invoked from JavaScript
as a callback and further invokes C# events or actions to inform ob-
servers.

An example of a transient mediator class that provides an event, that
is invoked by a JavaScript callback, can be seen in figure 4.4. Figure 4.5
shows how to register an event and call a JavaScript method, which starts
sending callbacks. Figure 4.6 shows how a callback invoked by a JavaScript is
propagated all the way back to C# and mediator observers. An example of a
code for such mediator can be seen in listing 4.1.

30



4.2. Development process

Figure 4.4: A class diagram of a mediator class capable of handling JavaScript
callbacks

Listing 4.1 Example of a C# mediator
public class ContractProcessEditorMediator
{

public event ContractProcessEditorMediatorHandler
OnDiagramChange;

readonly IJSRuntime jsRuntime;

// ...

public async Task InitBPMN(string id, string xml = "")
{

await jsRuntime.InvokeVoidAsync("InitBPMN", id, xml,
DotNetObjectReference.Create(this));

}

// ...

[JSInvokable]
public void DiagramChangeCallback()
{

OnDiagramChange?.Invoke(/* ... */ );
}

}

31



4. Proof of concept implementation

Figure 4.5: A sequence diagram that illustrates how to register a JavaScript
callback using a mediator

4.3 Integration process

The integration between the back-end and the front-end of the proof of concept
editor did not encounter any problems or difficulties. On the contrary, thanks
to Blazors’ properties, the integration was much more straightforward than if
the front-end was built for example on Angular.

The communication with the back-end is achieved with a JSON REST
API. This communication is abstracted using injectable singleton services.
One such service is described in figure 3.10. The integration services can be
injected into any Blazor component – thus any page.

Thanks to the Blazor framework, the project with entities shared between
the back-end and the front-end can be referenced by both layers, making
the serialization and deserialization process trivial. Additionally, no further
modeling of entities had to be done, as it would be needed with frameworks
such as Angular, assuming ASP.NET Core as the back-end framework.

For example, getting all sessions from the server can be done using a short
code, that can be seen in listing 4.2.

32



4.3. Integration process

Figure 4.6: A sequence diagram that illustrates how JavaScript callbacks are
handled

Listing 4.2 Request and deserialization of a class inside a service
public async Task<List<ContractFileSession>> GetAsync()
{

// Reach the API and ensure success response
var response = await http.GetAsync(Uri);
response.EnsureSuccessStatusCode();

// Deserialize and return
var content = await response.Content

.ReadAsStringAsync();
return JsonConvert.DeserializeObject

<List<ContractFileSession>>(content);
}

33



4. Proof of concept implementation

4.4 Testing

The proof of concept editor consists of two types of tests – integration and
unit tests.

Integration tests are written in the xUnit framework and they ensure the
servers’ REST API correct functionality.

Unit tests are written in the NUnit framework and they ensure that indi-
vidual classes and methods work correctly. The tests primarily include cases
for data persistence repositories, entities serialization, entity logistics, entity
integrity, and entity migrator.

The testing environment uses SQLite to mock a production database. The
testing database is initialized and later disposed for each test case, making
them still capable of running in parallel.

Although there are frameworks for unit testing individual Blazor compo-
nents, such as bUnit, that enable automated testing, they were not used. The
main reason is that Blazor components, in this case, are being refactored very
often. This would result in long times spend on refactoring unit tests. Blazor
components, in this proof of concept implementation, are tested in a separate
project. The correct functioning is confirmed manually. The secondary reason
is that the components often provide a visual value, which is hardly testable
by code and the best solution is to manually check the visual correctness.

4.5 Case study

As a test that the proof of concept editor has been successfully analyzed,
designed and implemented, one case study has been done. The case study is
a Blockchain mortgage Smart Contract with a process taken from an open-
source GitHub repository [25]. The process is displayed in figure 4.7.

The editor was able to successfully add all necessary data entities and
set up user activities (and their forms). Script activities were not completed,
because of the complicated nature, however, whoever can create Blockchain
Smart Contract code, would be able to finish them. A cutout of the entity
editor is displayed in figure 4.8 and a cutout of a user activities editor is
displayed in figure 4.9.

