Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Computer Science

Master's Thesis

NEURAL NETWORKS USING FOR HANDWRITTEN NUMBERS RECOGNITION

Dina Latypova

Supervisor: Ing. Karel Frajtak, Ph.D.

Study Program: Open Informatics
Field of Study: Software Engineering
May 22, 2020

1L MASTER'S THESIS ASSIGNMENT

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

l. Personal and study details
& =
Student's name: Latypova Dina Personal ID number: 492136

Faculty / Institute: ~ Faculty of Electrical Engineering
Department / Institute: Department of Computer Science
Study program: Open Informatics

Specialisation: Software Engineering

Il. Master’s thesis details
a \
Master's thesis title in English:

Neural networks using for handwriting numbers recognition

Master’s thesis title in Czech:
Vyuziti neuronové sité pro rozpoznavani ru¢né psanych cislic

Guidelines:

Build a neural network that will recognize images of handwritten numbers. The neural network consists of the Kohonen
neural network, which defines the main clusters for the entire database, and the Hopfield neural network, which identifies
the closest image for a particular class. This neural network presents 2 methods for identifying the most" close " image.
Images are compared as a percentage of black and white pixel matches.

Bibliography / sources:

[1] X. Zhang, X. Zhou, M. Lin, J. Sun, “ShuffleNet: An extremely efficient convolutional neural network for mobile devices,”
Proceedings IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 6848-6856. ; [2] D.N. Tumakov,
D.M. Khairullina, A.A. Valeeva, “Recovery of parameters of a homogeneous elastic layer using neural networks," Journal
of Fundamental and Applied Sciences, vol. 9, 2017, pp. 1202—-1220.

Name and workplace of master’s thesis supervisor:

Ing. Karel Frajtak, Ph.D., Software Testing Intelligent Lab, FEE

Name and workplace of second master's thesis supervisor or consultant:

Date of master’s thesis assignment: 12.03.2020 Deadline for master's thesis submission: 22.05.2020
Assignment valid until: 19.02.2022 /
o v 1/7() 7 /
T Yot Ao L \ 7 S
Ing. Karel Ffajték, Ph.D. Head of depariment’s signature prof/Mgr. Pefr Pata, Ph.D.
S Supervisor's signature Dean's signature F

lll. Assignment receipt

The student acknowledges that the master's thesis is an individual work. The student must produce her thesis without the assistance of others,
with the exception of provided consultations. Within the master's thesis, the author must state the names of consultants and include a list of references.

Date of assignment receipt Student's signature

CVUT-CZ-ZDP-2015.1 ©® CVUT v Praze, Design: CVUT v Praze, VIC

Acknowledgements

| would like to express my sincere gratitude to my supervisor Ing. Dmitrii Tumakov (KFU) for guidance
and immense to help on my thesis. He was always ready to offer the right and appropriate solutions
whenever | ran into a trouble spot or had a question about my research or writing. He consistently
allowed this paper to be my own work, but steered me in the right the direction whenever they thought |
needed it.

Also | want to appreciate Turilova Ekaterina, Enikeev Arslan, Miroslav Bure$ and all Czech team for the
opportunity to participate in the Double Degree program (CVUT, KFU). This chance opened up new

perspectives for me and my future investigations in this area.

Finally, | want to especially thank my family, friends and colleagues who prop up me morale throughout
my thesis work. | really appreciate them providing me with unfailing support and continuous
encouragement during my years of study and through the process of researching and writing this

thesis. This accomplishment would not have been possible without them

Declaration

I hereby declare that | have completed this thesis independently and that | have listed all the
literature and publications used.
I have no objection to usage of this work in compliance with the act §60 Zakon €. 121/2000Sb.

(copyright law), and with the rights connected with the copyright act including the changes in the act.

Prague, May, 2020

Abstract

LATYPOVA, Dina: Neural networks using for handwriting numbers recognition. [Master's Thesis] -
Czech Technical University in Prague. Faculty of Electrical Engineering, Department of Computer
Science. Supervisor: Ing. Karel Frajtak, Ph.D.

In the presented work, a Hopfield neural network was constructed for recognizing handwritten
digit patterns contained in the MNIST database. Ten Hopfield neural networks were built for each digit
separately. The centers of clusters that were built using the Kohonen neural network were taken as
objects for “memorization”. Two methods were proposed, which are a supported step in a Hopfield
neural network; an analysis of these methods was carried out. Also, an error was calculated for each
method, the pros and cons of their use were identified.

Clustering of handwritten digits from the training sample of the MNIST database is conducted.
Clustering is performed using a Kohonen neural network. The optimal number of clusters (not
exceeding 50) for each digit is selected. As a metric for Kohonen network, the Euclidean norm is used.
The network is trained by a serial algorithm on the CPU and by a parallel algorithm on the GPU using
CUDA technology. The graphs of the time spent on training the neural network for each digit are given.
A comparison of the time spent for serial and parallel training is presented. It is found that the average
value of accelerating the training of a neural network using CUDA technology is almost 17-fold. The
digits from the test sample of the MNIST database are used to evaluate the accuracy of building the
cluster. It is found that the percentage of vectors from the test sample in the correct cluster for each
digit is more than 90%. The F-measure for each digit is calculated. The best values of the F-measure
are obtained for 0 and 1 (F-measure is 0.974), whereas the worst values are obtained for the digit 9 (F-
measure is 0.903).

The introduction briefly describes the content of the work, what research is currently available,
and the relevance of this work. This is followed by a statement of the problem, as well as what
technologies were used to write this work. The first chapter describes the theoretical aspects, as well
as describes how to solve each stage of this work. The second chapter contains a program description
of the work and the results obtained. In the second chapter, we talk about parallelizing the learning
algorithm of the Kohonen neural network. In the third chapter, the software is tested.

The results are the recognition response of each neural network - the image is the most similar

to the image submitted for input, also, the total percentage of recognition for each neural network.

Keywords: Hopfield neural network, Kohonen neural network, handwritten digits, MNIST database, Parallelization,
CUDA .

Contents

Introduction

Thesis content
Chapter 1

Neural networks and MNIST database.
1.1 Artificial Neuron and Artificial Neural Networks
1.2 Classification and Training of Neural Networks
1.3 The Kohonen Neural Network. SOM.
1.4 Clustering Methods
1.5 Automatic Clustering Methods
1.6 Recurrent Neural Networks
1.7 Overview of Neural Networks for Pattern Recognition
1.8 MNIST database

1.9 Using CUDA Technology for Neural Network
Chapter 2

Description of the software implementation and results
2.1 Task Statement and Program Structure
2.2 Determining the Optimal Numbers of Clusters
2.3 Data Clustering and Cluster Analysis
2.4 Pattern Recognition by a Hopfield Neural Network

2.5 Parallel Implementation of Kohonen Neural Network training
Chapter 3

Testing
3.1 Testing on the Fashion MNIST dataset

Conclusion

Bibliography

© ©O© N o W w

10
13
15
16

18

18
18
27
31
41
47

54

54
54

60

61

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

List of figures

R N [T o T PP PRRPTTN 4
1.2: ROSENDIA'S POICEPIION. ... e 4
1,30 ATTIFICIAI MBUFON ... s 4
1.4: Architecture of the Kohonen Neural NEWOIK ... 7
1.5: The fEEADACK NEUION ... 11
1.6: Architecture of Hopfield NEUral NETWOTK ... s 11
1.7: Architecture of a standard recurrent NEUral NEIWOTKcoooiiiii s 14
1.8: Architecture Of @ LSTM NEUIAI NEIWOTKui s 15
1.9: Examples of images from the MNIST databaseuuuuuimiiiiiii e 16
1.10: Thread hierarChy i CUDA s 17
2.1: Waterfall model of software developmMEeNtoooo i 18
2.2: Window for loading the database.............oooiiiiii i 20
2.3: The main Window Of @PPICALIONooi i 21
2.4: Tab “Count Of CIUSTEIS” ..ottt eeeeees 22
2.5 TAD “CHUSTEIS ...ttt e oo et e e e et e e e e e e e 23
T | T = (o= g (=T o [N e) =T o] 3 23
2.7: Recognition using METhOd 17 e e e e e e 24
2.8: Recognition USING METNOM 27uui et as 25
2.9: Recognition using Kohonen Neural Network” ... e 26
A (O TS Y=To TN =T oI o [T Vo |- o PO 26
2.11: Class for AUtOMALIC CIUSTEIIZALIONcciiiiiiiiiiiii e e e e e e e e 28
2.12: Class for Kohonen Neural NEIWOTKcouiiiiiiiiieieiii et 32
2.13: The examples of images included in the intersection of CIUSIEIScooviiiiiiiii i, 35
2.14: The percentage of numbers from the test sample iNitS CIUSLETc.coiiiiiiiiiiii e, 35
2.15: Examples of the image of humber 0 from a test sample that did not fall into its cluster......................... 36
2.16: The percentage of numbers from the test sample INitS CIUSTENcooeiiiiiiiiiiii i, 39
2.17: Class for Hopfield Neural NEtWOTK ... e e e e e e 41
2.18: Examples of incorrect recognized images when using method 1coviiiiiiii i 43
2.19: Examples of correct recognized images when using method 1............ccccooviiiiiiii i 44
2.20: Examples of incorrect recognized images when using method 2coviiiiiiii i, 46
2.21: Examples of correct recognized images when using method 2., 47
2.22: Function that finds the nearest weight (cluster) to the specified VECtOr............oooeiiiiiiiiiiiiiie e 48
2.23: Sequential learning algorithm for the Kohonen neural Network ... 49
2.24: Distance function that calculates the distance between vectors on a graphics device...........ccccccuuunnnn... 49
2.25: A core that represents a parallel implementation of network learningcccviiiii e 50

Fig. 2.26: Execution time of training of the Kohonen neural network on the CPU and on the GPU 50

Fig. 2.27: Execution time of training of the Kohonen neural network on the CPU and on the OpenMP 51
Fig. 2.28: Execution time of the Kohonen neural network training on the CPU for all digitScevvviviiiiiennnns 52
Fig. 2.29: Effective CPU UtiliZation NISTOGIAIMcviiiiiiiiiiiiiiiieiiiieieeeee ettt e e seeesessnnseesnnennnnnes 52
Fig. 2.30: Execution time of the Kohonen neural network training for all digits using OpenMPccovvvvvvennee. 52
Fig. 2.31: Effective CPU UtiliZation NISTOGIAIMvviiiiiiiiiiiiiiieiiiieeeeeee ettt seeese s sessnnseesnnennnnnes 53
Fig. 2.32: The execution time of the Kohonen neural network training on the GPU and using OpenMP for each

01T SRS SPR SRR 53
Fig. 3.1: Examples of images from the Fashion MNIST databaseuuviiiiiiiiiiiiiiiiiiiiiiiiiiieeiiieeieeeeeeeeeiaaees 54
Fig. 3.2: Percentage of images from the test sample that are included in your CIUSter...............euvvviiiiiiiiiiiiiiiiiinns 56
Fig. 3.3: Percentage of image recognition from the test sample by the Hopfield neural network method 1 57

Fig. 3.4: Percentage of image recognition from the test sample by the Hopfield neural network method 2............ 58

List of tables

Table 1.1: Classification Of NEUIal NEIWOTKS..........cooi i 6
Table 2.1: The number of images of each digit in the training and test samples in the MNIST database............... 19
Table 2.2: Description of tabs in TaDCONTIOL...........uiiii e e e e e e e e 22
Table 2.3: The dependence of the optimal number of clusters on a fixed percentage of the maximum distance

for each digit for a sample 0f 2000 VECIOIScooiiiiiiiieiee e 30
Table 2.4: The optimal number of clusters for each digit with a sample of 1000 VECIOISccoevviiiiiiiiiiiiiiiennnnn. 30

Table 2.5: The dependence of the optimal number of clusters on a fixed percentage of the maximum distance

for each digit for @ fUll SEMPIE ... 31
Table 2.6: The optimal number of clusters for each digit with a full sample.............cc 31
Table 2.7: Cluster centers for each digit when selecting 1000 images and dividing by 3 clusters 33
Table 2.8: Intersections of clusters when selecting 1000 images and dividing into 3 clusters............cccceeeeiiinnn. 34
Table 2.9: Examples of clusters with a full sample and an optimal number of ClUSters............ccccceviiiiiinn, 36
Table 2.10: INterseCtioNS Of CIUSTEISooo i 38
Table 2.11: Examples of images that are included in cluster iINtersections...........ccccevvieeiiiiiiiiie e, 39
Table 2.12: Summary results of recognition by the Kohonen neural network ..., 40
TADIE 2.13: F-MEASUIE ...ttt oo oottt et e oo oo bbbttt e oo oo ook e ettt e e e e e e e e e et e e e e e e e 40
Table 2.14: Results of recognition by the Hopfield neural network using method 1............ccccccciieiiiiiiiiiiccee e, 42
Table 2.15: Summary results of Hopfield neural network recognition using method 1...........ccccceeeiiiiiiiiiiiieenneeen, 43
Table 2.16: F-measure for the Hopfield neural network using 1 methodcccoooiiii i, 43
Table 2.17: Results of recognition by the Hopfield neural network using method 2.............ccccccviei i, 45
Table 2.18: Summary results of Hopfield neural network recognition using method 2............cccceeeiiiieiiiiiiiceneeeen, 46
Table 2.19: F-measure for a Hopfield neural network using 2 method ..., 46
Table 2.20: GPU GCCEIETALION. ...ttt e e et e e et e e e e e e ettt e e e e e s e bbb et e e e e e e e nannnnes 50
Table 2.21: COMPULET CRAIACIEIISHICSuii i i e e e e e e e e e e e e e et e e e e e e e eeetbar e eeeeeees 51
Table 2.22: OPENMP ACCEIEIALIONuuueii e e e e e e e e e e et e e e e e e e e e e s stat s e e eeeeeessraaaneaeeeeeens 52
Table 3.1: The optimal number of clusters for each image with a full sample ..., 54
Table 3.2: EXaMPIES Of CIUSIEI CENLEISo e e e e e e e e et e e e e e e e e e et b e e eeeeees 55
Table 3.3: Summary results of recognition by the Kohonen neural network............cc.oooooiiiiiiieiiee e, 56
TADIE 3.4 FoIMEASUIE ...ttt oottt e o444 e bttt e e e 444 e kbbb ettt e e e e e e bbb e e et e e e e e e nee s 56
Table 3.5: Summary results of recognition by the Hopfield neural network ..o, 57
TADIE B.6: FoMBASUIE ... 57
Table 3.7: Summary results of recognition by the Hopfield neural network.............c.oooooiiiiiii e 58

LT o1 TSTRC TR < T w0 g T<T= 1 U1 (PP 59

Table 3.9: Examples

Introduction

Artificial neural networks are used as a method of deep learning. It is one of the many
subsections of artificial intelligence. Artificial neural networks were first proposed about 70 years ago
as an attempt to simulate the human brain function. Due to advances in hardware development,
humanity has been able to build networks that can be trained on a huge set of data in order to
achieve breakthroughs in machine intelligence. These discoveries allowed machines to match and
exceed the capabilities of humans in performing certain tasks. One of these tasks is object
recognition.

