
prof. Ing. Pavel Tvrdík, CSc.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague October 22, 2019

ASSIGNMENT OF BACHELOR’S THESIS

Title: Continuous integration and application deployment with the Kubernetes technology

Student: Radek Šmíd

Supervisor: Ing. Jan Trdlička, Ph.D.

Study Programme: Informatics

Study Branch: Computer Security and Information technology

Department: Department of Computer Systems

Validity: Until the end of summer semester 2020/21

Instructions

Learn about the Kubernetes technology and available commercial and open-source deployment tools
suitable for this technology. Compare features of individual open-source deployment tools. Design a
suitable solution for application deployment using some of these open-source tools and try to implement
this solution. Test the functionality of your solution on a suitable containerized application and try to
compare your solution with available commercial solutions (if possible under trial licenses).

References

Will be provided by the supervisor.

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

F8 Faculty of Information Technology
Department of Computer Systems

Bachelor’s Thesis

Continuous integration and
application deployment with the
Kubernetes technology

Radek Šmíd

Květen 2020
https://gitlab.fit.cvut.cz/smidrad1/ci-cd-pipeline-with-kubernetes
Supervisor: Ing. Trdlička Jan Ph.D.

https://gitlab.fit.cvut.cz/smidrad1/ci-cd-pipeline-with-kubernetes

Acknowledgement / Declaration

I would like to sincerely thank my
supervisor Ing. Jan Trdlička, Ph.D.
His guidance and support have been
beyond excellent.

I hereby declare that the presented
thesis is my own work and that I have
cited all sources of information in accor-
dance with the Guideline for adhering
to ethical principles when elaborating an
academic final thesis.

I acknowledge that my thesis is sub-
ject to the rights and obligations stipu-
lated by the Act No. 121/2000 Coll., the
Copyright Act, as amended, in particu-
lar that the Czech Technical University
in Prague has the right to conclude a
license agreement on the utilization of
this thesis as a school work under the
provisions of Article 60 (1) of the Act.

In Prague 28. 5. 2020

. .

iii

Abstrakt / Abstract

Poslední dobou by téměř každý chtěl
své aplikace nasadit do Kubernetes.
Jenže pro plné využití Kubernetes
je třeba přijmout s otevřenou náručí
postupy průběžné integrace (CI) a na-
sazení (CD). Je třeba CI/CD pipeline.
Ale k dispozici je až zdrcující množ-
ství open-source nástrojů, kde každý
pokrývá různé části celého procesu.

Následující text vysvětlí základy tech-
nologií, kterých bude pro pipeline třeba.
A následně shrne některé z populárních
open-source nástrojů využívaných pro
CI/CD.

Z open-source nástrojů navrhneme
pipeline. Závěrečné porovnání možných
řešení (včetně proprietárních) poskytne
čtenáři konkrétní tipy a rady ohledně
vytváření vlastní pipeline.

Klíčová slova: Open-source CI/CD,
Kubernetes, CI/CD pipeline, Mikro-
služby, Průběžná integrace, Průběžné
nasazení, Nepřetržitá integrace a nasa-
zení.

Překlad titulu: Nepřetržitá integrace
a nasazení aplikací s technologií Kuber-
netes

It seems nearly everyone would like to
deploy to Kubernetes nowadays. To effi-
ciently leverage the power of Kubernetes
one must first fully embrace continuous
integration (CI) and deployment (CD)
practices. A CI/CD pipeline is needed.
But there is an overwhelming amount
of open-source tools that cover various
parts of the whole process.

The following text explains the basics
of the underlying technologies needed
for a pipeline deploying to Kubernetes.
And subsequently summarizes some of
the popular open-source tools used for
CI/CD.

Then it designs a working pipeline
from the researched tools. Finally,
it summarizes some of the possible
pipelines (including proprietary) and
provides the reader with specific bits of
advice on how to implement a pipeline.

Keywords: Open-source CI/CD,
Kubernetes, CI/CD pipeline, Microser-
vices, Continuous integration, Continu-
ous delivery, Continuous deployment.

iv

Contents /

1 Introduction .1
2 Technology .2
2.1 Microservice architecture2
2.2 Sample microservice

application .4
2.2.1 DeathStarBench4
2.2.2 Sock Shop4
2.2.3 TeaStore .4

2.3 Docker & containerization5
2.3.1 Docker engine5
2.3.2 Docker image.6
2.3.3 Dockerfile.6
2.3.4 Docker registry.6
2.3.5 Docker container7

2.4 Kubernetes & orchestration7
2.4.1 Imperative vs declarative . .7
2.4.2 Kubernetes nodes8
2.4.3 Pods, deployments,

services .9
2.4.4 Kubernetes architecture . . .9

3 Continuous integration & con-
tinuous deployment 11

3.1 Continuous integration 11
3.2 Continuous delivery 12
3.3 Continuous deployment 12
3.4 CI/CD & Kubernetes 12

3.4.1 Git repository manager . . 12
3.4.2 Continuous integration

& Kubernetes 13
3.4.3 Registry or repository? . . 13
3.4.4 GitOps 13
3.4.5 Continuous deploy-

ment & Kubernetes 14
3.4.6 Monitoring & Kuber-

netes . 14
4 Open-source tools 15
4.1 Methodology 15
4.2 All the parts of a pipeline 16
4.3 Git managers & Issues 17

4.3.1 Gitlab . 17
4.3.2 Gitea . 17
4.3.3 Gogs . 17
4.3.4 Phabricator 18

4.4 CI tools . 18
4.4.1 Buildbot 18
4.4.2 Travis CI 18

4.4.3 Concourse 19
4.4.4 Jenkins 19
4.4.5 Jenkins Blue Ocean 19

4.5 CI & CD tools 20
4.5.1 Drone . 20
4.5.2 GoCD . 20
4.5.3 Agola . 20
4.5.4 Tekton . 21
4.5.5 Jenkins X 21

4.6 CD tools . 21
4.6.1 Argo CD 21
4.6.2 Flux . 22
4.6.3 Flagger 22
4.6.4 Keptn. 22
4.6.5 Spinnaker. 22

4.7 Container registry manager . . . 23
4.7.1 Harbor. 23
4.7.2 Portus . 23
4.7.3 Project Quay 23

4.8 Code quality tools 24
4.8.1 Clair . 24
4.8.2 Anchore Engine 24
4.8.3 SonarQube 24

4.9 Monitoring . 25
4.9.1 Kubernetes dashboard . . . 25
4.9.2 Prometheus 25
4.9.3 Graphana 25
4.9.4 cAdvisor 26
4.9.5 Fluentd 26

4.10 Other useful tools 26
4.10.1 Helm. 26
4.10.2 Falco. 27
4.10.3 Utilities & other help-

ful projects 27
5 Open-source CI/CD pipeline

design . 28
5.1 Test enviroment 28

5.1.1 Teastore breakdown 28
5.1.2 Kind . 29

5.2 Only GitLab pipeline 30
5.2.1 GitLab Runners 30
5.2.2 GitLab CI 31
5.2.3 Pros & cons 33

5.3 Mixed tools pipeline 34
5.3.1 Gitea . 34
5.3.2 Drone . 35

v

5.3.3 Harbor & Clair. 36
5.3.4 Deployment 36
5.3.5 Flux . 37
5.3.6 Pros & cons 37

6 Proprietary vs. open-source
CI/CD pipeline solution 38

6.1 Proprietary solutions 38
6.1.1 Managed Kubernetes

& external tools 38
6.1.2 Cloud provider’s way 39
6.1.3 Openshift 39
6.1.4 GitHub Actions 39

6.2 Pipeline comparison 40
6.3 Discussion . 41

6.3.1 In practice. 41
6.3.2 Developer at the center . . 41
6.3.3 Cloud controller 41
6.3.4 Caching CI & testing 41
6.3.5 Docker in Docker 42
6.3.6 Helm Charts 42
6.3.7 Consider GitOps 42

7 Conclusion . 43
A Dictionary . 45
B Tools honorable mentions 46

References . 48

vi

/ Figures

2.1. Monolithic vs microservice
architecture .2

2.2. Microservice scaling3
2.3. Containerization vs virtual

machines .5
2.4. Docker engine .6
2.5. Imperative administration8
2.6. Declarative administration.8
2.7. Kubernetes architecture9
3.1. GitOps diagram. 14
5.1. TeaStore architecture 29
5.2. Kubernetes in Docker archi-

tecture . 29
5.3. Gitlab CI/CD workflow for

Teastore . 31
5.4. A simple example of the

.gitlab-ci.yml syntax 32
5.5. GitLab UI of a pipeline 32
5.6. A simple artifact and Con-

tainer Registry configuration
in .gitlab-ci.yml 33

5.7. Drone UI of a pipeline 34
5.8. A sample of a .drone-ci.yml

file syntax. 35
5.9. Drone UI of a pipeline 36
6.1. Idividual tools vs all-in-one

solution . 40

vii

Chapter 1
Introduction

Is it possible to create a fully-featured pipeline deploying to Kubernetes only with
open-source tools?

Kubernetes. The seventh most contributed project on GitHub has caused quite a buzz
in the IT world. Kubernetes makes it possible to build fault-tolerant, automatically
scaling, cost-efficient systems. Who wouldn’t want that? Naturally, everything has a
catch. An application running on Kubernetes must be designed as a set of containerized
microservices. But that itself is not enough. Continuous integration and deployment
(CI/CD) practices are an integral step to fully realizing the potential of microservices
and Kubernetes. [1] The goal is to deploy multiple times a day to production. To deploy
simultaneously with agility and confidence.

The problem with CI/CD is that there is no „one size fits all“ approach. There is
no „correct“ way. There is only „suitable for us“. [2] In the end, CI/CD boils down to
figuring out and realizing the most fitting release culture for your team of developers.

The text is divided into two parts. Theoretical and practical. The theoretical part
consists of the first three chapters. This bachelor thesis will explain the necessary
pieces of technology used in deploying to Kubernetes. Chapter 2 will cover the basics
of microservice architecture, containerization, and Kubernetes to familiarize the reader
with them. The following, chapter 3 takes a closer look at Continuous integration and
deployment. First in general and subsequently at the specifics with Kubernetes and
microservice architecture. There is a lot of open-source projects (programs, tools) for
CI/CD. The first goal of this work is to research and compare open-source tools for
CI/CD when deploying to Kubernetes. Thus a comprehensive summary can be found in
chapter 4.

Around 40 % of Kubernetes users run them on-premises (on local servers). [3] Though
this is generally not a good idea it might be due to various laws, budgets, or licensing.
The idea is explore how well can one build a CI/CD pipeline on local servers entirely
from open-source software.

The practical part of this thesis will start with chapter 5 covering the second goal:
Designing a pipeline composed of some of the researched tools. The designed solution
will be implemented in a test environment and tested with a suitable containerized
application. It shall be built based on modern principles and recommendations using
only open-source tools. Chapter 6 will then list its upsides and downsides.

The third and last goal is to summarize the advantages of this „self-managed open-
source tools approach“ against some of the „commercial proprietary solutions“ available
on the market (under trial licenses). The objective is to provide specific pieces of advice
for anyone who is deciding on how to build a pipeline that is deploying applications into
Kubernetes.

The IT world has become oversaturated with tools that help you increase your release
speed. A general overview will be useful for anyone tasked with picking which ones to
use.

1

Chapter 2
Technology

Before we embark on the wonderful journey of continuous integration and deployment
to Kubernetes we should familiarize ourselves with the technology surrounding this
area. This chapter shall provide a brief introduction to the concepts of microservices
(MSs), Docker containers, and Kubernetes orchestration. Explaining in fine detail how
Docker or Kubernetes works is beyond the scope of this bachelor thesis, so the approach
here will be purely pragmatic.

2.1 Microservice architecture
Microservice architecture is an approach to developing complex applications. The ap-
plication is decomposed into several smaller pieces - microservices. Each microservice
(or MS) has a small area of responsibility it handles. It can do nothing else, but it is
exceptionally great in that one area. Each microservice has an interface. Interfaces are
how microservices communicate with each other.

The trend started in 2014, but the idea has been around since the days of UNIX.
With stdin and stdout as the interface, individual programs as microservices, and pipes
as a way of connecting the endpoints. Microservices are widely used in Google, Amazon,
and Netflix. [4], [5]

Figure 2.1. Monolithic vs microservice architecture [6]

In contrast to a monolithic architecture microservices operate independently on each
other, see in figure 2.1. That means they do not have to use the same libraries, envi-
ronments, and programming languages.

The left square shows a full-stack monolith app. On the right side, the big app is
divided into smaller pieces. The yellow rectangle might represent a lightweight python
webserver, while the pink square can be a power-hungry business logic Java MS.

Developers have the freedom to choose the tools they like to use. But it’s not only for
the developer’s convenience. Each programming language has its strengths, therefore
using different ones to solve different types of problems can yield better performance.

2

. 2.1 Microservice architecture

If we look at figure 2.2, we can see the difference when scaling. Monolith (left) can
be scaled only vertically or in instances of each other. In contrast, microservices can be
scaled individually. Scaling can be based on measured usage. Following the previous
example, let’s assume the company using our application hired three times more people.
The pink business logic must scale three times. However, our python webserver (yellow)
can handle the number of requests only scaled two times. The grey authentication MS
does not have to scale at all. People sign-in only once a day.

Figure 2.2. Scaling a monolithic application vs scaling a microservice application [6].

However, using this approach comes with some downsides. Each microservice has its
own data storage. [1] In order to scale properly, MSs are recommended to be stateless.
That means getting rid of „the one big relational database used for everything“. If we
have multiple instances of the same microservice running we can encounter an inconsis-
tency. This can be solved with several technologies. Redis, Apache Kafka, and Kappa
architecture to name some. [7], [8], [9] However explaining them is not in the scope of
this thesis.

Since the whole app is a one distributed system it relies heavily on the ability to send
messages from service to service. If there are multiple instances of the same microservice
someone needs to choose which one will get the message. This problem is solved by
Kubernetes built-in DNS and load balancing support. Developers also tend to forget
the 8 fallacies of distributed computing defined by Peter Deutsch and James Gosling
in 1994. [10],[11] Most notably fallacy number one: Network is reliable.

