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June 2, 2020





Acknowledgements

I would like to thank all the teachers at FIT CTU who helped me attain
the knowledge I needed for writing this thesis. Special thanks goes to my
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Abstract

Model selection and hyperparameter optimisation is an important step in cre-
ating well-performing machine learning models. Optimizing hyperparameters
for a given task can be enhanced with information from previous tasks – meta-
learning. This thesis looks into combining meta-learning with algorithms for
hyperparameter optimisation and model selection. We look at several state-of-
the-art hyperparameter optimisation and meta-learning methods. We assess
the change in performance for 3 of the reviewed hyperparameter optimisation
algorithms when incorporating meta-learning. The results does not prove any
significant improvement of meta-learning compared to vanilla model selection
methods. The subsequent analysis implies that this is due to the capability
of hyperparameter optimisation and model selection methods to find well-
performing configurations on their own in the given time frame.

Keywords machine learning, hyperparameter optimization, meta-learning,
model selection
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Abstrakt

Optimalizace hyperparametr̊u je d̊uležitý krok pro vytvářeńı přesných model̊u
strojového učeńı. Optimalizace hyperparametr̊u pro danou úlohu může být
rozš́ı̌rena informacemi z předchoźıch úloh – s meta-učeńım. Tato práce zkoumá
kombinaci meta-učeńı s algorithmy pro optimalizaci hyperparametr̊u a výběr
modelu. Posuzujeme přesnost predikce pro 3 algoritmy při zahrnut́ı meta-
učeńı. Výsledky nedokazuj́ı žádné výrazné zlepšeńı optimalizačńıch algoritmů
při zahrnut́ı meta-učeńı. Následná analýza naznačuje, že toto je výsledkem
schopnosti metod pro optimalizaci hyperparametr̊u a výběr modelu naj́ıt v
daném čase dobře funguj́ıćı konfigurace bez pomoci.

Kĺıčová slova strojové učeńı, optimalizace hyperparamter̊u, meta-learning,
výběr predikčńıho modelu
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Introduction

In the past few years, machine learning has come back to the forefront after
it was underperforming due to the technological limitations of our computers
in the previous century. But thanks to increasing amount of the available
computational power and a large amount of data, we are able to put machine
learning into practical use. However, this has presented several challenges
connected with this domain. While we understand many aspects of machine
learning, some challenges are still waiting to be solved.

In machine learning we are training a model. The model can be thought
of as a formula that is used to calculate a variable, similar to how we can
get average speed by dividing distance by time. However, machine learning
models are applied on less explored relations for which the exact formula is
very complicated or unknown. These can be for instance calculating the price
of a house based on its features, or deciding if a person has a given illness
using medicinal data.

The way machine learning deals with this is by training a model using a
set of observations of the real world. The training is done via adjusting the
values of the model’s parameters in order to approximate relationships in the
measured data with as little error as possible. However, one of the problems
is that the adjusting can take a lot of time, in some cases even hours.

Model perfomance is also affected by the so-called hyperparameters, which
describe the model’s structure or the training process. They need to be set
before training. Finding the values of hyperparameters is a non-trivial task
and we are going to describe some of the methods which address this task.

One type of method which aims to decrease the total number of model
training iterations, called hyperparmater optimisation, is to try different hy-
perparameter values in every problem more efficiently than by random guess-
ing. There are numerous approaches based on statistics or various domains of
machine learning, but generally, they have one thing in common: they only
utilise information from one particular problem at hand.

The other approach is to look at past solved problems for which we know
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Introduction

the performance of a hyperparameter configuration and try to guess well-
performing hyperparameters from them. This is referred to as meta-learning.
This includes a variety of algorithms, but in general, once these methods pro-
vide the information for the learning task, they do not influence the learning
process itself. Hyperparameter optimisation and meta-learning methods are
not exclusive and can be combined. In this work, we evaluate how both of
these methods, meta-learning and hyperparameter optimisation, perform and
how they can be combined.

In the theoretical part, we review hyperparameter optimisation and meta-
learning. In the experimental part, we survey the effects of the combination.

2



Chapter 1
Thesis goals

The thesis is split into a theoretical and an experimental part. The goal of
the theoretical part is to survey meta-learning techniques and state-of-the-art
methods of automatic model selection and hyperparameter optimisation, and
look at the ways in which the two can be combined.

The main goal of the experimental part is to incorporate selected meta-
learning methods into selected methods for automated model selection and
hyperparameter optimisation. The first step is to implement meta-learning
and then combine meta-learning with model selection and hyperparameter
optimisation methods. After that, we compare different methods for hyper-
parameter optimisation with and without meta-learning.

3





Chapter 2
Thearetical part

2.1 Machine learning problem

A supervised machine learning problem is one where we need to estimate a very
complex function, which is beyond either our understanding of the problem
or our computational power, with a simpler and more manageable function.
This function is represented by a model. There are various types of models,
but they generally share some characteristics.

At first, we select a general model with free parameters. This model’s
parameters are then modified in order to approximate the specific function at
hand. This is done via the training process. The model uses measured values
of the real function to guess the function shape. This means that we have a set
of examples, each of which is represented by a vector from which one element
is the one that we wish to predict. This element is called the target variable
and the rest are considered to be the function arguments. Depending on the
selected model, the training process can greatly vary in time and computing
power requirements, from a simple matrix multiplication for a linear regression
to a multi-level gradient descent when using a convolutional neural network.

Despite the differences in the estimating process itself, the training pipeline
is done in the same pattern across all the models. First, the measured examples
referred to as datapoints are divided into two groups, a training dataset, and a
test dataset. After that, a configuration describing the model’s structure and
a training algorithm is chosen and the training set is further divided into the
actual training dataset and the validation dataset. The model is then trained
on the training set, which means that it is led to try to simulate the function
that would give the right target values for every example in the training set.
By the very nature of this process, it is not guaranteed that if the model’s
approximation works well on the training set, it will also give good results in
a real situation. Because the training set is not a complete representation of
the input space, the model can get too fixed on the examples in the training
set and then perform poorly when faced with a new case. Should this be the
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2. Thearetical part

instance, it is called overfitting. That is when the validation dataset comes
in. The model’s performance is evaluated on examples it has not yet seen
to get an idea about how well it is going to perform in a real situation (i.e.
how it generalizes to unseen data). If a model has a good performance on the
training dataset and a poor performance on the validation set, it probably
means it is overfitted.

