
Diploma thesis

Czech
Technical
University
in Prague

Android application for acupressure

Petr Ješke et al.

Supervisor: Ing. Václav Burda
April 2020

ii

Acknowledgements
Firstly I would like to thank my fam-
ily for their support during my studies
at the university. Furthermore, I thank
my supervisor Václav Burda for his sup-
port and advice. Finally, I would like to
thank Daniel Novák and Jindřich Prokop
for their comments and advice.

Declaration
I declare that this work is all my own and
all sources are citated in the bibliography.

Prague, April 5, 2020

Prohlašuji, že jsem předloženou práci
vypracoval samostatně, a že jsem uvedl
veškerou použitou literaturu.

V Praze, 5. dubna 2020

iii

Abstract
The goal of this thesis is to implement
a mobile application, which will offer its
users the opportunity to deal with their
health issues using acupressure. An anal-
ysis of existing solutions was made, fol-
lowed by the design of the application.
The application was implemented in line
with the assembled design and tested with
a series of user tests. The process of mod-
ern mobile application design is studied
in detail together with its implementation.
The thesis also contains a discussion of
vital signs estimation, namely heart and
respiratory rate estimation, using camera
footage and implementation of this func-
tionality in the Android environment.

Keywords: acupressure, Android, vital
signs estimation using mobile phone
camera

Supervisor: Ing. Václav Burda

Abstrakt
Cílem této diplomové práce je implemen-
tovat mobilní aplikaci, která nabídne jejím
uživatelům možnost řešit jejich zdravotní
problémy pomocí akupresury. V rámci
práce byla provedena analýza existujících
řešení, následovaná návrhem a implemen-
tací aplikace a zakončená řadou uživatel-
ských testů. Práce obsahuje detailní roz-
bor procesu vývoje moderní mobilní apli-
kace spolu s její implementací. Součástí
práce je také diskuse nad možnostmi esti-
mace vitálních znaků uživatele, jmenovitě
detekce tepové a dechové frekvence, za
použití kamery a implementace této funk-
cionality v prostředí Android.

Klíčová slova: akupresura, Android,
estimace vitálních znaků s použítím
kamery mobilního telefonu

Překlad názvu: Android aplikace pro
akupresuru

iv

Contents
1 Introduction 1
2 Planned functionality analysis 3
2.1 Platform selection 3
2.2 Application functionality 4
2.2.1 Functional requirements 4
2.2.2 Nonfunctional requirements . . 6

3 Existing solutions 7
3.1 Acupressure Point for 300+
Diseases . 7

3.2 Basics of Acupressure Massage . . 9
3.3 Acupuncture Index 10
3.4 Analysis Summary 12
4 Design 13
4.1 User interface design 13
4.1.1 Balsamiq Mockups 13
4.1.2 Adobe XD 14

4.2 Architecture desingn 16
4.2.1 Importance of the Android
application design 16

4.3 Common application architectures 17
4.3.1 Model View Controller 17
4.3.2 Model View Presenter 17
4.3.3 Model View ViewModel 18
4.3.4 Model View ViewModel in
Android applications 19

5 Implementation 21
5.1 Programing in Android in general 21
5.1.1 Programing languages 21
5.1.2 Development tools 22
5.1.3 Android project structure . . . 22

5.2 Basic components of Android
application . 23
5.2.1 Activities 23
5.2.2 Services 25
5.2.3 Broadcast receivers 26
5.2.4 Content providers 26
5.2.5 Fragments 26

5.3 SelfAcupressure application
structure . 27

5.4 Used tools and libraries 30
5.4.1 Room . 30
5.4.2 Retrofit 30
5.4.3 OkHttp 30
5.4.4 Dagger 30
5.4.5 OpenCV 31

5.4.6 Gson . 31
5.4.7 Picasso 31
5.4.8 PhotoView 31
5.4.9 MaterialShowcaseView 32

6 Vital signs estimation 33
6.1 Introduction 33
6.2 Related work 33
6.3 Vital signs estimation on Android 34
6.4 Vital signs estimator
implementation and evaluation . . . 36
6.4.1 Heart rate estimation 36
6.4.2 Respiratory rate estimation
accuracy . 38

6.5 Implementation example 39
6.6 Summary . 40
7 User testing 41
7.1 User test results 42
7.1.1 Observations summary 42
7.1.2 User feedback 42

8 Conclusion 43
8.0.1 Further application
development 44

A List of abbreviations 45
B Bibliography 47
C Adobe XD Wireframes 51
D Application demonstration 55
E User tests 57

v

Chapter 1
Introduction

Acupressure is an alternative medicine technique originating from traditional
Chinese medicine. Traditional Chinese medicine is based on the concept of
life energy, which flows through the whole body and concentrates at special
points known as meridians. Acupuncture and acupressure use the stimulation
of these points to release pain and cure various diseases. While acupuncture
uses needles to stimulate these points, acupressure uses physical pressure
onto those points. The benefit of acupressure compared to acupuncture is,
that even the layman can perform acupressure exercises and stimulate the
meridians on his own, whereas acupuncture requires a professional skilled in
inserting needles in the right combinations onto the meridians.

Figure 1.1: Acupressure point known as Spirit Gate used in the application

Acupressure, although considered an alternative medicine technique, is used
throughout the world, but the availability of resources from which a layman
might learn how to perform acupressure is low. Today, anyone wishing to
start with acupressure has just two options . Search in the literature or find
a professional, who will teach them how to use acupressure. The goal of
this thesis is to add another option to this set, a mobile application, which

1

......................................1. Introduction

will serve as a study tool and in addition as a database of acupressure exercises.

Although books are an invaluable source of information, most of the inter-
viewees from the initial survey would choose a mobile application as a study
tool, as it comes with several benefits:.Mobile applications are highly portable, which means that when some

problem arise, the user of the application can quickly find the solution
for the problem in his/her pocket.. Compared to books, the application may contain a high number of
images, and the user may zoom into the image to find an exact location
of the acupressure point.. The price of a mobile application is significantly less than any course
teaching how to perform acupressure under the guidance of a professional.. The application may also contain educational videos or 3D models, which
can also facilitate the localization of acupressure points.

2

Chapter 2
Planned functionality analysis

The first part of this chapter contains a discussion about the best operating
system for the application, followed by an analysis of the versions of the
selected operating system. The second part of this chapter contains a formal
definition of planned functionality in the form of functional and non-functional
requirements.

2.1 Platform selection

The following table (Table 2.1) contains statistics of the smartphone market
share from the past five years. As can be seen, the Android OS dominates
the market, with a stable 70% share. The second most successful OS is
iOS, with a 20% share. An observation can be made that the share of the
remaining operating systems is decreasing rapidly. In 2015, the remaining
operating systems had approximately 15% in 2019, approximately 1%. Based
on this analysis, the Android OS was selected as the best platform for the
application.

Year 2015[%] 2016[%] 2017[%] 2018[%] 2019[%]
Android 65.9 72.0 73.5 75.2 74.1
iOS 19.2 18.9 19.9 22.0 24.8
KaiOs 0.0 0.0 0.0 1.1 0.4
Windows 2.3 1.2 0.6 0.3 0.1
Other 12.6 7.9 5.9 1.4 0.6

Table 2.1: Market share of mobile platforms in the past 5 years[1].

The next phase of the development process is the selection of the supported
backward compatibility, in particular, the selection of the minimal version of
the Android OS required in order to install and run the application successfully.
Based on the January 2020 statistics show below (Table 2.2), Lollipop was
selected as the minimum supported version of the OS, which will guarantee
compatibility of the application with at least 94% of devices currently running.

3

................................2.2. Application functionality

Name Api Level Usage[%]
Pie 28 41.9
Oreo 26-27 22.8
Nougat 24-25 11.8
Marshmallow 23 10.6
Lollipop 21-22 7.1
Total 21-28 94.2

Table 2.2: A relative number of devices running a given version of the Android
platform[1].