To reach high fault tolerance the design should avoid any single point of failure. Con-
sider a microservice e-shop, where the recommendation microservice stops responding.
The customer should still be able to continue shopping. Resilience is a crucial part of
designing such a system. So much so that Netflix has created a tool that randomly
destroys instances of running microservices called Chaos Monkey. [12]

According to Martin Fowler, all microservice architectures share a set of common
characteristics. [1] The text above mentions some of them, componentization via ser-
vices, decentralized data management, decentralized governance, design for failure. In
the same article, he also writes about the importance of Continuous Integration and
Delivery.

3

2. Technology .
„We want as much confidence as possible that our software is working, so we run lots

of automated tests. Promotion of working software ’up’ the pipeline means we automate
deployment to each new environment.“

– Martin Fowler [1]

When developing a microservice application the team must trust and be able to rely
on the infrastructure on which they are building. Therefore automatic deployment
should be considered a prerequisite.

One microservice should handle one responsibility. However, how big can the mi-
croservice be before it stops being micro? The size of a team taking care of one mi-
croservice differs from company to company. The generally accepted rule comes from
Jeff Bezos, founder of Amazon.

„If you can’t feed a team with two large pizzas, it’s too large.“
– Jeff Bezos [13]

2.2 Sample microservice application

To demonstrate and test all of the various CI/CD tools and practices, we need some
software. A sample microservice app. The software must be open-source because of
the requirement to edit the source code. Instead of reinventing the wheel, it’s better
to find what others have already created. Luckily researchers provide us with multiple
options to choose from.

2.2.1 DeathStarBench

Deathstar Benchmark is a set of very complex MSs designed to test different types of
applications developed as microservices. (Social network, Movie reviewing, Banking
system, etc.) Its purpose is to benchmark the system under heavy load. [14] The
development team at Cornell University has, however, not yet released all parts of its
benchmark in their GitHub repository1. The released applications are very complicated
and thus not suitable for our use.

2.2.2 Sock Shop

Sock Shop2 is a microservice demo application maintained by Weaveworks and Con-
tainer Solutions. The application is free and open-source, it has however not been
updated in 2 years.

2.2.3 TeaStore

TeaStore3 is a micro-service reference and test application developed by a research team
in Würzburg, Germany. [15] It’s written in Java and consists of 6 microservices. The
architecture is not too complex. It’s open-source and comes with documentation on
how to use it, which makes it a perfect candidate for the use in this thesis.

1 https://github.com/delimitrou/DeathStarBench
2 https://github.com/microservices-demo/microservices-demo
3 https://github.com/DescartesResearch/TeaStore

4

https://github.com/delimitrou/DeathStarBench
https://github.com/microservices-demo/microservices-demo
https://github.com/DescartesResearch/TeaStore

. 2.3 Docker & containerization

2.3 Docker & containerization
Docker is a leader and de facto industry standard for containerization. Containeriza-
tion is a way of packaging and running apps independently on the infrastructure and
OS. The official Docker website goes as far as calling containers „A standardized unit
of software“. [16] Containerized applications are packaged only with their necessary
libraries and binaries. Containers not only encapsulate the app itself but everything
needed for it to run. It is a crucial step towards unleashing the full potential of mi-
croservice architecture. Each MS can be written in a different language, framework, or
use a different version of a library. A unified way of distributing and running the MSs
in production is needed for the automation of scaling.

Figure 2.3. Containerization vs virtual machines [17]

Using containers saves space compared to virtual machines (VMs). Each app is pack-
aged with, and only with its dependencies (see figure 2.3). Deploying with containers
is also more efficient than with VMs because the Docker engine (runtime) has access
directly to the OS’s core. Multiple containers on one machine run as isolated processes
inside the kernel userspace. [16]

2.3.1 Docker engine

Docker engine is a daemon managing containers. [16] For an overview of Docker
engine architecture see figure 2.4. It can be controlled programmatically (by other
programs, eg. K8s) or by a CLI. The binary (Docker engine) is used to1:

. download images stored in a (remote) docker registry. create and remove containers from images. execute commands in running containers. build images described in Dockerfile

Kubernetes is orchestrating the containers. Instead of managing images and running
containers ourselves (with Docker engine CLI), we instruct Kubernetes about our „de-
sired state“ and it manages (by the Docker engine REST api) the containers instead of
us.

1 List not exhaustive. Unknown terms will be explained in following paragraphs.

5

2. Technology .

[Client]
docker CLI

REST API

[server]

docker
daemon

imagecontainer

network data
volumes

managesmanages

managesmanages

Figure 2.4. Docker engine [18]

2.3.2 Docker image

„An image is a read-only template with instructions for creating a Docker container.
Often, an image is based on another image.“

– Docker documentation [16]

Images are stored in a repository inside some Docker registry. You can create a new
image from a Dockerfile. A built image can be pushed to a repository.

2.3.3 Dockerfile

Dockerfile is a blueprint telling Docker how to create an image. It consists of instructions
outlining the process of preparing the environment and building the application. Each
MS should come with its Dockerfile. Dockerfile is written by the developer of each MS
and should be a part of every MS’s repository. Developers should have full control over
how their MS is built and run.

Dockerfiles usually build upon a base image provided by the developer of each tech-
nology. For example. If a MS is written in Python we can start with the Python base
image. Then we copy the source code and install all needed dependencies.

2.3.4 Docker registry

Docker registry is a program that stores, versions and manages Docker images. Just
as source code is stored and versioned in a version control system (eg. Git), Docker
images are stored and versioned in the Docker registry. The default Docker registry is
called Docker Hub and is maintained by Docker Inc. Docker Hub (silmilary to GitHub)
is free to use with only one private repository. [19]

Docker registry is available for download under the Apache license. [16] Avoid confu-
sion with Docker Trusted Registry (DTR). DTR is a commercial product from Docker
Inc.

6

. 2.4 Kubernetes & orchestration

2.3.5 Docker container

„A container is a runnable instance of an image.“
– Docker documentation [16]

When running a container we can map and expose its ports. Containers can be
multiplied, stopped, and started at any given time (by Docker CLI or K8s). That means
no data inside a container is persistent. We have briefly touched on how persistence is
handled in MS architecture in chapter 2.1. Adding to that, when running a container
we can mount (parts of) an outside filesystem inside it to maintain persistence even
after container is rebuild.

2.4 Kubernetes & orchestration
Now that we have our application build as microservices and packaged in stateless
containers, it’s time for orchestration.

„Orchestration is the automated configuration, management, and coordination of
computer systems, applications, and services.“

– RedHat [20]

The goal of orchestration is to automate the deployment of containers. The combi-
nation of MSs and orchestration solves the following problems in production:

. Horizontal scaling. Fault tolerance. Elasticity and const efficiency. High availability (HA)

Kubernetes means helmsman in Greek and is abbreviated to K8s or k8s. The 8
signifies the eight missing letters. Kubernetes is an open-source system for automating
deployment, scaling, and management of containerized applications. [21] Kubernetes
simultaneously runs on multiple computers (nodes) aggregated into a cluster.

We can think about Kubernetes as an operating system for clusters with MS instances
as threads and deployments as programs. After all, it has a command line interface,
cron scheduler, and daemons - just like any other OS.

Another way of grasping the basic idea behind K8s is to imagine it as a football
coach. [22] Every player has a certain role in the team. Someone is an attacker and
someone is a goalkeeper. Just like each microservice can do something different. A
coach makes sure that the number of attackers, defenders, and goalkeepers present on
the field is correct. If a player gets injured (eg. microservice stops responding) coach
schedules a new player instead of him and makes sure the injured player is taken out
of the playing field.

2.4.1 Imperative vs declarative

Kubernetes were originally designed by Google as a remedy for the constant headache
of system administrators. Years of experience with updating and maintaining servers
convinced the designers that Kubernetes should be managed declaratively.

Imperative way of controlling means to issue a series of commands. Each of the
commands changes the configuration of the system in some specific way. For example,
as in a UNIX shell.

7

2. Technology .

A B⟶
⟵
script

???

Figure 2.5. Imperative administration [23]

If we control a system declaratively it means we have a configuration file that declares
a desired state. The system reads it and undertakes the steps to make its current state
identical to the declared desired state. Similar to how configuration files work.

That is immensely useful for administration. Imagine we want to migrate our system
from state A to state B. Imperative way is to write a long and complicated script that
sets everything up. [23] Now, let’s imagine that state B does not work properly and we
need to migrate back to state A. We do not have an inverse script. (Fig. 2.5) The only
path back is to reload the whole system from a backup or reconfigure it manually.

A B⟵
 desired state

K8s

⟵

Figure 2.6. Declarative administration [23]

The declarative way solves this problem. We have the declarative configuration of
state A and state B. One of them is provided to Kubernetes as the desired state.
(Fig. 2.6) And that is all we have to do. Kubernetes modifies the current state of itself
to match the state we provided.

When we configure K8s in practice we supply it with a YAML1 file declaring the
state we want to achieve. Which MSs we want running and how many instances. (In
football that would be one goalkeeper, three attackers, etc..)

2.4.2 Kubernetes nodes

It is better to think about Kubernetes as an operating system for clusters. That way we
are not surprised when we find out that Kubernetes cannot be „simply installed“, for
example, on a Linux machine. Kubernetes are situated on multiple computers. Each
machine is adding its computing capacity to the cluster and Kubernetes controls the
cluster as a whole.

Every machine (physical or virtual) in the cluster is called a node. Kubernetes is
a decentralized system made out of multiple nodes. There are two types of nodes –
master and worker. Master node takes care of Kubernetes itself and worker node runs
pods. To reach high fault tolerance it is recommended to run a Kubernetes cluster with
3-5 master nodes, each one on a different physical machine. [22]

1 https://yaml.org

8

https://yaml.org

. 2.4 Kubernetes & orchestration

2.4.3 Pods, deployments, services
Pods are the minimal unit in K8s. Kubernetes cannot deploy anything smaller than a
pod. A pod is a combination of containers and a persistent storage (volume). One pod
corresponds to one microservice. Kubernetes pod is in some way similar to a thread in
a common operating system. Pods are stateless and disposable. They are created and
destroyed by Kubernetes at will.

Pods are seldom deployed by themselves. Kubernetes defines multiple layers of ab-
straction for working with pods. One of them is called deployments.

A deployment is similar to a program in normal OS. Deployment defines a pod
(container images, volumes) and how many replicas it wants. Every deployment has a
name. If we want to scale a microservice, we change the number of desired instances in
its deployment. Kubernetes decides where pods are destroyed or created.

Microservices usually want to contact other microservices inside the cluster. For that
Kubernetes defines internal networks for the pods and cluster. Pods could theoretically
query certain IP addresses of other pods to contact them. However, pods are disposable
– their IPs are not static. That is why we need a service. A service can aggregate and
load balance queries to a deployment. To keep things simple Kubernetes internally
uses DNS. Thus each pod is sending its queries to a name of the service it wants to
contact. The request is then sent to any one of the healthy pods containing the desired
microservice.

2.4.4 Kubernetes architecture

Figure 2.7. Kubernetes architecture [24]

Figure 2.7 shows the basic Kubernetes architecture. The control plane is a represen-
tation of multiple master nodes.

If we want to contact Kubernetes we need to locally install a program called kubectl.
Kubectl is a command-line interface that sends REST requests to the Kubernetes API
server and parses the response. It is possible to contact the REST API server by sending
requests directly.

„ETCD is a distributed, reliable key-value store for the most critical data of a dis-
tributed system.“

– ETCD documentation [25]

9

2. Technology .
The entire current state of Kubernetes along with all cluster data is saved in ETCD.

In reality, ETCD is distributed along several machines to reach fault-tolerance require-
ments.

When K8s decides it wants to create a new pod it notifies the kube-scheduler. The
scheduler decides on what node the new pod should be placed. It takes into account
affinity (or anti-affinity) requirements, compute capacity, occupancy of the nodes and
other variables. Intelligent scheduling of pods helps ensure the high availability of our
application.

Simplified, the kube-controller-manager is a program that runs in a loop and con-
stantly checks if the current state of K8s corresponds to the desired state. If not (for
example when a node crashes) it acts to fix it.

Cloud controller is what makes Kubernetes cloud-native. A cloud controller interacts
with the underlying cloud providers. [26] Imagine a typical rush-hour scenario. A large
number of requests are made to our application and it is starting to slow down. To keep
the app running Kubernetes needs more computing resources. If configured, Kubernetes
can ask the cloud provider for additional resources. The provider (Azure, GCP, AWS,
etc...) then provisions a new computer (usually a VM) and adds it as a new node to
the Kubernetes cluster. This ensures elasticity, cost-efficiency, and high-availability for
our application. Although the cloud-native side of Kubernetes is very interesting we
can not cover it any further.

Kubelet is a program that runs on each node. It can register the node to the cluster
through the API server. API server can instruct a kubelet to run or delete a new pod
on its node - usually a Docker container. Kubelet pulls the container image from a
container registry set in Kubernetes. The usual container registry for Docker images is
called the Docker registry (see in section 2.3.4).

10

Chapter 3
Continuous integration & continuous
deployment

Release. Most people in IT get nervous when they hear this word. They see all the
merge errors, dependency resolutions, and downtimes due to upgrade. Continuous
integration, continuous deployment (CI/CD) and DevOps are here to help.

DevOps is a culture. [27] The world is a combination of the words „developers“ and
„operations“. It signifies the importance of the two groups communicating with each
other. Simple sharing of information, motivations, and approaches can go a long way.
Developers should not toss their code to the operations team with minimal testing and
an alibi „it worked on my machine“. Just as operations should not force unnecessary
restrictions on the developers because of bad experiences with them.

If operations give some access to the servers (eg. gives them their own VM) there
are no records of what the developers did to make their applications work. (open ports,
default installations of programs, imported certificates, etc.)

Generally, no one is confident about the release process because they fear that the
blame will be assigned to them.