After evaluating the model on the validation set, another configuration is
chosen and the process is repeated until a certain condition is met (we do
not have any more time or we have a good enough performance etc.). Then
the model with the best performance on the validation set is chosen to be
evaluated in the test set to get the final performance we have achieved. [1]

Solving all the problems connected to the training process can be very time-
consuming if done manually by a human practitioner. Therefore, several ways
have been proposed to automate the process, which will be discussed further
in the paper. They are known as hyperparameter optimisation algorithms and
can usually find well-performing configurations faster than a human. However,
despite having some general rules about the model configurations or being
able to tell which configurations are worth exploring when we have already
computed some of the possible ones, as we will see, there is no general way
of telling which configurations are promising right at the beginning of the
training process.

In this thesis we attempt to solve this issue with the use of meta-learning,
sometimes referred to as transfer learning. Meta-learning is a set of methods
which work on the principle of looking into the past and finding similar prob-
lems which have already been solved and using their solutions to help solve
the problem at hand. With this approach, we should be able to warm start
the hyperparameter optimisation algorithms so that they can start exploring
the hyperparameter space with some suggested configurations which should
work well. Thus, the assumption is that it may reduce the time they need as
well as find better performing results.

2.1.1 Related terms

In this part, we are going to look at the problems we will be facing and explain
the fundamental terms.

First, we need to differentiate between two types of values, parameters
and hyperparameters. Parameters are variables in the model whose values we
obtain via the learning process itself. They are adjusted during learning in
order to minimise the loss function. Examples of parameters are the weights
in a neural network or a linear regression model or the margins in a support
vector machine.

Hyperparameters, on the other hand, are variables describing the overall
architecture of the model or the learning process itself. Examples of hyperpa-
rameters are the number of hidden layers in a neural network, the number of
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2.2. Hyperparameter optimization methods

trees in a random forest or even the initialization process of the parameters.
But there are also other, much less apparent hyperparameters, including ways
of dealing with missing values in the data, pre-processing methods or various
sampling methods, which all play a part in how well the model will perform.
Hyperparameter values are usually specified manually by a practitioner for
each run of the training algorithm in order to find the configuration which
yields the best performance.

However, the problem of selecting hyperparameters assumes that we al-
ready know which model is going to be the best in terms of performance on a
given dataset. Since all the parameters and hyperparameters are dependent
on the model, we first need to select the model before any hyperparameter
configurations can be tested. This process is called model selection and can
be tackled in a number of ways. With manual probing, the practitioner would
simply test one model and in case it would perform poorly, another model is
tested. Should we look at this more formally, the model can be thought of
as a special case of a hyperparameter, which needs to be chosen first. After
that, other hyperparameters can be assigned. Another view is that finding
the appropriate model is a task that needs to be solved prior to finding the
hyperparameters’ values. For simplicity, we are going to use the first approach
and include the model types in hyperparameter configurations.

Thus, we find ourselves standing before a problem where we need to choose
hyperparameter configuration M , so that

M = arg minx f(x,D) (2.1)

where D is the validation dataset at hand, f is the loss function (i.e.
prediction error of model) and x is an element of the hyperparameter con-
figuration space. While parameter values are acquired through the learning
process, hyperparameters are set at the beginning of the learning process and
cannot be changed during it. Therefore, naturally, we want to find the best
hyperparameters in the least amount of attempts possible.

The problem with such space is that it is far from ideal for any opti-
misation. Not only does this space consist of discrete as well as continuous
dimensions, but also, even the presence of some dimensions is dependent on
the value of others. For instance, the existence of a hyperparemeter “number
of neurons in a n-th hidden layer” of a neural network depends on whether
the number of hidden layers is at least n. [1]

2.2 Hyperparameter optimization methods

In this section, we discuss some methods used for searching for a hyperparam-
eter configuration.
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2. Thearetical part

2.2.1 Grid search

The first method which can be fully automatized is Grid search. As the
name suggests, this approach works by drawing an even grid across the hyper-
parameter space and then evaluating every point on that grid. The grid is the
cartesian product of selected finite subsets of values of each hyperparameter.
The configuration with the best validation performance is then selected. This
sounds good at first glance, since it tries configurations evenly across the whole
space. This method is suitable for low dimensional spaces, as they are not too
big and Grid search offers an exhaustive way to explore them. However,
when used in a high dimensional space, it tends to perform poorly, due to
the fact that it spends too much time exploring non-perspective areas of the
hyperparameter space instead of trying to focus on the more promising areas.
Another problem with high dimension is that the number of combinations of
hyperparameter values increases exponentially with each dimension, making
Grid search take a large amount of time.

2.2.2 Random search

The simpler, yet often more effective method is Random search. Again, as
the name suggests, this method consists of trying random configurations and
then picking the configuration with the best validation performance. Random
configurations are sampled by approaching hyperparameters as distributions,
mainly even or uniform. Considering that this method is straightforward, the
results are comparable to more sophisticated methods. [2]

Unlike Grid search Random search does not need to test all possible
combinations. Therfore, it is able to avoid some problems with high dimen-
sionality. It also does not need to go through some explicitly given number of
configurations, so it may run as long or as short as needed if we have limited
training resources.

2.2.3 Sequential Model-based Optimisation

The first more complex method that we will describe is Sequential Model-
based Optimisation, or SMBO, as it is commonly referred to. SMBO aims
to improve on Random search, capitalising on its advantages while trying to
add something more complex than just random actions. The main idea be-
hind SMBO is that around well-performing hyperparameter configurations in
the hyperparameter space, there should be more well-performing configura-
tions, while near poorly performing configurations there are more likely to
be other poorly performing ones. Balance between exporation and exploita-
tion is needed. Therfore, it alternates between evaluating configurations and
gathering additional information from evaluated configurations.

The way this is implemented is that a response surface model is cast over
the whole hyperparameter space. In the first step of the optimization process,
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2.2. Hyperparameter optimization methods

a number of configuration points are chosen and their validation loss is ac-
quired. These configuration points serve as the first key datapoints which are
used to train the response surface model. The best-performing configuration
is selected as the incumbent. The response surface model can now predict
validation loss for the whole input space and uncertainty of the prediction,
the latter decreasing the closer we get to known points in the space.