2.2 Application functionality

The core functionality of the application is to provide a database of acupressure
exercises to the user. For fast navigation, the application will offer logical
sectioning, and filtering of acupressure points based on their location and
symptoms to be resolved with the given points. Each exercise should be well
described, so a user with no previous experience will be able to perform the
procedure correctly. For this, each exercise will consist of a verbal description,
together with a set of images describing the location of the point.

2.2.1 Functional requirements

Application tutorial

The application should contain a tutorial or a set of hints to teach the user
how to use the application. The tutorial can be implemented as an onboarding
tutorial, which will be triggered in the first run of the application and will
not be triggered in following application startups. Another option is a set of
hints available to the user in appropriate screens and which can be displayed
when required.

GUI to search for points based on their location

The application should contain a tool to search for desired points based on
the location of the point on the body part. The filter options for body part
filtering should be as follows:

. Head. Torso. Upper limbs. Lower limbs

4

................................2.2. Application functionality

Search tool for a specific problem solutuion

Besides the location-based search tool, the application should also provide
a tool to search for points to help the user deal with a specific problem.
Example: If the user suffers from headaches, the application should offer a
list of acupressure points to solve this particular problem.

Automatic data synchronisation

All the application data should be automatically synchronized with the
application server on a regular basis. By default, the synchronization should
be allowed only via WiFi connection, but the user should also have the option
to allow mobile data synchronization.

Acupressure points prioritization

The user should be able to mark frequently used points as favourites. The
favourite points should be easily accessible in the application.

Well structured acupressure point description

Each point should be described with the following pieces of information:. Localisation - verbal description of the exact location of the point. Application - instructions on how to use the point (how much much
pressure should be used during the exercise, how often the user should
perform the exercise).Description - description of the effects of the point, how the point
influences the organism. Images - each point should be assigned an image or set of images showing
the location of the point

Zoomable images

Each image showing the position of the given acupressure point, should be
zoomable, so the user can easily find the exact location of the point.

Feedback mechanism

For future application improvement, the user should be able to send feedback
from within the application. The application should provide the user the
following feedback options:. Reporting errors in the application. Improvement suggestions.Question form

5

................................2.2. Application functionality

Vital signs estimation

The application should contain a tool for vital signs estimation, specifically
a tool which measures the heart and respiratory rate of the user. This tool
should use the phone’s camera for this measurement.

Results of vital signs measurements

The user should be able to list the results of the performed measurements
from within the application.

2.2.2 Nonfunctional requirements

Version of the OS

The application should run on at least 90% of devices of the selected OS
which are currently in use. A discussion about the versions of the OS is
placed at the beginning of this chapter.

Language

The application should support at least two language sets (cs, en) and should
be implemented in such a way that adding new language sets will not require
extensive modifications of the application.

Design guidelines

The application should follow current Google design guidelines. It should
also use contemporary application architecture.

6

Chapter 3
Existing solutions

This chapter contains a summary of applications dedicated to acupressure,
which are available for Android users. The Google Play store[2] offers various
applications for mobile acupressure, although none of the applications provide
sufficient solutions for the desired functionality defined in chapter 2. Moreover,
most of the applications available are unfinished or in beta version only.

3.1 Acupressure Point for 300+ Diseases

"Acupressure Point for 300+ Diseases"[3] was selected as the first example of
existing solutions as it was a number one application on Google Play store
at the time of writing this thesis. The application provides a very simple
solution for the given problem (Figure 3.1). However, the application only
offers an alphabetically ordered list of acupressure exercises. The user has
no option to filter the exercises. It is, therefore, hard to find any desired
exercise as the user has to scroll through the whole list. Such an approach
is very inefficient. Another difficulty is that the application is incomplete.
The user can enter a screen, from which there are no options to move to any
other screen. Sometimes the user may even end up with a completely white
screen. Information about each point is limited to a verbal description of its
location. Any descriptions of how to use the point or how the point influences
the organism are missing.

Summary

Pros:.Wide database of exercises

Cons:. No tool for effective exercise filtering/searching. Unsatisfactory exercise description with low resolution images. Broken application flow

7

.......................... 3.1. Acupressure Point for 300+ Diseases

(a) : Linear list of difficulties (b) : Abdominal pain exercise description

Figure 3.1: The GUI of the application Acupressure Point for 300+ Diseases

8

.............................3.2. Basics of Acupressure Massage

3.2 Basics of Acupressure Massage

The second application selected for analysis is called "Basics of Acupressure
Massage"[4]. The application is shown in the following figure 3.2. This
application also lacks proper structure. The user interface is chaotic, and it
is very difficult to find the desired acupressure point (the point which would
solve the specific problem). The entire application is inconsistent, photos of
various sizes are mixed with hand drawn pictures and images, intensifying
the feeling that the application is not finished and that it is only a prototype.

(a) : Navigation screen (b) : Point description screen

Figure 3.2: The GUI of the application Basics of Acupressure Massage

Summary

Pros:. Better, but still insufficient, point description compared to the previously
studied application

Cons:. No tool for effective point filtering. Chaotic application structure. Inconsistent image gallery throughout the application

9

.................................. 3.3. Acupuncture Index

3.3 Acupuncture Index

The third application used for analysis is called "Acupuncture Index" [5]. As
the name suggests, the application is dedicated to acupuncture, but since both
acupressure and acupuncture require similar application functionality, it was
also included in the analysis. At first sight it is apparent that Acupuncture
index is more sophisticated than the two previously examined applications. It
offers a large database of acupuncture points. Each point description contains
a well-arranged image (Figure 3.3a)) together with a location description and
a summary of the impacts of the points on the organism (Figure 3.3b)).

(a) : Reproduction of image describing
the location of LR5 point

(b) : Description of the location and in-
dications of the LR5 point

Figure 3.3: LR5 point description in the Acupuncture Index application

10

.................................. 3.3. Acupuncture Index

The application is also more explicit and better organized compared to the
two previously studied applications. All points are divided into groups by the
meridians1 to which they belong (Figure 3.4a). Besides the meridian division,
the application offers the user an option to create groups of points. There is
also a screen that enable searching for points by specific diseases (Figure 3.4b)).
However, the disease list contains only six items. The application also contains
a search tool, although testing of this feature showed that it does not work
very well.

(a) : Division of acupuncture points by
meridians

(b) : Disease based acupuncture point
division

Figure 3.4: Acupuncture index application structure demonstration

Summary

Pros:. Large database of acupuncture points. Consistent and well-arranged images used for point description.Option for custom point division. Search tool for specific points and disease-based point division

1a meridian in Chinese medicine represents a single line/path of points through the body

11

.................................. 3.4. Analysis Summary

Cons:. Search tool not fully functional. Small number of diseases for point division. Does not respect Google design guidelines (for example one navigation
bar on top of another etc.)

3.4 Analysis Summary

As can be seen from the above examinations of existing solutions, there are no
applications offering satisfactory solutions to the given problem. Even the last
examined application, which could be seen as the closest equivalent for the
developed application, does not fulfill the required functionality, apart from
its focus on acupuncture instead of acupressure. It is, therefore, meaningful
to deal with the problem of mobile acupressure and provide a solution which
would offer the user a well-arranged application, with consistent GUI, which
respects Google design guidelines and current application trends.

12

Chapter 4
Design

4.1 User interface design

4.1.1 Balsamiq Mockups

The first application concept was created using the program Balsamiq
Mockups[6]. Balsamiq Mockups is a graphical user interface tool used for
designing the GUI of web pages and mobile applications. The designer is
able to quickly create a required design using the drag-and-drop editor with
a combination of the large set of Balsamiq pre-built widgets. After several
iterations, the initial design, shown below (Figure 4.1), was created. The
complete mockup is placed in the attachment.

