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Abstract

Traversability estimation is an important
task for autonomous mobile robots.
They should be able to decide about
traversability in their surroundings to
be safely navigated. In this thesis, the
method of merging depth measurements
as heightmaps with RGB images is
proposed. Our approach consists from
state-of-the-art methods for analysis of
both, which are convolutional neural
networks. We used self-supervised
learning of convolutional neural networks
on real datasets. Datasets consist from
various environments such as mines,
hallways, staircases and other common
outdoor terrains (grass, road, pavement).
Our network provides correct estimation
for easier terrain such as hallways or
flat terrain, and acceptable results as
for challenging environments such as
staircases or soft obstacles (e. g. high
grass).

Keywords: computer vision,
traversability, heightmap, convolutional
neural networks

Supervisor: doc. Ing. Karel
Zimmermann, Ph.D.
Center for Machine Perception,
Karlovo nam. 13,
Praha 2

Abstrakt

Odhad traversability je důležitá úloha pro
autonomní mobilní roboty. Ti by měli
být schopni rozhodnout o traversabilitě
svého okolí, aby byli bezpečně naváděni.
V této práci je navržena metoda spojení
hloubkových měření v podobě výškových
map s RGB obrázky. Náš přístup se
skládá z nejmodernějších metod analýzy
obou, tedy konvolučních neuronových
sítí. Používáme self-supervised učení
konvolučních neuronových sítí na reálných
datasetech. Datasety se skládají z několika
různých prostředí, jako jsou doly, chodby,
schodiště a další běžné venkovní terény
(tráva, cesta, chodník). Naše síť poskytuje
správný odhad na jednodušších terénech,
jako jsou chodby nebo rovný terén,
a přijatelné výsledky pro náročný terén,
jako schody nebo měkké překážky (např.
vysoká tráva).

Klíčová slova: počítačové vidění,
traversabilita, výšková mapa, konvoluční
neuronové sítě

Překlad názvu: Odhad traversability
terénu z RGB obrázků a výškových map
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Chapter 1

Introduction

1.1 Task

Traversability estimation is a crucial task in autonomous mobile robotics
systems, especially for explorative robots working in challenging environment.
A correct traversability assessment allows for safe robot navigation. Although
it is one of the most important problems, it is still an open research problem.

In general, this task is very robot-specific, because various robots can
overcome different obstacles or drive through different spaces. In this thesis,
the aim is at UGV TRADR robot with flippers, see Figure 1.1. Flippers
are auxiliary independently controlled subtracks, which allow the robot to
traverse hard terrain or obstacles. Traversability itself is mainly given by
support of mobile parts of robot on terrain.
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1. Introduction .....................................

Figure 1.1: UGV TRADR mobile robotic platform with flippers.

The goal of this thesis is to estimate traversability of terrain based on
exteroceptive measurements, for such UGV robot is equipped with multiple
sensors. In order to do so, the LiDAR sensor and RGB cameras will be used.
LiDAR is a time-of-flight depth sensor which measures depths of points in
surroundings of robot using light beams. This measurement is stored as
sparse point clouds of hundreds or thousands points. RGB cameras are used
to obtain images of current environment in all directions around robot.

For our purpose, LiDAR measurements are crucial and RGB images provide
extra terrain information. LiDAR by itself is insufficient because of various
occurances which can cause wrong measuring. LiDAR measurement can
provide missing spaces, where we get no information or wrong depth, such as
water or other bright spots. It is caused by incorrect light beam reflection
on these surfaces. Another issue are soft terrains, for example grass or snow,
where LiDAR would measure very hard to traverse shape, but robot can
easily overcome these terrains. That is why we will also use RGB cameras to
identify and fix such problematic surfaces.

On the other hand, we should be rather pessimistic than optimistic in
terms of traversability, because we do not want our robot to be damaged.
How hard and challenging obstacles can robot overcome? Will our approach
reach desired precision and turn out useful?