After predicting the validation loss for multiple points, the optimisation
selects the candidate with best utility for the next iteration of the configura-
tion training. The utility is accessed by calculating the so-called acquisition
(utility) function. The most common acquisition function is the Expected Im-
provement across the space. Expected Improvement combines predicted mean
and uncertainty of a configuration loss estimation by response surface. The
point with the highest Expected Improvement is the point with the best balance
of a low mean, so that we exploit areas with well-performing configurations
of the space, and high uncertainty, so that we explore unvisited areas. The
candidate then competes against the incumbent to assess whether the candi-
date is performing better. This is done by training the configurations with a
certain amount of seeds to avoid too much variance. If the candidate proves
to be better, it becomes the new incumbent. The new configuration and its
computed loss is then fed back to update the surface model and another can-
didate configuration is selected for evaluation. This process can be repeated
for as long as needed.

2.2.3.0.1 Response surface According to Hutter et al. [3] the most
prominent model architectures for the response surface are Gaussian stochas-
tic process (GP) models and random forests. GP is a probabilistic lin-
ear basis function model, using a multivariate normal distribution. Random
forests is a collection of regression decision trees which have real values in
the leaves.

2.2.3.0.2 Challenger selection As stated, acquisition function should
return high values for points with low mean and/or high variance in the re-
sponse surface. Expected Improvement gives good results, as shown by Hutter.
There is still a problem of how to look for the points where high EI is ex-
pected since random sampling is often insufficient in high-dimensional spaces.
Therefore, in addition to that, we can compute EI on already evaluated con-
figurations and then start evaluating their neighbours.

Since the previously defined approach relies on training each configuration
multiple times to determine if it outperforms the incumbent, it can be quite
time consuming to get a reasonable idea about the whole hyperparameter
space. [3]
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2. Thearetical part

2.2.3.1 Random online aggressive racing

Random online aggressive racing fits the framework of SMBO. We con-
sider the model to be a constant which results in the configuration selector
returning randomly sampled configurations every time. Its core lies in the way
it is evaluating models and considering how many evaluations must be done
in order to say whether the configuration we are evaluating is better than the
best-known configuration so far (the incumbent).

ROAR is a procedure that is given an incumbent configuration evaluated
on s randomly selected seeds with the seeds and a challenger. It starts by
evaluating the challenger on a randomly selected seed from the pool on which
the incumbent was already evaluated. If the challenger performs worse than
the incumbent, it is aggressively rejected before having enough empirical evi-
dence to support it. If the challenger is at least as good as the incumbent, the
number of seeds on which the challenger is evaluated is doubled. The process
is repeated either until the challenger performs worse on the current subset
of seeds or the challenger is evaluated on at least s seeds and still performs
better. In that case, challenger becomes the new incumbent.

2.2.3.2 Sequential Model-based Algorithm configuration

SMAC is a more sophisticated instance of the SMBO framework. It extends
the ROAR procedure by adding a more complex response surface and an
expected improvement function described in the SMBO section, instead of
random uniform sampling.

2.2.4 Genetic programming

Another more sophisticated procedure is selecting the hyperparameter values
via tree-based pipeline optimisation. This approach works with the hyperpa-
rameter configurations as if they were trees which have different hyperparam-
eters in their nodes. Nodes can be split into three categories.

The first category is pre-processing methods, which transform the data
before they are used for training. Common pre-processing methods produce
new features or conversely reduce dimensionality with methods such as Prin-
cipal component analysis. The second category includes only one node, which
decides what model should be used. The last subset of nodes contains hyper-
parameters describing the model (depth of a tree, learning rate). When we
adopt this tree-based look at the hyperparameters, the optimisiation can then
be done via Genetic programming.

Genetic programming is a method of optimising programs, which in our
case are represented by a tree. The name of this method comes from natural
selection. The similarities between the two is that both are aiming to find the
best possible genome (in Genetic programming it is the tree structure)
operating on a large number of individuals, which is called a population.
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2.2. Hyperparameter optimization methods

To be more precise, Genetic programming in this case first randomly
generates a population of pipelines and evaluates their performance. The unfit,
poor performing pipelines are then eliminated from the population. To make
up for the lost individuals, for each pipeline eliminated a new one is created
via the crossover operation, which takes two well-performing pipelines and
combines their features into a new individual, in this case by randomly substi-
tuting subtrees from one another. Additionally, to introduce more exploration
into the system to prevent premature convergence into a local minimum, mu-
tation operation is then applied. Mutation takes a small number of individuals
and makes a random change in their structure. The population is then eval-
uated again and the whole process is repeated, until either the population is
unable to improve or the algorithm is stopped. [4]

2.2.5 Hyperband

Another approach to hyperparameter optimization and model selection is the
Hyperband algorithm, which is short for Hyperbandit. It aims to balance
exploration and exploitation by dynamic allocation of training resources.

2.2.5.1 Successive halving

The core part of the Hyperband algorithm is Successive halving. This
method considers exponentially more hyperparameter configurations than se-
quential training would, while increasing training time only marginally. It
takes a given number of configurations and uniformly allocates part of a given
budget to all configurations. The resource can be for example computation
time or amount of datapoints used for training. It then estimates final loss of
all the configurations with the allocated budget, discards a subset of config-
urations that performed poorly (the name suggests the bottom half, but the
exact amount can be different), then allocates more resources to remaining
configurations and repeats the process until only the best performing model
with the best configuration remains.

This algorithm, however, presents a question of what the initial number of
configurations should be. A large number of them will mean that there will
be less resources for each configuration, thus vastly reducing the accuracy of
the estimate of the real performance. This could lead to potentially better
performing configurations being incorrectly eliminated early in the routine.
Conversely, a small number leads to fewer configurations being probed. [2]

2.2.5.2 Hyperband

Hyperband addresses the problem with the optimal number of initial config-
urations in Successive halving by running Successive halving multiple
times, with a different number of initial configurations in each iteration. These
outer iterations are referred to as “brackets”. In each bracket, the minimum
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2. Thearetical part

amount of resources allocated for each configuration is specified. Without the
loss of generality, let us assume we start with the smallest number of resources
allocated for each configuration and increase the number in every bracket. In
the earlier brackets, there will be more configurations, with a lot of them
stopping early, while in later stages, the pool of configurations will be smaller
but the configurations will run with more resources. Thus, while in the be-
ginning, the population drops rapidly, in the last bracket, every configuration
is given the maximum amount of resources possible and is therefore reduced
to a simple random search.