In the modern world, the problem of pattern recognition by artificial intelligence is widely used
in many industries [1, 2]. Handwriting recognition essentially facilitates working at the computer. In
addition to handwritten digits recognition tasks, neural networks are also applied for recognition of
other objects, for example, characters [3], facial emotions [4] and much more.

In the present work, we considered the problem of recognizing the patterns of handwritten
digits contained in the MNIST database [5]. Recognition was performed using a Hopfield neural
network [6]. Due to the fact that the Hopfield neural network has a limited number of objects to
‘remember”, Kohonen neural network was applied as the first stage [7-9]. The results of the first
stage were cluster centers. It was these centers that served as the sample for memorization for
Hopfield neural network. It is also necessary to compare two methods that serve to determine the
similarity of two images.

Today, there are many ways to recognize handwritten digits using neural networks. For
example, convolutional neural networks [10]. This type of neural network is the most popular for
pattern recognition and shows significant accuracy as a result.

The problem of handwritten digits recognizing lies on the fact that all people have different
handwritings, so no images are exactly the same. This issue is being resolved by data clustering
methods [14,15]. Kohonen networks are also widely used for recognizing handwritten images and
data pre-processing [12,13].

Furthermore, this work raises the question of identifying the optimal number of clusters
separately for each digit. Many algorithms have been studied, one of which is presented in a given
work [10].

In this paper, the learning algorithm of Kohonen neural network was parallelized using CUDA
technology. The results were compared with work on a single processor as well as with the results of
parallelizing using OpenMP.

The novelty of the work consists in the following aspects:

1. We propose a hierarchical pattern recognition model that consists of two neural networks:

Kohonen and Hopfield. Kohonen neural network pre-processes data and outputs a

sample for the Hopfield neural network as a result. Hopfield neural network "remembers”
1

images and recognizes any particular image.

2. Hopfield neural network offers 2 methods for comparing two images: pixel-by-pixel
comparison and comparison involving the f-metric.

3. The analysis of the MNIST database employing the automatic clustering reveals the
optimal number of clusters the base needs to be divided in.

4. It is proposed to parallelize the learning algorithm for Kohonen neural network using the
CUDA technology.

Thesis content

The goal of this work is to develop and create a software module that will build a hierarchical
neural network for pattern recognition.

The task consists of the following stages:

1. Writing an automatic clustering algorithm to identify the optimal number of clusters
separately for each digit of the MNIST database.
Writing a Kohonen neural network separately for each digit.

3. Writing a Hopfield neural network for pattern recognition, where clusters that were
obtained as a result of applying a Kohonen neural network serve as objects to remember.

In Hopfield neural network, 2 methods are compared to identify two similar images.

The work consists of three main chapters. The first chapter describes the biological
description of neural networks and their artificial analogues. It describes the methods of neural
networks training, Kohonen neural network, which is used as one of the stages in this work, the
methods of standard and automatic clustering, Hopfield neural network. The chapter overviews
popular image recognition technologies, and presents a brief description of the MNIST database,
which was tested. There is also an item that explains the methods of parallelization of neural
networks and CUDA technology. The second Chapter contains a description of the software, results
and analysis of the work as well as testing the training of Kohonen neural network on GPUs using
CUDA technology. The training of Kohonen neural network was analyzed using Intel Parallel Studio.
The third Chapter demonstrates testing of the system and algorithms. The third chapter

demonstrates testing of the system and algorithms.

The program was written in the object-oriented C# language. The system was tested on the
basis of handwritten MNIST numbers, as well as on the basis of Fashion MNIST, which contains
images of different types of clothing. This demonstrates the versatility of the algorithms.

Parallelization was performed in C++. All programs were written in Visual Studio 2019.

This thesis consists of the introduction, theoretical parts, practice part, practical and

conclusion.

Chapter 1

Neural networks and MNIST database

1.1 Artificial neuron and artificial neural networks

Biology neuron
In 1888, Dr. R. Kayal showed that brain tissue consists of a huge number of similar nodes
that are connected to each other. These nodes are called neurons. A biological neuron is a cell that
stores and transmits information using electrical and electrochemical impulses. A single neuron can
transmit information to another neuron as well as to another type of cell.
All neurons have a similar structure. Each neuron has:
e Body (Soma) — vital intracellular processes occur in it. The neuron body contains the
nucleus that carries the neuron's genetic material.
e From the central part of the neuron emerge dendrites-a process that receives
impulses from other cells. Depending on the cell type, a single neuron can have up to
200 dendrites.
e An axon is a nerve fiber that serves as an element through which a nerve impulse
passes. The aim of an axon is to transmit a signal from a neuron to other neurons.
The place where axon and dendrites connect is called a synapse. The synapse is a synaptic
gap of about 200 nm, white matter and synaptic protrusions-a nerve signal is sent through them. The
mechanism that underlies signal transmission within neurons is based on the potential difference
that exists between the inner and outer part of the cell. This membrane potential is created by an
uneven distribution of electrically charged patrticles or ions: sodium (Na +), potassium (K +), chloride
(Cl -), and calcium (Ca 2+). At rest, the sodium ions are evenly distributed, so the neuron has a
negative charge. In order to transmit a nerve impulse, you need a stimulus — special chemicals-
neurotransmitters. When the mediator gets the dendrite, the charge of the neuron changes from
negative to positive. The dendrite is attracted to a negatively charged axon, and along the axon

reaches the synapse-the charge reaches another cell. Figure 1.1 shows a biological neuron.

Fig. 1.1: Neuron

Artificial neuron

The first work that laid the foundation for creating artificial models of neurons and neural
networks was an article by V. McCulloch and V. Pitts "Logical calculus of ideas related to neural
activity". McCulloch and Pitts proposed an information processing system in the form of a network
that consists of n simple computing neurons. Each calculator consists of inputs and outputs that take
the value O or 1.

The state of a single neuron is calculated as » w;jn; — a weighted linear combination of their
outputs. Then the threshold function is applied to the amount. The threshold function that was
considered by McCulloch and Pitts has the form:

1,Ywn >0

Y= FEwn) = {5 M

Such networks can perform calculations like a Turing machine. But the only unresolved
problem is how to initially initiate the w; weights.

In 1962, Rosenblatt proposed the following model of a neural network — the perceptron-Fig.
1.2.

®
x=1 x X4

Fig. 1.2: Rosenblatt's Perceptron

The Rosenblatt perceptron consists of k neurons, d inputs and d outputs, and a single layer

of configurable w; weights. Each perceptron neuron has the following structure — Fig. 1.3.

Inputs Weights Net input Activation
function function

@ output

Fig. 1.3: Artificial neuron

Each neuron calculates a weighted sum of inputs:
yj(x) = Do xiwy; (1.2)
The output of a neuron is calculated using a nonlinear threshold function of the form:

1,>wn=0

9(a) = {—1,an <0 (1.3)

Rosenblatt suggested to use a perceptron to solve the classification problems by Rosenblatt.
Let us analyze a simple case as an example. Let there be a set of vectors of the form x=(Xy,X,),
where each one belongs to one of two different classes C;, C,. This set will be a sample for training.
The challenge lies in determination of belonging to the class for any vectors. Drawing on equation
(1.2), we can conclude that the neuron in the case of a hyperplane builds a straight line on the plane.
Therefore, the vectors coming to the input will fall into one or another half-plane. The threshold
function defines the half-plane that accepts the input vector. The type of straight line is determined
by the w; scales that are configured during training.

For the correct operation of the neural network — perceptron — it is necessary to minimize the

error function:
EW) = = Yynemy WT(xt), (1.4)

where M is a set of incorrectly classified data for w; weights, WTx is the matrix form of the
record (2), {t.} is the set of desired neuron outputs. Formula (1.4) is called the perceptron criterion.
The following is a perceptron learning algorithm based on a training sample:
1. Initially, w; weights are initiated randomly.
2. A vector from the training sample is provided to the input of the neural network.
3. At the output of the following situations are possible:

o if the neural network classifies the vector correctly, we do nothing;

o If the perceptron classifies the vector incorrectly and the vector must belong to
class C, that is, the output of the neuron after applying the threshold function
is + 1, then the vector is added to the weight;

¢ If the perceptron classifies the vector incorrectly and the vector must belong to
class C,, i.e. the output of the neuron after applying the threshold function is -
1, then the vector is subtracted from the weight.

The last two sub-items of change in weights can be represented as:
Wt = witn(we), (1.5)

where n >0 is the coefficient that sets the learning speed, and Wi* is the matrix of new
weight values. When training a neural network, the criteria will decrease. Since the learning rate

coefficient is greater than zero and (xt)>>0, then:

E#Y = —WH(xt) = —Wi(xt) —n(xt)(xt) < Wiw) = E{(w) (1.6)
5

In 1973, it was proved that for any linearly separated input data, the perceptron learning
algorithm finds a solution in a finite number of steps. But by increasing the number of layers, you can
solve problems not only for linearly separated input data, but also for problems of any complexity. A

perceptron with several layers is called a multi-layer perceptron.

1.2 Classification and training of neural networks

Currently, all neural networks can be divided into two groups: feedforward networks and
feedback networks. In feedforward neural networks, the signal moves in one direction: from the
network entrance to its exit. In back propagation networks the signals can move back to the inputs of
the network, such structures allow us to solve more complex problems. But the outputs of such
networks are unstable. The table below shows the known types of neural networks of the first and

second types.

Feedforward networks Feedback networks
Perceptron Counter-propagation
Multi-layer perceptron SOM, Kohonen neural networks
RBF-networks Associative memory, Hopfield
networks
Cascade correlation networks An Elman Network
Adalin ART-networks
Stochastic networks (Boltzmann
machine)
Time Delay-networks

Table 1.1: Classification of neural networks

Setting up artificial neural networks is divided into 3 categories: training "with a teacher",
training "without a teacher" and training by the method of criticism.

In the "teacher training" approach, for each object xe{x,} from the training sample, the result
te{t,} that we would like to get is known in advance. The main disadvantage of this method of training
is that there are not always enough examples with a pre-known result.

In the "learning without a teacher" approach, the desired result is not known in advance for
the training sample. In this case, the weights are adjusted at the discretion of the neural network.

The neural network finds patterns between data and classifies them into groups where objects are
6

similar to each other. An example of such a network is Kohonen neural network.
With the critical learning approach, it is possible to evaluate how well the neural network
works and then specify the desired direction of training. This approach is an intermediate step

between "with a teacher" and "without a teacher" training.

1.3 The Kohonen neural network. SOM

In this graduation work, there is a database of handwritten MNIST numbers. The first step
implies building of the main clusters separately for each digit (0,1,2, etc). Kohonen neural network
was used for this purpose.

As was said earlier, Kohonen neural networks is a type of artificial neural networks that are
trained "without a teacher". Learning "without a teacher" is close to the real work of the human brain.
The main part of the information that comes to the visual, auditory, tactile and other receptors comes
from outside, and then inside the nervous system a certain classification and organization are made.
The Kohonen algorithm provides for weights setting based on their values in the previous iteration.

The architecture of the Kohonen neural network (Fig. 1.4) was proposed in 1987 by Teuvo

Kohonen.
\ Wi
X3 =< 2
— \\\\\15 o 7 z 1
- < g g
~ \L W; / S
X2 e i 5
e 2 N "/ 2
e
N
\\
T NN
Xn w =
Zm

Fig. 1.4: Architecture of the Kohonen neural network

The Kohonen neural network consists of a single layer of customizable scales and functions
in the spirit of the strategy: “the winner takes it all” — only one neuron fires, the remaining outputs of
the layer are suppressed.

The outputs z; are calculated by the following formula:
Zj = Zi Wijxi; akle = 1'Zj¢k = Ol (17)

where z; are the outputs of the Kohonen network. The Kohonen network combines input
vectors into a group of similar ones — clusters. In this case, the weights of the neural network change
so that vectors belonging to the same cluster activate the same output neuron.
For the training algorithm of the Kohonen neural network, it is necessary that the input
7

vectors are normalized — reduced to a single vector in space. Normalization takes place according to

the following formula:

X ==, (8)

After the input vectors are normalized, the following algorithm is executed:

1. Weights w; are filled in with initial values. Usually, in neural network training

4.

algorithms, the initial values of weights are filled in with random numbers. In the
Kohonen neural network, the weights of output neurons are evenly distributed on the
surface of the hypersphere. The problem is that most often the input vectors x; are
distributed unevenly; the weight vectors of most of the neurons are removed from the
input ones, so they will not participate in the learning algorithm, and the remaining
vectors are not enough to divide into classes. To solve this problem, it is proposed to

initiate weights by placing most of them in a cluster of input vectors. We suggest to

use the convex combination method: all weights are made equal wiJ-Z%N, where N —

dimension of the input vector. The input vectors change according to the formula

(1.9), and the coefficient a tends to 0, so all input vectors have the form: xiz\/—%. In the

process of learning the coefficient increases to 1.

X = ax; + % (2.9

There are two options for applying vector Xx; to the input. In the first case, the input is a
normalized vector x;, then the scalar product with the weight vector of each neuron w;

is calculated using the formula:
x = |x||w|cos(xw). (1.10)

The vector that gives the maximum scalar product is selected. In the second case, the
input is a normalized vector x;, then the distance between the vectors w; and x is
calculated using the formula (1.11). The weight vector with the smallest distance to it

is selected.
\1/2
The neuron selected in the previous step is configured according to the formula:

witl = wt + 9(x — wh), (1.12)

where w*? is the new value of the neuron weight, 6 is the learning speed. Setting up
weights reduces to the task of minimizing the difference between the input vector and
the weight vector for the selected neuron.

Iltems 2 and 3 are repeated until the network outputs are less than the specified

8

accuracy.

1.4 Clustering methods

In present work, the Kohonen neural network is proposed to solve the clustering problem. But
there are many other algorithms for resolving this issue. Different clustering algorithms can be
successful in different situations. Creating an algorithm that will accurately determine clusters for all
situations is quite difficult and hardly solvable task.