The idea behind DevOps is to find out how the build and release process is cur-
rently done. For example, sharing automation scripts/playbooks across the depart-
ments. Then, decide where and how automation could help. And finally, implement a
CI/CD solution that reflects the company’s needs.

„Job of a CI/CD pipeline is to prove that the code is not good enough.“
– Ken Mugrage [28]

The goal is to release multiple times a day with confidence. Releasing large changes
means large risk something goes wrong. On the other hand, releasing smaller changes
means lowering the risk. The problems are easier to identify. [29]

Before we dive into the CI/CD practices concerning Kubernetes we should clear up
the terminology. What does CI/CD mean? 1

3.1 Continuous integration
Continuous integration (CI) means to frequently integrate developer’s work with the
existing codebase. [30] The integration should happen at least a few times a day. When
the new/changed code is pushed it is automatically built and rigorously tested. Part of
the process can, for example, be a code review from fellow developers.

The CI process ends with a prepared version of the application (eg. a binary, con-
tainer, jar...) sometimes called artifact. CI can also automatically generate documen-
tation or build an installer.
1 Please bear in mind that this thesis does not describe how to set up a production Kubernetes cluster.

That would require setting up an ingress, load balancer, external volumes, secrets storage and many other
things which are beyond the scope of this thesis.

11

3. Continuous integration & continuous deployment .
By integrating often and thoroughly testing every commit both developers and op-

erations become more confident with the releases. Bugs can be simpler to find due to
the iterative nature of this approach. Proper continuous integration means that:

. Everybody commits to mainline at least once a day.. Reliable automated tests keep us confident that we can find any bug.. If the automated tests fail, no one has a more important job, than fixing it. [29]

3.2 Continuous delivery
Continuous delivery is almost the automation of deployment. Every commit is built into
an artifact with CI. Continuous delivery describes the ability to automatically deploy
said artifacts to production.

Every company has a specific need when it comes to deployment. There might be
a testing environment for quality assurance (QA) or perhaps multiple staging environ-
ments before production. While doing continuous delivery releasing to any one of those
environments should be automated or only a matter of a single mouse click.

„The decision which commit to deploy to production is based on business or marketing
needs, and it has nothing to do with engineers.“

– Viktor Farcic [31]

Releasing to production does not have to be automatic. Some might get scared, some
might have other reasons. That’s not important. Continuous delivery only means that
every commit can be deployed to production. [31], [32], [29]

3.3 Continuous deployment
Continuous deployment takes continuous delivery one step further. Every change is
deployed to production. Automatically. No human intervention needed. As mentioned
above, this might not be a good idea based on marketing needs. However, many big
names in the world of technology are following this path.

Werner Vogels (the CTO of Amazon.com) writes that amazon deploys on average less
than every second. [4] A recent research conducted by Google shows that the number
of companies deploying multiple times per day tripled in the last year. [33]

3.4 CI/CD & Kubernetes
How does it all fit together? What are the parts, tools, programs that need to click
the create the pipeline? Individual tools are going to be highlighted with semibold-font
and a unique color to assist the reader in the chapter 4.

3.4.1 Git repository manager
Just like any other development environment, everything starts with version control.
Git is the industry standard. Git itself is open-source but git itself is not enough.
We need a Git repository manager. It provides us with GUI for the management of
multiple repositories and users. Git managers often integrate other useful features such
as issue tracking or wiki management. Having a well-organized git repository manager
helps to integrate code as well as new colleagues. [34]

12

. 3.4 CI/CD & Kubernetes

Most importantly, Git managers contain integrations to other tools. For example. If
our continuous integration tool fails a build it can reach back to the git manager to
display a red mark next to the commit signifying it wasn’t able to build it. Integrations
can range from very simple (on every merge send HTTP POST) to very complex (a
deploy to production button next to every commit).

An important note here. As we mentioned in the continuous integration section 3.1
everybody pushes to mainline. That does not mean one repository. It’s still a microser-
vice architecture. Each developer integrates into the repository of their microservice.
That microservice is built and deployed independently on other microservices.

3.4.2 Continuous integration & Kubernetes
Once code is pushed to the repository it is good practice to let other developers take a
look. When it reaches some level of approval (thumbs-ups) it is then moved along the
continuous integration pipeline.

What happens and in what order is determined by the company/team culture. The
code might go through static code analysis to reveal some bugs or insight. Or it can
go through steps automatically generating documentation, installers, etc. This can and
should be tailored to every company’s needs.

The crucial parts of continuous integration are building the MS and sunbsequent
automatic testing.

Every team is responsible for its own MS, including how it is built. In practice, this
normally means writing a Dockerfile in the MS’s repository. The Dockerfile explains
how an image is built from the repository. The developers themselves define the depen-
dencies in the Dockerfile. The whole process is transparent, reproducible and versioned
in Git.

The pipeline builds the Docker image and pushes it inside a Docker registry. From
there, automatic testing downloads it and runs tests on the built MS. The result should
then be reported back in some way.

3.4.3 Registry or repository?
Let us step back for a moment now and explain the chaotic terminology surrounding
registries.

. Docker repository stores, provides, and versions one specific Docker image. Similarly
to how Git repository stores, versions, and provides source-code.. Docker registry is an open-source program, that stores and lets you distribute Docker
images. [16] Docker registry usually contains multiple Docker repositories.. Container registry is a term used for any program that can store and serve container
images. Docker registry is a specific container registry. Kubernetes needs a container
registry to pull container images from.. Artifact repository is a program that can store, version and provide packages for mul-
tiple technologies. Artifact repository can, for example, work with RPM packages,
.war files, binaries or... Docker images. Artifact repository can thus function as, but
not only as, a container registry.

3.4.4 GitOps
GitOps is a term coined a few years back by Weaweworks.[35] It redefines the approach
to continuous deployment. The files describing the desired state of Kubernetes are
saved in a Git repository. A GitOps operator is watching this repository. When it

13

3. Continuous integration & continuous deployment .

A B
desired state current state

CGitOps
operator⟵ ⟵ ⟵ K8s

Git

Figure 3.1. GitOps diagram

detects a change it passes the new desired state to Kubernetes. Kubernetes at its core
always tries to make the current state identical to the desired one. See figure 3.1

The GitOps operator does not just transfer the new configuration. It also cleans up
resources previously created and now no longer desired. The goal is to synchronize the
desired state of Kubernetes with the state declared in Git.

3.4.5 Continuous deployment & Kubernetes
Continuous deployment is in theory fairly straight forward. Kubernetes desired state
is configured in such a way it deploys the desired image from our registry. In practice,
there are many different approaches. It greatly depends on the tool used and chosen
tactics. Some of the most popular advanced deployment strategies are.

. Canary testing – New code is deployed to small number of unaware users. Actual
usage is analyzed.. A/B Testing – Data-driven experimenting on users. Traffic is routed to users selected
through criteria. The behavior of users with new code and old-code is measured and
statistically evaluated.. Blue/Green – New code is deployed alongside the old code. Once verified to work,
the traffic is sent to the new code. Then the old code is destroyed.. Rolling deployment – Pod by pod deploy the new code and reroute parts of traffic to
it.

3.4.6 Monitoring & Kubernetes
An equally important part plays monitoring and logging. If we don’t know what is
going on our resilience in case of emergency crumbles. For that reason, Kubernetes
itself should be monitored. We want some kind of overview of the current state vs the
desired state.

But not only that. We also hope to know how the individual nodes are doing.
Knowledge of the CPU or RAM usage can be useful in debugging scenarios. This
problem should be (at least partly) solved by properly configuring Kubernetes not to
allow pods to use beyond their limits.

Last but not least, we need to monitor individual MSs. Are they running? Do they
have traffic? Are they overloaded? How much are they using? Health checks should be
configured in Kubernetes for every pod. Kube-controller periodically checks the health
of the pod and if it fails (eg. HTTP not 200) it restarts it or scales it. This all sounds
great, but as with any technology, it’s probably not a great idea to rely on it 100 % as
a black box without monitoring.

„Luck favors the prepared.“
– Proverb

14

Chapter 4
Open-source tools

One of the goals of this thesis is to research available open-source tools for continuous
integration and deployment with Kubernetes. The preceding chapters explained the
basics of all the underlying technology. We are building a modern application, designed
as microservices. Microservices help to divide the functionality into manageable chunks
that are independent of each other.

A developer makes a change into the code. It does not matter if we are talking
about a small new feature or about a bug fix. The CI/CD pipeline should start. The
CI part means that the code is then automatically built, tested, and evaluated by all
sorts of methods. If it passes we are confident that the commit/push will not break the
application, thus it is included, integrated, into the codebase.

The CD part is all about the road to production. The built MS, in the form of
a container is deployed to various environments depending on business processes or
customer needs. Everything is automated and deploying to production is only a matter
of a single mouse click.

There is a lot of open-source projects that cover various parts of this process. This
chapter summarizes the most popular ones. It includes but is not limited to tools found
in the Cloud Native Computing Foundation (CNCF) interactive landscape. [36] Tools
affiliated with CNCF are marked with a star symbol (★).

4.1 Methodology
Due to the sheer amount of available tools we had to decide which ones to include and
which ones to leave out. The following were the criteria used when deciding:. The tool must be open-source.. No discontinued projects. There should be recent commits to the tool repository.. Usage. The more people are actively using it, the better.. Integrations. The more a tool can integrate with other tools, the better.. Relevance to usage with Kubernetes.

Sorting the tools can be very problematic. Some of them cover multiple parts of
the pipeline at one time. The tools are sorted into groups based on the way they are
presenting themselves. Inside the groups similar tools tend to be closer together. The
groups are ordered by the general flow of the pipeline. Every tool is displayed with:. A motto and a logo – cited from the tool site. A URL of the tool site and repository. The license of the source-code. Endorsed by – notable companies using the tool. Used for – summary of color-coded usages (What parts of the pipeline it covers). Pricing model – open-source does not have to mean free of charge for everything. Notes – additional information about the tool (lessons, quirks, certifications, etc.)

presents a personal opinion.

15

4. Open-source tools .

4.2 All the parts of a pipeline
All the different components of a pipeline can leave the reader confused. Don’t worry.
For this reason, there is a color-coded summary of everything needed to build a proper
pipeline. Every piece has a short list of its purposes inside the pipeline. A modern
CI/CD pipeline usually contains most of the following:

. Git manager

. Provides access to Git repository. Shows the repository in a GUI, usually together with issues.. Shows/contains code of/links to wiki. Shows status of the pipeline for each commit/push/merge

. Issues manager

. Tracks issues, bugs, requests, etc.... Can also track time, comments, and upvotes

. Continuous integration tool

. Performs static code analysis. Builds code into artifacts (eg. compilation) and pushes them to artifact repository. Builds container images and pushes them to container registry. Generates other useful files such as documentation, installer, or wiki. Evaluates the code quality. Performs extensive testing of built application. Performs security and vulnerability analysis. Gives feedback on what its doing

. Artifact repository

. Stores, versions and provides artifacts (anything from binary to container image). Container registry stores, versions and provides container images. That usually
means Docker images.

. Continuous delivery tool

. Changes or shows changes to the desired/current state of Kubernetes. Deploys app to predefiend environments (QA, staging, production, etc.). Handles deployment strategies (Canary, Blue/Green, etc.)

. Kubernetes

. Manages a cluster of nodes (computers). Schedules changes to match the desired state („configuration“). Pulls and deploys images from container registry as pods onto nodes. Manages traffic to pods

. Monitoring & logging

. Collects logs and metrics from pods. Visualizes metrics about cluster and pods. Alerts in case of irregularities

16

. 4.3 Git managers & Issues

4.3 Git managers & Issues

4.3.1 Gitlab

GitLab is a complete DevOps platform.

Site: about.gitlab.com Endorsed by: Nasa, Goldman Sachs
Repo: gitlab.com/gitlab-org/gitlab License: MIT License
Used for: Git manager, Issues, CI, CD, Artifact repository, Testing, Container reg-

istry, Monitoring, Code quality, Wiki, Code review

Pricing model: GitLab uses the open-core model. GitLab Community Edition is
open-source and free to use. GitLab Enterprise Edition contains additional features
and is paid. GitLab offers both self-managed and SaaS solutions for its Enterprise
Edition.

Notes: The Community Edition contains a lot of features and is very usable. Great
for getting started fast. GitLab is widely used and offers numerous integrations with
other tools. ★ CNCF silver member.

4.3.2 Gitea

Git with a cup of tea.

Site: gitea.io Endorsed by: DiDi Cloud, DigitalOcean
Repo: github.com/go-gitea/gitea License: MIT
Used for: Git manager, Issues, Wiki

Pricing model: Gitea is open-source and free of charge.

Notes: Gitea is fast and lightweight, but at the same time very featureful. For
example, it provides OAuth2 and FIDO U2F (2FA) authentication. In addition, the
Gitea community curates a list of its „awesome“ integrations with other CI/CD tools1.
Gitea is a fork of Gogs.

4.3.3 Gogs

A painless self-hosted Git service.

Site: gogs.io Endorsed by: igt, University of Mississippi
Repo: github.com/gogs/gogs License: MIT
Used for: Git manager, Issues, Wiki

Pricing model: Gogs is open-source and free of charge.

Notes: Gogs is a fast, lightweight, and intuitive Git manager. Its built-in issues
are very simple, but it can work with external issue tracking systems. Gogs supports
webhooks but does not boast with many comprehensive 3rd party integrations with
other tools.

1 https://gitea.com/gitea/awesome-gitea/src/branch/master/README.md

17

https://about.gitlab.com
https://gitlab.com/gitlab-org/gitlab
https://gitea.io
https://github.com/go-gitea/gitea
https://gogs.io
https://github.com/gogs/gogs
https://gitea.com/gitea/awesome-gitea/src/branch/master/README.md

4. Open-source tools .
4.3.4 Phabricator

Discuss. Plan. Code. Review. Test.

Site: phacility.com/phabricator Endorsed by: Wikimedia, KDE
Repo: github.com/phacility/phabricator License: Apache v2.0
Used for: Git manager, Issues, CI, Project management, Wiki, Code review

Pricing model: Phabricator is open-source and free of charge. Phacility, the company
maintaining Phabricator, offers hosted and Enterprise support plans.