2



.................................... 1.2. Related Work

1.2 Related Work

Terrain traversability estimation is a problem necessary to be solved for
autonomous mobile robotics platforms. Therefore, there are more approaches
to this problem, which usually depend on sensors available on given robot.

There are two main sensors, which obtain information containing terrain
features. Depth sensors and cameras will be both used in this thesis.

As for depth sensors two approaches are relevant.

Geometrical analysis In [JGH08] the 2.5D grid-based heightmap is obtained
first. Then the terrain traversability is estimated based on features such
as height difference, slope and roughness. These features are analysed
only on a small patch of heightmap. Height difference is just simple
subtraction of two adjacent grid cell’s height. Slope is computed using
normal estimation of local plane which allows the computation of the
slope. Last feature, roughness, is obtained as residues from local plane
represented with normal vector.
Similar approach is used in [BVS+13]. Unlike previous article, they
construct 3D heightmap. Also, fast normal computation is applied for
better time requirements. Thanks to the 3D map the robot height can
be taken into consideration to decide whether it can fit into low places.
On the other hand, the roughness is not taken into consideration for
traversability estimation.

Convolutional neural networks The heightmap features analysis is based
on convolutional neural network (CNN) in [CGGGG18]. Used data
are represented as the heightmap images, which can be classified by
CNN, whether it is traversable class or non-traversable class. Feature-
based approach is also provided, in which the Histogram of Gradients
(HOG) , that corresponds to slope, is computed. Resulting features are
classified by means of a Random Forest classifier with 10 trees. But as
expected, state-of-the-art approach with CNN outperforms this feature-
based approach. In this thesis, RGB image information will be added
to the heightmap and the traversability estimation will be provided by
CNN.

3



1. Introduction .....................................
With cameras we obtain RGB images, which are analysed with state-of-

the-art approaches.

Deep learning methods Application of convolutional neural networks for
RGB images is provided in [SRL+19]. The focus is on semantic image
segmentation along with roughness estimation using CNN. For image
segmentation 3 different architectures of networks, SegNet, ENet and
ERFNet are used and compared. In comparison, the best results
has ERFNet architecture which is considered as state-of-the-art. For
roughness estimation bottom feature maps (feature maps close to original
input image) are used as they correspond to basic appearance features.
These feature maps are upsampled with simpler decoder than in terrain
segmentation part.

Similar approach is presented in [WDR+19]. ERFNet with added
skip connections is used for terrain segmentation. Also, the terrain
is analysed using force-torque sensors on legs (they work with legged
robot ANYmal) using continuous wavelet transformation using Morse
wavelet and principal component analysis (PCA) to get "ground reaction
score".

In this thesis, the ERFNet to obtain image features will be used as well.

Appearance-based classification The appearance-based classification is
used in [MBS11] and [MB12]. In [MBS11] the image classifiers based
on color histograms and discrete cosine transformation (DCT) are used.
These classifiers are learnt and updated with laser scans, from which
ground plane is estimated and features are assigned to it. The goal is to
use as little laser scans as possible, thus it is used only if the appearance
of surroundings change rapidly, e. g. change of the floor colour.

Another method is in [MB12], where the same type of classifiers, except
the laser scans learning, is used. The classifiers learn using iterative
ground plane estimation with floor homography. The initial estimation
of floor homography is estimated from odometry and subsequently
optimized with nonlinear optimization of correspondence between image
pairs taken while robot is moving. Both [MB12] and [MBS11] aim for
humanoid robot in indoor environment. For this reason, both studies
focus only on the floor, otherwise a much more complex approach would
be needed. In conclusion this method is not useful for the type of robotic
platform used in this thesis.

4



.................................... 1.3. Our Approach

1.3 Our Approach

In this thesis, a new method for fusing LiDAR and RGB cameras measurements
to estimate traversability of robots surroundings is introduced. The aim
is to combine state-of-the-art methods for both heightmap analysis and
RGB images evaluation. The ERFNet from [RA18] and their pretrained
model for PyTorch is used to analyse RGB images, especially to obtain
segmentation features. These features are projected to built voxel map of
robot’s surroundings. Traversability is estimated using self-supervised learning
of CNN, which was trained from scratch.