Graph algorithms, such as connected components and the shortest open path, provide more
visibility. The disadvantage of these algorithms is that they work slowly and often are sensitive to
various outliers that are formed by atypical objects.

The FOREL algorithm is as visual as graph algorithms, but more stable. The algorithm builds
a two-level cluster structure, that is very convenient to interpret. It is successful in practical
applications.

The EM algorithm is one of the most popular algorithms for solving clustering problems. It
allows you to determine the optimal number of clusters to split the selection into. The algorithm is
able to identify outliers that are formed by atypical objects. But the EM algorithm is sensitive to the
initial approximation.

The k-means algorithm is a simpler version of the EM algorithm and is also very popular due
to its ease of implementation. The advantage is that the algorithm converges faster than the EM
algorithm. But the algorithm is even more sensitive to the initial approximation. Therefore, it is mostly
poorly clustered.

The hierarchical agglomerative clustering algorithm allows you to identify a detailed cluster

structure in the form of a dendrogram.

1.5 Automatic clustering methods

In this work, a training sample from the MNIST database of handwritten digits contains
60,000 images. There are many ways to write a particular number. In classical clustering methods,
such as the k-means method and the nearest neighbor method, the number of clusters to split the
sample into is known in advance. The number of clusters for each digit will be different. To do this,
you need to use automatic clustering, i.e. find out how many clusters you need to split the selection
into.

There are several algorithms. In this work, we apply the following algorithm:

1. Calculate the squares of distances between all vectors in the sample, using the

Euclidean metric:

d?(xt,x)) = ||xi - xj”2 =" (xf - xlj)z, (1.13)
9

5.

From the obtained values, we form a matrix.

Determine the maximum element of the matrix (the maximum distance among all
vectors): max d?(x!, x/).

Determine the allowable distance between the vectors in the same cluster. The
permissible distance is set by a fixed percentage of the maximum matrix element
(maximum distance between vectors).

Select an arbitrary i-th column of the matrix (vector x). Mark all elements of the
column, whose values are less than permissible, as elements of the same cluster
(rows with number j). We exclude the i-th column and, as well as all the j-th columns.

If the matrix is not empty yet, then go to the step 4.

Also, there is another algorithm:

1.

The distances from each vector to all the others are calculated using the formula
(1.13).

Determination of the maximum element of the matrix (the maximum distance among
all vectors): max d?(x*, x/).

Normalization of distance according to the formula:

d?(xtxd)
max(d2(xtx/))

d?(xt,x)) = (1.14)

Distances are sorted in ascending order.
Clustering vectors: if the next distance value in one column is no more than the
previous value n times, then the vectors are in the same cluster. The parameter n is

fixed.

Both of the above algorithms give approximately the same results, but the processing time of

the second algorithm is much higher for a large amount of data. Therefore, in this work, the first

algorithm is used to determine the optimal number of clusters.

1.6 Recurrent neural networks

Among the many networks, there are artificial neural networks where weights are calculated

only once before the neural network starts functioning. In fact, the network stores information for

training before test data is submitted for input.

If you look at the architecture of such networks, there are feedbacks in recurrent networks, in

contrast to feedforward networks: the signal from the output of the neuron can go back to the input.
Feedbacks allow neural network outputs to accept arbitrary states at different times with the same

inputs without necessary stabilizing on the same state.

The feedback neuron is shown in Fig. 1.5.

10

Fig. 1.5: The feedback neuron

The work of a feedback neuron is as follows. First, the values x; are fed to the input of the
neuron and the output of the neuron z is calculated. Then the output value is again fed to the input of
the neuron along with other values and a new value is calculated. This process ends when the
output z value changes insignificantly from iteration to iteration. From here, we can divide recurrent
networks into two classes: stable and unstable. Stable networks are recurrent neural networks for
which it is possible to get output values that have stabilized to a single value. Unstable ones are
those whose output values are not stable.

Among the networks that operate under this arrangement, the most popular is a Hopfield
neural network. Hopfield neural network consists of a single layer of configurable w; weights. Every
neuron in the network is connected to all neurons: all neurons return their outputs to their inputs.
There is also one input synapse through which the signal is entered. Hopfield neural network

operates with the values +1 and -1. The Hopfield neural network architecture is shown in Fig. 1.6.

A 2 A 22 f Zm

Fig. 1.6: Architecture of Hopfield neural network

The problem that is solved using this network is formulated as follows. Let us give a set of
binary signals: images, audio digitizations, and so on. Hopfield network must select an imperfect
signal from the input ("remember») the corresponding sample, if there is one in memory, or give an
exception that the input signal does not match the existing samples.

Input signals are sent once to Hopfield neural network. Each signal from the training sample
is described by the vector X={X1,Xa,..., Xm}, Where m is the dimension of the vector x. This is the set
that the neural network "remembers". The input signal that needs to be recognized or "remembered"
is denoted by Y={ y1,¥2,..., ¥m }, Wwhere m is the dimension of the y vector. Let Xy be a vector that
describes the k-th signal. If the Hopfield network recognizes any sample, then X,=Y, otherwise the

output vector will not match any vector from memory.

11

Before Hopfield neural network starts functioning the wj; weights are calculated using the
formula:
Wiy = {E"m Ot)xfc_’k;l 77 (115)
Then Hopfield neural network starts working.
1. AYY signal is sent to the input of the neural network, that must be recognized.

2. Calculation of the new state of neurons:

where p is an iteration number.

3. The new state of axons is also calculated:

yip+1) =f£[s;(p+ D], (1.17)
where fis a threshold function of the form:

1,S;>T,
f(S) = 15 <7, (1.18)
not chahges, S; = T;
where T is the threshold of the neuron.

4. Check whether the output of neurons has changed over the last iteration. If it has, go
to the step 2, otherwise the outputs have stabilized. If there is no vector exactly
matching the vectors in the memory of the neural network, the answer is the sample
that best matches the input.

A Hopfield neural network is stable if the weight matrix W is symmetric, that is, w;=w; and the
values on the main diagonal are 0. This can be proved as follows. Consider a neural network as a
dynamic system that has an energy state. The energy of the system is denoted by E, then if the
energy of E decreases or does not change when the state make any changes, so the system will be
stable by definition. Based on the symmetry condition of the system and the condition that the values

on the main diagonal are 0, we can describe the energy as follows:
1
E = —E ZZWUZJ'ZL' —ZXij + ZT]Z]) (119)

where wj is the weights of the neural network, z; is the output value of neuron j, x; is the j-th
element of the input vector, and T; is the threshold of neuron j. The change in energy E; due to a

change in the state of z; is calculated using the formula:
AE] = _[Ziij(wjizi) + Xj —]AZJ (S T])AZ] (120)

Then, based on the formula (1.20), there are 3 cases:
1. Sp>T;. Then (S-Tj)>0, therefore substituting this in (1.18), Az is either greater than
zero, or will not change. Then AE; decreases or stabilizes.

2. S<T;. Then (S;-T))<O0, therefore substituting this in (1.18), Az is either less than zero,
12

or will not change. Then AE; decreases or stabilizes.
3. S=T,. Then AE;=0, i.e. stabilizes.

Thus, any change in state reduces the energy, and therefore the neural network, therefore
the Hopfield network is stable.

Hopfield neural network forms a simplified model of associative memory. Human memory is
associative, meaning that the brain receives information and receives a lot of memories in response.
For example, if a person hears a person's name, the brain will give out information about the
appearance of this person, the emotions that this person causes, and many other memories.
Associative memory has a very complex structure. The algorithm for working with associative
memory has the following form:

1. All x; images that need to be remembered are represented by vectors of length N and
take the values +1 or -1.
2. Weights of the neural network are initialized using the formula:
Wi = Yo xfixé (1.21)
3. After the images are stored in memory, the process of restoring memories begins.
Due to feedback, the distorted image can be restored. But if the image was badly
distorted, the result may be incorrect.

The following question occurs: what is the capacity of the network, that is, how many images
can the Hopfield neural network remember. Experimentally, it has been shown that the Hopfield
neural network, which consists of N neurons, can only remember fifteen percent of n. Thus,

associative memory, which is implemented using the artificial Hopfield neural network is associative.

1.7 Overview of neural networks for pattern recognition

The task of this work is to recognize images of handwritten numbers from the MNIST
database using the Kohonen and Hopfield neural network. The problem of pattern recognition by
neural networks is one of the most popular today. Therefore, there are many neural network
architectures for solving this problem.

1. Multilayer perceptron;
Convolutional neural network;
Recursive neural network;
Recurrent neural network;
Network of long-term short-term memory (LSTM);

Sequence-to-sequence model;

N o o~ w D

etc.
One of the most popular and frequent neural network architectures is the multilayer

perceptron. But one of the biggest disadvantages of this network is its redundancy. For example, if

13

the input is an image in the form of a 34x34 matrix, the neural network will have 1156 inputs. This
indicates a large amount of computing power that is expended for this algorithm. A study was
conducted to solve this problem. It was found that there are two types of cells in the visual cortex of
the brain: simple and complex. Simple cells respond to the image of straight lines, and complex cells
to forward movement in one direction. Based on this research, an algorithm for convolutional artificial
neural networks was constructed.

In convolutional neural networks, each input neuron gets not the entire image, but only a part
of it. Due to this, you can save the topology of the image from layer to layer and use in the
processing of multiple neural networks. For the many connections in a neural network a small set of
weights can be used, these sets are called nuclei. Shared weights increase the ability to find
invariants in images and filter out the noise.

Thus, convolutional neural networks have a number of advantages: a reduction in the number
of trained objects, and therefore a high learning speed compared to a multi-layer perceptron; the
ability to parallelize; the ability to shift the position of the object. Convolutional neural networks are
the best algorithms for facial recognition in terms of accuracy and speed.

The brain has a feature: receiving any information, at the output of the brain will give a lot of
other information that is somehow related to the input. Since traditional neural networks cannot
mimic this feature, recurrent neural networks have been developed. As mentioned earlier, one of the
most popular recurrent neural networks is a Hopfield neural network. Recurrent neural networks are
successful in a number of tasks. Great results were achieved by LSTM (Long short-term memory)
networks. The LSTM network is a modification of the standard recurrent network that is capable of
learning long-term dependencies. Let's look at an example of predicting a word in a sentence.
Sometimes, in order to accurately predict information, it is enough to refer to recent information.
Standard recurrent networks easily solve this problem, but if a broader context is needed for
forecasting, errors occur. This is exactly what LSTM networks do. A standard recurrent network has
the form of a chain of repeated modules, where one module consists of a single layer with an
activation function. In LSTM networks, the module contains four layers. The Fig. 1.7 and the Fig. 1.8

show the architecture of a regular recurrent network and an LSTM network.

© ® ©
f !

| |
& ®© ©

Fig. 1.7: Architecture of a standard recurrent neural network

14

& ® ®

f { f
b = g I\:
A LAl »

I
& ® &)

Fig. 1.8: Architecture of a LSTM neural network

LSTM networks are a big achievement in recurrent neural networks. The disadvantage is
their complexity, but their ability to mimic the operation of long-term memory is a huge advantage.
According to the researchers, the next step in recurrent networks will be to simulate the attention

mechanism.

1.8 MNIST database

The work was tested on the basis of handwritten numbers in the MNIST database (test
sample). The MNIST database is a large data set consisting of samples of handwritten digits. The
MNIST database was published by the US National Institute of standards and technology.

The database contains 60,000 samples for the training sample and 10,000 samples for the
test sample.

Each image is represented in two ways: as a placemark and as a vector of pixel values. Each
image in the database is normalized in size. The size of each image is 28 by 28 pixels. The pixel
value varies from 0 to 255: 0 is a black pixel, and 255 is a white pixel.

Many methods have been tested on this database. For example, K-nearest neighbor
methods based on MNIST give an error of 5%, convolutional neural networks give an error of less
than 1%, multi-layer perceptron an error of about 2-5% depending on the training methods and the
number of layers.

MNIST database is perfect for training neural networks for pattern recognition, because in
addition to clearly written numbers, the network has large handwriting distortions. Therefore, the
network is trained not only on standard images. Examples of images from the MNIST database are

shown below.

15

izl foly
olelz ol

Fig. 1.9: Examples of images from the MNIST database

1.9 Using CUDA technology for neural networks

Combining multiple processors to solve a given task is called parallel processing. Parallel
processing allows you to speed up the running time of the algorithm. Parallelization is often used
during the work with neural networks, because neural networks operate with a large set of data.

There are several levels of parallelization in artificial neural networks:

1. Level phases of training;
2. Level of training sample;
3. The layer level,

4. The level of neurons;

5. Level of weights.

In order to choose at which level to implement parallelization, you need to start from the
architecture of the neural network and the task at hand. You can use all levels at the same time.

At the level of learning phase the study of network is made under different primary systems.
Using this level of training causes a rapid linear increase in the speed of the phase, that is an
essential benefit of applying this level.

At the level of training samples, the network training takes place simultaneously on multiple
processors. This is very important, because neural networks often have large training samples.

In multilayer neural network architectures (models with reverse error propagation), vectors
follow each other. When using parallelization at the layer level the vectors as well go through the
processors. In this case, the most accurate vectors that have passed through all processors are
taken as a reference. After the vectors have passed through the processors again, the processors
update the weights in the neural network based on the reference values.

When using parallelization at the neuron level, the processing processor is similar to a
neuron. Neurons are divided into processors within a single layer. This is one of the most popular
methods of parallelization of neural networks.

The weight level is most often used in hardware implementations. Computation in a single

neuron (recalculation of the weights, for example) is divided among the processors.

16

This work uses two neural networks-a Kohonen neural network and a Hopfield neural
network. Parallelization was applied for Kohonen neural network. This is due to a large training
sample and a large number of clusters to divide the training sample into.

Modern GPUs are very efficient in parallel computing. CUDA technology allows you to write
programs using GPUs in a high-level programming language.

CUDA technology only works with graphics devices from NVIDIA. CUDA currently supports
the following programming languages: C/C++, Fortran, and Python. In a program written on a
standard processor, you can add elements to work on the GPU. The source code must be pre-
processed. After that, the standard compiler is called and the code is generated separately for the
CPU and separately for the GPU. When computing on a GPU, a large number of parallel processes
— threads-run simultaneously. All threads are combined into a grid. A grid is a one-dimensional, two-
dimensional, or three-dimensional array of blocks. Each block, in turn, is a one-dimensional, two-

dimensional, or three-dimensional array of threads (thread). Blocks have the same dimension.