Notes: Phabricator is a very mature platform that integrates project management
features, issues, wiki, and version control. It is highly customizable and featureful.
However, not very modern.

4.4 CI tools

4.4.1 Buildbot

The Continuous Integration Framework

Site: buildbot.net Endorsed by: Chromium, Blender
Repo: github.com/buildbot/buildbot License: GNU v2.0
Used for: CI, Automation

Pricing model: Buildbot is open-source and free of charge.

Notes: Buildbot is a comprehensive automation framework. It provides an abstrac-
tion of general automation for CI. Its versatility makes it a great fit for gigantic complex
projects.

4.4.2 Travis CI

Test and Deploy with Confidence

Site: travis-ci.org Endorsed by: Heroku, BitTorrent
Repo: github.com/travis-ci/travis-ci License: MIT
Used for: CI, CD

Pricing model: Travis CI is technically open-source but the lack of even minimal
support makes it very hard to deploy on your own. Travis offers a plethora of plans for
small and big customers. Using Travis CI as a service is free for open-source projects.
Travis CI Enterprise offers an on-premise solution.

Notes: Travis is a modern, widely used platform for frictionless CI. It is not intended
to be used with Kubernetes, although it can be accomplished.

18

https://phacility.com/phabricator
https://github.com/phacility/phabricator
https://buildbot.net
https://github.com/buildbot/buildbot
https://travis-ci.org
https://github.com/travis-ci/travis-ci

. 4.4 CI tools

4.4.3 Concourse

Concourse is an open-source continuous thing-doer

Site: concourse-ci.org Endorsed by: Nasdaq, Home Depot
Repo: github.com/concourse/concourse License: Apache v2.0
Used for: CI, Atutomation, Pipeline visualization

Pricing model: Concourse is open-source and free of charge.

Notes: Concourse is an excellent enterprise CI tool for any automation and pipelines.
Concourse is very flexible, but it has a steeper learning curve. Also, it’s UI is very
elegant. ★ CNCF platinum member.

4.4.4 Jenkins

Build great things at any scale

Site: jenkins.io Endorsed by: Dell, eBay
Repo: github.com/jenkinsci License: MIT
Used for: CI, CD, Automation

Pricing model: Jenkins is open-source and free of charge. A contributing company
called CloudBees offers its flavor of Jenkins called CloudBees Jenkins with a paid sup-
port.

Notes: Jenkins is an open-source automation tool. It has been released in 2011 and
its UI changed very little since. The sheer amount of community plugins make Jenkins
the „king of 3rd party integrations“. Jenkins is the most used CI/CD tool. [3] However,
Jenkins can prove to be difficult to maintain at a big scale. [37] ★ CD foundation
graduated project.

4.4.5 Jenkins Blue Ocean

Continuous Delivery for every team

Site: jenkins.io/projects/blueocean Endorsed by: Intuit
Repo: github.com/jenkinsci/blueocean-plugin License: MIT
Used for: CI, CD, Automation

Pricing model: Jenkins Blue Ocean is open-source and free of charge.

Notes: Jenkins Blue Ocean is a very pleasant user interface for Jenkins pipelines.
It receives constant updates, but so far, it cannot fully replace the classic UI. All the
other downsides of regular Jenkins still apply.

19

https://concourse-ci.org
https://github.com/concourse/concourse
https://jenkins.io
https://github.com/jenkinsci
https://jenkins.io/projects/blueocean
https://github.com/jenkinsci/blueocean-plugin

4. Open-source tools .

4.5 CI & CD tools

4.5.1 Drone

Automate Software Testing and Delivery

Site: drone.io Endorsed by: Cisco, eBay
Repo: github.com/drone/drone License: Apache v2.0
Used for: CI, CD, Testing

Pricing model: Drone comes in two versions. A community edition and an enterprise
edition. The community edition is free and open-source for everyone. It lacks support
for advanced databases, non–docker runners, and advanced secret management. The
enterprise edition is source–available, without limitations, and is free of charge for
smaller companies (under 1 mil USD).

Notes: Drone is an easy to use tool with generous pricing policy. It integrates very
well with other tools and has a no–nonsense approach. Drone is lightweight, fast, but
incredibly powerful. A Drone pipeline is a declarative YAML, and it can even be run
locally by a developer. That eliminates the common case of „it worked on my machine“.

4.5.2 GoCD

Free & Open Source CI/CD Server

Site: gocd.org Endorsed by: ThoughtWorks
Repo: github.com/gocd/gocd License: Apache v2.0
Used for: CI, CD, Artifact repository, Pipeline visualization

Pricing model: GoCD is open-source and free of charge. GoCD includes third-party
software with various licenses. ThoughtWorks offers paid enterprise support.

Notes: GoCD is a less-known CI/CD tool. It has been open-sourced by Thought-
Works in 2014. Declarative pipelines, unlimited „runners“, and built-in Kubernetes
support make it a great fit for any modern open-source CI/CD pipeline.

4.5.3 Agola

CI/CD redefined

Site: agola.io Endorsed by: –
Repo: github.com/agola-io/agola License: Apache v2.0
Used for: CI, CD

Pricing model: Agola is open-source and free of charge.

Notes: Agola originated at sorint.oss in spring 2019. [38] That means the project is
only a year old at the time of writing with only 5 contributors. The project holds great
promise, but only time will show if it develops a community. It promises and delivers
highly available and scalable CI/CD driven by Git workflow. Agola has built-in support
for Kubernetes as an execution platform.

20

https://drone.io
https://github.com/drone/drone
https://gocd.org
https://github.com/gocd/gocd
https://agola.io
https://github.com/agola-io/agola

. 4.6 CD tools

4.5.4 Tekton

Kubernetes-native CI/CD

Site: tekton.dev Endorsed by: Google
Repo: github.com/tektoncd License: Apache v2.0
Used for: CI, CD

Pricing model: Tekton is open-source and free of charge.

Notes: Tekton is very different from other tools listed here. Tekton is Kubernetes-
native. It defines custom resources (CRDs) inside Kubernetes for running pipelines.
The pipelines are then available in the Kubernetes API. This way a pipeline execution
can be unified throughout various tools. ★ CD foundation graduated project.

4.5.5 Jenkins X

Accelerate Your Continuous Delivery on Kubernetes

Site: jenkins-x.io Endorsed by: CloudBees
Repo: github.com/jenkins-x/jx License: Apache v2.0
Used for: CI, CD, Container registry, Kubernetes

Pricing model: Jenkins X is open-source and free of charge.

Notes: Jenkins X is very different from other tools listed here. Jenkins X connects
to (or creates) a Kubernetes cluster. There, it creates a DevOps platform with a
complete CI/CD pipeline ready for usage. It integrates with various Git providers.
★ CD foundation graduated project.

4.6 CD tools

4.6.1 Argo CD

Argo CD is a declarative, GitOps continuous delivery tool for Kubernetes.

Site: argoproj.github.io/argo-cd Endorsed by: Intuit
Repo: github.com/argoproj/argo-cd License: Apache v2.0
Used for: CD, Advanced deployment strategies, GitOps

Pricing model: Argo CD is open-source and free of charge.

Notes: Argo ensures that the current state of a Kubernetes cluster is equal to a state
defined by files in a connected Git repository. Such practice is called GitOps. Argo is
a featureful tool with excellent security and UI. ★ CNCF incubating project.

21

https://tekton.dev
https://github.com/tektoncd
https://jenkins-x.io
https://github.com/jenkins-x/jx
https://argoproj.github.io/argo-cd
https://github.com/argoproj/argo-cd

4. Open-source tools .
4.6.2 Flux

The GitOps operator for Kubernetes

Site: fluxcd.io Endorsed by: Weave cloud, Starbucks
Repo: github.com/fluxcd/flux License: Apache v2.0
Used for: CD, GitOps

Pricing model: Flux is open-source and free of charge.
Notes: Flux ensures that the current desired state of a Kubernetes cluster is equal

to a state defined by YAML files in a connected Git repository. Such practice is called
GitOps. It can effectively eliminate the need for a separate CD tool. Flux does not
have a UI. ★ CNCF sandbox project.

4.6.3 Flagger

Progressive Delivery Operator for Kubernetes

Site: flagger.app Endorsed by: Weave cloud
Repo: github.com/weaveworks/flagger License: Apache v2.0
Used for: CD, Advanced deployment strategies

Pricing model: Flagger is open-source and free of charge.
Notes: Flagger is a Kubernetes operator – software extension to Kubernetes. It

implements advanced deployment strategies like Canary, A/B Testing, and Blue/Green.
It can also send notifications to Slack or Microsoft Teams.

4.6.4 Keptn

Keptn is a control-plane for DevOps automation of cloud-native applications.

Site: keptn.sh Endorsed by: Dynatrace, Citrix
Repo: github.com/keptn/keptn License: Apache v2.0
Used for: CD, Advanced deployment strategies, (GitOps)
Pricing model: Keptn is open-source and free of charge.
Notes: Keptn is a tool specifically designed for continuous delivery. It implements

numerous deployment strategies. The application delivery flow is defined in a (shipyard
– Keptn proposed standard) YAML file and stored in Git. ★ CNCF silver member.

4.6.5 Spinnaker

Fast, safe, repeatable deployments for every Enterprise

Site: spinnaker.io Endorsed by: Adobe, SAP, [and many more]
Repo: github.com/spinnaker License: Apache v2.0
Used for: CD, Advanced deployment strategies

Pricing model: Spinnaker is open-source and free of charge. Unrelated companies
(Armory, OpsMx) provide paid support and Spinnaker as a service.

Notes: Spinnaker is a cloud-native enterprise-ready tool for CI/CD. Originally devel-
oped by Netflix, it is currently embraced and supported by some of the biggest names in
current IT. Spinnaker enables zero-downtime deployment strategies for mission-critical
systems. ★ CD foundation graduated project.

22

https://fluxcd.io
https://github.com/fluxcd/flux
https://flagger.app
https://github.com/weaveworks/flagger
https://keptn.sh
https://github.com/keptn/keptn
https://spinnaker.io
https://github.com/spinnaker

. 4.7 Container registry manager

4.7 Container registry manager

4.7.1 Harbor

Our mission is to be the trusted cloud native repository for Kubernetes.

Site: goharbor.io Endorsed by: Axa, China Mobile
Repo: github.com/goharbor/harbor License: Apache v2.0
Used for: Container registry, Security and vulnerability analysis (with Clair)

Pricing model: Harbor is open-source and free of charge.

Notes: Harbor is a container registry designed to be secure and robust. It pro-
vides support for LDAP and OpenID authentication. Harbor also offers a sophisticated
project structure with user roles, quotas, and automatic container vulnerability scan-
ning. ★ CNCF incubating project.

4.7.2 Portus

Claim control of your Docker images.

Site: port.us.org Endorsed by: SUSE team
Repo: github.com/SUSE/Portus License: Apache v2.0
Used for: Container registry (UI), Security and vulnerability analysis (with Clair)

Pricing model: Portus is open-source and free of charge.

Notes: Portus is not a container registry. It is a UI and an authorization service for
a container registry. Currently, it connects to a single container registry. Nonetheless,
supported features such as LDAP, OAuth, auditing, and vulnerability scanning make
it a worthy competitor. ★ CNCF gold member.

4.7.3 Project Quay

Quay [builds, analyzes, distributes] your container images.

Site: projectquay.io Endorsed by: Nasa, eBay, RedHat
Repo: github.com/quay/quay License: Apache v2.0
Used for: Container registry, Security and vulnerability analysis (with Clair)

Pricing model: Project Quay is an open-source project behind the paid hosted service
quay.io and RedHat Quay. Quay Enterprise was renamed to RedHat Quay after RedHat
bought it’s creator CoreOS. RedHat Quay is currently sold by RedHat and included in
OpenShift.

Notes: Quay is a true enterprise tool with support for the majority of use-cases.
Even though Quay’s functionality may be considered superior to other tools there is a
problem with it. The whole project is entangled with RedHat technology which makes
it harder to utilize without it. ★ CNCF platinum member.

23

https://goharbor.io
https://github.com/goharbor/harbor
https://port.us.org
https://github.com/SUSE/Portus
https://projectquay.io
https://github.com/quay/quay

4. Open-source tools .

4.8 Code quality tools

4.8.1 Clair

Automatic container vulnerability and security scanning for appc and Docker

Site: – Endorsed by: RedHat, Quay.io
Repo: github.com/quay/clair License: Apache v2.0
Used for: Analysis of container vulnerabilities

Pricing model: Clair is open-source and free of charge. Clair was developed by
CoreOS and included in Quay Enterprise which all now belong to RedHat. Clair is
currently integrated into RedHat Quay Security Scanner but can be downloaded and
run on its own.

Notes: There is no official Clair site apart from its GitHub repository README.
Clair is a mature tool used in the enterprise. Clair does not have a UI, instead, it
is controlled by its API. Numerous 3rd party tools integrate with Clair. ★ CNCF
platinum member.

4.8.2 Anchore Engine

An Open-source Tool For Deep Image Inspection And Vulnerability Scanning

Site: anchore.com/opensource Endorsed by: US Air Force
Repo: github.com/anchore/anchore-engine License: Apache v2.0
Used for: Analysis of container vulnerabilities

Pricing model: Anchore Engine is open-source and free of charge. The company
Anchore also provides paid versions called Achore Enterprise and Anchore Federal for
more demanding customers. Anchore Federal is used in the most critical air-gapped
environments, for example by the US Air Force.

Notes: Anchore Engine provides a truly able tool for Docker container security scan-
ning. As mentioned before, it is used even in some of the most critical systems. The
open-source version does not have a UI, although it comes with a very handy CLI and
REST API.

4.8.3 SonarQube

SonarQube empowers all developers to write cleaner and safer code

Site: sonarqube.org Endorsed by: Erste, DB
Repo: github.com/SonarSource/sonarqube License: LGPL 3.0
Used for: Code review, Bug detection, Vulnerability detection

Pricing model: SonarQube comes in four versions Community, Developer, Enterprise,
and Data Center. The Community Edition is open-source and free of charge, however, it
is missing support for some programming languages, branch analysis, or Git integrated
pull request decorations.