The case study is not fully applicable in the production environment and is
not completely correct. An expert in the mortgage industry and a Blockchain
expert would be needed to fully design and implement a usable mortgage with
the DasContract editor. However, the use case indicates, that there might a
way to create secure powerful decentralized Blockchain Smart Contracts, that
would improve the quality of life of many citizens. In this particular case,
banks as a middleman could be eliminated and act only as a lender being
managed by a mortgage contract.

34



4.5. Case study

[B
o
rr

o
w

e
r]

 A
p

p
ly

Fo
r 

a
 M

o
rt

g
a
g

e

[P
ro

p
e
rt

y
O

w
n
e
r]

 E
sc

ro
w

P
ro

p
e
rt

y
 R

ig
h

ts

[L
e
n
d

e
r]

E
sc

ro
w

 M
o
n
e
y

V
a
lid

a
te

C
o
n
tr

a
ct

C
o
n
tr

a
ct

C
a
n
ce

lle
d

R
e
le

a
se

E
sc

ro
w

s

[B
o
rr

o
w

e
r]

C
a
n
ce

l
A

p
p

lic
a
ti

o
n

Pa
y
 O

w
n
e
r

Pa
y
m

e
n
t

[I
n
su

re
r]

 A
cc

e
p

t
In

su
ra

n
ce

[B
o
rr

o
w

e
r]

 P
a
y

M
o
rt

g
a
g

e
 F

e
e

Pa
y
m

e
n
t 

to
 t

h
e

In
su

re
r 

a
n

d
Le

n
d

e
r

[L
e
n
d

e
r]

Tr
a
n
sf

e
r

P
ro

p
o
rt

io
n

M
o
n
e
y
 t

o
 t

h
e

B
o
rr

o
w

e
r

Tr
a
n
sf

e
r 

th
e

P
ro

p
e
rt

y
 t

o
 t

h
e

Le
n
d

e
r

Lo
a
n
 D

e
fa

u
lt

e
d

Tr
a
n
sf

e
r 

th
e

P
ro

p
e
rt

y
 t

o
 t

h
e

B
o
rr

o
w

e
r

Pa
y
m

e
n
ts

Fi
n
is

h
e
d

[I
n
su

re
r]

 C
h
e
ck

In
d

e
m

n
it

y
Te

rm
s

[I
n
su

re
r]

 P
a
y

fo
r 

th
e
 B

o
rr

o
w

e
r

V
a
lid

[L
e
n
d

e
r]

R
e
q

u
e
st

D
e
fa

u
lt

V
a
lid

a
te

 T
e
rm

s
V

io
la

ti
o
n

Te
rm

s 
V

io
la

te
d

Te
rm

s 
N

o
t

V
io

la
te

d

In
v
a
lid

Lo
a
n
 C

o
m

p
le

te
d

In
v
a
lid

V
a
lid

C
h
e
ck

 P
a
y
m

e
n
t

S
ch

e
d

u
le

B
e
h
in

d
 P

a
y
m

e
n
t

Pa
y
m

e
n
t 

O
n

S
ch

e
d

u
le

Figure 4.7: Process diagram of a mortgage contract

35



4. Proof of concept implementation

Figure 4.8: Part of a mortgage contract entities

Figure 4.9: Part of a mortgage contract activities

36



4.6. Summary

The case study shows the idea of decentralization and displays, how the
modern mortgage and other similar contracts could look like and function.
This technology could bring many benefits to the lives of many.

4.6 Summary

This chapter described the used technologies, the development process, the
integration process, testing details and one case study as a test, that the
proof of concept editor is working correctly.

The development process went mostly smoothly because already estab-
lished patterns and designs were used and the analysis and design, described
in chapter 3, were followed and proved to be satisfactory. Also, JavaScript
interoperability approaches were thought out and summarized. The biggest
obstacle in the development process was the lack of documentation of the
BPMN and DMN editor packages.

The integration process went smoothly thanks to the shared projects be-
tween the front-end and the back-end. The communication is established using
a JSON REST API.