Gnd
block(0,0) block(0,1) block(0,n-1)
block(m-1,0) |*, block(m-1.1) “eeo__| block(m-1,n-1)
Block
thread(0,0) thread(0.1-1)
. | thread(k-1,0) thread(k-1,1-1)
W

Fig. 1.10: Thread hierarchy in CUDA

The original task is divided into several separate subtasks that are solved independently of
each other, and each subtask corresponds to a block of threads. Each subtask is solved only by
threads from its own block. Threads can only interact with each other within their own block. They
can not interact with threads from other blocks. In order to avoid problems with simultaneous
operation, barrier synchronization is used. This type of synchronization does not allow threads to
execute commands until all threads perform an action.

Thus, parallelization of neural networks will help you optimize your work over time. And

CUDA technology provides very convenient and affordable tools for this.

17

Chapter 2

Description of the software implementation and results

2.1 Task statement and program structure

In this graduated work, a cascade model of software development was chosen. This choice is
due to the fact that the software is relatively small and all the requirements are precisely formulated.
The cascading model assumes that all stages will be completed, and the transition to the next stage
is possible only after the previous one has been completed and verified. The structure of the

cascade model is shown in Fig. 2.1

Requirements
analysis

‘ System design ‘

System |
! development

‘ System testing

\H /J.

Fig. 2.1: Waterfall model of software development

At the stage of requirement analysis, it is hecessary to identify problems and tasks that the
software will solve. The system design stage describes the implementation of the system. At the
stage of system development, software is directly developed according to the specification obtained
at the stage of system design. At the last stage, the system is tested. In this case, the software was
tested using a test sample from the MNIST database. Let us list the main points of each stage of the
cascade model of software development.

During the requirements analysis stage, the tasks assigned to the developer were identified.
In this paper, the task of recognizing handwritten images is set. It was necessary to build a
hierarchical neural network that consists of Kohonen neural network and Hopfield neural network.
The user must be able to load the database, train both neural networks, and perform cluster analysis
using Kohonen neural network.

At the stage of system design, the development environment was selected, as well as the

18

graphical user interface was designed. The C# programming language was chosen and
development was carried out in Windows Forms. The Visual Studio development environment
provides a user-friendly development interface and all the necessary tools to create a user-friendly
user interface.

At the development stage, all neural networks were developed and an object-oriented
programming approach was used.

Testing was conducted, as already mentioned, on a test sample of the MNIST database.
Both neural networks were tested. Testing software demonstrates the correctness and accuracy of
the algorithm and software in general. The software was also tested on the basis of Fashion MNIST,
which demonstrates the versatility of the algorithms. Next, we will discuss the stages of building
software in more detail. Logging is performed using the framework NLog.

In this work, we considered the problem of recognizing images of handwritten numbers
contained in the MNIST database. Recognition was performed using a Hopfield recurrent neural
network. Separately for each digit, we used Hopfield's own neural network that was trained on a
sample containing only an image of this individual digit. The table below shows the number of

images of each digit in the training and test sample.

Digit Count in the training sample Count in the test sample
0 5923 980
1 6742 1135
2 5958 1032
3 6131 1010
4 5842 982
5 5421 892
6 5918 958
7 6265 1028
8 5851 974
9 5949 1009

Table 2.1: The number of images of each digit in the training and test samples in the MNIST database

As you can see from Table 2.1, for each digit in the MNIST database, there are about 6
thousand objects from the training sample. As mentioned in the previous chapter, a Hopfield neural
network has a limited number of objects to remember. Therefore, the network will not be able to
remember about 6 thousand images. The network capacity is about 15 percent of N, where N is the
image dimension. The size of each image in the database is 28 by 28 pixels, so N=28*28=784
pixels. Thus, a Hopfield neural network can remember about 100 images. In this paper, to get more
accurate information, 50 images were taken for the network capacity.

Due to the fact that a Hopfield neural network has a memory limit, it is necessary to build a
small sample. To do this, it was decided to cluster the training sample for each digit using a Kohonen
neural network, and cluster centers will be used as the new training sample.

You will also be asked how many clusters each selection should be divided into. To solve this
problem, we used automatic clustering, the algorithm of which was described in the first chapter.

When a Hopfield neural network is running, it is not always possible to bring a distorted
19

image to any image in the network memory. In this case, the result is the image that is the most
similar to any image from memory. In this paper, 2 methods were proposed and a comparison
analysis was performed. After the 10 neural networks for each image finish their work, the results of
these networks-the percentage of how similar the image is to what is being fed to the input-are
sorted in descending order — from the most similar to the most dissimilar. The user is shown the first
3 images.

The program works as follows.

1. The user sees a window for loading the database: he can choose the MNIST
database that was used for testing, or choose a database from the file system. Before
doing this, the user must fill in the information about the database (how much data is
for training, how much data is for testing, image format). The graphical interface is
configured for the MNIST database, but the recognition algorithms are suitable for

other databases, and the data must be pre-processed.

¥a08 18COgNRIoN using rieural netwosks g AddinglnfoAboutDtb — O oy

This program recognizes the image of handwritten numbers.

Software consists oftwo neural networks: the Kohonen neural Erter Information About Database
network and the Hopfield neural network .Here is a form for

uploading a database of handwritten numbers. The program has

already been tested on MNIST, if you wantupload the same .EDODO
database click on the button:Load MNIST ¥ you want to upload

another database, click the button: upload database For a full

description of the software module, click Help.

Count in training sample

W Count in test sample
28 | Height
28 Width

Download Ok

Download MNIST Database Help

Fig. 2.2: Window for loading the database

2. After the user successfully enters the database, a window opens to operate the

program. The window contains the following elements:

20

o Form1 — O X

Count of i i
oul images Count of clusters Clusters Clusterize a single digit Percentage of emors
clusters ini
Digit Training Test sample
I

5923 980
6742 1135
5958 1032
6131 1010
5042 (982
5421 [8s2
5918 | ass
6265 [
5851 | 974

W @ oo s w N =

1009

The training sample was loaded successfully
The test sample was loaded successfully
The image of digit 2 uploaded successfully

Fig. 2.3: The main window of application

¢ RichTextBox — for writing messages about process;

e PictureBox — for loading a random image from a test sample of the MNIST
database;

e TabControl — to provide basic information about the database. Clusters and

network errors. The table below shows the tabs that this element contains.

Name of tab Description

Count of images Contains a dataGridView that provides
information about the number of images for each
digit for the MNIST database.

Count of clusters Contains a dataGridView that contains the
optimal number of clusters less than or equal to
50 for each digit (for a Hopfield neural network).
The tab also contains a comboBox and a "Graph"
button. Using these controls, you can select a
number from 0 to 9 and the chart element will
show the graph of how the optimal number of
clusters changes depending on a fixed

percentage.

Clusters Contains a PictureBox, that show the images of

the clusters.

Clusterize a single digit Contains a PictureBox and a button. When you

21

click on the button, the uploaded image is
recognized by the Kohonen neural network and

the result is displayed on PictureBox.

Percentage of errors Contains a DataGridView that presents, for each
digit, the percentage of how correct were the

clusters constructed by Kohonen neural network..

Table 2.2: Description of tabs in TabControl

e Buttons: the buttons are divided into stages (the stage of determining the
optimal number of clusters, the stage of building clusters, and the stage of
recognition by the Hopfield neural network). Also there is a button to download
image from test sample.

» “Determine the optimal number of clusters” — after clicking, a message
will pop up and give you a choice: perform automatic clustering again
or read the results from the file (for the MNIST database, the data is
already in the file, so you can use it to speed up). You can see the
results in TabControl in the "Number of clusters" tab. The tab also
contains tools for plotting the dependence of the number of clusters on
a fixed percentage of the maximum distance between vectors in the

training sample.

Count of images Court of clusters Clusters Clusterize a single digit Percentage of emors

Count of Choose the number

Digt

clusters s Vet]
D
49

30
47

6000

e Tala T alolslol =

Fig. 2.4: Tab “Count of Clusters”

22

» “Create clusters” — after clicking, a message will pop up and give you a
choice: train the data and identify the main clusters, or read the results
from the file (for the MNIST database, the data is already in the file, so
you can use it to speed up).

» “Show clusters” — after clicking, a window will pop up — there you need
to enter the number for which we want to see the examples of clusters.

You can see the results in the "Clusters" tab.
e oo T el |

S|515]

Fig. 2.5: Tab “Clusters”

» “Checking the Kohonen neural network” — after clicking, a message will
pop up and give you a choice: check the data again or read the results
from the file. The result will be a table that contains information about
how many images from the training sample were included in the "own"

cluster as a percentage.

I Count of inages Cout of clusters Clusters Clusterize a single digit Percentage of emors _

Digit Percentage

> 98.16139 %
99.82363 %
93.98642 %
[9415263 %
v 91.94699 %
v 93.04153 %
' 97.59666 %
v 91.33398 %

93.52518 %
90.67461 %

e[uo [oe w o=

Fig. 2.6: Tab “Percentege of errors”

» “Recognition 1” — after clicking, a new window that contains three

PictureBox opens. The first PictureBox is the image that best matches

23

the image that needs to be recognized. The second and the third
PictureBox are images that rank the second and the third in
recognition. Recognition was performed applying a Hopfield neural
network using method 1. Another three PictureBox stack the image
that came out as a result and the one that should have come out on
the top of each other and are highlight them in different colors, so it is
easier for the user to compare them. The window also contains
information about how wrong the neural network was during

recognition. The dataGridView displays the percentage separately for

each digit.

8253 [e125%

Fig. 2.7: Recognition using method 1”

» “Recognition 2" — after clicking, a new window that contains three
PictureBox opens. The first PictureBox is the image that best matches
the image that needs to be recognized. The second and the third
PictureBox are images that rank the second and the third in
recognition. Recognition was performed applying a Hopfield neural
network using two methods. Another three PictureBox superimpose the
image that came out as a result and the one that should have come out
on the top of each other and highlight them in different colors, so it is
easier for the user to compare them. The window also contains the
information about how wrong the neural network was during
recognition. The dataGridView displays the percentage separately for

each digit.

24

| The |
 The

image of digh 2 uploaded
optimal number of clusters for each digt is

Fig. 2.8: Recognition using method 2”

“Checking 1 “— after clicking, a message will pop up and offer you to
check the data again or read from the file. It enters information about
how well a Hopfield neural network works using method 1 in the table.
The result will be a table that contains the information about how many
images (as a percentage) from the training sample were recognized
correctly.

“Checking 2 “— after clicking, a message will pop up and offer you to
check the data again or read from the file. It enters the information
about how well the Hopfield neural network works using method 2 in
the table. The result will be a table that contains information about how
many images (as a percentage) from the training sample were
recognized correctly.

“Upload image” — after clicking on it, a random image from the test
sample is loaded. it is also possible to load the image by number
(numbering starts from 0).

“Recognize” — the button is located on the "Clusterize a single digit"
tab. After clicking on it, the image uploaded to the software is

recognized by the Kohonen neural network.

25

a5 Form1 - o X

Count of images Count of clusters Clusters Clusterize a single digt Percentage of emors

Fig. 2.9: Recognition using Kohonen Neural Network”

Before starting work, the user can read the instructions for applying this program. The user

can use the «Help» button to get a detailed user guide (*chm file).
The application is written in C# in Windows Forms in Visual Studio 2017. Below is a

sequence diagram that shows how the main application blocks interact.

User MNIST database Kohonen NN Hopfield NN

1: Download dtb into app -

T T 27Success —‘U

3 : Create Clusters

4 ...
1300 O N A e A 4:Success ...
: 5. Pictures and information about clusters
6 : "Remember” centres of c\us.lers

7 : Success

8 : Picture to Recognition

10 : Results L]

Fig. 2.10: Sequence diagram

The user first accesses the image database and uploads it to the app. In case of success or
error, the user receives a message about this. Then the life cycle for the database dies, and the
26

application no longer interacts with it. Next, the user sends a message to the Kohonen neural
network to build clusters. After the neural network has completed its work, the user receives a
success message and the clusters built. Kohonen neural network completes its life cycle. Next, the
user sends the received clusters to the Hopfield neural network. The neural network sends a
success message to the user after it has" memorized" the cluster centers. The user then sends the
image to the Hopfield neural network to be recognized. Hopfield neural network starts working and, if
no errors occur, sends a success message and results. The Hopfield neural network completes its
life cycle.

The program can be divided into three major stages: determining the number of clusters
separately for each digit using the automatic clustering algorithm, clustering using a Kohonen
network, and direct image recognition applying a Hopfield neural network. The following sub-

chapters will detail these steps and the achieved results.

2.2 Determining the optimal number of clusters

As mentioned earlier, the MNIST database has 60,000 images in the training sample and
10,000 images in the test sample. Table 2.1 contains information about how many images from the
training and test sample are contained for each digit.

You need to build clusters whose centers will serve as a memory sample for Hopfield neural
network. You also need to perform cluster analysis for separately each figure.

The main problem is that all people write differently. There are many ways to write a
particular number. Each number has its own specific spelling features. For example, one person will
write the number 0 with a tilt to the right, another one — to the left, and the third person will write it in
the center. For each digit, the number of attributes that can be used to split the sample is different.
Therefore, you cannot specify the same number of clusters to split each digit into. You need to use
an algorithm that automatically determines how many elements the training sample should be
divided into for each digit. Thus, the task is to determine the optimal number of clusters for each
digit.

In this program in order to determine the optimal number of clusters, it is necessary to press
the button. The MNIST database has already been tested, so information about the number of
clusters is already contained in the files. When you click the button, the program asks whether to
perform clusterization again or read from the file.

The automatic clustering algorithm used in this work was discussed in detail in the previous
chapter. For this algorithm, the program has created a separate class that contains a method of
calculating the Euclidean distance between vectors, a method for training, and a method of writing
clusters to a file. This class is inherited from the distance interface, which contains a method of

Euclidean distance.

27

Automatic Clusterization

+size0OfVector
+countOfNumbers

+EvclidDistance(int vecorNumber, double[,] t, double[,]d, int vectors)
+Trainig(double[, Jpattern, int vectors, int num)
+ComputeAndWritingIntoFile(string fileName, double maxDist, double[,] distance, int vectors)

Fig. 2.11: Class for Automatic Clusterization

The results are displayed in a table. The Autoclasterization class contains a constructor that
fills in the fields sizeOfVector — vector dimension (image width multiplied by image height) and
countOfNumbers — number of digits (10). Data is filled in from the class for describing the database.