Hyperband also takes another argument which specifies what propor-
tions of configurations should be eliminated in each iteration of Successive
halving. This can be used to further adjust the exploration and exploitation
trade-off. [2]

Algorithm 1 Hyperband
Input η - halving factor, B - data budget
Output

1: Initialize smax := blogη(B)c
2: for s ∈ {smax, smax − 1, ..., 0} do
3: n = d η

s

s+1e, r = η−s

4: T = n random configurations
5: for i ∈ {0, ..., s} do . Run Successive halving
6: ni = bnη−ic
7: ri = rnii
8: Evaluate all configurations in T on budget ri
9: T := Top bni

η c performing configurations from T
10: end for
11: end for

2.2.6 Other methods

This section focuses on some other interesting hyperparmeter optimisation al-
gorithms. They borrow from two different fields of computational intelligence.

2.2.6.1 MLplan

MLplan is a method that utilises algorithms used in automatic planning. It
was proposed by Mohr et al. [5].

2.2.6.1.1 Planning problem A planning task is defined in a logic plan-
ning language L, which has to have first-order logic capabilities. The task is
then a tuple (P,A, I,G) where P is a finite set of predicates, A is a finite set
of operators, I is the formula describing the initial state and G is the formula
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2.2. Hyperparameter optimization methods

describing the goal. An operator is a tuple (name, pre, post) where name is
name, pre is a formula in L describing the preconditions for applying the op-
erator and post is a formula describing the resulting changes. An action is an
operator, where variables in pre and post are replaced by constants. A state
is a set of positive literals, literals not explicitly expressed in the state are
assumed false. A state can also be defined to explicitly express both true and
false literals. A plan is a sequence of actions that transform state I into state
G.

Action a is applicable in state s if s |= prea. The successor state s′ resulted
application of a is s if a is not applicable in s and (s ∪ add) \ del otherwise,
where add and del are positive and negative literals in posta respectively.

For the purposes of machine learning pipeline optimization, the operator is
OneHotEncode or SetDecisionTreeMaxDepth. Terms can then describe state of
the algorithm or dataset property, for example, when data contains categorical
features or when a decision tree has a missing value for max depth.

MLplan solves the planning task using hierarchical task network (HTN).
This network is a partially ordered set of tasks. A task is similar to an operator
in a planning task, however, it does not have to be defined in A. A primitive
task can be realised by a single operator, otherwise it is a complex task. HTN
has a tree structure, where in the root there is the complex task representing
the initial machine learning problem, classification or regression. The root
task can then be decomposed into machine learning pipeline steps – tasks
such as preprocess or configureRandomForest. In the leaf nodes of HTN, there
is a plan consisting of only primitive tasks (OneHotEncode, etc.). It is similar
to grammar derivation, where complex tasks are nonterminal symbols and
primitive tasks are terminal symbols. MLplan can explore this tree using
various methods and heuristics which we do not describe in mre detail, they
are discussed in the citation.

2.2.6.2 AlphaD3M

AlphaD3M is a game theory-based approach inspired by Alpha Zero. It
approaches hyperparameter optimisation as a single player configuration syn-
thesis game. The intuition on mapping between primitives in the game and
in model selection and HPO terms is in Table 2.1.

Table 2.1: Comparison between AlphaZero and AlphaD3M [6]

AlphaZero AlphaD3M
Game Chess Hyperparameter optimisation
Unit Piece Preprocessor, hyperparameter value
Sate Board configuration Pipeline, task, metadata
Acion Move Insert, Delete, Replace
Loss Win/lose/draw Performance

13



2. Thearetical part

AlphaD3M has two parts: a Monte Carlo tree search and an LSTM
neural network. Monte Carlo tree search randomly synthesises configurations
and evaluates them, thus providing examples for the neural network to learn
from. However, the variance in the randomness is mitigated, since the tree
search also takes into account predictions made by the neural network, which
predicts probabilities of actions the tree search should take.

The neural network aims to predict the performance of configurations as
well as the probabilities of taking different actions on them. It is learning
on evaluated examples provided by the tree search. The network parame-
ters are optimised by minimising cross-entropy between real and predicted
configuration probabilities and the means squared error between real and pre-
dicted performance. There are also two regularization terms, l2 for network
parameters to avoid overfitting and l1 to avoid complex configurations. [6]

2.3 Meta-learning

While machine learning is a problem of manipulating and understanding data
itself, meta-learning is, in our case, understanding the process of machine
learning, so that we are able to do it more effectively, rather than brute-
forcing the problems which are associated with it. With meta-learning, this
is mainly done by looking into tasks that we have dealt with in the past and
extracting information about how machine learning is progressing. We then
use this metadata to extract meta-knowledge which helps us to determine a
strategy for future tasks, hopefully helping us reach our goals faster and with
a better result. Several definitions of meta-learning have been proposed, these
are some picked from various sources by Lemke et al. [7] “

1. Meta-learning studies how learning systems can increase in efficiency
through experience; the goal is to understand how learning itself can
become flexible according to the domain or task under study.

2. The primary goal of meta-learning is the understanding of the interaction
between the mechanism of learning and the concrete contexts in which
that mechanism is applicable.

3. Meta-learning is the study of principled methods that exploit meta-
knowledge to obtain efficient models and solutions by adapting machine
learning and data mining processes.

4. Meta-learning monitors the automatic learning process itself, in the con-
text of the learning problems it encounters and tries to adapt its be-
haviour to perform better.

”
For our purposes, we adopt definition number 3.
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2.3.1 Meta-features and models

To use meta-learning, we have to define the means by which we can describe
the characteristics of a machine learning problem. We can call these means
meta-features. They can be categorised into the following groups [8] :

• Simple meta-features, which describe basic characteristics of the dataset
for example number of records, number of features or number of classes.

• Statistical meta-features, which describe the data distribution by means
of statistical measurements such as skewness or kurtosis.

• PCA meta-features, which are computed when principal component
analysis is applied to the dataset. Variables similar to statistical meta-
features are then computed on the principal components.

• Inforamtion-theroetic meta-features, which are entropy of dataset classes
or features.

• Landmarking meta-features, which are acquired by training a simple
quick-learning machine learning model on the dataset. The model per-
formance is then used as a meta-feature. This type of meta-feature ap-
pears to be highly relevant to the hyperparameter optimization problem,
because it provides insight on how given simple approaches perform by
themselves and in comparison to others.