Notes: SonarQube is a great and thorough tool for static code analysis. It can detect,
measure, and visualize the number of bugs, vulnerabilities, or code coverage. The UI
is clean and very pleasant. SonarQube is used by 58 of the fortune 100 companies. [39]
Open-source projects can use the hosted SonarCloud for free.

24

https://github.com/quay/clair
https://anchore.com/opensource
https://github.com/anchore/anchore-engine
https://sonarqube.org
https://github.com/SonarSource/sonarqube

. 4.9 Monitoring

4.9 Monitoring

4.9.1 Kubernetes dashboard

Dashboard is a web-based Kubernetes user interface.

Site: kubernetes.io Endorsed by: –
Repo: github.com/kubernetes/dashboard License: Apache v2.0
Used for: Monitoring

Pricing model: Kubernetes dashboard is open-source and free of charge.

Notes: Kubernetes Dashboard (or Kubernetes UI) is an application from the makers
of Kubernetes. It deploys directly on Kubernetes and provides a simple material dash-
board. The Dashboard shows an overview of Kubernetes resources (pods, deployments,
services). It also shows an overview of resources such as CPU or RAM usage. The Ku-
bernetes Dashboard can control some fundamental Kubernetes tasks such as scaling.
It is a great tool for getting a grip on what is going on in the cluster.

4.9.2 Prometheus

From metrics to insight

Site: prometheus.io Endorsed by: DigitalOcean, SoundCloud
Repo: github.com/prometheus License: Apache v2.0
Used for: Monitoring, Alerting

Pricing model: Prometheus is open-source and free of charge.

Notes: Prometheus is a monitoring service that is designed to fit well in the dynamic
world of microservices. Prometheus actively collects metrics from each part of the ap-
plication and saves them in a time-series database. It then allows querying on collected
data with its language PromQL. For visualization, it integrates very well with Grafana.
★ CNCF graduated project.

4.9.3 Graphana

The open observability platform

Site: grafana.com Endorsed by: PayPal, Intel, Booking.com
Repo: github.com/grafana/grafana License: Apache v2.0
Used for: Monitoring, Alerting, Data visualization

Pricing model: Grafana is open-source and free of charge. Grafana Labs offer Grafana
Enterprise with authentication plugins and commercial support. Grafana Cloud is a
paid SaaS solution including (but not limited to) Grafana and Prometheus.

Notes: Grafana connects to various data sources (eg. Prometheus) and displays the
data. Users can create beautiful dashboards with custom graphs and visualizations, or
choose from hundreds of community prepared ones. ★ CNCF silver member.

25

https://kubernetes.io
https://github.com/kubernetes/dashboard
https://prometheus.io
https://github.com/prometheus
https://grafana.com
https://github.com/grafana/grafana

4. Open-source tools .
4.9.4 cAdvisor

Analyzes resource usage and performance characteristics of running containers

Site: – Endorsed by: Google
Repo: github.com/google/cadvisor License: Apache v2.0
Used for: Monitoring

Pricing model: cAdvisor is open-source and free of charge.

Notes: cAdvisor is an open-source tool from Google used for monitoring running
containers. It used to be accessible with UI on a Kubelet – that feature was removed.
As of early 2020 cAdvisor endpoints are disabled in Kubernetes by default. cAdvisor
is becoming an implementation-specific detail. In newer versions, this will be provided
by the CRI layer (Container Runtime Interface) – Kubernetes being compatible with a
number of „container providers“, not just Docker. Monitoring containers in Kubernetes
is possible through kubectl top.

4.9.5 Fluentd

Build Your Unified Logging Layer

Site: fluentd.org Endorsed by: Microsoft, Nintendo
Repo: github.com/fluent/fluentd License: Apache v2.0
Used for: Logging

Pricing model: Fluentd is open-source and free of charge.

Notes: Fluentd centralizes data log collection from various sources. Because it was
written in C and Ruby, it is extremely lightweight and fast. Fluentd can be integrated
with Kubernetes and extended with many additional plugins. Fluentd is a tool used
by many companies in the enterprise. ★ CNCF graduated project.

4.10 Other useful tools

4.10.1 Helm

The package manager for Kubernetes

Site: helm.sh Endorsed by: Google, IBM, Microsoft
Repo: github.com/helm License: Apache v2.0
Used for: –

Pricing model: Helm is open-source and free of charge.

Notes: Every common Unix OS has repositories with applications prepared for it.
Helm makes the same thing possible with Kubernetes. Helm parametrizes the Kuber-
netes YAML files defining our application (services, deployments, etc) and packages
then into so-called Helm charts. Helm charts of popular applications created by the
community can be downloaded from Helm „repositories“ and deployed to any Kuber-
netes cluster. ★ CNCF graduated project.

26

https://github.com/google/cadvisor
https://fluentd.org
https://github.com/fluent/fluentd
https://helm.sh
https://github.com/helm

. 4.10 Other useful tools

4.10.2 Falco

Cloud-Native Runtime Security

Site: falco.org Endorsed by: –
Repo: github.com/falcosecurity/falco License: Apache v2.0
Used for: –

Pricing model: Falco is open-source and free of charge. Sysdig offers a customized
enterprise solution.

Notes: Falco monitors Kubernetes security at runtime. It is the first cloud-native
runtime security project to join the CNCF. ★ CNCF incubating project.

4.10.3 Utilities & other helpful projects

Artifactory OSS jfrog.com/open-source

JFrog Artifactory Open Source For Artifact Management

n8n.io n8n.io/

Free and Open Workflow Automation Tool.

Jaeger www.jaegertracing.io/

Open source, end-to-end distributed tracing

kube-shell github.com/cloudnativelabs/kube-shell

An integrated shell for working with the Kubernetes CLI

kubebox github.com/cloudnativelabs/kube-shell

Terminal and Web console for Kubernetes

Searchlight github.com/searchlight/searchlight

Alerts for Kubernetes

Kube-monkey github.com/asobti/kube-monkey

An implementation of Netflix’s Chaos Monkey for K8s clusters

27

https://falco.org
https://github.com/falcosecurity/falco
https://jfrog.com/open-source
https://n8n.io/
https://www.jaegertracing.io/
https://github.com/cloudnativelabs/kube-shell
https://github.com/cloudnativelabs/kube-shell
https://github.com/searchlight/searchlight
https://github.com/asobti/kube-monkey

Chapter 5
Open-source CI/CD pipeline design

Let us start with building pipelines. A CI/CD pipeline is an integral part of every
team’s technology stack. It helps to automate routine tasks and eliminate errors in the
whole process. Thus speeding up the time it takes new code to get to the customer. A
brief summary of the parts present in a CI/CD pipeline to Kubernetes is available in
the section 4.2

First, we will take a look at our developer’s environment and analyze what pipeline
we want to create. In reality, this would include talking to our developers and ad-
ministrators to determine, how should the pipeline behave. We, sadly cannot do that.
Nonetheless, an analysis of the deployed MSs is in order. We are deploying an open-
source microservice application called TeaStore written in Java. It’s a simple e-shop
selling teas.

Subsequently, we will design two pipelines from some of the open-source tools de-
scribed in the previous chapter. The designed pipelines will cover the entire process
starting with a developer’s commit to a Git repository and finishing with the whole MS
application deployed in a Kubernetes cluster. Both of the pipelines shall be constructed
exclusively from open-source tools.

Trying to deploy an app with only open-source tools is not very realistic, nevertheless,
there are reasons to do this. Every pipeline should be tailored specifically to the needs
of its users. Showing off what the open-source tools are able to do can provide a better
overview of what parts of the pipeline to buy.

5.1 Test enviroment
The first part of building a pipeline is to take a step back and make an overview of
what technologies are used by our developers (eg. programming languages) and what
the current build process is. And that is exactly what this chapter is going to be about.
The only difference is, that the developers of our MS app (TeaStore) are in Würzburg,
Germany and not next doors.

5.1.1 Teastore breakdown
TeaStore is a mockup MS application written in Java – a simple e-shop selling all sorts
of teas. It consists of five microservices and a registry (shown in figure 5.1).

. WebUI – The MS serving the e-shop website.. Image – A service that provides generated images of teas when queried.. Auth – Users can log-in to the e-shop to buy teas. This MS is responsible for the
verification of both login and the session data.. Recommender – The Recommender recommends other items for purchase based on
various factors.. Persistence – Provides access to the store’s relational database.. Registry – Keeps track of what instances of services are running.

28

. 5.1 Test enviroment

Figure 5.1. TeaStore architecture [15]

The Java source code is compiled by Maven into a .war file. That .war file is then
packaged into a Docker container and the container is pushed into a registry. Authors of
TeaStore provide the Maven pom.xml and a Dockerfile for each MS. They also provide
example scripts for building the Docker images and Kubernetes .yaml files for deploying.

For greater agility when trying out new CI/CD tools, the WebUI MS was separated
from the central repository and reconfigured to be able to build on its own. It better
reflects how each MS should be built independently.

The Maven build script, Dockerfile, and Kubernetes manifest have been specifically
modified to suit the purposes of the pipeline. The changes were needed to reflect the
separation of one service from the central repository.

5.1.2 Kind

server

docker
kubectl

container (node)

kubelet

containerd

Pod 1

Pod 2

...
container (node)

kubelet

containerd

Pod 3

Pod 4

bash ...

Figure 5.2. Kubernetes in Docker architecture

There are many ways to obtain a Kubernetes cluster. The way chosen here is to
create a K8s cluster inside docker containers with a tool called Kind.

29

5. Open-source CI/CD pipeline design .
Kind1 is an open-source tool developed for testing Kubernetes. Kind is short for Ku-

bernetes in Docker. Its primary benefit is the fact that it can start a whole Kubernetes
cluster in a few minutes. Instead of using virtual (or physical) machines for the nodes,
it uses Docker containers with predefined „node images“ based on the latest Ubuntu
image. The nodes themselves deploy pods as containers inside the node container. As
shown in figure 5.2. The containers inside containers are managed with containerd.
Containerd is a container runtime based on Docker engine (section 2.3.1).

There are several downsides to this method. It’s fast and simple to create a cluster
but the cluster itself is slow. Multiple layers of virtualization add additional ballast.
Moreover, self-signed SSL certificates and other additional configuration has to be either
injected inside the container whilst running or pre-built in a custom Kind container
image.

In spite of such downsides – in this thesis, we will be trying out lots of different
CI/CD tools. The ability to spin up and destroy a Kubernetes cluster without waiting
is particularly useful for us. And that is the reason why we will be using kind as a way
to create a Kubernetes cluster to deploy into.

5.2 Only GitLab pipeline
The first pipeline consists solely of tools included with GitLab. But why GitLab?

GitLab is an open-source application that covers the whole pipeline. For structured
detail see section 4.3.1. According to a recent CNCF survey, GitLab is the second most
popular CI/CD tool (at 34 %). [3] Preceded only by Jenkins (section 4.4.4). It is also
considered to be the leading provider of self-hosted Git and a DevOps platform. [40], [41]

It’s open-source, widely used, stable - covered by a company and it is an „all in one
solution“. Despite having a product for every part of the pipeline GitLab does not force
the user inside its ecosystem. Each user can choose which parts to use and which parts
to substitute with 3rd party SW they would like to use. That, combined with their very
generous pricing model makes GitLab a great fit for anyone creating a CI/CD pipeline.

GitLab CI/CD solution consists of two independently installed programs. GitLab
and GitLab Runners.

5.2.1 GitLab Runners

A GitLab Runner is the „worker“ of the system. There are usually multiple Runners
connected to a single GitLab. GitLab instructs the runner on jobs as shown in figure 5.3.
A job can be anything from compiling a binary to running vulnerability tests. Runner,
as the name implies, runs the jobs and sends the results back to GitLab. Separating
the Runners from the rest of GitLab is useful for scaling purposes. Runners can be run
on and connected from different machines. Hence distributing the computing load.

In this case, the instructions GitLab sends to the GitLab Runner are shell commands
for Maven and Docker. The Runner prepares a special environment for the execution.
What environment it prepares depends on the Runner’s predefined executor. Executors
can be for example Docker, Shell, VirtualBox or Kubernetes. A common choice is to
execute the build inside a Docker container. It provides a consistent and clean envi-
ronment. However, it’s important to understand the layers it creates. We are building
a Docker container inside a Docker container. That could lead to some unexpected
behavior. [42], [43] Another note on building inside Docker is about SSL certificates.

1 https://kind.sigs.k8s.io

30

https://kind.sigs.k8s.io

. 5.2 Only GitLab pipeline

The Docker container must have access to the certificates it needs for pushing. There
are ways to configure this in the Runner itself or we can use a custom Docker im-
age. A custom Docker image is also useful for preparing cached data (such as Maven
plugins). Any customized images should be stored securely and privately in a Docker
Registry. They should also be subject to a CI pipeline

Inside the prepared environment, the Runner executes the job and shares back the
results. The fail or success status of a job is determined by the exit-code of run com-
mands. Runners can also share back artifacts (files) if GitLab specifies it in the job
definition.

GitLab

GitLab Runner Kubernetes

Git repository

...

GitLab CI/CD (.gitlab-ci)

Source
code

Container Registry

...
Artifacts

Environments

Test Build Package Deploy

Maven
build

static code
analysis

Docker build
&

Docker push

image.war

unit tests

Control flow Sending files X instructs Y

Figure 5.3. Gitlab CI/CD workflow for Teastore

5.2.2 GitLab CI
GitLab manages the Git repository of our MS. If a file called .gitlab-ci.yml is present
in the root of the repository it starts a pipeline defined by that file. The file needs to
be a valid YAML. GitLab recognizes many directives inside it1.

Firstly we identify the stages of our pipeline. The stage container-test is absent from
figure 5.3 to produce a cleaner diagram. There can be multiple stages and multiple
jobs for each stage. All the jobs in a stage are run in parallel. Intricate multithreaded
pipelines can be drawn using the „needs“ keyword in a job definition. An example of
the .gitlab-ci.yml syntax can be seen in figure 5.4. Once the .gitlab-ci.yml is pushed, the
UI shows the pipeline running in real-time. A running pipeline can be seen in figure 5.5.