The algorithm consists of the following steps. You must calculate the squares of the
distances from each vector to all other vectors in the training sample for each digit. For each digit, a
table of distances between all vectors is obtained. Next, find the maximum value in this table. The
next step is to determine the maximum distance between the vectors. This will be a fixed percentage
(dc) of the maximum value in the table that was obtained in the previous step. Next, you need to go
through the entire table and combine the vectors in the cluster: if the distance is less than the
distance obtained in the previous step, then the vectors belong to the same cluster, otherwise a new
cluster is created. In this work, you just need to calculate how many such clusters you will get.

The work analyzes how the number of clusters changes depending on a fixed percentage of
dc. The percentage of dc changed in the range [10;90]. We will conduct two studies. To begin with,
we will take a random sample of 1000 elements for each number. A dependency graph was

constructed for each number.

1000 1000
800 N 800 -\
600 \ 600 \
400 \ 400 \
200 \ 200 \
0 'WFW 0 'm

10162228344046525864 707682 88 101622283440465258 647076 82 88

Percentage dc Percentage dc

Count of clusters
Count of clusters

28

1016222834404652586470768288

Percentage dc

1000 \ 1000 \
800 800
g \ g \
2 600 2 600
: \ : \
£ 400 € 400
> 3
: N\ : \
200 200
0 'm 0 'Wm
10162228344046525864 707682 88 10162228344046525864 707682 88
Percentage dc Percentage dc
1000 \ 1000 \
800 800
\ \
2 600 2 600
: \ : \
€t 400 € 400
3 3
3 \ g \
200 200
O'TWFWFWFFWM 0 TTTTTTTT T T T I T I I I I I T I I I I T I i i i I rrrrrrrrn
1016222834404652586470768288 1016222834404652586470768288
Percentage dc Percentage dc
1000 \ 1000 \
800 800
2 600 2 600
5 \ 5 \
£ 400 € 400
3 3
S \ S \
200 * \
O—T'—'—'—'—'—'—'—'—'—'—'—'—'—'—'—m O TTTTTTTTTTITITTITTTI T T T T I I T I T ia T rrrrrrrrTl
101622 28344046 525864707682 88 1016222834404652586470768288
Percentage dc Percentage dc
1000 \ 1000 \
800 800
\ \
3 600 % 600
"6 \ s \
€ 400 € 400
3 3
E \ g \
200 200 \
O'TWFWFWFFWM 0 LI L L O e e

1016222834404652586470768288

Percentage dc

29

Table 2.3: The dependence of the optimal number of clusters on a fixed percentage of the maximum distance for
each digit for a sample of 1000 vectors

For each digit, the graphs are approximately the same. The smaller the percentage of the
maximum distance between vectors, the more clusters you need to split the sample into. We need

the number of clusters to not exceed 50. The following results were obtained using this algorithm:

Digit

0

1

2

3

4

5

6

7

8

9

Clusters

22

50

48

30

29

39

44

45

46

49

Table 2.4: The optimal number of clusters for each digit with a sample of 1000 vectors

Now we will do the same, but the entire sample will be taken for each digit. As you can see in

Table 2.1, the sample size is different for each number.

Count of clusters

7000
6000
5000
4000
3000
2000
1000

0

1016222834404652586470768288

Percentage dc

Count of clusters

7000
6000
5000
4000
3000
2000
1000

1016222834404652586470768288

Percentage dc

1016222834404652586470768288

Percentage dc

7000 7000
6000 - 6000 ===
§ 5000 § 5000 \
3 4000 3 4000 \
2 3000 < 3000 \\
& 2000 g 2000 \
1000 1000
O“mﬂﬂﬂ'l‘l‘l‘l‘l‘l‘l‘l‘l‘l‘ﬂﬂﬂﬂﬂ'l‘l‘l‘l‘l‘l‘l‘rl‘llllllllll O'W
10162228344046525864 70768288 10162228344046525864 707682 88
Percentage dc Percentage dc
7000 6000
6000 ~ 5000
é >000 \ é 4000
2 4000 3
: \ £ 3000
2 3000 \ 2
g 2000 g 2000
1000 \\ 1000
O'W O__mwww-rmlllllllllln

1016222834404652586470768288

Percentage dc

30

7000 7000

6000 6000 =~

5000 N\ 5000 AN

4000 AN 4000 AN
A\, \

3000 3000

2000 \\ 2000 \\
1000 1000

o-m O-W

Count of clusters
Count of clusters

1016222834404652586470768288 1016222834404652586470768288
Percentage dc Percentage dc
7000 7000
6000 - 6000
§ 5000 N\ § 5000
2 4000 N\ 2 4000
2 3000 \\ 2 3000
2 2000 AN 3 2000
1000 1000
O'W O“m'rrrm'rrn'rrn'rrn'rrn'rn-nnn.nnn
1016222834404652586470768288 1016222834404652586470768288
Percentage dc Percentage dc

Table 2.5: The dependence of the optimal number of clusters on a fixed percentage of the maximum distance for
each digit for a full sample

The optimal number of clusters in this case is obtained as follows:

Digit 0 1 2 3 4 5 6 7 8 9
Clusters 39 49 30 47 28 33 49 29 38 28

Table 2.6: The optimal number of clusters for each digit with a full sample
2.3 Data clustering and cluster analysis

The next step is clusterization. The training sample for each digit must be divided into the
optimal number of clusters that were obtained in the previous step. Clustering was performed using
a Kohonen neural network. The neural network algorithm was discussed in detail in the previous
chapter.

For this algorithm, a separate class has been created that contains the main network
settings, methods for training, finding the distance between the vector and clusters, and determining

the minimum distance.

31

Kohonen Neural Network

+maxClusters
+sizeOfVectors
+W

+d

+vectors
+decayRate
+min_h

+h

+EvclidDist(int vectorNumber, double[,] t)
+Minimum()
+Training(double[,] pattern)

Fig. 2.12: Class for Kohonen Neural Network

The class for the Kohonen neural network uses the class for the database to get a training
sample, and the class for determining the optimal number of clusters, which was described in the
previous paragraph.

To cluster digits, select the following parameter values: decay Rate=0.96, min_h=0.01, and
set the initial value to h=0.6.

The results of this work are the cluster centers, which are recorded in the file. Then, using
cluster centers, cluster analysis is performed. To begin with, we consider the issue of intersecting
clusters with each other. By examining the intersections of clusters, you can answer the question
whether clustering by the Kohonen neural network is suitable for pattern recognition. The fewer
intersections between clusters, the more accurate the recognition. Then, based on the obtained
clusters, we calculate which percentage of the test sample belongs to the "own" cluster, and
calculate the F-measure for each digit. Based on this data, we can draw conclusions about the
effectiveness of the Kohonen neural network in pattern recognition.

As a starting, we will conduct experiments on the small samples to identify common elements
and characteristic features of their writing. Firstly, we conduct a study on the dependence of cluster
centers on the sample size. we consider experiments on random samples of 100, 500, 1000 and
5000 images of individual numbers. In experiments a different number of clusters is chosen for each
digit. It is concluded that when there are three clusters, the number of digits in them is distributed
approximately equally. Based on this, for further research we assume the presence of three clusters
for all numbers.

Also, the results of experiments indicate that, the centers of the clusters remain virtually
unchanged starting with a sample of a thousand images. Thus, it can be assumed that the sample of
1000 elements is representative. For each digit, the images are divided into three clusters. Cluster

centers are shown in Table 2.7.

32

ooﬂﬂxz 3 3| ¥y
1

ssﬂﬂ77 glgl ql~
G 7 g 9

Table 2.7: Cluster centers for each digit when selecting 1000 images and dividing by 3 clusters

During the analysis of each cluster, several main features can be picked out:
1. Each digit has a cluster with a strong inclination to the right.
2. There are no clusters with a clear inclination to the left.
3. All numbers have at least one cluster with no slope.
4. Images of numbers 0, 3, 4 and 5 have a wide spelling.
We can also highlight the features of writing individual numbers:
1. The third cluster of number 1 has a curl in front, unlike the other two clusters.
2. Two clusters of number 2 have a curl from at the bottom, one cluster has no curl.
3. The third cluster of number 7 has a horizontal line in the middle.
4. The second cluster of 5 contains a long horizontal line.

Note that the resulting clusters have large radius. This is because the number of clusters is
small — 3. In this case, intersection of clusters may occur.

The main problem in image recognition is that identical numbers are written differently. This
leads to the fact that either the number of clusters increases significantly, or the size of clusters
grows. On the other hand, there is a problem that different numbers are written in a similar way. In
the case of a small number of clusters, one should expect that, due to their large size, there will be
intersections of clusters of different numbers. We investigate similar intersections for all images of
numbers.

To build intersections between clusters, we created three tables for each image. For
example, we take a sample with a volume of 1000 images 0. Next, we check at what distance from
the center of each cluster for each digit is the image 0 from the sample. If the distance of the image
is less than the radius of the cluster, then we assume that the image lies in this cluster. As a result,
we build a table of relationships. We build similar tables for samples of all numbers. Table 2.8 shows

the intersections of the clusters.

33

0 1 2 3 4 5 6 7 8 9

Intersections 0 with other clusters

120,00%

100,00% -

20,00% -

0,00%
0 1 2 3 4 5 6 7 8 9

Intersections 1 with other clusters

120,00%

100,00%

20,00% -

0,00% -

0 1 2 3 4 5 6 7 8 9
Intersections 2 with other clusters

120,00%

100,00%

20,00% -

0,00% -
0 1 2 3 4 5 6 7 8 9

Intersections 3 with other clusters

120,00%

100,00%

Intersections 4 with other clusters

120,00%

100,00%

20,00% -

0,00%
0 1 2 3 4 5 6 7 8 9

Intersections 5 with other clusters

20,00% -

0,00% -

o] 1 2 3 4 5 6 7 8 9
Intersections 6 with other clusters

120,00%

100,00%

20,00% -

0,00%
0 1 2 3 4 5 6 7 8 9

Intersections 7 with other clusters

120,00%

100,00%

20,00% -

0,00% -

o 1 2 3 4 5 6 7 8 9

Intersections 8 with other clusters

120,00%

100,00%

20,00% -

0,00% -

0 1 2 3 4 5 6 7 8 9

Intersections 9 with other clusters

Table 2.8: Intersections of clusters when selecting 1000 images and dividing into 3 clusters

According to the Table 2.8, we made the following conclusions. Large intersections (many

objects) are contained in the clusters that have the image of number 5 in them. Consequently, many

34

handwritten numbers are similar to the image 5. Also, it is revealed that images of number 1 have
intersections with many clusters (except clusters for 0). From this we can conclude that the image of
number 1 can be incorrectly recognized. Small intersections are observed in clusters for the images
of number 0, which means that the image of number O is recognized quite accurately.

We give examples of images that are included in the intersection of clusters.

3 at the intersection with the cluster for 4 9 at the intersection with the cluster for 0

Fig. 2.13: The examples of images included in the intersection of clusters

Next, we will check the accuracy of cluster construction. To do this, for a test sample of the
MNIST database, we will estimate the percentage of images contained in the desired cluster. To do
this, measure the distance from each image to all the resulting clusters for each digit. If the image
vector is the closest one to the cluster that belongs to the cluster group for the same number, then
we assume that the vector is in the correct cluster. Fig. 2.14 shows the percentages of images from

the test sample being included in clusters of their digits.

120,00%

98,00% 97,80%
90,40% 91,20%
8

100.00% 94,60% 95,60%

6,00%

80,00% -

60,00% -

40,00% -

20,00% -

0,00% -

Fig. 2.14: The percentage of numbers from the test sample in its cluster

Analyzing Fig. 2.14, we can see that the images of number 0 significantly less frequently falls
into the desired cluster. This is due to the fact that the test sample contains the images 0 that differ
in appearance from those images that are contained in the training sample, and, therefore, are very

far from the centers of the desired clusters. In Fig. 2.13 the examples of such images are presented.

35

Fig. 2.15: Examples of the image of number O from a test sample that did not fall into its cluster

Now we will perform clusterization on the sample in full and take the optimal number of
clusters. The values for the optimal number of clusters are shown in the Table. 2.6. Since the
diameter of cluster is less, then the intersections of clusters are much fewer. Therefore, recognition

will be more successful. Here are the examples of new clusters for each digit.

220l
2lolol

ravavi
2101

21212
212121

E1EIE
213131

LAkiLd
L]kl

211
1 E1El

nn
£lisl

e W1 k1
viklkl

i H
21z

=] KTET
21313

Table 2.9: Examples of clusters with a full sample and an optimal number of clusters

36

Let's create cluster intersections for the full

Table 2.10 shows the new cluster intersections.

sample and for the optimal number of clusters.

3,73% 0,30%
0,37% =0 =0
ml ml
m2 w2
=3 51,75% =3
m4 m4
m5 ms
"6 "6
m7 m7
1,099 8 8
,09% .o 17,76% "9
0,02%
22,84%
Intersections 0 with other clusters Intersections 1 with other clusters
0, 0,
1,10% _1,35% 12,32% 2,37% 1,44%
) =0
15,71% m1 ml
m2 3,47%/ 28,50% m2
m3 m3
m4 m4
m5 m5
"6 "6
w7 2,83% m7
8 8
"9 "9
4,57%
Intersections 2 with other clusters Intersections 3 with other clusters
1,49% _ -1,55% 9
o 5,18% 0,87%

mo mo
ml mi
w2 m2
=3 29,11% "3
ma ma
ms5 ms5
"6 "6
=7 3,86% =7
8 8
. 6,55% "9

15,44% 9,37%

8,36%
17,26%
Intersections 4 with other clusters Intersections 5 with other clusters

37

7,65%_ 505% 1,40% 3,57%

1,00% 13 g70 =0 =0
ml ml
m2 m2
m3 m3
m4 m4
=5 23,58% ms
"6 "6
m7 m7

8 8
9,08% "9 "9

15,59%

11,74% 1,95%
Intersections 6 with intersections Intersections 7 with other clusters
2,66% 1,07% 2,75%_ ~1,99%
mo mo
ml mi
w2 m?2
m3 m3
. ma ma
54,44% ms ms
=6 38,15% =6
w7 w7
8 8
w9 w9
o 10,29%
4,27% 4,56% 4,.90%
Intersections 8 with intersections Intersections 9 with other clusters

Table 2.10: Intersections of clusters

According To Table. 2.10 let's make the following conclusions. The digit O has intersections
with clusters for the digit 2,5. This is due to the fact that these numbers have similar curves. The
number 1 has more intersections than other clusters. This is due to the fact that the element of the
digit 1 is contained in the writing of other digits. Clusters for digit 2 have significant intersections with
clusters for digit 3,8. Digit 3 has intersections with digits 2,5,8. Digit 4 intersects with clusters for digit
9. Digit 5 intersects with clusters for digit 3,8. Digit 6 intersects with digit 2. Digit 7 intersects with digit
9. Clusters of the number 8 has intersections with clusters for the numbers 2,9. the Number 9 has
significant intersections with the number 4. the Intersections are much less than in the situation when
we divide into 3 clusters. This way, it greatly improves the results of the network. Here are examples

of images that are included in the intersections of clusters.