With these variables, we are now able to describe a dataset. However,
we also need to determine similarity between two datasets. Similarity can be
expressed in two ways, we can ask “how similar” two datasets are, or whether
two datasets are “similar enough”. The former view leads to a regression task,
the latter to a classification task. Clasification is the more popular approach
and offers more possibilities [7]. Therefore, we will limit ourselves to viewing
meta-learning as a classification problem.

Meta-learning can be implemented by common classification algorithms
such as decision trees or support vector machines. However, in this thesis
we will focus mainly on two methods – k-nearest neighbours (kNN) and
clustering.

2.3.1.1 Metric

Both kNN and clustering need to determine distances between elements. Dis-
tance functions are also called metrics. A metric is every function on a metric
space V defined as

d := V × V → [0,∞) (2.2)

where ∀x, y, z ∈ V :
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2. Thearetical part

d(x, y) = 0 ⇐⇒ x = y (2.3)

d(x, y) = d(y, x) (2.4)

d(x, y) ≤ d(x, z) + d(z, y) (2.5)

or positive-definiteness (2.2 and 2.3), symmetry 2.4 and triangle inequality
2.5 respectively.

The most commonly used metrics are Lp metrics, which are defined as:

d(x, y) =
n∑
i=1

p

√
|xpi + ypi | (2.6)

for x, y ∈ V where n is the dimension of space V . With p = 2, we get the
most used Euclidean distance.

In meta-learning tasks, V is a space of meta-features and distance repre-
sents how similar two datasets are – the closer, the more similar.

2.3.2 k-nearest neighbours

This method is simple. We have a dataset which in our case consists of
previously solved machine learning problems described by meta-features with
their well-performing configurations. When we face a new machine learning
problem, we find k problems from the dataset which are the closest to the new
one and call them neighbours. We can then use the neighbours’ configurations
to help us solve the new machine learning problem. [9]

2.3.3 Clustering

Clustering is a method of unsupervised machine learning, which means it does
not aim to predict a target variable, but rather to provide some structural in-
formation about the data. In our case, we aim to find groups of machine
learning problems. The groups are determined by affiliation of the past prob-
lems to clusters. Clusters are subsets of a dataset, which should ideally meet
two conditions: elements that are close to each other should be in the same
cluster, while elements far from each other should be in different clusters. This
definition is vague and leads to problems, which require some trade-offs to be
made.

Once the clusters are determined, we can then assign any new machine
learning problem to an existing cluster, thus declaring it similar enough to
the subset of past problems in that cluster. We can then utilise the past
problems’ well-performing configurations to help us with the new problem.
[10]

16



2.3. Meta-learning

2.3.3.1 k-means

k-means is one of the algorithms which are used in meta-learning. It defines
clustering as an optimisation problem of finding a decomposition of the dataset
C = (C1, ...Ck) to minimise loss function

L(C) =
k∑
i=1

1
2|C|

∑
x,y∈Ci

d(x, y)2. (2.7)

We can rewrite the function as follows

L(C) =
k∑
i=1

∑
x∈Ci

d(x, x̄i)2, (2.8)

where x̄i is the center of i-th cluster. Detailed derivation can be found in [10].
The first step of the algorithm is to randomly intialise the centroids of

each cluster (µ1, ...µi). We now find a decomposition of C = (C1, ..., Ck) by
assigning every x to a cluster Ci with the lowest value of d(x, µi).

The rest of the steps of the algorithm consist of iterating the following:
Redefine the centroids µ̃i := x̄i and find a new decomposition C̃ = ˜(C1, ..., C̃k)
by again finding the lowest value of d(x, µ̃i) This implies

k∑
i=1

∑
x∈C̃i

d(x, µ̃i)2 ≤
k∑
i=1

∑
x∈Ci

d(x, µi)2 (2.9)

and therefore L(C̃) ≤ L(C). Iteration stops when L(C̃) = L(C) and algorithm
converges to a local optimum.

2.3.4 Ranking configurations

Another interesting problem can be determining which configurations are “the
best” on a given dataset. It is straight-forward if our only metric is the value
of the loss function of the problem for every configuration. The situation
becomes more complicated if we add another metric – for instance, runtime.
We may want to take runtime into consideration in case we want to balance
good performance with reasonable training time. Two ways how to aggregate
loss function and runtime cost to one metric are proposed in [11].

The first composed metric is adjusted ratio of ratios defined as

ARRd(a1, a2) =
Pa2 (d)
Pa1 (d)

1 +AccD ∗ log(Ta2 (d)
Ta1 (d))

, (2.10)

where a1 and a2 are compared algorithms, d is the dataset in question, Pa(d)
is performance of algorithm a on dataset d and Ta(d) is runtime of algorithm a
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2. Thearetical part

on dataset d. AccD is a parameter which specifies how much accuracy we are
willing to trade for a tenfold speedup. This function has two main advantages.
Firstly, it is able to handle varying magnitudes of time and performance.
Secondly, the AccD parameter allows us to specify the exact trade-off of time
and performance we aim for.

However, this metric has proven to be problematic, as it was found that
it is not monotonous in relation to the time ratio and, therefore, can produce
incorrect rankings.

The second function is A3R defined as follows:

A3Rd(a1, a2) =
Pa2 (d)
Pa1 (d)

(Ta2 (d)
Ta1 (d))q

(2.11)

where now q is the parameter specifying the trade-off as well as adjusting
the magnitude of time compared to performance. It should be a small number,
value of 1

64 is proposed in the paper. Although this function is less complex,
it has the disadvantage of being less intuitive. Abdulrahman et al. [11] also
provide evidence that incorporating A3R instead of simple performance in
meta-learning leads to lower values of loss function earlier in the training
process.

2.4 Combining meta-learning with
hyperparameter optimization

According to Wistuba et al. [12], there is only one method to combine meta-
learning and hyperparameter optimisation in tandem, which is to initialise
a hyperparameter optimisation algorithm with the configurations proposed
by meta-learning. The authors then continue to propose several strategies
of how to choose configurations to initialise the hyperparameter optimisation
algorithm.

Random best initialisation is a simple strategy which randomly selects
k datasets from the past and uses their best-performing configurations
to initialise the hyperparameter optimisation algorithm.

Nearest best initialisation uses k past datasets that have the most similar
meta-features. It can be thought of as using the datasets which are given
by the k-NN model.