The automatic testing covers back-end REST API, data persistent repos-
itories and entities. Blazor components are tested manually, since the test
refactoring would take too much time. Blazor components also offer visual
value, which is hardly testable by a code.

One case study has been done. The study focuses on creating a proof of
concept mortgage contract and indicates, that the editor has been analyzed,
designed and implemented successfully. In addition, the mortgage contract
shows how the mortgage process could work in the future and improve the
quality of life of many people, by acting as a middleman between all parties.

37





Chapter 5
Benefits of Blazor

The following chapter describes, how and under what circumstances can the
Blazor framework benefit the development process. Furthermore, brief and
high-order comparison of Blazor and other SPA frameworks and libraries has
been done.

5.1 Languages

Applications based on the Blazor framework are developed using C# and Ra-
zor languages. Optionally, additional behavior can be achieved with JavaScrip-
t/TypeScript and styles can be added using CSS/SASS. The Razor language
is used to mark up the dynamic HTML, binding, component usage and more.

Some front-end SPA frameworks, such as Angular [7] or Vue.js [6], pre-
sented their own language for setting up component templates. This presents
a disadvantage when compared to the Razor language, which is commonly
used in other areas, primarily in the ASP.NETs’ views and Razor Pages. Ra-
zor components can even be reused in a multitude of ways, for example in
static MVC rendering [18].

In addition to the Razor language, when developed in Visual Studio, it
provides full IntelliSense support and strongly typed syntax, which is most
certainly welcomed when working with 3rd party Razor Libraries or on enter-
prise scaled projects.

5.2 .NET platform

One of the most possibly lucrative properties of the Blazor framework is the
embeddedness inside the .NET platform. More specifically, client-side Bla-
zor currently targets .NET standard 2.1 interface (running on Mono), which
includes a huge variety of System and 3rd party libraries. Server-side Bla-
zor runs on .NET Core, which means, that it additionally can support all

39



5. Benefits of Blazor

Figure 5.1: Component diagram of a web application with the same front-end
and back-end language

.NET Core libraries. Furthermore, Blazor is developed using Razor and C#
languages, which provide high performance and reliability [4].

The .NET platform for front-end can be lucrative not only because of the
vast amount of libraries and development languages. Currently, there are no
other existing front-end SPA frameworks, directly embedded inside the .NET
platform that are developed using C# [3]. This means, that if the server was
to be developed using a .NET framework, such as ASP.NET Core, using client-
side Blazor as its front-end framework would result in uniting the back-end
and the front-end under the .NET standard 2.1 interface.

By uniting the back-end framework (ASP.NET Core MVC) and the front-
end framework (Blazor) under the .NET standard 2.1 interface, the possibility
of shared libraries between those two layers is now opened. The most common
type of a shared library would be database entity models. By having one .NET
standard library with entity models, it is possible to use them both in the
back-end and the front-end, which makes a whole lot of operations incredibly
easy. For example, JSON/XML serialization and deserialization operations in
communication can be straight-up trivial, with access to the same models.

Another good example of why it is excellent to share entity models with a
front-end and a back-end is that the front-end and back-end data validations
can behave consistently and be handled automatically. ASP.NET Core Entity
Framework can even generate the corresponding database constrains.

More advantages of having the Blazor embedded inside the .NET frame-
work can be expected in the future. For example, in the upcoming .NET 5,

40



5.3. Comparison to other SPA frameworks

Figure 5.2: Component diagram of a web application with different front-end
and back-end languages

one of the major themes is exploring Blazor usage within the WebWindow
and the Electron libraries, which would make the Blazor capable of making
desktop applications [26].

5.3 Comparison to other SPA frameworks

By comparison and from the programmers’ point of view, Blazor does not
provide any revolutionary ideas, that other frameworks, such as Angular or
Vue.js, did not think of.

Blazor, just like other SPA frameworks, works with a virtual DOM to
update the actual DOM as efficiently as possible, based on a data. Blazor,
just as Angular [7] or Vue.js [6], provides reusable components with parame-
ters, two-directional data binding, special markup language to easily write the
components’ render logic, services for routing, security, HTTP communication
(and others), and more.