1 https://docs.gitlab.com/ce/ci/yaml/

31

https://docs.gitlab.com/ce/ci/yaml/

5. Open-source CI/CD pipeline design .
stages:

- test # Static code analysis, Create documentation, etc...
- build # Maven build and test
- package # Building image from Dockerfile
- container-test # API testing, Vulnerability scanning, etc...
- deploy # Deploying to various environments

--- test stage ---
documentation: # Name of the job

image: "nxpleuvenjenkins/doxygen" # Docker image of enviroment
stage: static # Stage of the job
script:

- doxgen services/webui/Doxyfile
...

Figure 5.4. A simple example of the .gitlab-ci.yml syntax

Figure 5.5. GitLab UI of a pipeline

GitLab then instructs runners to execute jobs. It can even show the progress of the
commands in a terminal-like output window inside a browser. GitLab already comes
with a simple artifact repository. Files that should be considered artifacts and saved
alongside a repository must be properly tagged in the job definition. When „Maven
build“ finishes it produces a .war file. If a Runner would finish the job now, the
container execution environment would be destroyed and the hard built .war file with
it. If we tag the .war file as an artifact it is instead copied to the Job Artifacts section
of GitLab. Every repository has its own Job Artifacts.

Other jobs in the pipeline have access to artifacts. In our pipeline, the docker-build-
and-push job pulls the artifact and packages it into a Docker image. Specifically, the
Docker image builds on top of a Tomcat image with predefined configurations. Docker
build copies the .war file to the container. The packaging stage continues with Docker
pushing an image to the GitLab Container Registry. The configuration YAML file for
simple Gitlab artifact management and container registry in the .gitlab-ci.yml can be
seen in figure 5.6.

The Container Registry in embedded in Gitlab but can be accessed by external
applications. When Kubernetes is instructed to pull a new image it pulls it from the
GitLab Container Registry. We can define a number of deploy environments for the
repository. They are simply connections to servers on which we wish to deploy. Which
environment to deploy to is specified in the pipeline definition. The process can be fully
automatic (continuous deployment) or it can require a mouse-click input (continuous
delivery).

It is possible to let GitLab manage a Kubernetes cluster for us. This provides ac-
cess to some predefined deployment strategies. However, in the Comunity Edition,

32

. 5.2 Only GitLab pipeline

--- Build .war with Maven ---
maven-build:

image: "maven:3.6-jdk-8"
stage: build
script:

- mvn clean install
artifacts:

paths:
- ./services/tools.descartes.teastore.webui/target/*.war

--- Build docker image from .war artifact ---
docker-build-and-push:

stage: package
script:

- ls -lh ./services/tools.descartes.teastore.webui/target
- docker login -u $CI_REGISTRY_USER \

-p $CI_REGISTRY_PASSWORD $CI_REGISTRY
- docker build -t "$CI_REGISTRY_IMAGE" \

services/tools.descartes.teastore.webui/
- docker push "$CI_REGISTRY_IMAGE"

Figure 5.6. A simple artifact and container registry configuration in .gitlab-ci.yml

we can only add one cluster. Some other features like canary deployment and cluster
monitoring are also, missing in this edition.

5.2.3 Pros & cons
GitLab is an excellent tool providing enterprise-ready features. Not everything can be
for free, nonetheless, there is a lot of it.

Pros:

. Simple setup. Stability of „corporate open-source“. Amazing UI. Does not force its ecosystem. Integrates well with 3rd party software

Cons:

. Downsides of „corporate open-source“ (possible fears over future licensing). Community edition by itself does not scale to big enterprise. One Kubernetes cluster per project (a cluster for production, staging, development
will eventually be needed). Integrated tools are not as versatile as individual ones. Possible single point of failure

33

5. Open-source CI/CD pipeline design .

5.3 Mixed tools pipeline

In contrast to GitLab’s all-in-one approach, the second pipeline is built from five sepa-
rate tools. The tools used are lightweight yet powerful. The tools were picked with an
emphasis on integration and usability. The more the tools can mutually cooperate, the
better. It provides Developers with necessary feedback on their code. As much as pos-
sible of the pipeline should be versioned. It is good practice not to have configuration
lying around.

From the tools researched in chapter 4, we have decided to implement the pipeline
with the following tools: Gitea, Drone, Harbor, Clair, Flux. With the sole exception
of Drone, the tools are 100 % open-source, maintained by the community, and with no
pricing model in place. Drone is free of charge until the company using it has an annual
revenue of 1 million US dollars and even after that it has a community version.

The overall diagram of the finished pipeline can be seen in figure 5.7.

Kubernetes

Gitea Drone CI (.drone.yml)

...

Source
code

Registry

Test Build Package

image

Control flow Sending files X instructs Y

Harbor

Clair

FluxGitOps
Repo

Drone Runner

...

Kube-API

Func. testing

Static code
analysis

Maven build

Docker build
Docker push

Func. testing

Auth/sign

Kubelet

Synch

Scan image

...

Figure 5.7. Drone UI of a pipeline

5.3.1 Gitea

Gitea is a featureful fork of Gogs written in Go. It provides a Git repository manager
with enterprise features like OAuth, LDAP, two-factor authentication, and attention
toward issues and merge/pull request workflow. All of that while being light on system
resources usage. Gitea is also quite popular and maintained which means there are
many integrations with other tools.

Just as in the GitLab pipeline, TeaStore has been separated into individual microser-
vices. Each MS has its repository and inside every repository, there is a .drone.yml file.
The file describes the pipeline for the next tool: Drone.

34

. 5.3 Mixed tools pipeline

Drone itself has no authentication. Instead, it uses OAuth from Gitea. Gitea authen-
ticates a user and authorizes her to her repositories. It then passes this information to
Drone.

Apart from the source code itself, Gitea houses another important repository. The
GitOps repository. It contains all the Kubernetes YAML files – manifests specifying
the desired state of Kubernetes. Flux, the GitOps operator, will be looking for them
later.

For now, let’s say our developer merged a small feature she developed into main.
Gitea is set to send a webhook in case this happens. The webhook is immediately sent
to Drone and our pipeline begins.

5.3.2 Drone

Drone is a CI/CD tool written in GO. It is very fast and simple although simultaneously
featureful. Drone is not 100 % open-source and community-driven. As previously
mentioned it has an enterprise version. However, the benevolent licensing policy does
not make this a big issue. If it did, its solid alternative would be Jenkins Blue Ocean
which is fully developed by the community. However, Drone (written in GO) is much
more lightweight than Jenkins (written in Java). It is true, that Jenkins has more
plugins. Nevertheless, Drone integrates very well with Gitea and provides a more
modern experience.

We have originally built a pipeline with both. Due to the mentioned reasons we
ultimately decided to favor Drone over Jenkins.

Drone is, similarly to GitLab CI, divided into two parts. Drone CI and Runners. The
general idea is identical. Multiple runners connect to one CI. The master schedules jobs
for them to execute in a specified environment (eg. Shell, Docker, or even Kubernetes).
An example of the pipeline definition in the .drone.yml file can be seen in figure 5.8

--- Pipeline information ---
kind: pipeline
type: docker
name: webui-pipeline

--- All the steps ---
steps:
- name: test # Name of the step

image: nxpleuvenjenkins/doxygen # Docker image
commands:
- doxgen services/webui/Doxyfile

- name: build
image: ...

...

Figure 5.8. A sample of .drone-ci.yml file syntax.

The moment a pipeline starts Drone notifies Gitea it received the webhook and
started working. To signify that Gitea displays a blinking orange dot next to the
commit name. Clicking it redirects the developer to the pipeline overview in Drone.
The Drone UI of a running pipeline is captured in figure 5.9

35

5. Open-source CI/CD pipeline design .

Figure 5.9. An open-source pipeline.

Drone CI schedules a job on a runner. The runner executes the pipeline stages in
succession while streaming console output back to the UI. Additional software could be
triggered by the pipeline stages. For example SonarQube for static testing.

Once the .war artifact is built it could also be pushed to an external artifact reposi-
tory. For example Artifactory. In this case, preserving the .war artifact is not necessary.
Saving the finished Docker image will be enough.

The „docker stage“ builds the Docker container. If the original push was tagged
with a version number, Drone recognizes and tags the Docker image too. The finished
Docker image is then pushed to a container registry – Harbor. The finished image is
also used for various testing (functional, stress, etc).

5.3.3 Harbor & Clair

Harbor has been a clear choice for a container repository. Portus is only an authen-
tication frontend to an external registry and Quay is too dependent on RedHat-based
technology. Harbor, on the other hand, is easy to set-up and fully driven by the com-
munity.

In Harbor, container images are stored inside repositories and repositories are col-
lected to projects. Users can be assigned to projects or repositories in different roles
(Developer, Admin, Guest, etc). Harbor manages all the registry endpoints and both
authentication and authorization of users.

Every time a new image is recieved, Harbor instructs Clair to scan it. Clair conducts
a vulnerability scan and provides Harbor with results. Vulnerability testing could also
be triggered by Drone as a pipeline stage.

5.3.4 Deployment

There are three main ways to continue with deployment.

1. Drone applies Kubernetes manifests itself.
2. An independent tool applies Kubernetes manifests after a tool triggers it.
3. An independent tool applies Kubernetes manifests when a user requests it.

The first method is not a fail-safe solution. The manifests would be scattered around
different repositories. Lack of centralized versioning would prevent us from restoring
any complete previous version of the application (consisting of multiple MSs) with ease.

The second solution could be fitting when deploying to proprietary managed Kuber-
netes. Drone itself has a lot of plugins that allow such triggering. Other deployments

36

. 5.3 Mixed tools pipeline

tools can be watching and waiting for new versions of containers. In theory, a container
registry could also send webhooks to other deployment tools. Drone could also trigger
a tool like Keptn (see 4.6.4) to automate deployment.

The third and last option is the most flexible one. It mimics a workflow in which
a developer requests a deployment. Consider a feature branch. A developer creates
a branch and fills it with commits. Once he is confident the feature is ready he can
request a deployed preview of his changes in a production-like environment. If all tests
passed and he is satisfied with the result, he can submit a merge request back to main.

We have decided to used the third. It strikes a balance between too bare-bones
and too streamlined. A disadvantage is that advanced deployment strategies must be
implemented by hand or by another tool. Which is to be expected when avoiding
proprietary managed Kubernetes.

5.3.5 Flux
Flux is a GitOps operator. That means it synchronizes the Kubernetes desired state
with a state defined in a Git repository. For reference see 3.4.4. The state is defined by
YAML files in a separate git repository. That way all changes are versioned. Restoring
the state of the deployed production cluster to any earlier point in time is only a matter
of one „git revert“.

Flux is running deployed on Kubernetes. It watches the repository at regular inter-
vals. If it detects a change it pulls the latest manifests (git clone via SSH) and deploys
them to Kubernetes. But not only that. If some manifests are removed from the repos-
itory it instructs Kubernetes to destroy appropriate resources. To implement advanced
deployment strategies like „canary“ or „blue/green“ flux can be combined with a tool
called Flagger.

Kubernetes sees the change in the desired state. It schedules new pods to Kubelets.
Kubelets pull the desired images from Harbor and deploy it.

5.3.6 Pros & cons
This solution has many flaws and is sometimes rough around the edges. Nonetheless,
it is very capable, affordable, and lightweight.

Pros:

. Free of charge. Open-source. Highly customizable configuration. Full control over the entire process. Any part can be switched independently

Cons:

. A lot of work to securely manage all the tools. Does not implement any HA deployment strategies. Cannot be itself implemented in a HA way. The developer’s experience is not particularly smooth and pleasant

37

Chapter 6
Proprietary vs. open-source CI/CD pipeline
solution

This chapter is split into three distinct parts. First, it explores all the different pro-
prietary solutions. Then it compares them with some of the open-source approaches
and finally, it discusses lessons learned. The discussion section provides specific bits of
advice for anyone tasked with building a CI/CD pipeline.

6.1 Proprietary solutions
We are leaving the open-source free of charge territory. We want to buy some software
to make our job a bit easier. Unfortunately, there are many ways to spend money on
CI/CD with Kubernetes. This section outlines some of the possible approaches.

Firstly, the surrounding terminology is very confusing and often interchangeable.
Kubernetes can be deployed in two main ways.

. Managed Kubernetes – Cloud provider creates and manages Kubernetes cluster for
us. We decide when to provision new nodes (computers) through an interface.. Self-managed Kubernetes – We install Kubernetes on servers ourselves. The servers
can be both on-premises and hosted (purchased from cloud providers).

When considering proprietary solutions, there are several diverse parts available for
purchase. We can buy:

. (Computing) resources – CPU time, RAM, HDD with RAID. Resources can be ac-
cessed in many ways. For example, VM, deployed container, Kubelet, etc.. Managed Kubernetes – Cloud provider gives us interface through which we define
our Kubernetes cluster.. Pipeline tools – Tools from categories described in section 4.2 can be bought indi-
vidually or as a service.

The following is a summary of 4 interesting distinct ways a commercial Kubernetes
CI/CD pipeline can be implemented.

6.1.1 Managed Kubernetes & external tools
Azure, Google, Digital Ocean, and Amazon all offer managed Kubernetes clusters. A
customer generally pays mostly for resources she actually uses. The added price for a
managed Kubernetes cluster is small1 or none2.

Of course, having a cluster is not enough. Other, external tools for CI/CD must
be in place. There are a plethora of commercial tools, some of them even listed in
the open-source summary. They can be deployed to the same cloud provider on the
provisioned server, on-premises, or anywhere else.
1 Amazon EKS and Google GKE – 0.10 USD per hour, Digital Ocean starting at 10 USD per month
2 Azure AKS

38

. 6.1 Proprietary solutions

This approach is very flexible. And, most paid tools integrate very well with all the
major cloud providers. To what extent the pipeline shall be self-managed is entirely up
to the customer.