Predictive best initalisation is similar to the previous strategy, only it
determines similarity based on a regression model rather than distance.
The regression model takes two meta-feature vectors and outputs a num-
ber representing their similarity.
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Adaptive Predictive best initialization is again similar to the previous
one, however, the regression model is updated with new meta-features
during the initialisation process. The new meta-features are derived
from the performance of evaluated configurations already used in the
initialisation.

Active Adaptive Predictive best initialization alters the one above so
that it uses first i initialisation configurations to find new meta-features.

Their experiments show that Random best initialisation is outperformed
by every other and suggest that the performance of strategies grows with
increasing complexity. However, their experiments did not include the usage
of clustering.

2.4.1 Comparison of hyperparameter optimisation with and
without meta-learning

Evidence has been provided by Feurer et al. [13] that meta-learning can signif-
icantly improve the performance of a hyperparameter optimization algorithm.
Their experiment compared SMAC algorithm with and without meta-learning
initialisation. To the best of our knowledge, there is little information in the
literature on to what extent meta-learning can improve the performance of
different types of algorithms.

19





Chapter 3
Realisation

The main goal of the experiment is to find out whether initialisation via meta-
learning improves the performance of selected hyperparameter optimisation
algorithms. We focus on hyperparameter optimisation algorithms SMAC, ge-
netic programming and hyperband. These methods were chosen because
they are commonly used for experimentation with good performance. We use
Python because a lot of the methods needed are already implemented in it
in commonly used machine learning libraries, such as scikit-learn. Therefore,
the availability or ease of implementation in Python was a considerable fac-
tor. The experimental part has two main goals. One is to determine whether
meta-learning initialisation improves the performance of hyperparameter op-
timisation algorithms. The other is to provide evidence for deciding which
approach performs the best.

3.1 Experiment design

The experiment consists of two parts. The first, acquisition, consists of evalu-
ating all datasets on all three hyperparameter optimisation algorithms without
meta-learning initialisation. We save the best-performing configurations for
each dataset.

For SMAC, the best performing configurations are the ones with the high-
est validation score. For genetic programming, the best performing con-
figurations are Pareto front of validation score and complexity trade-off. The
Pareto front was chosen to avoid overfitting and provide more diverse options
for genetic programming initialised via meta-learning. We assume genetic
programming is more sensitive to the lack of diversity than other methods
since it derives new configurations from existing ones; therefore, the lack of
diversity could lead to overfitting. For Hyperband, we save the configuration
with the highest validation score in each bracket, since in most brackets, it is
the only one trained on the biggest part of the datasets.
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Table 3.1: Dataset properties

Number of instances Number of features Number of classes
eeg-eye-state [14] 11235 14 2
phoneme 4053 14 2
satellite image 48264 36 6
pol 11250 48 11
quake 1633 3 12
Heterogeneity 1200 20 2
Epistasis 2-Way 1200 1000 2
car-evaluation 1296 21 2
run or walk 66441 6 2
USPS 6973 256 10
bananas 3975 2 2
titanic 1650 3 2
coil2000 [14] 7366 85 2
delta elevators 7137 6 26
ozone 1900 72 2
electricity 1455 33 2

The second part utilises the information acquired during the first phase.
Again, all datasets are evaluated on all three hyperparameter optimisation
algorithms. This time, however, hyperparameter optimisation algorithms are
initialised via meta-learning. We use a leave-one-out cross-validation for eval-
uating this part.

For each algorithm we only consider configurations evaluated by that same
algorithm in the acquisition phase. This decision was made because one of
the goals of the thesis is to provide evidence of which approach performs the
best overall. If one hyperparameter optimisation algorithm only had a superior
performance when initialised by configurations found by a different algorithm,
new datasets would have needed to be evaluated by both algorithms every time
to maintain the consistency in the future.

A hard limit was set for each algorithm run to 1 hour for each dataset.

3.2 Components

3.2.1 Used datasets

All algorithms were evaluated on 16 classification datasets from openml.org.
The criteria were mainly popularity defined by the number of posted usages
and origin of the problem (artificial problems were excluded). More detailed
description can be sen in table 3.1.
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3.2.2 Used common libraries

3.2.2.1 Numpy

Numpy is a mathematical library used for scientific purposes, mainly array
manipulation and random number generation.

3.2.2.2 Pickle

Pickle is used to serialise Python objects in order to save them into or load
them from a file. We used it mainly to save configurations for further usage
either in meta-learning initialisation or as data for evaluation of the experi-
ment.

3.2.2.3 Pandas

Pandas is a widely used Python library for storing and manipulating table
data. In Pandas, these tables are called Data frames, which retain most of the
functionalities of two-dimensional numpy arrays, while also providing many
other functions. These are mainly SQL-like commands, such as selecting and
filtering, as well as certain aggregations. It has a built-in option to save to
disc and load from it.

In the experiment, Data frames are used to store meta-features in tables
and validation scores of evaluated configurations.

3.2.2.4 Scikit-learn

Scikit-learn is the core component of the experiment. It is one of the most
commonly used machine learning libraries. It offers implementations of nu-
merous machine learning algorithms and pre-processing methods with a con-
sistent interface. It then allows the user to combine the algorithm with various
pre-processors in a Pipeline class, which then represents one particular con-
figuration.

3.2.3 Hyperparameter optimisation implementation

3.2.3.1 Auto-sklearn

Auto-sklearn is a library implementing SMAC, which supports initialisation
via meta-learning and setting a time constraint. However, in its standard
version, it does not support any alterations to its meta-dataset, as it uses its
own database of solved machine learning tasks.

to the unavailability of an interface for meta-learning, the library is mod-
ified. The key class that require modification is MetaBase, which manages
datasets, their corresponding meta-features, and past evaluations. In this
part, only modifications relevant to building the meta-dataset are described.
Changes for the meta-learning itself are discussed further in section 3.2.4.
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The two important alterations were made to the constructor and add dataset
method. In the constructor, meta-features and configuration scores are loaded
from the internal database. Post-modification they are loaded by Pandas from
custom CSV files. add dataset method in the unmodified version only adds
meta-features of the currently evaluated dataset to a list of meta-features from
the original database. The list is used only in this one evaluation and is not
stored persistently. There is no way to use the newly added meta-features in
future evaluations. Our modifications append current dataset meta-features
to the existing meta-feature Data frame (if they were not already present) and
the new Data frame is stored back on the filesystem.