(a) : Screen with a side navigation bar (b) : Point detail screen

Figure 4.1: The initial mockup created in Balsamiq Mockups

13

................................. 4.1. User interface design

4.1.2 Adobe XD

The initial design was used to fully define the functional requirements of the
application. It helped to define the basics of the application structure and
the data model for the application. It was also used as the basis for the
second mockup created using Adobe XD[7]. Adobe XD is a new UX design
tool, which can be used to create high-quality application design. The most
significant advantage of Adobe XD is that it can be used to create a mockup,
which looks like (and behaves like) the final application. And it is, therefore,
possible to test the application flow and its structure in the early stage of the
development process. The advanced mockup (Figures 4.3 - 4.6) created after
several iterations reflects following scheme (Figure 4.2).

Main screen bottom toolbar
Favourite screenFigure C.1

Point detail screenFigure C.6
Image detail screenFigure C.7

Search by problem screen Figure C.2
Point list screen Figure C.5

Point detail screenFigure C.6
Image detail screenFigure C.7

Search by bodypart screen Figure C.3
Point list screen Figure C.5

Point detail screenFigure C.6
Image detail screenFigure C.7

Advanced screnFigure C.4
Send feedback screen
Vital signs screen bottom toolbar

Measurement screen Figure C.8
How to measure screenFigure C.9
Measurement results screenFigure C.10

Figure 4.2: Scheme of the initial design created in Adobe XD

The structure of the initial design was reworked. The navigation bar was
added to the bottom of the screen, and the application was divided into four
main screens.. Home screen (Figure 4.3), which contains the users favourite points.. Search by problem screen (Figure 4.4), where the user can look for points

to help with particular problems.. Search by body part screen (Figure 4.5), which replaces the side nav-
igation bar from the initial mockup. Using this screen, the user can
get acupressure points for specific body parts by simply tapping on the
desired location.. Advanced screen, which contains application settings, options to send
feedback to the author, and an entry point for measuring vital signs rate.

14

................................. 4.1. User interface design

Figure 4.3: Home screen Figure 4.4: Search screen

Figure 4.5: Body screen Figure 4.6: Point detail screen

15

................................. 4.2. Architecture desingn

4.2 Architecture desingn

After the design was completed, the next phase was selecting the architecture
pattern for the application. This section describes the most common archi-
tectures for android applications. A short summary of their pros and cons is
presented, together with a discussion about the best option.

4.2.1 Importance of the Android application design

Mobile applications have, unlike desktop apps, a very complex structure.
Desktop applications work as a single process, rarely interacting with other
programs. On the other hand, the Android application is usually a sophisti-
cated structure of various application components such as activities, fragments,
services, etc. Moreover, mobile applications often iteract with other mobile
applications and can be interrupted by the behaviour of other applications at
any time.

The complexity of Android applications is demonstrated with the following
example. Let us say that the application SampleApp provides an option to
send a message from within the application, using another app like Gmail or
Messenger. The flow of the actions of the Android OS can be described as
follows:. The Sample app triggers a Messenger intent. This means that the

SampleApp is put onPause(), and the Android OS runs the Messenger
app to process the request.. In the Messenger app, the user writes the content of the message and
decides to add a photo as an attachment.. This requires putting the Messenger onPause(), saving the content of
the message, and triggering the Camera application.. In the end, the user sends the message and returns back to the Sample
app.

It is also possible that the application flow is interrupted by an incoming
phone call, which requires another pause of the application. The OS may
even terminate some applications running in the background to free resources
for remaining applications.

The example provided shows the importance of the Android application
architecture. The architecture has to be designed with respect to the fact
that the application may be paused or even terminated at any time, which
means that it is not possible to store any application data or application state
in the application components.

16

........................... 4.3. Common application architectures

4.3 Common application architectures

The most common application architectures (oldest first) are as follows:.MVC (Model View Controller).MVP (Model View Presenter).MVVM (Model View ViewModel)

4.3.1 Model View Controller

The MVC is a pattern used mostly for web forms but can be sufficient for
small applications. This architecture focuses on separating the user interface
(UI) from the data model. For that, the MVC pattern uses three components
(Figure 4.7). By default, all three components are able to interact with each
other.

Figure 4.7: Model View Controller architecture

. The Model is responsible for business logic. It defines the rules for
handling data.. The View deals with displaying the data, which it obtains from the
Controller.. The Controller is responsible for handling UI actions (button taps, swipe
gestures, etc.). General practice is to have one controller, which handles
multiple views.

4.3.2 Model View Presenter

The MVP (Figure 4.8) is the successor to the MVC. It uses the Model and
the View components from the previous model and replaces the Controller
for a Presenter. Finally, it adds a new layer (an interface) between the View

17

........................... 4.3. Common application architectures

and the Presenter. This increases the encapsulation of the application, and it
allows mock Views for unit tests.. The Model and View fulfill the same obligations as in the MVC. The View Interface provides a loose coupling between the View and the

Presenter. The Presenter is responsible for interacting between the View and the
Model. (Note that there is no direct connection between the View and
the Model). Usually, the relationship between the Presenter and the
View is one to one.

Figure 4.8: Model View Presenter architecture

4.3.3 Model View ViewModel

The MVVM (Figure 4.9) is the youngest architecture pattern in the set. The
View and the Model are again the same as in the MVC pattern. In this case,
the Controller was replaced by the ViewModel. The ViewModel provides
the data for a specific UI component (View), but this time the ViewModel
supports a two-way data binding with the View. This allows the automatic
propagation of data changes between the Model and the View (the process of
automatic propagation of data changes is described in the following pages).. The View displays certain data. But it does not own/hold the data.

It simply performs rendering of the data, which it obtains from the
ViewModel.. The ViewModel is designed to hold certain data objects created from
the data obtained from the Model, and it is able to call functions of the
View to render these data objects.. The Model holds the data. If the ViewModel requires certain data, the
Model is responsible for obtaining them (usually from the local database
or from the remote host) and passing them on to the ViewModel.

18

........................... 4.3. Common application architectures

The Model View ViewModel is the most advanced pattern and the best option
for large applications. Thanks to the separation of individual components,
the architecture is easily testable and modifiable. Based on this comparison,
the MVVM pattern was selected for the application.

Figure 4.9: Model View ViewModel architecture

4.3.4 Model View ViewModel in Android applications

The MVVM pattern is currently the recommended option for the Android
application architecture (based on official Android documentation[8]). The
structure of the MVVM pattern for Android applications is shown in the
figure below (Figure 4.10).

Activity/Fragment

Activities and fragments are studied in detail in section 5.2. In the MVVM
pattern, activities and fragments represent the View object. They can be
seen as a tool that receives data from its ViewModel and is responsible for
rendering the data in a predefined way.

Repository

The Repository is the data provider for the application. By default, the
Repository can be a simple java class, which provides the data, usually using
a 3rd party library/tool. While each activity/fragment has its own ViewModel,
the Repository may provide data for multiple ViewModels. The Repository is
the only class in this model, which may depend on multiple other classes. The
number of dependencies varies according to particular applications (whether
the application only uses a local database or is connected to a remote data
source or other source of the data). In the example provided, the Repository
is connected to a local SQL database via the Room library and to a remote
data source via the Retrofit Tool.

19

........................... 4.3. Common application architectures

Figure 4.10: MVVM model implemented in Android [8]

ViewModel

The ViewModel establishes a connection between the activity/fragment and
the Repository. Every activity/fragment which uses data that is not com-
pletely static (data which may change over time, such as database records),
should be provided its ViewModel. The ViewModel is responsible for obtain-
ing the data from the Repository. It may perform filtering or modification of
the data.

The most important part of the ViewModel is a construct called LiveData,
which provides a simple implementation of the observer pattern. The use of the
LiveData significantly improves the communication between the ViewModel
and the Repository. The principle of the observer pattern is that one object,
usually called the subject, maintains a set of observers, and notifies them
automatically when the state of the observed data changes. Without the
observer pattern, the ViewModel would have to periodically verify if the
data it works with are valid (which would require constant confirmation from
the Repository that the data are current). With the observer pattern, the
ViewModel is automatically notified if the LiveData changes. For example,
if the ViewModel is responsible for rendering data from the server, it can
initially process stored data, then concentrate on user actions, and when
the Repository obtains new data from the server, the ViewModel is notified
automatically to process new data.