Blazor does offer some extra features, that frameworks such as Angular or
Vue.js do not, such as templated components or cascading values, but these
are not essential nor unreplicable.

From the technical point of view, Blazor is fundamentally different from
Angular or Vue.js. The main reason is being a .NET framework. Blazor
provides a unique implementation for all its services and its render logic.

Razor, used for components’ render logic, is generated into a C# code.
The generated code is enriched with RenderTreeBuilder, which handles all
DOM related changes. Fortunately, the RenderTreeBuilder can be used by
programmers without limitations, so any limits, that the Blazor framework

41



5. Benefits of Blazor

Blazor Angular Vue.js React
Primary dev. languages C# and Razor TypeScript JavaScript JSX
Components and data
binding

Yes Yes Yes Yes

Virtual DOM Yes Yes Yes Yes
Services Yes Yes Not by default Not by default
Full-blown framework Yes Yes View layer only UI library
Subjective complexity Medium Hard Easy Easy

Table 5.1: Comparison of various SPA frameworks and libraries

may have set, can be beaten with manually writing the rendering logic with
the RenderTreeBuilder. Other frameworks, such as Angular, do not provide
such low-level access [4].

5.4 Summary

Blazor is developed using C# and Razor languages. These languages are
very performant and offer strongly typed syntax with full IntelliSense when
developed in for example Visual Studio. This is an advantage when compared
to for example frameworks developed with JavaScript.

Blazor is directly embedded in the .NET platform. Client-side Blazor im-
plements .NET standard 2.1 interface running on Mono and server-side Blazor
runs on .NET Core. This means an extensive variety of libraries available in
the Blazor framework. Additionally, libraries under the .NET standard 2.1
interface can be shared with a back-end, making operations such as HTTP
communication, serialization, and data validation easier and much more con-
sistent.

From the programmers’ point of view, by comparison, Blazor does not
provide revolutionary ideas or tools, when compared to other SPA frameworks.
It is just another SPA framework but in the .NET platform. The insides of
the Blazor are however completely different.

42



Conclusion

The objective of this thesis was to investigate the possibilities of the Blazor
framework, analyze, design and implement a proof of concept prototype editor
capable of designing Smart Contracts using the DasContract language.

Analysis, design and a proof of concept implementation of the DasContract
designer have been done and described. Additionally, one case study of a mort-
gage contract has been done to test the correctness of the editor. The editor
succeeded in the creation of the mortgage contract and showed the possibilities
and positive impact, that the editor and Blockchain Smart Contracts wield.
The editors’ source code is publicly available.1

The proof of concept implementation suggests, that the Blazor framework
is suitable for production development. The .NET ecosystem does provide
an enormously useful set of tools for the front-end development and other
benefits, such as shared models between the front-end and the back-end save
a huge amount of work.

This thesis also tested, that C# interoperability with JavaScript works
and is capable of fully utilizing various JavaScript libraries, which makes the
Blazor framework more lucrative, since it offers “backwards compatibility”, if
someone were to consider Blazor as a new framework to work with, instead of
a JavaScript–based framework.

Future research

As future work, more case studies to analyze weaknesses and study Smart
Contracts can be done. More case studies can cover more situations and edge
cases, making future designs of the Smart Contract editor more suitable with
additional specialized features and properties.

Furthermore, usability study of the editor can be done to analyze the
editors UI and figure out, who should be the target audience and what should

1https://github.com/drozdik-m/das-contract-editor

43

https://github.com/drozdik-m/das-contract-editor


Conclusion

change to make the editor as approachable as possible.
Another step in the DasContracts’ ecosystem should be analyzing, de-

signing and implementing a DasContract “store”, which could store and offer
various contract from the editor. The store could be able to generate corre-
sponding Blockchain code and deploy contracts.