38

1o
o

0in intersection with 6 1 in intersection with 6

b
I

2 in intersection with 3 3 in intersection with 2

L
I

4 in intersection with 9 5 in intersection with 3

c
=

6 in intersection with 2 7 in intersection with 9

Table 2.11: Examples of images that are included in cluster intersections

In order to estimate how accurately a Kohonen neural network clusters the data, we will also
estimate the percentage of images from the test sample falling into the desired cluster. Figure 2.16
shows the percentages of images from the test sample falling into clusters of their own digits for full

samples and for the optimal number of clusters.

100,00% 99.82%
08.16%

98,00% - 97.60%

96,00% -

93.9% 94.16%

93.53%

94,00% -

93.05%
91.96%

0, .
92,00% 90.68%

90,00% -

88,00% -

86,00% -

Fig. 2.16: The percentage of numbers from the test sample in its cluster

Table 2.12 shows a summary table presenting where a Kohonen neural network made errors.
39

0 1 2 3 4 5 6 7 8 9
O | 962 | 1 4 1 0 2 7 1 1
! 0 | 1133 | 1 0 0 1 0 0 0
2 9 10 | 970 | 10 1 0 3 10 | 17 7
€ 0 1 051 | 1 19 0 7 19 7
: 0 11 4 1 | 903 | o 11 2 6 44
8 4 1 1 25 1 | 830 | 14 2 10 4
¢ 10 3 4 0 2 > | 93 | o 7
! 1 23 | 10 2 10 1 o | 939 | o 42
: 4 1 4 21 3 19 3 5 | o11 | 3
9 5 8 5 8 37 2 1 22 6 | 915

Table 2.12: Summary results of recognition by the Kohonen neural network

Also, to evaluate the accuracy of clustering of the Kohonen neural network, we calculate
Recall, Precision, and F-measure.

Precision is the percentage of objects that are called positive by the classifier and are actually
positive. In other words, this is the number of vectors that a Kohonen neural network has assigned to
a particular cluster and these vectors actually belong to that cluster. Recall shows the percentage of
positive class objects of all positive class objects found by the classifier. In other words, this is the
number of objects in a particular cluster. Recall demonstrates the classifier's ability to detect a class,
and precision allows you to distinguish this class from other classes. The F-measure is calculated

using the following formula:

Precision = Recall

Fmeasure = Precision + Recall’ (22)
Thus, the table with the F-measure has the form:
Digit 0 1 2 3 4 5 6 7 8 9
Recall 0.967 | 0.951 | 0.962 | 0.933 | 0.943 | 0.949 | 0.959 | 0.950 | 0.937 | 0.899

Precision | 0.982 | 0.998 | 0.940 | 0.942 | 0.920 | 0.930 | 0.976 | 0.913 | 0.935 | 0.907
F-means | 0.974|0.974 | 0.951 | 0.937 | 0.931 | 0.939 | 0.967 | 0.932 | 0.936 | 0.903

Table 2.13: F-measure

Analyzing Fig. 2.16 and Table. 2.13 it can be concluded that a Kohonen neural network can
be used for recognizing handwritten digit images, since a large percentage of images from the test
sample fall into the desired cluster. Successful recognition is achieved if we take a full sample and a
large number of clusters. Due to the fact that there are many clusters and the cluster radius are
small, there are not many intersections. Note that the number 9 is recognized the worst — just over
90 percent. And the number 1 is recognized by the Kohonen neural network in almost 100 percent of
cases.

Thus, the percentage of vectors from the test sample falling into the correct cluster for each

digit is more than 90%. This means that clusterization can be used for pattern recognition of digits.
40

Therefore, the cluster centers turned out to be correct and we can use them as objects for

"memorizing" by a Hopfield neural network.

2.4 Pattern recognition by a Hopfield neural network

The last stage of recognizing images of handwritten numbers in the MNIST database is
recognition by a Hopfield neural network. The architecture and algorithm were discussed in detail in
the previous chapter.

A separate class has been created for the Hopfield neural network in the software. The class
contains two methods of neural network operation, a method for storing images, in this work, these
are cluster centers obtained in the previous step, and a method that describes the activation function
of the Hopfield neural network. A separate Hopfield neural network is created for each digit from the
MNIST database.

Hopfield Neural Network

+sizeOfVector
Yy

+hop

+W

+result
+resprocBlack
+resprocWhite
+resproc

+pix
+iterations
+PercentEnter
+PercentExit
+ch

+chWhite

+CreateMemoryMatrix(int maxClusters)

+ActivateFunction(ref int[] yy)

+Method1()

+Recognition1(int maxClusters, ref int iteration, ref int[] picture)

+FromVectorToMatrix(int size, int num, int[] yy, ref double[,] tempArrY, ref double[,] tempArrMas)
+Recognition2(int size, int maxClusters, ref int iteration, ref int[] picture)

+Method2()

Fig. 2.17: Class for Hopfield Neural Network

The Hopfield neural network class uses clusters obtained using the KohonenNeuralNetwork
class and the image vector to be recognized using the database class. The parameters used in this
network were selected experimentally: pix=100, iterations=200, PercentEnter=4, Percent=2, ch=15,
chWhite=3.

The result of the network is a vector image that either matches the vector from memory after
a certain number of iterations, or the most similar vector is selected. Each of the neural network
methods describes a way to determine two similar image vectors. The network result is given with a
percentage of how much the original image matches the image from the neural network memory.
After all the networks (for ten digits there will be 10 networks) have completed their work, as the final
result, 3 images are selected that most closely match the original image, that is, they have high

percentages. To do this, the results of all networks (percentages) are sorted in descending order and

41

the first 3 vector images are taken.

The resulting images are output in a separate form. Each image also displays a separate
image with an overlay of the original image. This is done in order to clearly demonstrate where the
original image and the result have similarities.

As mentioned in the previous chapter, if the outputs of the Hopfield neural network have
stabilized, but the output values do not match any vector from the network memory, then the
response is the sample that best matches the input vector. Let us go to the description of the two
methods used in this work and compare the results.

The first method is based on a simple comparison of the image under study and the image
stored in the network memory. At the last step in a Hopfield algorithm, you need to check how much
the sample to be recognized resembles the k-th sample in memory. Verification is performed using
the following formula:

C=C+Lif(yy=x=1), (23

where C is the number of pixels. As can be seen from formula (23), the check is performed
only on matched 1s, since it is the value of 1 that makes a greater contribution to the samples. For
example, if you have an image recognition task, -1 is the white pixels, and 1 is the black pixels.
Thus, the black pixels are very important.

After the number of matching values equal to 1 is calculated, this value is recalculated as a
percentage, that is, divided by the dimension of the vector. In the case of the MNIST base, the
dimension of the vector is 784 (28*28). If the percentage is less than a certain number of Percent,
the algorithm continues its work (moving to step 2 of the Hopfield algorithm). The Percentage
number is selected experimentally. The choice of number depends on how many 1s (grayscale) are
contained in the samples. If the number 1 is small (as in the case of number recognition), then the
number Percent will also be small.

The method was evaluated on all images of the MNIST test sample. Each image from the
test sample was sent to the Hopfield neural network input for each digit, and it was evaluated
whether the network correctly recognized the number. Table 2.14 shows the results of this work
using the first method.

0 1 2 3 4 5 6 7 8 9
74,69% | 91,19% | 74,42% | 65,45% | 79,12% | 71,30% | 74,01% | 84,63% | 46,61% | 69,77%

Table 2.14: Results of recognition by the Hopfield neural network using method 1

Based on the achieved results, the following conclusions can be drawn:
e Method 1 is good at recognizing the numbers 0,1,2,4,5,6,7: more than 70%.
e Number 8 is very poorly recognized: just over 45%, i.e. more than half of these
numbers are recognized as other numbers.
Table 2.15 shows a summary table showing where the Hopfield neural network made errors

using method 1.
42

0 1 3 3 4 5 6 7 8 9

Y 732 21 41 15 28 50 24 26 32 11
! 8| 1035 2 3 22 0 48 14 3
z 7 153 768 13 15 3 61 2 3
E 0 102 14 661 9 60 1 28 16 119
4 1 100 1 1 777 2 4 12 0 84
> 3 66 1 41 41 636 8 36 22 38
g 7 117 3 67 34 709 15 3 1
U 1 52 21 4 23 4 0 870 1 52
8 1 166 23 83 48 56 46 454 92
o 2 56 3 9 148 4 2 76 5 704

Table 2.15: Summary results of Hopfield neural network recognition using method 1

Based on the data obtained from Table 2.15, it can be concluded that most often the

numbers most often give the number 1 as an erroneous result. This is because the image for the

digit 1 is written as a straight line that is contained in the image for each digit. Almost all images are

contained in the image of the number 1.it can Also be concluded that the number 8, which is

recognized the worst, is most often recognized as the number 1.

Thus, the error of recognition by the neural network is 26%. Here is a table with measures.

0 1 2 3 4 5 6 7 8 9
Recall 0961 | 0554 | 0876 | 0794 | 0660 | 0746 | 0938 | 0714 | 0827 | 0636
Hrzelslen 0747 | 0912 | 0744 | 0654 | 0791 | 0713 | 0740 | 0846 | 0466 | 0698
P 0340 | 0689 | 0805 | 0718| 0719 0729 | 087 | 0775| 059% | 0665

Table 2.16: F-measure for the Hopfield neural network using 1 method

Here are the examples of images in which the neural network made errors and recognized

the wrong image.

3 recognized as 5

4 recognized as 5

5 recognized as 8

8 recognized as 4

Fig. 2.18: Examples of incorrect recognized images when using method 1

Here are the examples of how the network works correctly.

43

of rorm1 o o X

o) RecognitionReport - O x
Determine the optimal number of
clusters

Checking Hopfield NN

The training sample was loaded successfully &

I The test sample was loaded successfully

| The image of digit 1 uploaded successfully

The optimal number of clusters for each digit is
ined

complete lty
| The image of digit 5 uploaded successfully v

Fig. 2.19: Examples of correct recognized images when using method 1

In the second method, to find a vector from memory that is best similar to the original one,
you need to represent the vector as a matrix. In this task, each vector is a 28 by 28 matrix. Next, you
need to compare the matrices by rows and by columns. Next, the algorithm will be described for
rows, and similar actions are performed for columns.

Each row counts the number of matched values equal to 1 and the number of matched
values equal to -1. It also counts the number of values equal to 1 in the matrix that corresponds to
the desired vector, and the number of values equal to 1 in the matrix that corresponds to the k-th
vector from memory. Similarly, the number of values equal to -1 is calculated. Then we calculate the
result of how much the matrix row corresponding to the source vector is similar to the matrix

corresponding to the vector from memory using the following formulas:

B = CB+1,if (|(-2) * 100 — (=) + 100| < ovB) (24)

cw = W + 1,if (|(-2=) « 100 — (~2=) « 100| < ovW), (25)
where:
e CB(CW) —the number of rows with significant matches of values 1(-1);
e OB(OW) — the number of matched 1 (-1), this value is calculated separately for each
row;
o Ally (AllY W) — the total number of 1 (-1) in a row for the matrix that corresponds to the
original vector;
e All MB(All MW) — the total number of 1 (-1) in a row for a matrix that corresponds to a

vector from memaory;

44

e 0vB - ovc) - a number that indicates how similar two rows are.

The difference in formulas (24)-(25) tends to 0 — the more similar the rows are, that is, the
more matches, the smaller the difference. In this paper, ovB=15, ovW=3. As in method 1, these
parameters were selected experimentally. How to choose such tasks depends on which images are
in the database: what shade prevails. The number ovW is significantly less than the number ovB,
since the number of white pixels in images of numbers strongly outhnumbers the number of black
pixels. Therefore, there will be a lot of white pixel matches. We perform similar calculations for
columns.

Then, after calculating the CB and CW for rows and columns, you need to calculate the

similarity of the source vector with the vector from memory using the formula:

S 100 + cws 100 + ¢Bc 100 + cwe
* * *
NBS NWS NBC NWC

Result = * 100, (26)

where:
e CBS - the number of rows where 1 matches is sufficient;
e CWS-the number of rows where there are enough matches -1;
e CBC-the number of columns where 1 matches is sufficient;
e CWC-the number of columns where there are enough matches -1;
¢ NBS is the number of rows containing at least one 1;
¢ NWS-number of rows containing at least one -1;
e NBC-number of columns containing at least one 1;
e NWC-number of columns containing at least one -1;
Then the algorithm is similar to method 1. the Results are shown in Table 2.17.
0 1 2 3 4 5 6 7 8 9
89,18% | 94,63% | 53,59% | 56,34% | 63,75% | 52,80% | 84,97% | 65,27% | 55,85% | 66,11%

Table 2.17: Results of recognition by the Hopfield neural network using method 2

Based on the results obtained, the following conclusions can be drawn:
¢ Digits 1 are recognized more accurately than all the others.
e 2, 5 numbers are the worst recognized: just over 50% of the numbers in the test
sample are recognized correctly by method 2.
Table 2.18 presents a summary table showing where a Hopfield neural network made errors

using method 2.

0 1 2 3 4 5 6 7 8 9
v 874 25 5 3 1 11 15 5 37 4
! 10| 1074 1 3 5 2 7 10 21 2
2 124 100 553 58 5 64 79 23 23 3
g 50 46 64 569 14 109 26 40 75 17
4 31 112 10 9 626 6 11 6 24 147

45

5 95 47 23 94 15 471 45 23 66 13
6 50 69 7 1 1 5 814 0 11 0
/ 10 117 9 32 52 4 1 671 21 111
8 149 118 6 39 8 49 9 34 544 18
9 29 53 0 16 140 8 3 74 19 667

Table 2.18: Summary results of Hopfield neural network recognition using method 2

Based on the data obtained from Table 2.18, it can be concluded that the following errors are

often made when a Hopfield neural network recognizes using method 2:

Digit 0 is recognized as digit 8

Digit 8 is recognized as digit O

Digit 4 is recognized as digit 9

Digit 9 is recognized as digit 4

Digit 1 is recognized as digit 7

Digit 7 is recognized as digit 1,9

These results are explained by the fact that these numbers contain part of each other, that is,

images of numbers have common features. Thus, the neural network's recognition error is 32%.