20

Chapter 5
Implementation

5.1 Programing in Android in general

The Android OS, which runs on a modified version of the Linux kernel, was
initially released in 2008, and has been the best-selling OS on smartphones
since 2011. As shown in chapter 2, today, more than 70% of smartphone
devices use the Android OS.

5.1.1 Programing languages

The initial language for the Android applications was Java. Java is an object-
oriented programing language and the primary choice for most of the Android
developers as the OS of Android itself is written in Java (The UI of Android
is written in Java, while the core uses the C language, as it is derived from the
Linux kernel.). In 2011 IDE Jet Brains developed Kotlin, a new programming
language for Android applications. Java and Kotlin share many similarities,
and switching between the two languages is not difficult. Some of the main
differences are as follows:

.Kotlin removes the problem of NullPointerExceptions since all types of
variables are non-nullable.. Kotlin does not have checked exceptions. This means that the developer
does not have to declare or catch the exceptions. This approach has
both advantages and disadvantages..Kotlin allows function extending. This is not supported in Java.. Java compilation time is approximately 20% faster than Kotlin compila-
tion time.

Java was chosen as the programing language for the presented application.
The reason for choosing Java language was mostly the number of publications
about Java Android development as well as the amount of available source
code and tutorials, which will facilitate the application development process.

21

............................5.1. Programing in Android in general

5.1.2 Development tools

The primary IDE for Android applications was the Eclipse Android Develop-
ment Tool (ADT). Eclipse was replaced with Android Studio in 2013, and it
is no longer officially supported by Google, although it is still widely used,
as it works well with other programming languages. Apart from Android
Studio and Eclipse, some companies such as Uber or Spotify use Fabric,
a development tool behind Twitter’s mobile application. Another option
is a GameMaker: Studio, which is popular among game developers. The
application provided was developed in the officially supported Android Studio.

5.1.3 Android project structure

This section describes the basic structure of the Android studio project (Figure
5.1). The structure of the project is as follows:

Figure 5.1: Structure of Android Studio project

App

The app folder contains all resources of the application and can be divided
into three parts.

The manifests folder contains the AndroidManifest.xml, which holds the
basic information about the application. This includes the name of the appli-
cation, the name of the package, a list of privileges required by the application
and a list of the activities and services used in the application, etc.

The Java folder contains Java resource files for the application and the
application tests. The usual practice is to divide the application resource

22

........................ 5.2. Basic components of Android application

files based on the individual screens of the applications and to add a separate
folder for models and general tools such as database manages or REST API
clients.

The res folder contains all the remaining resource files, including drawables
(images, icons, etc.), layout resource files, or values such as strings and colours
used in the application.

Gradle Scripts

Gradle is a build system for Android applications. It is responsible for gener-
ating the apk (a runnable android application) from the .java and .xml files
of the project. Gradle scripts are of two types.

The top-level build script is located in the root project directory, and it defines
a build configuration for all project modules.

The module-level script contains a definition of the SDK version as well
as all the dependencies of the application. The application may contain
several module-level scripts, as every local library comes with one module
script.

5.2 Basic components of Android application

5.2.1 Activities

An activity is the basic building component for any Android application.
Usually, one application screen corresponds to one activity. For example,
a gallery app might have one activity for listing all images in the device,
another activity to show detail of a selected image, and another activity for
modifying images. Only one activity may run at any time. It is possible for
one activity to launch another activity via a tool called intent. The intent can
be understood as a data structure, which holds a description of an action to be
performed and may transfer data from one activity to another. For example,
when the user clicks on an image in the gallery, the currently running activity
puts the ID of the selected image to the intent and asks the intent to start
the second activity, which handles displaying the image detail. The second
activity is able to extract the ID of the image from the intent to load the
image from the database. The topic of the activities is studied in detail in
the official documentation [9].

23

........................ 5.2. Basic components of Android application

Figure 5.2: Lifecycle of Android activity [9]

The lifecycle of the activity (shown in Figure 5.2) is defined by following
callbacks.. onCreate() method, called only once per application lifecycle. It is used

to set up the activity, which includes setting the view for the activity,
establishing database connection, etc.. onStart() callback may be called multiple times within the application
lifecycle. It is called every time the activity becomes visible to the user.. onResume() method, which is called at the moment the activity reaches
the top of the activity stack. From this moment, the activity starts to
interact with the user.. onPause() method is called when the activity is no longer focusable by
the user. It is still visible, but it no longer receives user interaction.

24

........................ 5.2. Basic components of Android application

. onStop() callback is called when the activity is no longer visible to the
user. It is usually used to refresh the UI.. onDestroy() method is the opposite of the onCreate() method. It is the
last call before the activity is destroyed, and it is used to free resources
used by the activity.

Activities in SelfAcupressure

From now on, the application will sometimes be referred with its product
name SelfAcupressure. There follows a list of activities which are used in
SelfAcupressure. A detailed description of individual activities can be found
in SelfAcupressure application structure section 5.3

. BaseActivity (Parent of all other activities, used for activities setup).MainActivity (Manages the main screen of the app). PointListActivity (Controls screens displaying any list of points). PointDetailActivity (Responsible for acupressure point detail screen). ImageDetailActivity (Manages screen displaying images). PulseDetectorActivity (Responsible for measuring HR and RR). ShowMeasuredHrActivity (Displays PulseDetector activity results). AboutAppActivity (Manages information provision about the app). FeedbackActivity (Activity which manages app feedback system). SplashActivity (Activity displaying startup splashart)

5.2.2 Services

A service is an Android tool for handling background operations and inter-
actions with other applications. A service is implemented as a subclass of
Service class, and every service has to be declared in the application manifest
file. The services might be used, for example, to handle background data
synchronization with the server, or to play music in the background, while
the user interacts with another application.

SelfAcupressure does not require any custom services. But it uses build-in
system-level services, such as Connectivity service, which is used to handle
network connections.

25

........................ 5.2. Basic components of Android application

5.2.3 Broadcast receivers

Broadcast receivers enable notification of the application about events coming
from outside of a regular application flow. For example, a broadcast receiver
may be used to notify the application about an incoming SMS message. The
advantage of broadcast receivers is that the system can even notify applica-
tions that are currently not running.

5.2.4 Content providers

Content providers are used for sharing data among multiple applications.
This includes, for example, contacts stored in the device, which may be used
by multiple applications, and thus they have to be stored in the content
provider. As most applications do not have to share the data with other
applications, they usually use a simple SQL database to store their data.

5.2.5 Fragments

A fragment is a construct used to divide activities into smaller units. The
fragment, in the same way as the activity, has its own life cycle, and it is able
to receive its own input events. One activity might be composed of multiple
fragments, each responsible for one part of the activity functionality. It is
also common to use one fragment in multiple activities, which increases the
clarity of the application. There follows a list of activities that are used in
SelfAcupressure.. Favourite fragment (fragment which shows a list of the users favourite

points). Search fragment (offers an affliction-based search tool for acupressure
points). Body fragment (manages search tool based on acupressure point location). Advanced fragement (contains application settings and the secondary
application functionality such as feedback entry point or measurement
entry point). Tutorial fragment (contains the vital signs measurements tutorial).Measurement fragment (fragment where the vital sings estimation is
performed). Results fragment (fragment displaying the results of performed vital
sings measurements)

26

.......................... 5.3. SelfAcupressure application structure

5.3 SelfAcupressure application structure

This section describes the structure of the implemented application in detail.
The SelfAcupressure project structure reflects the standard Android applica-
tion structure defined at the beginning of this chapter (5.1.3). As the basics
of the structure are well described above, this section concentrates on the
content of the app/src/main/java folder (5.3), which contains the functional
source code.

Figure 5.3: Structure of the SelfAcupressure project

The application is at the top level divided into the following packages (as
shown in Figure 5.3):

Database package

Database package encapsulates the code necessary to implement MMVM
room database (described in Section 4.3.4), which includes:. ApplicationDatabase.java - Class that extend+.s RoomDatabase. It

defines which entities the database uses, what the database version is,
etc.