3.2.3.2 TPOT

TPOT library provides an implementation of genetic programming for hy-
perparameter optimisation. It can be constrained by either the number of
generations and individuals in each generation or time. Its main supporting
library is deap, which implements a template for genetic algorithms, allowing
the user to define various operations used during the algorithms. [15]

TPOT keeps Pareto-optimal cofigurations as an attribute by default.

3.2.3.3 Hyperband

Since we have not found any Hyperband implementation allowing to easily
inject suggested configurations, Hyperband had to be implemented.

The first decision to be made was what to use as a resource. Due to low
and inconsistent evaluation time for a single configuration, we have decided
against time. Training iterations cannot be applied in our case, as different
configurations are trained differently and sometimes even are not iterative.
Therefore, the only remaining option was to use the number of datapoints.
The halving factor was set to 3, as proposed by the authors in [2].

The implementation follows the pseudocode 1 from chapter 2, however,
there are some notable implementation details. The sampling of configura-
tions is done with the help of TPOT and its supporting library deap. First,
we create a TPOTClassifier object and initialize it. This creates an object
which has a method to generate a list of configurations of a given size. This
allows us to generate an appropriate amount of configurations for each bracket
using the TPOT generator. One minor modification has been made to the con-
figuration space – limiting the maximum of hyperparameter k for k-nearest
neighbours from 100 to 20 in order to prevent insufficient number of data-
points when evaluating configurations on very small subsets of datapoints.

Each evaluation is done by the evaluator of the TPOT object. Top con-
figuration of each bracket is stored. The entire hyperband loop is repeated
20 times for one dataset.
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3.2.4 Meta-learning

For meta-learning, we use the meta-learning infrastructure in auto-sklearn.
The meta-learner takes dataset names and meta-features values from our mod-
ified MetaBase class 3.2.3.1, scales the input features using minmax scaling
from 0 to 1 and uses them to fit a model. If any dataset name matches the
currently evaluated dataset, its meta-features are discarded to avoid duplicity
in the meta-feature dataset.

Meta-features used are all implemented in auto-sklearn. By default, some
meta-features in auto-sklearn are excluded. That is because they were too
computationally expensive for experiments done with auto-sklearn. In our
experiment, however, slow computation of meta-features is not a factor, hence
we included all meta-features provided.

3.2.4.1 k-NN

For k-NN we use the existing architecture of auto-sklearn. The k is set to 5.
The number was chosen considering the total amount of datasets (16) and the
need to suggest diverse options for the hyperparameter optimisation algorithm
to avoid overfitting.

3.2.4.2 Clustering

Clustering uses the same architecture as k-NN. The main difference is that the
model in class KNearestDatasets has been changed from scikit-learn.neighbors.
NearestNeighbors to sklearn.cluster.KMeans. The number of clusters has been
set to 3 so that the mean of the number of suggested configurations stays the
same as when using k-NN. The minimum number of configurations in each
cluster is 2 so that each dataset has at least one other dataset in its cluster.

3.2.5 Combining hyperparameter optimization with
meta-learning initialisation

This subsection is dedicated to describing different initialisation methods for
the hyperparameter optimisation algorithms. Since each algorithm is imple-
mented by a different library, they warrant a different initialisation method.

3.2.5.1 SMAC

SMAC is initialised by the existing initialisation infrastructure in auto-sklearn.
Again, the modifications were made mainly to the MetaBase class, namely
the methods passing meta-features to the caller. The modification ensures
compatibility with the custom meta-feature table.

Minor changes were made elsewhere so that the initialisation only takes
into account the top 5 most well-performing configurations from each of the
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datasets suggested by meta-learning. This number was chosen because the
default number of recommended configurations for auto-sklearn is 25, which
is less than the number of datasets considered in this work.

3.2.5.2 Genetic programming

TPOT relies on deap to manage the configuration population. The population
is created with a default deap create population function. To initialise the
population, create population function was reimplemented to override default
population.

The custom function reads the file with the names of the datasets rec-
ommended by the meta-learner in auto-sklearn and loads all their respective
Pareto front configurations representations from the acquisition phase. It then
compiles the representations into an array and returns it as the population in
TPOT format. If there are more configurations than the required population
size, some are randomly tossed. If there are not enough recommended config-
urations, the default deap function is used to generate random configurations
to match the required population size. Default population size of 100 is used
in the experiment.

3.2.5.3 Hyperband

Hyperband is specific in the sense that it does not evaluate all configurations
in the same way. Configurations showing a good performance in brackets with
a low s might perform poorly in brackets with a high s and a low budget. Sim-
ilarly, configurations which win brackets with a low initial budget might take
up precious space in brackets with a low number of configurations evaluated
overall. Therefore, it warrants a different style of initialisation.

The difference in combining meta-learning with hyperband as opposed
to the other algorithms is that it happens continuously across all brackets and
not just in the beginning. At the start of each bracket, we add the winners
of the respective bracket from the evaluations of datasets suggested by the
meta-learner. The rest of the configurations in the bracket is then sampled
randomly again using TPOT.

3.2.6 Evaluation methods

For comparing two algorithms we use the average difference of test or valida-
tion accuracies as well as the number of datasets where one method outper-
formed another one (sign test 3.1, where lb and lc are the loss function values
of the baseline and the challenger respectively).

n∑
i=0

sgn(lb − lc) (3.1)
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This decision was made because the average can be sensitive to outliers, while
the sign test completely disregards the significance of how much better a
method performed on individual datasets. More complex statistical tests can
introduce arbitrary parameters or can have their assumptions violated, namely
normality and commensurability. [16]

3.3 Results

In table 3.2, there are average test accuracies across all algorithms and meta-
learning methods. As we can see, there is no improvement when algorithms
are combined with meta-learning initialisation. For SMAC and genetic pro-
gramming there is a very slight drop in accuracy and for hyperband the
performance drop is more apparent. The best-performing overall in the ex-
periment is genetic programming,

Table 3.2: Average test scores of algorithms in %

No meta-learning With k-NN With clustering
SMAC 80.578 80.277 80.159
Genetic programming 82.089 82.016 81.63
Hyperband 79.474 72.701 77.481

If we look at the results of the sign test in Table 3.3, we can see a similar
pattern. Meta-learning initialisation mostly results in weaker performance,
except genetic programming initialised using k-NN.