6.1.2 Cloud provider’s way
The big cloud providers1 offer an entire „DevOps suite“ for their customers. Kuber-
netes cluster deployment aside. The suite usually contains all the tools expected. A Git
repository manager, Pipelines-maker (CI/CD automation tool), and an artifact reposi-
tory. All the tools are tightly integrated with each other effectively solving the biggest
problem of open-source tools.

Bear in mind that the presented complete „DevOps suites“ can significantly differ.
Careful consideration is advised when picking which one to use. The „suite“ tools
generally should be replaceable by whatever other tools from chapter 4 but there still
is the risk of getting too „locked in“ with the cloud provider.

6.1.3 Openshift
A specific way to buy a solution is via RedHat OpenShift. OpenShift is an enterprise
modified version of Kubernetes budled with many other tools to provide a platform. It
provides everything required to develop and deploy containerized applications. Mean-
ing, the CI/CD tools are integrated together and with Kubernetes providing a truly
frictionless experience.

OpenShift can be deployed on RedHat cloud, Azure, IBM, or on-premise. This is not
specific to OpenShift. There are several container platforms with Kubernetes, although
OpenShift is one of the most notable ones.

6.1.4 GitHub Actions
GitHub’s Actions are another specific approach to CI/CD. GitHub provides an inte-
grated, fully-featured CI solution which can be meticulously integrated with everything
that happens in a Git repository. GitHub also provides a community „marketplace“
where people can contribute prepared integrations and extensions.

This approach is quite unique but also very familiar. It combines the „git at the
center“ approach we have seen with GitLab, the Drone’s method of „building your own
external plugins“, and the generic „own picked tools“ mindset adopted in this whole
thesis.

1 Google GCP, Azure DevOps, Amazon AWS tools, IBM Urban Code

39

6. Proprietary vs. open-source CI/CD pipeline solution .

6.2 Pipeline comparison
Any comparison listed here is bound to be wrong in some way. There are many methods
a CI/CD pipeline deploying to Kubernetes can be built. A pipeline can be absolutely
anywhere on the scale from „bought as a proprietary service“ to „built from open-source
tools on-premise“. Still there some general findings learned about using previously
described open-source tools.

Before deploying a pipeline one should decide how much of the process he wants
to outsource. Building the pipeline from tools with strictly defined interfaces and
workflows means a lot of flexibility to customize. It also means a lot of work in getting
the details just right.

If we decide to give away a lot of freedom the tools become more interconnected.
The whole workflow is more fluent and painless. However, the tools become more
proprietary and expensive. In addition, being more interconnected means it is harder
to decouple any one tool. It means bigger lock-in to one tool/provider.

flexibility

worse integration better integration

lock-in

more moneymore man-days

Figure 6.1. Idividual tools vs all-in-one solution

The open-source tools frequently have some of the following advantages:

. Free of charge. Lightweight on system resources. Enterprise quality tools. Industry-standard, developers are used to them. Less lock-in to one company/provider. Comprehensive security is entirely in your hands

Before deciding to use just open-source tools, one should also consider possible dis-
advantages:

. Locked features from paid „enterprise solutions“. Developers might be used and more comfortable with proprietary tools they have
used before (eg. GitHub).. Integrations with other tools are limited. Even integrations between open-source and
proprietary are better than open-source to open-source.. Self-managing multiple tools requires (expensive) time and expertise. Quirks of individual open-source projects are hard to know in advance and can create
a lot of work. Comprehensive security is entirely in your hands

40

. 6.3 Discussion

6.3 Discussion
The goal of this section is o share some of the learned lessons. To provide specific
pieces of advice for anyone who is deciding on how to build a pipeline that is deploying
applications into Kubernetes.

6.3.1 In practice
It’s not an either-or question. Even though it may seem that you have to choose
between managed proprietary tools or open-source tools on-premises it is not the case.
It is common practice to combine all the tools that best describe the company’s workflow
and use them.

It’s crucial to have a clear idea of what processes are to be built before building them.
One must pick tools to suit the company’s pipeline, not the other way around.

Migrating and untangling a finished pipeline implies a lot of work. It’s critical to
estimate what functions are going to be needed in the future (scaling) and if the picked
tools can provide them.

6.3.2 Developer at the center
The pipeline is built for developers, not administrators. A good idea is to examine
what tools and workflows are the developers comfortable with. In the end, developers
are the ones that are going to be using the pipeline.

A developer’s comfort can be raised by integrations. A little green tick mark or
automated message with CI build results may seem insignificant but can mean a lot for
a developer checking the status multiple times a day.

6.3.3 Cloud controller
Installing and deploying enterprise-ready Kubernetes on your own servers (hosted/VMs)
requires great expertise. Paying for managed Kubernetes in the cloud saves valuable
time and headaches when maintaining and debugging. But not only that. Kubernetes
is built on the beliefs in high availability. Self-installed K8s on-premises can never1

leverage automated scaling through a cloud controller. You cannot script provisioning
new computing capacity to K8s cluster when it means you have to buy and set up the
physical hardware yourself. This would be particularly strange considering some cloud
providers offer managed Kubernetes free of charge.

6.3.4 Caching CI & testing
We would advise thinking about caching. CI pipelines especially can take a long time.
Any time saved enhances the developer’s experience. Faster pipeline means more runs
and better agility. Specific build tools must not be downloaded again for every build.
This can, for example, be achieved by custom-made build containers.

Never shorten the pipeline by deleting tests. Rigorous testing is at the heart of proper
continuous delivery. What can be done is carefully defining what test should be run
and when. Merging might have different consequences than pushing.

1 If it could it would technically make the company a cloud provider.

41

6. Proprietary vs. open-source CI/CD pipeline solution .
6.3.5 Docker in Docker

Build jobs can be executed in two main ways. Running them directly on the server or
use a Docker container. A Docker container holds all the advantages. It creates a clean
repeatable environment every time. Dockerfiles can be versioned and integrated into a
pipeline. However, if we are building an MS app to be deployed in Kubernetes it has
to be packaged inside a container. Thus our clean Docker build environment wishes to
build with Docker. Docker in Docker (DinD) images are available and used, but can
yield unexpected results as the creator of DinD himself points out. [42]

This does not have to be a big issue, nonetheless, it is essential to be aware of it.

6.3.6 Helm Charts
There is a helm chart available for most of the tools covered in this thesis. Helm charts
make it easy to deploy applications to Kubernetes. Just like a package manager installs
and configures programs in a regular OS.

There is a lot of prepared Helm charts. Just because there is a Helm chart of a
tool does not mean it is a good idea to use it. Helm deployed applications run on
Kubernetes. What benefits does it actually bring if the tool is itself a monolith with
a relational database? Moreover, if a tool for CI/CD would be deployed on the same
cluster as it is deploying to there might be some unforeseen deadlocks.

6.3.7 Consider GitOps
GitOps might not be the best fit for everyone but at least consider some of its advan-
tages.

GitOps increases security. Instead of giving CI access to Kubernetes, we supply
Kubernetes with a way to extract the information directly from Git. GitOps pulls from
a repository, while classic CI pushes to production.

Infrastructure should be versioned as code. GitOps takes this a step further and says
that the cluster state can and should be versioned. This allows reverting to any point
in history which can be very useful. Unversioned changes to the cluster may cause
unpredictable behavior in the future.

42

Chapter 7
Conclusion

In the beginning, we set out three main goals. First, learn about tools suitable for
creating an open-source pipeline. Then design a solution with some of the researched
tools. And finally, compare the designed solution with proprietary ones and share
gained knowledge.

The first goal required to research and compare open-source tools for CI/CD when
deploying to Kubernetes. A structured comparison of some of the most popular open-
source tools has been assembled in the fourth chapter. The tools were categorized and
systematically described. Each category was appropriately explained and presented.
Furthermore, underlying technologies such as Docker or Kubernetes were introduced
for the reader’s comfort.

The second goal was to design a pipeline composed of some of the researched tools.
Not one, but two distinct pipelines were built and tested with the selected sample
application. The first used an all-in-one approach while the second connected numerous
different tools. Both were fully functional demonstrating it is possible to create an open-
source pipeline deploying to Kubernetes.

The third goal challenged to provide specific pieces of advice for anyone deciding on
how to build a K8s pipeline. It is possible to create fully open-source pipelines, yet we
would argue it is generally not a good idea. The sheer amount of work done maintaining
all the individual tools and exploring various license limitations is scarcely worth the
trouble. Not to mention the senselessness of on-premise Kubernetes. Such views are
discussed in more detail in the preceding chapter.

The cloud-native space is evolving at unprecedented speed. It would be interesting to
see how many of the mentioned tools get abandoned or discontinued. There are also big
gaps in this text concerning advanced deployment strategies. What are the enterprise
benefits of each one? Can they all be implemented only with open-source tools?

43

Appendix A
Dictionary

CD . Continuous delivery or continuous deployment
(Distinguished where difference matters)

CI . Continuous integration
CLI . Command line interface
CNCF . Cloud Native Computing Foundation
ČVUT . České vysoké učení technické v Praze
DinD . Docker in Docker
DNS . Domain Name System
GUI . Graphical user interface
HA . High availability
K8s . Kubernetes
MS . Microservice
MSs . Microservices
MS’s . Microservice’s
on-prem . Or „on premises“. To run software on local servers rather than outsourcing

the infrastructure to a cloud provider.
QA . Quality assurance
REST . Representational State Transfer
SaaS . Software as a service
VM . Virtual machine
VMs . Virtual machines
YAML . YAML Ain’t Markup Language

45

Appendix B
Tools honorable mentions

Project management

Kallithea https://kallithea-scm.org/

Kallithea is a fast and powerful management tool for Mercurial and Git
with a built-in push/pull server, full text search and code-review.

Bugzilla https://www.bugzilla.org/

Bugzilla is server software designed to help you manage software devel-
opment.

Redmine https://www.redmine.org/

Redmine is a flexible project management web application.

Trac https://trac.edgewall.org/

Trac is an enhanced wiki and issue tracking system for software devel-
opment projects.

Launchpad https://launchpad.net/

Launchpad is a set of Web services to help software developers collaborate.

CI & CD tools

Screwdriver https://screwdriver.cd/

Screwdriver is an open source build platform designed for Continuous
Delivery.

Talkcluster https://docs.taskcluster.net/

Taskcluster is the task execution framework that supports Mozilla’s con-
tinuous integration and release processes.

Strider https://strider-cd.github.io/

Strider is an Open Source Continuous Deployment / Continuous Inte-
gration platform.

46

https://kallithea-scm.org/
https://www.bugzilla.org/
https://www.redmine.org/
https://trac.edgewall.org/
https://launchpad.net/
https://screwdriver.cd/
https://docs.taskcluster.net/
https://strider-cd.github.io/

. Container registry manager

Container registry manager

Dragonfly https://d7y.io/

An Open-source P2P-based Image and File Distribution System

Huawei dockyard https://github.com/Huawei/dockyard

Container & Artifact Repository

Code quality tools

OpenSCAP https://www.open-scap.org/

The OpenSCAP ecosystem provides multiple tools to assist administra-
tors and auditors with assessment, measurement, and enforcement of
security baselines.

PMD https://pmd.github.io/

An extensible cross-language static code analyzer.

Monitoring

Kubernetes https://kubernetes.io/

K8s is very good for monitoring the MS it is running. Liveness and
Readiness Probes are a powerful way to prevent problems.

Zabbix https://www.zabbix.com/

Zabbix is the ultimate enterprise-level software designed for real-time
monitoring of millions of metrics collected from tens of thousands of
servers, virtual machines and network devices.

Grafana Loki https://grafana.com/oss/loki/

Loki is a horizontally-scalable, highly-available, multi-tenant log aggre-
gation system inspired by Prometheus.

Logstash https://www.elastic.co/logstash

Logstash is a free and open server-side data processing pipeline that
ingests data from a multitude of sources, transforms it, and then sends
it to your favorite „stash“.

Kieker http://kieker-monitoring.net/

Kieker provides complementary dynamic analysis capabilities, i.e., mon-
itoring and analyzing a software system’s runtime behavior — enabling
Application Performance Monitoring and Architecture Discovery.

47

https://d7y.io/
https://github.com/Huawei/dockyard
https://www.open-scap.org/
https://pmd.github.io/
https://kubernetes.io/
https://www.zabbix.com/
https://grafana.com/oss/loki/
https://www.elastic.co/logstash
http://kieker-monitoring.net/

References

[1] Fowler, Martin, and James Lewis. Microservices. martinFowler.com. [online],
2014 [cit. December 8, 2019]. Available from https://martinfowler.com/
articles/microservices.html.

[2] Fowler, Susan J. Microservices in Production: Standard Principles and Require-
ments. USA: O’Reilly Media, 2016. ISBN 9781492042846.

[3] Cloud Native Computing Foundation. CNCF SURVEY 2019 . [online],
March 3, 2020 [cit. March 15, 2020]. Available from https://www.cncf.io/wp-
content/uploads/2020/03/CNCF_Survey_Report.pdf.

[4] Vogels, Werner. The Story of Apollo - Amazon’s Deployment Engine. All
Things Distributed. [online], November 12, 2014 [cit. April 2, 2020]. Available
from https: / / www . allthingsdistributed . com / 2014 / 11 / apollo-amazon-
deployment-engine.html.

[5] Harris., Derrick. Talking microservices with the man who made Netflix’s cloud
famous. Medium.com. [online], May 29, 2015 [cit. May 23, 2020]. Available from
https: / / medium . com / s-c-a-l-e / talking-microservices-with-the-man-
who-made-netflix-s-cloud-famous-1032689afed3.

[6] Tišnovský, Pavel. Mikroslužby: moderní aplikace využívající známých konceptů
Root.cz. [online], 2019 [cit. December 8, 2019]. Available from https://www.
root . cz / clanky / mikrosluzby-moderni-aplikace-vyuzivajici-znamych-
konceptu/.

[7] Sponsors, Redis. home. redis.io. [online]. [cit. May 14, 2020]. Available from
https://redis.io/.

[8] Apache Software Foundation. home. kafka.apache.org. [online], 2017
[cit. May 14, 2020]. Available from https://kafka.apache.org/.