27

.......................... 5.3. SelfAcupressure application structure

. ApplicationDao.java - Interface, which contains a definition of all database
queries.. AplicationDatabaseModule.java - Class, which handles the proper instan-
tiation of the database, using the Singleton pattern1.. Convertors package - A package which contains all database convertors2.

GlobalManages package

A package that comprises classes that provide globally accessible resources.
For example, IntentKeysManager.java, which holds string resources that
identify data passed between activities via intent.

Model package

The Model package contains definitions of all data models used in the appli-
cation. The most important models are:. Point.java, which defines data models for acupressure points,. Problem.java, which contains models for individial problems solvable by

acupressure..Measurement.java, which defines data objects for HR measurements.

Repositories package

A package which encapsulates MMVM repository classes: Point repository,
Problem repository and HeartRate repository. Each managing CRUD3 opera-
tions for corresponding data objects.

RestApi package

Like the Database package, the RestApi package encapsulates the code
required by the Retrofit library to create a rest API client for communication
with the remote server, which includes:. APIClient.java - Class that defines the communication point (URL of

the remote server, etc.).. APIInterface.java - Interface, which contains a definition of rest API
queries.. DataProcessor.java - A custom class that contains methods for processing
data from incoming rest communication.

1software design pattern restricting the instantiation of a class to one instance
2converts complex Java structures (Lists, Maps, etc.), to simple data structures, used by

the room database
3CRUD (Create Read Update Delete), basic operations applied on data objects

28

.......................... 5.3. SelfAcupressure application structure

Screens package

A package that serves as a container for source code of individual application
screens. Each screen is placed in a separate package as follows:. SplashScreen - Simple screen, that displays the SelfAcupressure logo, at

the application startup..MainScreen - The core of the application. This screen is divided into
four fragments, each managing one functionality. The user is provided
with a bottom navigation bar to switch between fragments.. Favourite fragment - contains a list of the users favourite points. Search fragment - offers an affliction-based search tool. Body fragment - manages search tool based on acupressure point

location. Advanced fragement - encapsulates additional application function-
ality, such as application settings, feedback entry point or measure-
ment entry point

For clarity, each fragment is placed in its own package, which holds its
Java class as well as ViewModel and other auxiliary classes provided.. PointListScreen - This screen is accessible from the Search and Body
fragment, and displays a list of points that were filtered by one of the
search tools.. PointDetailScreen - The task of this screen is to display detailed infor-
mation about any filtered acupressure point.. ImageDetailScreen - Contains a tool to display zoomable detail of acu-
pressure point images.. DetectPulseScreen - Similarly to MainScreen, the DetectPulseScreen is
divided to three fragments each responsible for one functionality.. Tutorial fragment - displays a tutorial describing the measurements

procedure.Measurement fragment - fragment where the measurement itself is
performed. Results fragment - contains a list of performed measurements, and
the entry point to MeasuredHrScreen.MeasuredHrScreen - Activity that displays the results of the currently

performed measurement or results of previous measurements. AboutApplicationScreen - Simple activity that describes the application
background. FeedbackScreen - Serves as an entry point to send feedback via Android
build in communication means, such as E-mail or Gmail

29

................................ 5.4. Used tools and libraries

5.4 Used tools and libraries

This section describes the tools and libraries used in the SelfAcupressure
application. As mentioned earlier, Android applications are built by the
Gradle build system. This system makes it easy to include external binaries
and other library modules in the application. For most libraries, the only
necessary step to use a given library is to declare a dependency on that
library in the build.gradle file. SelfAcupressure uses the following libraries:
Room, Retrofit, Dagger, OpenCV, OkHttp, Gson, Picasso, PhotoView, and
MaterialShowcaseView.

5.4.1 Room

As the application implements the MMVM architecture, Room library[10] is
a necessary component. As stated in the official documentation: "The Room
persistence library provides an abstraction layer over SQLite to allow robust
database access while harnessing the full power of SQLite."

5.4.2 Retrofit

Based on the official Android documentation, the Retrofit library[11] is the
currently recommended tool for REST API connections. Thanks to the
Retrofit toool it is possible to declare HTTP methods inside the application
in the Java language. An example of this method is as follows:

@GET("serializer")
Call<MultipleResource> doGetMultipleResource(@Query("lang") String

lang);

5.4.3 OkHttp

OkHttp[12] is an open-source library that is used by the Retrofit tool to
establish an HTTP connection. OkHttp is able to recover from common
connection problems and preserve the connection in case of a network outage.

5.4.4 Dagger

The Dagger tool[13] is a static framework for compile-time dependency injec-
tion 4. In MMVM architecture, the Dagger tool is used to provide Repository
instancies throughout the application. The constructor of every repository is
annotated with @Inject annotation. When a ViewModel requires dependency
on a given repository, it can obtain its instance with the following call:

4dependency injection is a technique where one object supplies the dependencies of
another object

30

................................ 5.4. Used tools and libraries

RepComp repositoryComponent =
DaggerRepComp.builder().applicationDatabaseModule(new
ApplicationDatabaseModule(application)).build();

Repository repository = repositoryComponent.getRepository();

Using Dagger guarantees that every ViewModel has access to the same
repository. Moreover, every implementation modification of that repository
is automatically propagated to all ViewModels.

5.4.5 OpenCV

The OpenCV tool[14] is a library with its primary focus on real-time computer
vision applications. It is written in C++ with an interface primarily aimed for
the same language, but the library also provides bindings to other standard
programming languages such as Python, Java, Matlab, or even less common
languages as Perl, Haskell or Ruby. The OpenCV library provides tools for
a wide range of computer vision topics, such as facial recognition, object
identification, motion tracking, and much more. SelfAcupressure uses OpenCV
for heart and respiratory rate measurements, which are studied in detail in
the next chapter.

5.4.6 Gson

Gson[15] is a widely used library for JSON object serialization. In order
to serialize an Android object, it is necessary to annotate its fields with
@SerializedName("nameOfTheField") annotation, which defines how to map
the Android object to JSON data structure. SelfAcupressure uses the GSON
library to deserialize incoming data from the remote server.

5.4.7 Picasso

The Picasso library[16] is a powerful tool for downloading and caching images
in Android applications. It simplifies the process of downloading images from
remote storage greatly. The library requires simply a URL location of the
remote image. With the provided URL, the Picasso downloads the image
on a background thread, and notifies the image holder, when the image is
ready. The library also stores the downloaded images in a local repository so
that the following requests can be handled without communication with the
remote server.

5.4.8 PhotoView

The PhotoView library[17] is a small tool that provides easily usable im-
plementation of a zooming Android ImageView. The application uses this
feature to make every image describing the location of acupressure points,
zoomable.

31

................................ 5.4. Used tools and libraries

5.4.9 MaterialShowcaseView

The MaterialShowcaseView[18] is a library that provides tools to highlight
and showcase specific parts of the application to the user, with a distinctive
and attractive overlay. It is a great way to provide an application tutorial or
set of hints to highlight less intuitive features or gestures.

32

Chapter 6
Vital signs estimation

6.1 Introduction

In the past decade, smartphones have moved from simple tools focused on
communication via calls and SMS, to complex devices, which can perform
a wide range of activities. Nowadays, an average smartphone can be used
as navigation, camera, dictionary, credit card, health care assistant, and
much more. That healtcare is so prevalent is confirmed by the number of
applications on Google Play for fitness assistance, health coaching, vital signs
monitoring, etc. The goal of this chapter is to analyze the possibilities for
functionality that was yet not addressed by many mobile applications, vital
signs monitoring, namely, estimation of heart rate (HR) and respiratory rate
(RR).