Table 3.3: Win/loss scores of meta-learning initialised algorithms against
vanilla algorithms (on total of 16 datasets)

With k-NN With clustering
SMAC -5 -2
Genetic programming 2 -4
Hyperband -5 -1

This result likely has one of two causes. Either the chosen datasets are
not similar enough so that the recommended configurations perform poorly on
the new datasets, or the hyperparameter optimisation algorithms can reliably
find well-performing configurations even without the help of meta-learning.

The former explanation can be evaluated by looking at the performance
of the best configuration in early iterations of the algorithm. In Table 3.4
we can see the average of the best validation score from the first 25 evaluated
configurations by SMAC. The difference is again very marginal and in favour of
SMAC without the use of meta-learning. Please, note that neither genetic
programming nor hyperband can be evaluated like this, since genetic
programming can be evaluated only after each generation, which does not
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provide enough granularity, and hyperband uses meta-learning continusously
in each bracket.

Table 3.4: Average validation scores of the best of the first 25 configurations
evaluated on each dataset by SMAC in %

No meta-learning With k-NN With clustering
81.717 81.599 81.565

We don’t have enough evidence to conclusively decide whether the datasets
are similar enough to be able to provide good configurations. If we added more
datasets, we would be able to provide a more definitve anwser. However, that
is beyond the scope of this work.

Another consideration is how common are configurations which perform
nearly as good as the best configuration found. Figure 3.1 shows the accu-
racy of all configurations for each dataset individually evaluated sorted by
performance. Genetic programming is not shown, since its population can
be unrepresentative due to the fact that not all individuals are necessarily
competitive.

We can see that in most cases, there is a large number of well-performing
configurations. They are represented by the plateaus in the left part of the
figure which contains well-performing configurations. This suggests that there
is a large proportion of nearly optimal configurations which each algorithm is
able to find.

If the hyperparameter optimisation algorithm can find the optimal config-
urations in a reasonable time by itself most of the time, the usage of meta-
learning does not improve the performance. It only provides unnecessary
complexity and can even lead to a slight performance drop overall.

3.4 Discussion

The experiments have shown that the best performing algorithm for hyper-
parameter optimisation of the three evaluated in this thesis is genetic pro-
gramming, since it has shown on average a better performance than the other
two algorithms.

Unlike in [13], our results are much less optimistic regarding meta-learning.
The authors’ findings suggest that meta-learning improves the performance of
SMAC during the early iterations, which we have been unable to reproduce.
They also show that meta-learning can improve the overall performance of
SMAC. The experiments have not found convincing evidence for this for none
of the considered algorithms.

The varying results may be explained by two differences in methodol-
ogy. Firstly, the paper in question uses more datasets in the experiment (57)
compared to our relatively small number (16, which we have used for com-
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3.4. Discussion

Figure 3.1: Configuration performance distributions when using SMAC and
hyperband. Each line represents a single dataset. For hyperband, only
fully trained configurations are taken into account.
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3. Realisation

putational reasons). Therefore, there was a higher chance that meta-learning
was able to find configurations that could perform well in the early stages as
there was a higher change of a dataset with similar properties. Secondly, for
evaluation the authors use the method of significant wins, which may not be
suited for this type of problem according to [16] as it introduces an arbitrary
parameter which creates an artificial filter for the results.

Further research may be needed in the area using a larger amount of
datasets for meta-learning. Another direction the research can take is to
experiment with meta-learning when optimising hyperparameters of a neu-
ral network. According to [13], performance improvement when using meta-
learning increases in very high dimensional hyperparameter spaces, which can
include the hyperparameter spaces of deep neural networks.
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Conclusion

The thesis deals with the problem of optimizing hyperparameters of machine
learning models and the usage of knowledge from previous tasks to speed up
hyperparameter optimisation.

The theoretical part introduces machine learning problems, some of their
terminology and the idea of optimising hyperparameters.

Throughout the thesis, we have looked at various hyperparameter optimi-
sation and model selection methods. We have focused mainly on three of them,
which we have used for the experiments: SMAC, which predicts which configu-
rations have potential to improve the performance, genetic programming,
which combines well-performing configurations to create potentially better
ones, and hyperband, which balances early-stopping advantages and draw-
backs.

We have surveyed how knowledge from previous tasks can be utilised in
machine learning. We have presented the idea of meta-features, their clas-
sification and how they can be used to determine the similarity of datasets.
We have defined metric and explained how it is used in meta-learning algo-
rithms. We have described two algorithms that can be used for meta-learning:
clustering and k-NN. Then, we have discussed ways of combining these meth-
ods with hyperparameter optimisation algorithms and how runtime can be
incorporated as a factor in optimization.

We have experimented using the meta-learning methods clustering and k-
NN combined with SMAC, genetic programming and hyperband. We
have also designed and implemented integration of meta-learning with ge-
netic programming and hyperband.

The experiment which we ran has found no evidence that meta-learning
initialisation of hyperparameter optimisation algorithms helps the overall per-
formance. One possible explanation is that the meta-learning wasn’t able to
find well-suited configurations to recommend due to the relatively small num-
ber of datasets (used for computational reasons). However, further analysis
implied that the reason is likely that the hyperparameter optimisation al-
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Conclusion

gorithm could find a relatively large number of configurations with nearly
optimal performance in the time it was given even without the help of meta-
learning.

In the case of hyperband, meta-learning initialisation has even resulted
in a decrease in performance. This implies the usage of meta-learning needs
to be more carefully considered since it could hurt the overall performance if
used inappropriately.

We have investigated the possibility that meta-learning initialisation can
improve the early performance of hyperparameter optimisation algorithms.
However, we have made no observations supporting the claim.

Our findings contradict some of the previous work done in this area and
more research needs to be done on the issue.
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Appendix A
Acronyms

GP Gaussian process

HTN Hierarchical task network

k-NN k nearest neighbours

LSTM Long short-term memory

ROAR Random online aggressive racing

SMAC Sequential Model-based Algorithm configuration

SMBO Sequential Model-based Optimisation
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Appendix B
Contents of enclosed SD card

readme.txt ....................... the file with CD contents description
experiment ............................. the directory with executables

implementation.....................the directory wirh source codes
Results.ipynb.......................Jupyter notebook with results

paper ............................................. the thesis directory
thesis.pdf...........................the thesis text in PDF format
thesis..............the directory of LATEX source codes of the thesis
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