[9] Pathirage, Milinda. home. kappa-architecture.com. [online], 2019 [cit. May 14,
2020]. Available from https://milinda.pathirage.org/kappa-architecture.
com/.

[10] Deutsch, Peter. The Eight Fallacies of Distributed Computing . [online], 1994.
[cit. December 8, 2019]. Available from http://nighthacks.com/jag/res/
Fallacies.html .

[11] Rotem-Gal-Oz, Arnon. Fallacies of Distributed Computing Explained. [online],
2007 [cit. December 8, 2019]. Available from http://www.rgoarchitects.com/
Files/fallacies.pdf.

[12] Chang, Michael Alan, Brendan Tschaen, Theophilus Benson, and Laurent Van-
bever. Chaos Monkey: Increasing SDN reliability through systematic network
destruction. In: SIGCOMM 2015 - Proceedings of the 2015 ACM Conference on
Special Interest Group on Data Communication. 2015. ISBN 9781450335423. Avail-
able from DOI 10.1145/2785956.2790038.

48

https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://www.cncf.io/wp-content/uploads/2020/03/CNCF_Survey_Report.pdf
https://www.cncf.io/wp-content/uploads/2020/03/CNCF_Survey_Report.pdf
https://www.allthingsdistributed.com/2014/11/apollo-amazon-deployment-engine.html
https://www.allthingsdistributed.com/2014/11/apollo-amazon-deployment-engine.html
https://medium.com/s-c-a-l-e/talking-microservices-with-the-man-who-made-netflix-s-cloud-famous-1032689afed3
https://medium.com/s-c-a-l-e/talking-microservices-with-the-man-who-made-netflix-s-cloud-famous-1032689afed3
https://www.root.cz/clanky/mikrosluzby-moderni-aplikace-vyuzivajici-znamych-konceptu/
https://www.root.cz/clanky/mikrosluzby-moderni-aplikace-vyuzivajici-znamych-konceptu/
https://www.root.cz/clanky/mikrosluzby-moderni-aplikace-vyuzivajici-znamych-konceptu/
https://redis.io/
https://kafka.apache.org/
https://milinda.pathirage.org/kappa-architecture.com/
https://milinda.pathirage.org/kappa-architecture.com/
http://nighthacks.com/jag/res/Fallacies.html
http://nighthacks.com/jag/res/Fallacies.html
http://www.rgoarchitects.com/Files/fallacies.pdf
http://www.rgoarchitects.com/Files/fallacies.pdf
http://dx.doi.org/10.1145/2785956.2790038

. .
[13] Brandt, Richard L. Jeff Bezos of Amazon: Birth of a Salesman - WSJ.

The Wall Street Journal. The Wall Street Journal. [online], October 15,
2011 [cit. April 1, 2020]. Available from https://www.wsj.com/articles/
SB10001424052970203914304576627102996831200.

[14] Gan, Yu, Yanqi Zhang, and Dailun Cheng et al. An Open-Source Benchmark
Suite for Microservices and Their Hardware-Software Implications for Cloud &
Edge Systems. In: International Conference on Architectural Support for Program-
ming Languages and Operating Systems - ASPLOS . 2019. ISBN 9781450362405.
Available from DOI 10.1145/3297858.3304013.

[15] Kistowski, Jóakim von, Simon Eismann, Norbert Schmitt, André Bauer, Jo-
hannes Grohmann, and Samuel Kounev. TeaStore: A Micro-Service Reference
Application for Benchmarking, Modeling and Resource Management Research.
In: Proceedings of the 26th IEEE International Symposium on the Modelling, Anal-
ysis, and Simulation of Computer and Telecommunication Systems. 2018. MAS-
COTS ’18.

[16] Docker Community. Docker Documentation. [online], 2019 [cit. February 15,
2020]. Available from https://docs.docker.com.

[17] Docker Community. Comparing Containers and Virtual Machines Docker.com.
[online], 2020 [cit. February 15, 2020]. Available from https://www.docker.com/
resources/what-container.

[18] Docker Community. Docker Engine Docker Documentation. [online], 2019
[cit. February 16, 2020]. Available from https://docs.docker.com/v17.09/
engine/docker-overview/.

[19] Docker Inc. Home. huhb.docker.com. [online], 2020 [cit. May 23, 2020]. Available
from https://hub.docker.com/.

[20] Documentation., Red Hat. What is orchestration?. redhat.com. [online].
[cit. May 23, 2020]. Available from https://www.redhat.com/en/topics/
automation/what-is-orchestration.

[21] The Linux Fundation. Production-Grade Container Orchestration. Kuber-
netes.io. [online], 2020 [cit. March 6, 2020].
Available from https://kubernetes.io.

[22] Poulton, N., and P. Joglekar. The Kubernetes Book. Independently Published,
2017. ISBN 9781521823637.

[23] Hightower, Kelsey, Brendan Burns, and Joe Beda. Kubernetes: up and run-
ning: dive into the future of infrastructure. 1 ed. USA: O’Reilly Media, Inc, 2017.
ISBN 9781491935675.

[24] The Linux Fundation. Kubernetes Components Kubernetes documentation. [on-
line], 2020 [cit. March 7, 2020]. Available from https://kubernetes.io/docs/
concepts/overview/components/.

[25] The etcd authors. etcd.io. [online], 2020 [cit. March 7, 2020]. Available from
https://etcd.io.

[26] The Linux Fundation. Kubernetes Components. Kubernetes documenta-
tion. [online], January 16, 2020 [cit. March 6, 2020]. Available from https://
kubernetes.io/docs/concepts/overview/components/.

[27] Reed, Paul J. DevOps in practice. 3 ed. USA: O’Reilly Media, Inc, 2015.
ISBN 9781491913062.

49

https://www.wsj.com/articles/SB10001424052970203914304576627102996831200
https://www.wsj.com/articles/SB10001424052970203914304576627102996831200
http://dx.doi.org/10.1145/3297858.3304013
https://docs.docker.com
https://www.docker.com/resources/what-container
https://www.docker.com/resources/what-container
https://docs.docker.com/v17.09/engine/docker-overview/
https://docs.docker.com/v17.09/engine/docker-overview/
https://hub.docker.com/
https://www.redhat.com/en/topics/automation/what-is-orchestration
https://www.redhat.com/en/topics/automation/what-is-orchestration
https://kubernetes.io
https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/concepts/overview/components/
https://etcd.io
https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/concepts/overview/components/

References .
[28] Mugrage, Ken. Continuous Delivery with Docker and Kubernetes . In: Youtube

[online], 2018 [cit. April 2, 2020]. Available from https://www.youtube.com/
watch?v=xAziflV3ah4. Channel ThoughtWorks.

[29] Fowler, Martin. Software Development in the 21st century. ThoughtWorks. [on-
line], 2014 [cit. April 2, 2020]. Available from https://www.thoughtworks.com/
talks/software-development-21st-century-xconf-europe-2014.

[30] Fowler, Martin. Continuous Integration. martinFowler.com. [online], May 1,
2006 [cit. April 2, 2020]. Available from https://martinfowler.com/articles/
continuousIntegration.html.

[31] Farcic, Viktor. The DevOps 2.4 Toolkit: Continuous Deployment to Kubernetes:
Continuously deploying applications with Jenkins to a Kubernetes cluster . Packt
Publishing, Limited, 2019. ISBN 9781838648787.

[32] Humble, Jez. Continuous Delivery - Priciples. continuousdelivery.com. [online],
2017 [cit. April 2, 2020]. Available from https://continuousdelivery.com/
principles/.

[33] Forsgren, Nicole, Dustin Smith, Jez Humble, and Jessie Frazelle. Accel-
erate: State of DevOps 2019. Google.com. [online], July 20, 2019, [cit. April 2,
2020]. Available from https://services.google.com/fh/files/misc/state-
of-devops-2019.pdf.

[34] Poirier, Greg. Not Everyone Can Be Kelsey Hightower . In: Youtube [online],
2015 [cit. April 4, 2020]. Available from https://www.youtube.com/watch?v=
8NFyrEVSBT8. Channel DevOpsDays Silicon Valley.

[35] Alexis Richardson, William Denniss . GitOps - Operations by Pull Request [B]
. In: Youtube [online], 2017 [cit. March 12, 2020]. Available from https://www.
youtube.com/watch?v=BSqE2RqctNs. Channel CNCF [Cloud Native Computing
Foundation].

[36] Cloud Native Computing Foundation. CNCF Cloud Native Interactive
Landscape. cncf.io. [online], May 23, 2020 [cit. may 23, 2020]. Available from
https://landscape.cncf.io/.

[37] Kumar, Shray. The Case Against Jenkins In 2020. medium.com. [cit. April
28, 2020]. Available from https://medium.com/@shrayk/the-case-against-
jenkins-in-2020-310276e39280.

[38] Gotti, Simone. Introducing Agola: CI/CD redefined. Sorintoss.io. [online], July
14, 2019 [cit. April 28, 2020]. Available from https://sorintoss.io/blog/agola-
introduction/.

[39] sonarsource. List of Customers. sonarsource.com. [online], 2020 [cit. April 30,
2020]. Available from https://www.sonarsource.com/customers/.

[40] Pilarinos, Dennis. GitHub? Bitbucket? Cloud or Self-hosted?. buddybuild.com.
[online], Octomber 12, 2016 [cit. March 21, 2020]. Available from https://www.
buddybuild.com/blog/source-code-hosting.

[41] Shimel, Alan. 5th Annual DevOps Dozen Awards: And the Winner Is …. de-
vops.com. [online], January 21, 2020 [cit. March 21,2020]. Available from https://
devops.com/5th-annual-devops-dozen-winners-announced/.

[42] Petazzoni, Jérôme. Using Docker-in-Docker for your CI or testing environment?
Think twice.. jpetazzo.github.io. [online]. [cit. March 21, 2020]. Available from
https://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-
for-ci/.

50

https://www.youtube.com/watch?v=xAziflV3ah4
https://www.youtube.com/watch?v=xAziflV3ah4
https://www.thoughtworks.com/talks/software-development-21st-century-xconf-europe-2014
https://www.thoughtworks.com/talks/software-development-21st-century-xconf-europe-2014
https://martinfowler.com/articles/continuousIntegration.html
https://martinfowler.com/articles/continuousIntegration.html
https://continuousdelivery.com/principles/
https://continuousdelivery.com/principles/
https://services.google.com/fh/files/misc/state-of-devops-2019.pdf
https://services.google.com/fh/files/misc/state-of-devops-2019.pdf
https://www.youtube.com/watch?v=8NFyrEVSBT8
https://www.youtube.com/watch?v=8NFyrEVSBT8
https://www.youtube.com/watch?v=BSqE2RqctNs
https://www.youtube.com/watch?v=BSqE2RqctNs
https://landscape.cncf.io/
https://medium.com/@shrayk/the-case-against-jenkins-in-2020-310276e39280
https://medium.com/@shrayk/the-case-against-jenkins-in-2020-310276e39280
https://sorintoss.io/blog/agola-introduction/
https://sorintoss.io/blog/agola-introduction/
https://www.sonarsource.com/customers/
https://www.buddybuild.com/blog/source-code-hosting
https://www.buddybuild.com/blog/source-code-hosting
https://devops.com/5th-annual-devops-dozen-winners-announced/
https://devops.com/5th-annual-devops-dozen-winners-announced/
https://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
https://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/

. .
[43] Litvinenko, Alexander. https://medium.com/faun/docker-in-docker-the-real-

one-e54133639c55. Medium.com. [online], December 1, 2019 [cit. March 21, 2020].
Available from https://medium.com/faun/docker-in-docker-the-real-one-
e54133639c55.

51

https://medium.com/faun/docker-in-docker-the-real-one-e54133639c55
https://medium.com/faun/docker-in-docker-the-real-one-e54133639c55

	TITLE
	Acknowledgement/Declaration
	Abstrakt/Abstract
	Contents
	/Figures
	Introduction
	Technology
	Microservice architecture
	Sample microservice 	oconly {NL }application
	DeathStarBench
	Sock Shop
	TeaStore

	Docker & containerization
	Docker engine
	Docker image
	Dockerfile
	Docker registry
	Docker container

	Kubernetes & orchestration
	Imperative vs declarative
	Kubernetes nodes
	Pods, deployments, services
	Kubernetes architecture

	Continuous integration & continuous deployment
	Continuous integration
	Continuous delivery
	Continuous deployment
	CI/CD & Kubernetes
	Git repository manager
	Continuous integration & Kubernetes
	Registry or repository?
	GitOps
	Continuous deployment & Kubernetes
	Monitoring & Kubernetes

	Open-source tools
	Methodology
	All the parts of a pipeline
	Git managers & Issues
	Gitlab
	Gitea
	Gogs
	Phabricator

	CI tools
	Buildbot
	Travis CI
	Concourse
	Jenkins
	Jenkins Blue Ocean

	CI & CD tools
	Drone
	GoCD
	Agola
	Tekton
	Jenkins X

	CD tools
	Argo CD
	Flux
	Flagger
	Keptn
	Spinnaker

	Container registry manager
	Harbor
	Portus
	Project Quay

	Code quality tools
	Clair
	Anchore Engine
	SonarQube

	Monitoring
	Kubernetes dashboard
	Prometheus
	Graphana
	cAdvisor
	Fluentd

	Other useful tools
	Helm
	Falco
	Utilities & other helpful projects

	Open-source CI/CD pipeline design
	Test enviroment
	Teastore breakdown
	Kind

	Only GitLab pipeline
	GitLab Runners
	GitLab CI
	Pros & cons

	Mixed tools pipeline
	Gitea
	Drone
	Harbor & Clair
	Deployment
	Flux
	Pros & cons

	Proprietary vs. open-source CI/CD pipeline solution
	Proprietary solutions
	Managed Kubernetes & external tools
	Cloud provider's way
	Openshift
	GitHub Actions

	Pipeline comparison
	Discussion
	In practice
	Developer at the center
	Cloud controller
	Caching CI & testing
	Docker in Docker
	Helm Charts
	Consider GitOps

	Conclusion
	Dictionary
	Tools honorable mentions
	References