6.2 Related work

Vital signs monitoring is essential for clinical diagnostics and fitness coaching.
Vital signs are usually measured with electrocardiography sensors or photo-
plethysmography (PPG) sensors. Measurements with these sensors require
direct contact with the skin of the person being examined, which may be
inconvenient and inappropriate for long time measurements. Therefore, a
number of scientific groups have conducted studies to come up with algorithms
for remote vital signs monitoring. A large portion of these studies examines
the possibility of vital signs estimation using camera footage. Algorithms
which estimate vital signs from video footage are ideal for mobile devices, as
they only require a camera and no other sensors to perform the measurements.

The first papers dedicated to vital signs monitoring were aimed primarily at
HR estimation from facial videos. This method is known as remote photo-
plethysmography (rPPG). The principle of rPPG is to observe colour changes
in the subject’s skin. The skin colour reflects changes in the blood volume in
capillaries, which is consistent with the pulse signal. The process of rPPG
is well described in [19] and [20]. The basics of rPPG methodology and a
general overview of all papers dedicated to rPPG is presented by Rouast,

33

............................6.3. Vital signs estimation on Android

Philipp et al.[21]. rPPG can also be used to estimate the respiratory rate,
as RR in addition influences the volume of blood in capillaries. However,
RR detection is more complicated and less precise, as will be shown in the
following pages.

Another approach to estimate RR from video footage of a person is body
motion detection. For example in papers [22, 23, 24] the chest motion of
tested subjects is tracked to measure their RR. Another interesting paper,
published by Rubinstein at al. [25], shows how face motions can be used for
vital signs estimation. Their algorithm observes face expansion and shrinkage,
which is again caused by the changing volume of blood in capillaries. These
changes, when amplified, can be used to estimate the HR signal.

6.3 Vital signs estimation on Android

The previous section introduced two approaches on how to use camera record-
ing to estimate the vital signs of a person. The algorithms for chest motion
detection usually require a static shot taken from a greater distance, so the
whole chest region is included in the field of view. That is hard to achieve
while holding the camera in the hand and, therefore, not very suitable for
mobile applications. However, making a facial recording is simple as most
smartphones today are equipped with a front camera. Based on these assump-
tions, the chest motion approach was rejected, and the photoplethysmography
approach was subjected to a more detailed analysis.

The system for estimating the HR/RR from the video of the face can be
described with the following diagram 6.1.

Figure 6.1: Video processing scheme

34

............................6.3. Vital signs estimation on Android

The process starts with examining each frame individually. Initially, a face
is detected and extracted from each frame. Subsquently, the facial image is
subjected to decomposition into its RGB channels. As discussed above, each
channel reflects changes in the blood volume in facial capillaries, which are
influenced by both RR and HR signals. Usually, the red channel is used for
the following spectral analysis as it best reflects blood volume changes. For
each frame, the system calculates an average value of the red colour across
all the pixels. From these values, a signal representing the color changes is
composed. The last step is to identify the frequency of the RR/HR in the
red channel signal, which is a task of simple signal processing. The signal is
converted to a frequency domain by means of a Fourier transform. The HR
can be located as the highest peak of the frequency domain in the interval
from 0.8 to 2.5 Hz, which are the boundaries of an average healthy person’s
heart rate. The RR should be similarly detectable as the highest peak in the
interval from 0.15 to 0.45 Hz.

Although many studies were dedicated to facial recording analysis, this ap-
proach has several drawbacks. Firstly the results of the measurement may
be affected by ambient lighting, as some light sources flash while running.
Flashing ambient light may distort the recording, and the estimated HR
frequency may actually be the frequency of the flashing light. The second
problem is computational complexity, which comes with the face extraction.
In order to offer real-time measurements, computational complexity should be
as low as possible. The third drawback can be the measurement process itself
because the user has to face the phone directly throughout the measurement,
which is not very user friendly, and may discourage some users from using
the application.

The solution to the problems outlined is fairly simple. The measurement
process can be modified by replacing facial footage for footage of a finger, as
shown in the following figure 6.2. The finger is placed over the rear camera and
its flashlight, and video footage is taken with flashlight turned on. The finger
can be used instead of a face, as it also contains the heart and respiratory
signals hidden in the amount of blood flowing through the finger. In this case,
no ambient light influences the measurement because the finger fully covers
the camera lens. The complexity of the evaluation process is decreased, as
there is no facial extraction performed. In addition, from the users point
of view, this approach is more comfortable, because the user does not have
to look at the camera throughout the measurement. The applicability of
this approach confirms several applications recently published on Google
Play, which already use the rear camera with the flash to estimate users HR
[26, 27]. Based on this analysis, this estimation method was selected as the
best approach to vital signs estimation.

35

................... 6.4. Vital signs estimator implementation and evaluation

Figure 6.2: Recording finger footage [28]

6.4 Vital signs estimator implementation and
evaluation

The video analyzer was implemented using the OpenCV library. The reason
for using the OpenCV library for video footage analysis is its wide set of
tools for image processing. OpenCV enables processing the video footage
frame by frame in real-time. Each frame is published in a standard OpenCV
Mat format, which is a multidimensional matrix representation of the frame
optimized for fast calculations. Thanks to this matrix representation, the
decomposition of frames to its RGB channels is fast and straightforward. The
signal processing methods were implemented using the OpenCV library and
standard Apache math library.

There follows an evaluation of the presented estimator accuracy. Accuracy
evaluation is divided into two parts. The first part examines the accuracy of
the HR estimation compared to an OMRON M6 digital oscilometer [29] and
another android application for HR measurement, the Heart Rate Plus [26].
The second part contains a discussion about RR estimation and an evaluation
of its accuracy.

6.4.1 Heart rate estimation

A series of measurements were performed to evaluate the precision of the
HR estimation. The measurements were carried out at different times of the
day in various conditions (after exercise, while resting, after drinking coffee,
etc.). HR was measured simultaneously with the SelfAcupressure estimator
installed on a Samsung Galaxy A5 and with an OMRON M6 oscilometer [29].
The same procedure was subsequently used to evaluate the accuracy of the
Heart Rate Plus [26]. The results are presented in the following tables 6.1,
6.2 .

36

................... 6.4. Vital signs estimator implementation and evaluation

No. Omron M6[b/s] SelfAcupressure[b/s] Deviation[b/s]
1 55 55 0
2 53 53 0
3 52 55 3
4 54 56 2
5 73 69 4
6 53 53 0
7 88 93 0
8 65 67 2
9 71 71 0
10 71 74 0
11 78 74 4
12 72 72 0
13 72 70 2
14 55 53 2
15 59 60 1

Table 6.1: SelfAcupressure HR estimator compared to Omron M6 oscilometer

No. Omron M6[b/s] Heart rate plus[b/s] Deviation[b/s]
1 71 72 1
2 68 71 3
3 75 78 3
4 72 76 4
5 72 72 0
6 67 67 0
7 68 66 2
8 58 59 1
9 59 58 1
10 85 81 4
11 55 57 2
12 63 61 2
13 49 50 1
14 70 70 0
15 50 52 1

Table 6.2: Heart rate plus estimator compared to oscilometer Omron M6

Table 6.1 shows that the SelfAcupressure estimator returns consistent results,
which correspond to HR values from Omron M6 with an average deviation of
2 b/min, which is approximately the same accuracy as the examined Heart
rate plus as shown in the table 6.2.

37

................... 6.4. Vital signs estimator implementation and evaluation

6.4.2 Respiratory rate estimation accuracy

The previous section shows that the finger color variability is a sufficient
indicator to measure heart rate, as the HR is clearly detectable in the frequency
spectrum. On the other hand, the respiratory rate turned out to have only
a small effect on the amount of blood flowing through the finger, and its
estimation is, therefore, more complicated. The following graph 6.3 shows the
frequency spectrum from one of the experiments. Whereas the peak, which
corresponds to the heart rate frequency, is clearly visible (purple circle), the
red peak, which indicates the respiratory rate is relatively small compared to
other signal components. In this case, the evaluation system would incorrectly
estimate the RR, as it would choose the peak next to the actual RR as the
dominant frequency component in the given interval (0.15, 0.45 Hz). For this
reason, the RR estimation displays a higher inaccuracy than HR estimation,
because in some cases, the effect of breathing is drowned out by noise.