44



Bibliography

1. SKOTNICA, Marek; PERGL, Robert. Das Contract - A Visual Do-
main Specific Language for Modeling Blockchain Smart Contracts. In:
AVEIRO, David; GUIZZARDI, Giancarlo; BORBINHA, José (eds.). Ad-
vances in Enterprise Engineering XIII. Lisbon, Portugal: Springer Inter-
national Publishing, 2019, pp. 149–166. ISBN 978-3-030-37932-2. Avail-
able from DOI: 10.1007/978-3-030-37933-9_10.

2. FIRMO NETWORK. 3 Famous Smart Contract Hacks You Should Know.
Medium [online]. 2018 [visited on 2020-04-07]. Available from: https:
//medium.com/firmonetwork/3- famous- smart- contract- hacks-
you-should-know-dffa6b934750.

3. MICROSOFT. Microsoft Docs: .NET Documentation [online]. Microsoft
[visited on 2020-04-07]. Available from: https://docs.microsoft.com/
en-us/dotnet/.

4. ROTH, Daniel; LATHAM, Luke. Microsoft Docs: Introduction to ASP-
.NET Core Blazor [online]. Microsoft, 2020 [visited on 2020-04-07]. Avail-
able from: https : / / docs . microsoft . com / en - us / aspnet / core /
blazor/.

5. SOURABH. ASP.NET Core updates in .NET Core 3.1. Microsoft De-
vblogs [online]. 2019 [visited on 2020-04-07]. Available from: https://
devblogs.microsoft.com/aspnet/asp-net-core-updates-in-net-
core-3-1/.

6. YOU, Evan. Vue.js Documentation: Introduction [online] [visited on 2020-
04-07]. Available from: https://vuejs.org/v2/guide/.

7. GOOGLE. Angular Documentation: Introduction to the Angular Docs
[online] [visited on 2020-04-07]. Available from: https://angular.io/
docs.

45

https://doi.org/10.1007/978-3-030-37933-9_10
https://medium.com/firmonetwork/3-famous-smart-contract-hacks-you-should-know-dffa6b934750
https://medium.com/firmonetwork/3-famous-smart-contract-hacks-you-should-know-dffa6b934750
https://medium.com/firmonetwork/3-famous-smart-contract-hacks-you-should-know-dffa6b934750
https://docs.microsoft.com/en-us/dotnet/
https://docs.microsoft.com/en-us/dotnet/
https://docs.microsoft.com/en-us/aspnet/core/blazor/
https://docs.microsoft.com/en-us/aspnet/core/blazor/
https://devblogs.microsoft.com/aspnet/asp-net-core-updates-in-net-core-3-1/
https://devblogs.microsoft.com/aspnet/asp-net-core-updates-in-net-core-3-1/
https://devblogs.microsoft.com/aspnet/asp-net-core-updates-in-net-core-3-1/
https://vuejs.org/v2/guide/
https://angular.io/docs
https://angular.io/docs


Bibliography

8. HAAS, Andreas; ROSSBERG, Andreas; SCHUFF, Derek L.; TITZER,
Ben L.; HOLMAN, Michael; GOHMAN, Dan; WAGNER, Luke; ZAKAI,
Alon; BASTIEN, JF. Bringing the Web up to Speed with WebAssem-
bly. SIGPLAN Not. 2017, vol. 52, no. 6, pp. 185–200. ISSN 0362-1340.
Available from DOI: 10.1145/3140587.3062363.

9. W3C. WebAssembly [online] [visited on 2020-04-07]. Available from: https:
//webassembly.org/.

10. NAKAMOTO, Satoshi. Bitcoin: A Peer-to-Peer Electronic Cash Sys-
tem [online]. 2019 [visited on 2020-04-07]. Available from: http://www.
bitcoin.org/bitcoin.pdf.

11. KASIREDDY, Preethi. What do we mean by “blockchains are trustless?”
Medium [online]. 2019 [visited on 2020-04-07]. Available from: https:
//medium.com/@preethikasireddy/eli5- what- do- we- mean- by-
blockchains-are-trustless-aa420635d5f6.

12. SZABO, Nick. Smart Contracts: Building Blocks for Digital Markets [on-
line]. 1996 [visited on 2020-04-07]. Available from: http://www.fon.hum.
uva . nl / rob / Courses / InformationInSpeech / CDROM / Literature /
LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.
html.