Calculate the F-measure.

0

1

2

3

4

5

6

7

8

Recall

0,615 0,610 0,816 | 0,691 0,722 0,646 0,806 0,757 0,647 0,679
e e 0,892 0,946 0,536 | 0,563 0,637 0,528 0,850 0,653 0,559 0,661
FOTEEETE 0,728 0,742 0,647 | 0,621 0,677 0,581 0,827 0,701 0,599 0,670

Table 2.19: F-measure for a Hopfield neural network using 2 method

Here are the examples of images in which the neural network made errors and recognized

the wrong image.

Here are the examples of how the network works correctly.

Fig. 2.20: Examples of incorrect recognized images when using method 2

46

o Form1 -] X

&) RecognitionReport -] X
Determine the optimal number of
clusters

s | Checking Hopfieid NN

Checking the Kohonen NN

Checking 1

lly
| The image of digit 5 uploaded successfully v

Fig. 2.21: Examples of correct recognized images when using method 2

Thus, two methods were analyzed to compare 2 images. As an output, we can say that
method 1 is more suitable for pattern recognition than method 2. Errors in the recognition of
handwritten numerals is that when using the f-metric is not taken into account that the images are
shifted, i.e. different images have the different inclination and may be located above, below, right or
left.

2.5 Parallel implementation of learning of the Kohonen neural
network

The process of training a neural network is quite time-consuming. Therefore, parallelization of
learning networks using CUDA technology is becoming more popular. This is primarily related to the
uniformity of operations performed during training. In [17], CUDA was used to detect a text using
neural networks and a 15-fold acceleration was received. In [18], CUDA technology was also applied
in the implementation of self-organizing maps based on MapReduce that performs related
calculations. In this work, the cores are optimized to provide unified memory access and efficient use
of shared memory. A tenfold acceleration was obtained. In [19], we considered the Batch-SOM
algorithm that is used for clustering. CUDA technology was also used here for parallelization.
Parallelization took place at the level of the training sample and was accelerated by 11 times. In [20],
the HPSOM algorithm was considered, that was parallelized using CUDA and MPI technologies. it
was shown that it is possible to achieve not only good results in speed, but also optimize memory
costs. In [21], it was found that there is a decrease in performance for the OpenCL implementation

compared to the CUDA technology. Also in this work, using various combinations of OpenCL, CUDA

47

for two different video cards, the possibility of scaling the implementation of the SOM algorithm on
multiple graphics devices was demonstrated. In [22], we also obtained acceleration of the SOM
algorithm on GPUs.

As mentioned earlier, the process of training a neural network takes quite a long time. For
each digit you need to train a separate Kohonen neural network. The training samples contain about
6000 images, the dimension of the input vector is 784, and the number of clusters for each digit
varies from 28 to 49 (see Table 8). as a rule, network training takes several dozen iterations. In our
case (the parameters selected in the previous paragraph), the training algorithm contains 84
iterations. Let us parallelize the neural network training algorithm.

To compute the execution time of the program, the clustering stage of the Kohonen neural
network must be rewritten in C++. This is because CUDA technology will be used for parallelization.
C# is not supported by this technology. Thus, for the Kohonen neural network, a separate C++
program is written without using an object-oriented approach.

In general, there are the following levels of parallelization [16]: the learning phase level, the
training sample level, the layer level, the neuron level, and the weights level.

The choice of parallelization level depends on the number of neurons, computing nodes, and
features of the computer architecture of the artificial neural network. There are two long stages in the
training algorithm of the Kohonen neural network.

The first stage involves calculating the distance between the weights and the vector from the
training sample. The function for calculating the distance and selecting the minimum distance on the
CPU is shown in Fig. 2.22.

void Distance (int cluster, int vectorNumber, float* x[],
float* w[], int* cl){
float min = FLT MAX, temp;

int num = 0;
for (int i1 = 0; 1 < cluster; i++){
temp = 0.0;
for (int j = 0; j < N; J++){
float r = w[i]l[j]l-x[vectorNumber] [j];
temp += r * r;
}
if (temp < min) {
min = temp;
num = 1i;

*cl = num;

}

Fig. 2.22: Function that finds the nearest weight (cluster) to the specified vector

The function contains the distance from the vector of the training sample x[vectorNumber] to
each of the clusters w[i]. The number of clusters is indicated by cluster. this value varies from 28 to

49, depending on the number being trained for. The complexity of this function is O (cluster*N),

48

where N is 784.

The second stage involves passing through all vectors and changing the weights of neurons.
The training function has the form:

void TrainingSeqg(int cluster, int vectors, float* wl[],
float* x[1) {
float h = 0.6;
float rate = 0.96;
float minh = 0.002;
int dMin;
do{
for (int k = 0; k < vectors; k++) {
Distance (cluster, k, x, w, &dMin);
for (int i = 0; 1 < N; 1i++){
w[dMin] [1] = w[dMin] [i]+h* (x[k] [i]-
wl[dMin] [1]);
}
}

h *= rate;

} while (h > minh);
}

Fig. 2.23: Sequential learning algorithm for the Kohonen neural network

In the training function, the pass is performed on all vectors from the training sample. The
number of vectors in the selection is indicated by the variable - vectors. The dMin variable contains
the number of the cluster that the current vector belongs to.

We decided to parallelize at the level of the training sample. This choice is due to the large
number of input vectors. For parallelization, select the required number of blocks of 256 threads (to
cover the number of input vectors). Each thread is responsible for a single vector in the training
sample. Thus, we eliminated the loop on all images that significantly speeds up the algorithm. The

Distance function is performed on the graphics device, and its code is shown in Fig. 2.24.

__device wvoid Distance(int vectorNumber, float* x[],
float* w[], int* cl){

float min

= FLT MAX, temp;
int num = 0;

for (int 1 = 0; 1 < CLUSTER; i++) {
temp = 0.0;
for (int j = 0; j < N; J++){
float r = w[i]l[Jj] - x[vectorNumber][]j];
temp += r * r;

if (temp < min) {
min = temp;
num = i;

*cl = num;

Fig. 2.24: Distance function that calculates the distance between vectors on a graphics device

49

Fig. 2.25 shows the function code on the GPU that trains the Kohonen network. Here,
devRate denotes the 6 parameter. We can notice that in the for loop, changing the weights of w can
be performed simultaneously by several threads. However, due to the large sample size and,
consequently, frequent changes in weights, this "conflict" of writing new values to the array is not
critical, and practically does not affect the result.

~_global wvoid TrainingParal (float* w[], float* x[],
float h) {
int tid = blockIdx.x * blockDim.x + threadIdx.x;
int dMin;
if (tid < vectors)
do{

Distance (tid, pattern, w, &dMin);
for (int i = 0; 1 < N; i++){
w[dMin] [i] += h * (x[tid][i] - w[dMin][i]);
}
__syncthreads();
h *= devRate;
} while (h > min h);
}

Fig. 2.25: A core that represents a parallel implementation of network learning

Measure the learning time of Kohonen network on the CPU and GPU for each digit. Here is a
histogram with the results obtained in Fig. 2.26.

300

266

Digit
Fig. 2.26: Execution time of training of the Kohonen neural network on the CPU and on the GPU

Based on the algorithm's runtime data, you can calculate the acceleration obtained using
CUDA technology for each digit. The acceleration coefficient is calculated as a simple ratio of the
execution time of the algorithm on the CPU to the execution time of the algorithm on the GPU. The
results are shown in Table 2.20.

Digit 0 1 2 3 4 5 6 7 8 9
Acceleration | 17.2 | 148|174 |16.9 |175|175[172 165|172 |17.0

Table 2.20: GPU acceleration
50

Thus, after analyzing the results shown in Fig. 2.24 and Table. 2.19, we can conclude that
the learning of the Kohonen neural network is accelerated by an average of 16.9 times. Let us
provide Table 2.21 with the characteristics of the computer where the calculations were performed
(in Visual Studio 2019).

(ON) Windows 10 Pro x64
GPU model Nvidia GeForce GTX 1050TI
GDDR capacity 4 GB
CPU model Intel Core i7-7700HQ 2.80 GHz
RAM 24 GB

Table 2.21: Computer characteristics

Let us perform parallelization using OpenMP and compare the results obtained on CUDA.
For the accuracy of the results, we will also parallelize at the level of the training sample, meaning
that each vector image will be executed on a different process.

First, let's compare the execution time of the algorithm using OpenMP technology and on a

single CPU. The results are shown in Fig. 2.27.

300

266

250

B OpenMP
m CPU

Digit

Fig. 2.27: Execution time of training of the Kohonen neural network on the CPU and on the OpenMP

Based on the algorithm's runtime data, you can calculate the acceleration obtained using
OpenMP for each digit. The acceleration coefficient is calculated as a simple ratio of the algorithm
execution time on the CPU to the algorithm execution time using OpenMP. The results are shown in
Table 2.22.

Digit 0 1 2 3 4 5 6 7 8 9
Acceleration | 2.2 | 41 | 6.6 | 27 | 42 | 46 | 38 | 6.3 | 51| 6.9

51

Table 2.22: OpenMP acceleration

Thus, after analyzing the results shown in Fig. 2.25 and Table. 2.21, | can conclude that the
learning of the Kohonen neural network is accelerated by an average of 4.6 times.

Let us analyze the parallelization performance on OpenMP using Intel Parallel Studio VTune.
We will analyze all the numbers at once. So, the sequential algorithm runs for 1019 seconds. (Fig.
2.28)

Elapsed Time “: 1019.551s

CPU Time 1009.990s
Total Thread Count: 1
Paused Time = Os

Fig. 2.28: Execution time of the Kohonen neural network training on the CPU for all digits

Now let us give a histogram of work on a single processor. This histogram shows the

percentage of time that a certain number of processors were running simultaneously.

Effective CPU Utilization Histogram

This histogram displays a percentage of the wall time the specific number of CPUs were running simultaneously. Spin and Overhead time adds to the Idle CPU utilization value.

1000s

800s

Target Utilization

ot —— — ——— =

600s

400s

200s

Fig. 2.29: Effective CPU utilization histogram

Similar actions are performed for code using parallelization.

Hotspots Insights

Elapsed Time *: 441.255s If you see significant hotspots in the Top Hotspots list,
CPU Time™: 2459.381s switch to the Bottom-up view for in-depth analysis per
Total Thread Count: 8 function. Otherwise, use the Caller/Callee view to track

’ critical paths for these hotspots.
Paused Time™: Os
Explore Additional Insights
Parallelism © : 68.3% &
Top Hotspots Use @ Threading to explore more opportunities to

This section lists the most active functions in your application. Optimizing these hotspot functions typically results in improving IrEEER pEEIEE ST ETlE

overall application performance.

Function Module CPU Time

Evclid_sqr untited10.exe 2295.696s
func@0x403608 untitied10.exe 109.918s
WaitForMultipleObjects KERNELBASE.dII 48.756s
fread msvert.dll 2.059s
write msvert.dll 1.327s

*N/A Is applied to non-summable metrics.

Fig. 2.30: Execution time of the Kohonen neural network training for all digits using OpenMP

52

The execution time of the algorithm is 441 seconds that significantly improved the sequential
result. Next, we will output a histogram of work on different numbers of processors.

Effective CPU Utilization Histogram

This histogram displays a percentage of the wall time the specific number of CPUs were running simultaneously. Spin and Overhead time adds to the Idle CPU utilization value.

200s

1505 -

Target Utilization

100s o

erage Effective CPU Utilization

1 2 3 - 4 5 6 . 7 §
Fig. 2.31: Effective CPU utilization histogram

Analyzing Fig. 2.31, we can conclude that it is most efficient to use 4 logical processors. The
operating time when using 4 processors is the least. Using 7 logical processors is not profitable in

time aspect.
Thus, parallelization was performed using CUDA technology and using OpenMP. Let us

compare the execution time of the algorithm on CUDA and on OpenMP.

70 66

B OpenMP

H CUDA

Fig. 2.32: The execution time of the Kohonen neural network training on the GPU and using OpenMP for each digit

Thus, according to the data obtained from Fig. 2.32, the CUDA technology gives significantly
higher acceleration. Using OpenMP speeds up the learning algorithm of the Kohonen neural network
by about 4.6 times, while parallelization using CUDA technology speeds up the algorithm by about
17 times. Thus, it is better to use CUDA technology for large-volume samples.

The last stage of recognizing images of handwritten numbers in the MNIST database is

recognition by the Hopfield neural network. The architecture and algorithm were discussed in detail

in the previous chapter.

53

Chapter 3

Testing

3.1 Testing on the Fashion MNIST dataset

In this work, it is necessary to show the universality of the neural networks used, that is,

to demonstrate that this software can recognize not only handwritten numbers, but also other

images. The Fashion MNIST dataset was selected for this purpose.

Just like the MNIST set, the Fashion MNIST set contains data measuring 28 by 28 pixels.

The set contains ten types of clothing: t-shirt, shorts, sweater, dress, raincoat, sandals, shirt,

sneakers, bag, shoes. There are 60,000 images in the training sample and 10,000 images in the

test sample.

] | 2 (I

-

B)

Fig. 3.1: Examples of images from the Fashion

ey = mx BRI ———=8E

Bi--—== =

D D a8

<

Let us determine the optimal number of clusters for this data set.

SBP. =B B ae

2ph- =B RBe=—)

- pu— BB

e

'E:"q

D e-sms (E@==—=a Jm)

y
)
R
)
|
;

.'-E.
DD -

=

NIST database

Class

t shirt

shorts

sweater

dress

raincoat

sandals

shirt

bag

shoes

Clusters

25

37

29

37

44

46

13

1

40

clusters and give examples of cluster centers.

Table 3.1: The optimal number of clusters for each image with a full sample

54

As can be seen from Table. 3.1 only one cluster was defined for bags. Now let us build

LI SIAIA

Table 3.2: Examples of cluster centers

Cluster centers are less clear for this set. Therefore, errors may occur when building clusters.
This may be due to the number of clusters in the Table. 3.1 is not enough for this set.