Figure 6.3: Frequency spectrum of the red chanel demonstrating the difference
of HR and RR discoverability

To calculate the accuracy of the RR estimation, a series of experiments were
performed. In these experiments, the tested subject was asked to breathe
at regular intervals while his RR was measured using the SelfAcupressure
estimator. The following table 6.3 shows the results of the experiments
performed. The average deviation is approximately 3 br/min, which is accept-
able compared to the state-of-the-art accuracy, which, based on methodology,
ranges from 1.2 - 2 br/min.

38

................................6.5. Implementation example

No. Breathing frequency[br/s] Estimated RR[br/s] Deviation[br/s]
1 12 13 1
2 12 13 1
3 12 11 1
4 12 15 3
5 15 14 1
6 15 13 2
7 15 12 3
8 15 13 2
9 20 17 3
10 20 15 5
11 20 17 3
12 20 15 5
13 10 13 3
14 10 13 3
15 10 18 8

Table 6.3: Results of experiments to evaluate RR estimation accuracy

6.5 Implementation example

Here follows an example of estimation implementation (Figure 6.4) to demon-
strate the implementation approach and style of writing the code. The code
provided contains the implementation of the calculateVitalSings() method
used to estimate HR and RR from a list of video frames.

Figure 6.4: Implementation example demonstrated on the vital sings evaluation
method

At first, the method requests the frames to process (line 226) in the form
of a Scalar list (standard OpenCV object for image representation). Then
the red channel is extracted from the list (line 228). Follows the removal
of the static component from the red channel (standard procedure before

39

...................................... 6.6. Summary

applying the Fourier transformation) and the power spectrum extraction from
the remaining signal (lines 230 and 231). In the last step, HR and RR are
extracted from the power spectrum and returned from the method in the
form of VitalSings object.

6.6 Summary

This chapter presented the problem of heart rate and respiratory rate estima-
tion on android devices. The experiments in this chapter showed that the
implemented HR estimation achieves satisfactory results and can compete
with existing android applications offering this functionality. It is to be
decided if the SelfAcupressure application should also provide RR estimation
functionality, which does not achieve such quality results.

40

Chapter 7
User testing

This chapter contains a summary of user testing, which was performed to
assess user acceptance of the application before the application is placed on
the market. User testing was performed on a sample of five potential users.
This sample was chosen to contain a full range of potential users, both men
and women aged from 20 to 60 years, as shown in the following table.

Gender Age occupation
Female 20 undergraduate student
Male 59 manager in IT company
Female 59 high school teacher
Male 21 undergraduate student
Female 49 household management

Table 7.1: User profiles

At the beginning of the test, each user was briefly acquainted with the focus
of the application. Then the users were presented with a set of tasks to
perform using the application. Examples of individual tasks are as follows:. You have recently experienced digestive problems. Open the application

and try to find the acupressure points that could help you with this
problem.. Choose one of the points for dealing with digestive problems and find
out as accurately as possible where this point is located and how it is
recommended to stimulate this point..Measure your current heart rate with the application. When the mea-
surement is complete, return to the screen where you performed the
measurement.

The entire set of tasks can be found in the appendix E. Although each of
the tests was performed in the presence of the application developer, the
testing process was not interfered with in order to observe behaviours and to
detect any deficiencies in the application. At the end of the testing, each user
was prompted to comment on the application and suggest any application
modifications that would improve the user experience.

41

................................... 7.1. User test results

7.1 User test results

7.1.1 Observations summary

As expected, young respondents showed themselves to be more skilled and
intuitive while operating the application. Both of them passed the tests
without any problems. The only problematic step was to perform the heart
rate measurement, as they started the measurement without reading the
tutorial and then had difficulty operating the tool. This finding led to the
addition of a tutorial, which is displayed the first time the user enters the
screen for measurements and which prompts the user to start with the tutorial.
The older respondents encountered two other problems. At first, they had
difficulty navigating the application as they were not used to the bottom
navigation bar. This problem was resolved with an onboarding tutorial, which
shows the user how to use the bottom navigation bar, and how the app is
organized. The second problem turned out to be the advanced tab on the
main screen. Here the users have trouble distinguishing which UI elements
are interactable and which are not. This observation led to a rework of the
screen with a more evident division between active and passive UI elements.

7.1.2 User feedback

All respondents agreed that they would welcome more instructional texts
to make it easier for them to work with the application. Except for minor
difficulties with orientation in the application, all the users found the app
interesting, and they could imagine using the application once available.

42

Chapter 8
Conclusion

The presented thesis dealt with designing and implementing an application
for self-acupressure. The application aims to teach the user how to practice
acupressure and to serve as a database of acupressure points. Previous chap-
ters describe in detail the process of developing the Android application, from
assembling the initial concept in Balsamiq Mockups and Adobe XD, though
the application implementation in Android Studio, to user testing of the final
product. A demonstration of the resulting application is given in appendix D.

A part of the development process was the implementation of the application
server, which serves as the remote database for the application. The server
was implemented in Python using the Django tool. The application uses the
server once a day to synchronize data and when necessary to obtain images
of acupressure points and exercises.

Chapter 6 was devoted to vital signs estimation to examine the possibilities
of using todays smartphones in the field of heart rate and respiratory rate
estimation. The reason for this analysis was the idea of incorporating these
features into the application to offer the user an additional functionality
that would elevate the application above other applications. The analyses
performed showed that it is possible to implement both functionalities using
the camera of the phone.

The tests measuring the accuracy of the implemented solution showed that
the application is able to measure HR with an accuracy of two beats per
minute and RR with accuracy of three breaths per minute, which is sufficient
to include the estimators to the application.

43

...................................... 8. Conclusion

8.0.1 Further application development

The application is now ready to be placed on the market. Nevertheless,
the current implementation still leaves some space for further improvements.
There follows a list of some possible application enhancements which could
be implemented in the future:. The application could contain a set of screens dedicated to acupressure

in general. On these screens, the user could learn about the origins of
the acupressure or about the current acupressure trends.. Another possible improvement could be instructional videos. These
videos could be about the acupressure in general, or they could comple-
ment the existing image gallery in describing the position and stimulation
of acupressure points..With the recent progress of virtual reality, the application may also
contain 3D models of individual body parts with highlighted acupressure
points for easier point localization.

44

Appendix A
List of abbreviations

Symbol Meaning

HR Heart rate
RR Respiratory rate
rPPG remote photoplethysmography
UI user interface

45

.................................. A. List of abbreviations

46

Appendix B
Bibliography

[1] Operating System Market Share. https://gs.statcounter.com/
os-market-share/mobile/. Accessed: 2020-02-10.

[2] The Google Play store. https://play.google.com/store. Accessed:
2020-02-16.

[3] Acupressure Point for 300+ Diseases. https://play.google.com/
store/apps/details?id=ethanapp.acupointsceng. Accessed: 2020-
02-18.

[4] Basics of Acupressure Massage. https://play.google.com/store/
apps/details?id=com.acupressure.points.acupressurebasics.
Accessed: 2020-02-10.

[5] Acupuncture Index. https://play.google.com/store/apps/
details?id=com.acupressure.points.acupressurebasics. Ac-
cessed: 2020-02-10.

[6] Balsamiq mockups. https://balsamiq.com. Accessed: 2020-01-01.

[7] Adobe XD. https://www.adobe.com/products/xd.html. Accessed:
2020-01-01.

[8] Guide to app architecture. https://developer.android.com/
jetpack/docs/guide. Accessed: 2020-02-11.

[9] Android activity documentation. https://developer.android.com/
reference/android/app/Activity/. Accessed: 2020-02-16.

[10] Room Persistence Library. https://developer.android.com/
jetpack/androidx/releases/room. Accessed: 2020-04-14.

[11] Retrofit Library. https://square.github.io/retrofit. Accessed:
2020-04-14.

[12] OkHttp Library. https://square.github.io/okhttp. Accessed: 2020-
04-14.