13. BYDŽOVSKÝ, Tomáš. A state Management in Multi-client Single Page
Web Applications [online]. Prague, 2019 [visited on 2020-04-07]. Available
from: https://dspace.cvut.cz/handle/10467/83141. Bachelor’s the-
sis. Czech Technical University in Prague, Faculty of Information Tech-
nology. Supervised by Ing. Marek SKOTNICA.

14. SKOTNICA, Marek. Personal conversation: DasContract language. Praha,
2019.

15. AXWAY SOFTWARE; BIZAGI LTD.; BRUCE SILVER ASSOCIATES;
IDS SCHEER; INTERNATIONAL BUSINESS MACHINES; MEGA IN-
TERNATIONAL; MODEL DRIVEN SOLUTIONS; OBJECT MANAGE-
MENT GROUP; ORACLE; SAP AG; SOFTWARE AG INC.; TIBCO;
UNISYS. Business Process Model and Notation (BPMN) [online]. Object
Management Group, 2013. Version 2.0.2 [visited on 2020-04-07]. Avail-
able from: https://www.omg.org/spec/BPMN/2.0.2/PDF.

16. 88SOLUTIONS; BOC PRODUCTS & SERVICES AG; DECISION MAN-
AGEMENT SOLUTIONS; DEPARTMENT OF VETERANS AFFAIRS;
FICO; GFSE E.V.; K.U. LEUVEN; ORACLE; PNA GROUP; RED
HAT; SAPIENS DECISION NA; SIGNAVIO GMBH; THEMATIX PART-
NERS LLC; TRISOTECH. Decision Model and Notation [online]. Object
Management Group, 2019. Version 1.3 [visited on 2020-04-07]. Available
from: https://www.omg.org/spec/DMN/1.3/PDF.

46

https://doi.org/10.1145/3140587.3062363
https://webassembly.org/
https://webassembly.org/
http://www.bitcoin.org/bitcoin.pdf
http://www.bitcoin.org/bitcoin.pdf
https://medium.com/@preethikasireddy/eli5-what-do-we-mean-by-blockchains-are-trustless-aa420635d5f6
https://medium.com/@preethikasireddy/eli5-what-do-we-mean-by-blockchains-are-trustless-aa420635d5f6
https://medium.com/@preethikasireddy/eli5-what-do-we-mean-by-blockchains-are-trustless-aa420635d5f6
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.html
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.html
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.html
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.html
https://dspace.cvut.cz/handle/10467/83141
https://www.omg.org/spec/BPMN/2.0.2/PDF
https://www.omg.org/spec/DMN/1.3/PDF


Bibliography

17. SKOTNICA, Marek; DROZDÍK, Martin; KLICPERA, Jan. CCMiRe-
search/DasContract [online]. GitHub [visited on 2020-04-07]. Available
from: https://github.com/CCMiResearch/DasContract.

18. SMITH, Steve. Microsoft Docs: Overview of ASP.NET Core MVC [on-
line]. Microsoft, 2020 [visited on 2020-04-07]. Available from: https :
//docs.microsoft.com/en-us/aspnet/core/mvc/overview?view=
aspnetcore-3.1.

19. HIPP, Richard. What Is SQLite? [online] [visited on 2020-04-07]. Avail-
able from: https://www.sqlite.org/index.html.

20. GIRAUDEL, Hugo. CSS with superpowers [online] [visited on 2020-04-
07]. Available from: https://sass-lang.com/.

21. MICROSOFT. microsoft/TypeScript [online]. GitHub [visited on 2020-
04-07]. Available from: https://docs.microsoft.com/en-us/aspnet/
core/blazor/.

22. THELARKINN et al. Webpack Documentation: Concepts [online] [visited
on 2020-04-07]. Available from: https://webpack.js.org/concepts/.

23. ZIVOLO, Federico. Bootstrap Material Design [online] [visited on 2020-
04-07]. Available from: https://fezvrasta.github.io/bootstrap-
material-design/.