Now we present a table of errors in recognition by the Kohonen neural network. For
convenience, each class is marked with a number from 0 to 9 (t-shirt-O, shorts-1, and so on). Let's
check the accuracy of cluster construction. To do this, for a test sample of the Fashion MNIST
database, we will estimate the percentage of images contained in the desired cluster. To do this,
measure the distance from each image to all the resulting clusters for each digit. If the image vector
is closest to the cluster that belongs to the cluster group for the same number, then we assume that
the vector is in the correct cluster. Fig. 3.2 shows the percentages of images from the test sample in

clusters of their digits.

100,00% 94-19%
90,00%
80,00%
70,00%
60,00%
50,00% 45.95%
40,00%
30,00%
20,00%
10,00%

0,00%

89.39% 90,69% 91.09%

Fig. 3.2: Percentage of images from the test sample that are included in your cluster

As you can see from Fig. 3.2 class 6 - shirts are very poorly recognized, and t-shirts,
sneakers and shoes are quite well. The average percentage of recognition by the Kohonen neural
network is approximately 74 %. In Table 3.3 shows a summary table showing where the Kohonen

neural network made errors.

0 1 2 3 4 5 6 7 8 9
v 739 7 26 93 28 39 65 1 1 0
1 7 941 9 31 6 1 3 0 1 0
2 9 1 624 11 291 13 50 0 0 0
8 22 14 6 869 49 9 29 0 1 0
4 0 2 71 50 845 10 21 0 0 0
: 0 0 0 0 0 893 0 70 0 36
6 194 2 158 62 294 46 239 1 3 0
v 0 0 0 0 0 32 0 906 0 61
8 13 2 66 55 192 98 49 56 459 9
: 0 0 0 0 0 24 0 64 1 910

Table 3.3: Summary results of recognition by the Kohonen neural network

Also, to evaluate the accuracy of clustering of the Kohonen neural network, we calculate

Recall, Precision, and F-measure. Thus, the table with the F-measure has the form:

Class 0 1 2 3 4 5 6 7 8 9

Recall 0,751 | 0,971 | 0,650 | 0,742 | 0,496 | 0,767 | 0,524 | 0,825 | 0,985 | 0,896
Precision | 0,740 | 0,942 | 0,625 | 0,870 | 0,846 | 0,894 | 0,239 | 0,907 | 0,459 | 0,911
F-means | 0,745 | 0,956 | 0,637 | 0,801 | 0,625 | 0,825 | 0,329 | 0,864 | 0,627 | 0,903

Table 3.4: F-measure

Based on the data described above, shirts are most often recognized as raincoats, this is
due to the fact that they are not very similar to each other.
The last stage of software operation is recognition by the Hopfield neural network. Here are

the results of the first method.

56

100,00% 94-9%

90,00%

80,00%

70,00%

58.46% 57.66% 58.36%

60,00%

50,00% -
40,00% -

30,00% -
20,00% -
10,00% -

0,00% -

Fig. 3.3: Percentage of image recognition from the test sample by the Hopfield neural network method 1

As you can see from Fig. 3.3 class 6-shirts are also very poorly recognized, and t-shirts are
guite good. The percentage of recognition for these categories is better than for recognition by the
Kohonen neural network. The average percentage of recognition by the Hopfield neural network is
approximately 53 %. This is because other categories are recognized worse. This is due to the
network setting, and the network setting must be changed depending on the data. Table 3.5 shows a

summary table showing where the Hopfield neural network made errors.

0 1 2 3 4 5 6 7 8 9
L 584 44 14 128 2 8 96 99 9 15
. 3 945 1 30 4 0 9 6 1 0
2 10 36 352 33 127 28 242 137 18 16
8 16 464 0 404 9 0 36 55 3 12
: 4 23 163 129 334 5 265 59 8 9
2 0 29 0 5 0 576 13 317 0 59
g 132 32 88 141 84 26 313 133 17 33
v 0 7 0 0 0 168 12 798 0 14
e 1 21 60 105 33 20 26 209 458 66
? 0 0 0 1 0 40 0 374 1 583

Table 3.5: Summary results of recognition by the Hopfield neural network

Also, to evaluate the accuracy of clustering of the Hopfield neural network, we calculate
Recall, Precision, and F-measure. Thus, the table with the F-measure has the form:

Class 0 1 2 3 4 5 6 7 8 9

Recall 0,779 | 0,590 | 0,519 | 0,414 | 0,563 | 0,661 | 0,309 | 0,365 | 0,889 | 0,722
Precision | 0,585 | 0,946 | 0,352 | 0,404 | 0,334 | 0,577 | 0,313 | 0,799 | 0,458 | 0,584
F-means | 0,668 | 0,727 | 0,420 | 0,409 | 0,420 | 0,616 | 0,311 | 0,501 | 0,605 | 0,646

Table 3.6: F-measure

57

Based on the data described above, we can draw the following conclusions. Images of
sweaters can be confused with images of shirts, and sandals can be confused with sneakers.
Initially, the database stores blurred images (fuzzy images), which also causes such large errors in

speech recognition. Now we present the results of the second method.

100,00% 50,050
90,00% . 84 989 86.79%

80,00%

70,00%

60.96%
60,00% -

50,00% -

40,00% -

30,00% -

20,00% -
10,00% -
0,00% -

Fig. 3.4: Percentage of image recognition from the test sample by the Hopfield neural network method 2

As you can see from Fig. 3.4 class 6-shirts are also very poorly recognized, and t-shirts are
quite good. The percentage of recognition for these categories is worse than for method 1
recognition .The average percentage of recognition by the Hopfield neural network using the second
method is approximately 63 %. This result is better than using the first method. This is because other
categories are recognized better. Table 3.7 shows a summary table showing where the Hopfield

neural network made errors.

0 1 2 3 4 5 6 7 8 9
v 609 36 71 87 29 82 66 14 2 3
. 11 900 8 65 3 3 9 0 0
2 38 24 552 52 196 59 66 3 6
¢ 50 126 20 706 38 34 17 0 7
§ 20 15 182 96 607 28 45 1 4
. 9 3 16 4 2 748 2 176 0 39
8 177 39 240 78 176 113 166 1 3 6
v 0 0 0 0 0 87 0 849 0 63
E 20 6 251 30 74 73 7 109 327 102
2 2 1 1 14 5 42 1 66 0 867

Table 3.7: Summary results of recognition by the Hopfield neural network

Also, to evaluate the accuracy of clustering of the Hopfield neural network, we calculate
Recall, Precision, and F-measure. Thus, the table with the F-measure has the form:
Class | o | 1] 2 | 3] 4] 5] 6 | 7] 8] 9 |

58

Recall 0,651 | 0,783 | 0,412 | 0,624 | 0,537 | 0,589 | 0,438 | 0,69 | 0,973 | 0,790
Precision | 0,610 | 0,901 | 0,553 | 0,707 | 0,608 | 0,749 | 0,166 | 0,850 | 0,327 | 0,868
F-means 0,629 | 0,838 | 0,472 | 0,663 | 0570 | 0,660 | 0,241 | 0,765 | 0,490 | 0,827

Table 3.8: F-measure

Based on the data described above, we can draw the following conclusions. Images of
sweaters can be confused with images of raincoats, shirts can be confused with sweaters.

Here are examples of correct and incorrect operation of the program.

Image Recognized as

Table 3.9: Examples

59

Conclusion

In this work, we have studied the general information about neural networks used for pattern
recognition, as well as written software for recognizing images of handwritten numbers. Software
consists of two neural networks: the Kohonen neural network and the Hopfield neural network. The
algorithms were tested on the basis of handwritten numbers - MNIST and on the basis of Fashion
MNIST. Testing on different databases has shown the universality of the algorithms. A cluster
analysis was also performed based on this database.

Clustering of handwritten numbers from the MNIST database using a Kohonen neural
network. The optimal number of clusters is defined for each digit. The percentage of vectors from the
test sample falling into the correct cluster for each digit is more than 90%. This means that
clusterization can be used for pattern recognition of digits. The best clusterization is obtained for the
digits 0 and 1 (a-measure is 0.974), the worst clusterization is for the digit 9, and its F-measure is
0.903.

Kohonen neural network training algorithm is parallelized on the GPU using CUDA
technology. Parallelization is performed at the level of the training sample. The acceleration of the
algorithm was approximately 17 times. The proposed approach can be used for clustering big data.
Also, the training of the Kohonen neural network is parallelized using OpenMP. The acceleration of
the algorithm in this case is an average of 5 times. The efficiency of parallelization on OpenMP on
different number of processors was analyzed. It was concluded that the use of CUDA is more
effective.

In this work, we propose a Hopfield neural network for recognizing handwritten numbers.
Cluster centers constructed applying a Kohonen neural network served as objects to remember.

For the Hopfield neural network, two methods were studied and analyzed to compare 2
images. As a conclusion, we can say that the method 1 for recognizing images of handwritten
numbers gives better results than method 2. This is because method 2 does not take into account
that the image can be shifted: it can be positioned higher or lower, to the right or to the left. Also,
when recognizing numbers, humbers often contain elements of each other. When testing algorithms
on a dataset with images of clothing, the second method gave better results. The percentage of
recognition (digits) when using the first method is 74%, and when using the second method is 64%.

The software was implemented in C#. The training of the Kohonen neural network and its
parallelization was also performed in C++. This paper also shows the process of software
development and describes the individual stages of work.

Further research suggests improving the software, as well as using it not only for images of

handwritten numbers, but also generalize it to different types of images.

60

Bibliography

[1] Zhang, X., Zhou, X., Lin, M., and Sun, J. (2018) “ShuffleNet: An extremely efficient
convolutional neural network for mobile devices.” in Proceedings IEEE Conference on Computer
Vision and Pattern Recognition: 6848—6856

[2] Dautov, R., and Mosin, S. (2018) “Technique to aggregate classes of analog fault diagnostic
data based on association rule mining.” in Proceedings of 19th International Symposium on Quality
Electronic Design: 238-243.

[3] Neha, S., Vibhor, J., and Anju, M. (2018) “An analysis of convolutional neural networks for
image classification.” Procedia Computer Science 132: 377-384.

[4] Mesbah, A., Berrahou, A., Hammouchi, H., Berbia, H., and Daoudi, M. (2019) “Lip reading
with hahn convolutional neural networks.” Image and Vision Computing 88: 76—83.

[5] The MNIST database handwritten digits. URL.: http://yann.lecun.com/exdb/mnist.

[6] Ramya, C., Kavitha, G, and Dr. Shreedhara, K., S. “Recalling of images using Hopfield Neural
Network Model.” In National Conference on Computers, Communication and Controls — 11: N4C-11.
[7]1 Aksenov S.V., Novoseltsev V.B. (2006) “Organization and use of neural networks (methods
and technologies).” Tomsk: NTL.

[8] Lulu, C., Munggaran, Surryarini, Widodo, Cipta, A.M. (2014) “Handwritten pattern recognition
using Kohonen neural network based on pixel character.” International Journal of Advanced
Computer Science and Applications Vol.5: No. 11.

[9] Rexy M., Lavanya K. (2019) “Handwritten digit recognition of MNIST data using consensus
clustering.” International Journal of Recent Technology and Engineering. Vol. 7: No. 6, P. 1969—
1973.

[10] Schmidhuber, J. (2015) “Deep learning in neural networks: An overview.” Neural
Networks 61: 85-117.
[11] Miri, E., Razavi, S.M., Sadri, J. (2011): Performance optimization of neural networks in

handwritten digit recognition using intelligent fuzzy c-means clustering. 1st Int. Conf. on Comp. and
Knowledge Eng., 150-155.

[12] Pourmohammad, S., Soosahabi, R., Maida, A.S. (2013): An efficient character
recognition scheme based on k-means clustering. 5th Int. Conf. on Modeling, Simulation and Applied
Opt., 1-6. https://doi.org/10.1109/ICMSA0O.2013.6552640

[13] Li, B.Y. (2018): An experiment of k-means initialization strategies on handwritten digits
dataset. Intelligent Inf. Management (10), 43-48. https://doi.org/10.4236/iim.2018.102003

61

[14] Munggaran, L.C., Widodo, S., Cipta, A.M. (2014): Handwritten pattern recognition using
Ko-honen neural network based on pixel chatacter. Int. J. Adv. Comput. Sci. App. 5(11), 1-6.
https://www.doi.org/10.5220/00066111002800360006611100280036

[15] Senkovskaya I.,S., Saraev P.,V. (2011) “ Automatic clustering in data analysis based on
Kohonen self-organizing maps. ” Bulletin of MSTU. Nosova I., G.: No. 2, P.78-79.

[16] Nordstrom, T.: Designing parallel computers for self-organizing maps. Linkoping, (1992).
[17] Shal, S.A., Koltun, V. (2017): Robust continuous clustering. P. Natl. Acad. Sci. USA
114(37), 9814-9817. https://doi.org/10.1073/pnas.1700770114

[18] Jang, H., Park, A., Jung, K. (2008): Neural network implementation using CUDA and
Open MP Proceedings of the International Conference on Digital Image Comput.: Techniques and
App. https://doi.org/10.1109/DICTA.2008.82

[19] Wittek, P., Daranyi, S. (2012): A GPU-accelerated algorithm for self-organizing maps in a
distributed environment. European Symp. on Atrtificial Neural Networks, Comput. Intelligence and
Machine Learning, 609-614.

[20] Daneshpajouh, H., Delisle, P., Boisson, J.C., Krajecki, M., Zakaria, N. (2018): Parallel
batch Self-Organizing Map on graphics processing unit using CUDA. High Perf. Comput., 87-100.
https://doi.org/10.1007/978-3-319-73353-1_6

[21] Liu, Y., Sun, J., Yao, Q., Wang, S., Zheng, K., Liu, Y. (2018): A scalable heterogeneous
parallel SOM based on MPI/CUDA. Proc. of Machine Learning Research (95), 264-279 (2018).

[22] McConnell, S., Sturgeon, R., Henry, G., Mayne, A., Hurley, R. (2012): Scalability of Self-
Organizing Maps on a GPU cluster using OpenCL and CUDA. High Perf. Comput. Symp., J. Phys.:
Conf. Ser. (341), https://doi.org/1-10. 10.1088/1742-6596/341/1/012018

[23] Takatsuka, M., Bui, M. (2010): Parallel batch training of the Self-Organizing Map using
OpenCL, pp. 470-476. Springer, Berlin, Heidelberg.

[24] Xu, Y., Zhang, W. (2010): On a clustering method for handwritten digit recognition. 3rd Int.
Conf. on Intelligent Net. and Intelligent Sys. 112-115. https://doi.org/10.1109/ICINIS.2010.130

62