[13] Dagger tool. https://dagger.dev. Accessed: 2020-04-14.

47

https://gs.statcounter.com/os-market-share/mobile/
https://gs.statcounter.com/os-market-share/mobile/
https://play.google.com/store
https://play.google.com/store/apps/details?id=ethanapp.acupointsceng
https://play.google.com/store/apps/details?id=ethanapp.acupointsceng
https://play.google.com/store/apps/details?id=com.acupressure.points.acupressurebasics
https://play.google.com/store/apps/details?id=com.acupressure.points.acupressurebasics
https://play.google.com/store/apps/details?id=com.acupressure.points.acupressurebasics
https://play.google.com/store/apps/details?id=com.acupressure.points.acupressurebasics
https://balsamiq.com
https://www.adobe.com/products/xd.html
https://developer.android.com/jetpack/docs/guide
https://developer.android.com/jetpack/docs/guide
https://developer.android.com/reference/android/app/Activity/
https://developer.android.com/reference/android/app/Activity/
https://developer.android.com/jetpack/androidx/releases/room
https://developer.android.com/jetpack/androidx/releases/room
https://square.github.io/retrofit
https://square.github.io/okhttp
https://dagger.dev

..................................... B. Bibliography

[14] OpenCV library. https://opencv.org. Accessed: 2020-04-14.

[15] Gson library. https://github.com/google/gson. Accessed: 2020-04-
14.

[16] Picasso image library. https://square.github.io/picasso. Accessed:
2020-04-14.

[17] PhotoView library. https://github.com/chrisbanes/PhotoView. Ac-
cessed: 2020-04-14.

[18] MaterialShowcaseView library. https://github.com/deano2390/
MaterialShowcaseView. Accessed: 2020-04-14.

[19] M. Poh, D. J. McDuff, and R. W. Picard. Advancements in noncontact,
multiparameter physiological measurements using a webcam. IEEE
Transactions on Biomedical Engineering, 58(1):7–11, 2011.

[20] W. Wang, A. C. den Brinker, S. Stuijk, and G. de Haan. Algorithmic
principles of remote ppg. IEEE Transactions on Biomedical Engineering,
64(7):1479–1491, 2017.

[21] Philipp Rouast, Marc Adam, Raymond Chiong, David Cornforth, and
Ewa Lux. Remote heart rate measurement using low-cost rgb face video:
A technical literature review. Frontiers of Computer Science (electronic),
12:858–872, 09 2018.

[22] K. S. Tan, R. Saatchi, H. Elphick, and D. Burke. Real-time vision based
respiration monitoring system. In 2010 7th International Symposium on
Communication Systems, Networks Digital Signal Processing (CSNDSP
2010), pages 770–774, 2010.

[23] Rik Janssen, W. Wang, Andreia Moço, and Gerard Haan. Video-based
respiration monitoring with automatic region of interest detection. Phys-
iological measurement, 37:100–114, 12 2015.

[24] K. Lin, D. Chen, and W. Tsai. Image-based motion-tolerant remote
respiratory rate evaluation. IEEE Sensors Journal, 16(9):3263–3271,
2016.

[25] Hao-Yu Wu, Michael Rubinstein, Eugene Shih, John Guttag, Frédo
Durand, and William Freeman. Eulerian video magnification for revealing
subtle changes in the world. ACM Transactions on Graphics - TOG, 31,
07 2012.

[26] Heart Rate Plus application. https://play.google.com/store/apps/
details?id=com.dungelin.heartrate. Accessed: 2020-04-24.

[27] Heart Rate Monitor application. https://play.google.com/store/
apps/details?id=com.repsi.heartrate. Accessed: 2020-04-24.

48

https://opencv.org
https://github.com/google/gson
https://square.github.io/picasso
https://github.com/chrisbanes/PhotoView
https://github.com/deano2390/MaterialShowcaseView
https://github.com/deano2390/MaterialShowcaseView
https://play.google.com/store/apps/details?id=com.dungelin.heartrate
https://play.google.com/store/apps/details?id=com.dungelin.heartrate
https://play.google.com/store/apps/details?id=com.repsi.heartrate
https://play.google.com/store/apps/details?id=com.repsi.heartrate

..................................... B. Bibliography

[28] How to measure heart rate. https://help.runtastic.com/hc/
en-us/articles/203502962-How-to-measure-my-heart-rate. Ac-
cessed: 2020-04-24.

[29] Blood pressure monitor OMRON M6. https://www.medisave.co.uk/
omron-m6-comfort-blood-pressure-monitor.html. Accessed: 2020-
04-24.

49

https://help.runtastic.com/hc/en-us/articles/203502962-How-to-measure-my-heart-rate
https://help.runtastic.com/hc/en-us/articles/203502962-How-to-measure-my-heart-rate
https://www.medisave.co.uk/omron-m6-comfort-blood-pressure-monitor.html
https://www.medisave.co.uk/omron-m6-comfort-blood-pressure-monitor.html

..................................... B. Bibliography

50

Appendix C
Adobe XD Wireframes

Figure C.1: Favourite screen Figure C.2: Search screen

51

................................. C. Adobe XD Wireframes

Figure C.3: Body screen Figure C.4: Advanced screen

Figure C.5: Point list screen Figure C.6: Point detail screen

52

................................. C. Adobe XD Wireframes

Figure C.7: Image detail screen Figure C.8: RR measurement screen

Figure C.9: RR tutorial screen Figure C.10: RR rersults screen

53

................................. C. Adobe XD Wireframes

54

Appendix D
Application demonstration

Figure D.1: Point detail screen Figure D.2: Point list screen

55

............................... D. Application demonstration

Figure D.3: Body screen Figure D.4: Measurements screen

Figure D.5: Favourite screen Figure D.6: Search screen

56

Appendix E
User tests..1. You have recently experienced digestive problems. Open the application
and try to find the acupressure points that could help you with this
problem...2. Choose one of the points for dealing with digestive problems and find
out as accurately as possible where this point is located and how it is
recommended to stimulate this point...3. You would like to know which points are located on your hands. Try to
display a list of all these points, and subsquently, choose one of those
points and open the point detail...4. You are not sure about the exact position of the point. Try to view a
detail of the point image...5. Look at details of the other images...6. Return back to the point detail. You are not sure what the heart button
is for. Display the prompter, which explains the purpose of the button...7. You would like to send an improvement suggestion to the author of the
application. Try to send a message to the author, in which you suggest
a colour change of the application theme to blue...8. You would like to use the application at night. Try to switch the
application to night mode...9. Measure your current heart rate with the application. When the mea-
surement is complete, return to the screen where you performed the
measurement....10. You would like to know the results of the last performed measurement.
Try to locate it in the application.

57

	Introduction
	Planned functionality analysis
	Platform selection
	Application functionality
	Functional requirements
	Nonfunctional requirements

	Existing solutions
	Acupressure Point for 300+ Diseases
	Basics of Acupressure Massage
	Acupuncture Index
	Analysis Summary

	Design
	User interface design
	Balsamiq Mockups
	Adobe XD

	Architecture desingn
	Importance of the Android application design

	Common application architectures
	Model View Controller
	Model View Presenter
	Model View ViewModel
	Model View ViewModel in Android applications

	Implementation
	Programing in Android in general
	Programing languages
	Development tools
	Android project structure

	Basic components of Android application
	Activities
	Services
	Broadcast receivers
	Content providers
	Fragments

	SelfAcupressure application structure
	Used tools and libraries
	Room
	Retrofit
	OkHttp
	Dagger
	OpenCV
	Gson
	Picasso
	PhotoView
	MaterialShowcaseView

	Vital signs estimation
	Introduction
	Related work
	Vital signs estimation on Android
	Vital signs estimator implementation and evaluation
	Heart rate estimation
	Respiratory rate estimation accuracy

	Implementation example
	Summary

	User testing
	User test results
	Observations summary
	User feedback

	Conclusion
	Further application development

	List of abbreviations
	Bibliography
	Adobe XD Wireframes
	Application demonstration
	User tests