24. CAMUNDA. Web-based tooling for BPMN, DMN and CMMN [online].
Camunda [visited on 2020-04-07]. Available from: https://bpmn.io/.

25. SKOTNICA, Marek. DEMOCaseStudies: Blockchain/Mortgage [online].
GitHub [visited on 2020-04-14]. Available from: https://github.com/
CCMiResearch/DEMOCaseStudies/tree/master/Blockchain/Mortgage.

26. ROTH, Daniel; AL., et. Welcome to Blazor [online]. Youtube, 2020 [vis-
ited on 2020-04-07]. Available from: https://www.youtube.com/watch?
v=KlngrOF6RPw.

47

https://github.com/CCMiResearch/DasContract
https://docs.microsoft.com/en-us/aspnet/core/mvc/overview?view=aspnetcore-3.1
https://docs.microsoft.com/en-us/aspnet/core/mvc/overview?view=aspnetcore-3.1
https://docs.microsoft.com/en-us/aspnet/core/mvc/overview?view=aspnetcore-3.1
https://www.sqlite.org/index.html
https://sass-lang.com/
https://docs.microsoft.com/en-us/aspnet/core/blazor/
https://docs.microsoft.com/en-us/aspnet/core/blazor/
https://webpack.js.org/concepts/
https://fezvrasta.github.io/bootstrap-material-design/
https://fezvrasta.github.io/bootstrap-material-design/
https://bpmn.io/
https://github.com/CCMiResearch/DEMOCaseStudies/tree/master/Blockchain/Mortgage
https://github.com/CCMiResearch/DEMOCaseStudies/tree/master/Blockchain/Mortgage
https://www.youtube.com/watch?v=KlngrOF6RPw
https://www.youtube.com/watch?v=KlngrOF6RPw




Appendix A
Glossary

.NET Microsoft programming developer platform.

ASP.NET Core A platform for developing web applications.

back-end A data access layer of an application.

front-end A presentation layer of an application.

interoperability Product characteristic, which implicates, that it under-
stands and fully utilizes the interface of another product.

spaghetti code Unstructured and difficult-to-maintain source code.

49





Appendix B
Acronyms

API Application Programming Interface.

BPMN Business Process Model and Notation.

CSS Cascading Style Sheets.

DEMO Design and Engineering Methodology for Organizations.

DMN Decision Model and Notation.

DOM Document Object Model.

HTML Hypertext Markup Language.

HTTP Hypertext Transfer Protocol.

JSON JavaScript Object Notation.

MVC Model-View-Controller.

REST Representational State Transfer.

SASS Syntactically Awesome Style Sheets.

SPA Single Page Application.

SQL Structured Query Language.

UI User Interface.

UML Unified Modeling Language.

WASM Web Assembly.

XML Extensible Markup Language.

51





Appendix C
Contents of enclosed CD

readme.txt ....................... the file with CD contents description
src.......................................the directory of source codes

case-study .............................. the case study source files
application................................implementation sources
thesis..............the directory of LATEX source codes of the thesis

text..........................................the thesis text directory
thesis.pdf...........................the thesis text in PDF format

53


	Introduction
	Motivation
	Problem statements
	Objectives
	Structure and Methodology

	Review of the Blazor framework
	Web Assembly
	Blazor
	Server-side Blazor
	Client-side Blazor

	Java Script and C# interoperability
	Summary

	Smart Contract designer
	Blockchain
	Smart Contract
	The existing Smart Contract designer (1.0)
	The new Smart Contract designer (2.0)
	Process and activities
	Data model

	Summary

	Analysis and design of the new editor
	Analysis
	Business processes
	Use cases
	Functional and nonfunctional requirements

	Design
	Package diagram
	Contract models
	Back-end
	Front-end

	Summary

	Proof of concept implementation
	Used technologies
	Development process
	JavaScript interoperability patterns

	Integration process
	Testing
	Case study
	Summary

	Benefits of Blazor
	Languages
	.NET platform
	Comparison to other SPA frameworks
	Summary

	Conclusion
	Future research

	Bibliography
	Glossary
	Acronyms
	Contents of enclosed CD