For reader’s better understanding and visualization, traversability estimation
diagram is shown in Figure 1.2. Voxel map will be built from point cloud in
Section 3.2. Image features will be obtained using ERFNet as explained in
Section 3.1 and projected to built voxel map in Section 3.4. Convolutional
neural network for estimating traversability will be trained in Chapter 4.

Figure 1.2: Traversability estimation diagram.
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Chapter 2

Convolutional Neural Networks

The proposed method for traversability estimation is based on convolutional
neural network (CNN). Moreover, 2 pretrained CNNs to obtain dense DEM
(Digital Elevation Model) of robot’s surroundings and image features are also
used.

Convolutional neural networks are considered as state-of-the-art approach
for analysing RGB images, grayscales, medical images etc.

2.1 Classification Task

As for classification task, network outputs class probabilities for the whole
input data. Baseline architecture usually consists of 2 parts, see Figure 2.1.

First part, also called an encoder, uses convolutional layers in combination
with pooling layers, normalization layers and activation (non-linear) layers.
This approach leads to reduction of spatial resolution of input but usually
with much more channels. Encoder is followed with fully connected part of
the network. According to the given problem, output size is defined by the
number of classification classes.

7



2. Convolutional Neural Networks .............................

Figure 2.1: Example of classification convolutional neural network VGG16.1

State-of-the-art network architectures (GoogLeNet, ResNet) also use much
sofisticated layers such as concatenation of inception modules, which help
to analyse the same features in various ways. Or skip connections that help
with diminishing gradient in learning deeper networks or allow features from
the beginning to affect the output directly.

2.2 Segmentation Task

Semantic segmentation problem means that our aim is to classificate image
pixel-wise. Output of such convolutional neural network consists of pixel-wise
probabilities for each class. First encoding block is usually pretty similar to
the one in classification part.

Second block, also called decoder or deconvolutional, upsamples feature
maps from the encoder back to input spatial resolution. For this purpose,
unpooling layers, upsample blocks or transposed convolution (deconvolutional)
layers are used. Again combined with activation layers.

For better understanding and easier visualization see Figure 2.2, which
shows common semantic segmentation CNN architecture.

1Taken from D. Frossard, VGG in Tensorflow, https://www.cs.toronto.edu/
~frossard/post/vgg16/vgg16.png
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.................................. 2.2. Segmentation Task

Figure 2.2: Example of semantic segmentation convolutional neural network.2

State-of-the-art segmentation CNN (DeepLab) uses other modern techniques.
The first is the atrous (dilated) convolutional layer, which is similar to
convolutional layer, but with spacing between the weights in kernel. The
second method uses conditional random fields (CRF) on top of output of the
CNN.

Unfortunately, for extraction of image features DeepLab cannot be used
due to its high feed forward time. Fortunately, ERFNet provides much faster
result on comparable level of precision.

2Taken from [NHH15]
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Chapter 3

Projection of Features

In this thesis, the goal is to estimate traversability from depth sensing and
from camera images. It is essential to assign image features to corresponding
point on heightmap grid. Figure 3.1 shows the fusion of LiDAR and camera
measurements.

Figure 3.1: Image features projection to voxel map diagram.
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3. Projection of Features.................................
3.1 Image Features

Figure 3.2: ERFNet architecture with spatial resolutions according to input of
shape 1024× 512× 3.1

As proposed in Section 1.3, image features provided by ERFNet from
[RA18] will be used. Its architecture is showed in Figure 3.2. Because our
goal is not to segment our images to classes used in [RA18], ERFNet will be
cut before its very last upsampling layer and only the encoded and decoded
features will be used.

Figure 3.3: Example of image from robot camera.

Example of input image obtained from one of robot’s RGB camera is shown
in Figure 3.3.

1Taken and slightly modified from [RA18]
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......................................3.2. Voxel Map

The image spatial resolution will be reduced to half of the original size
because of cutting off the last upsampling layer. In addition, for better feed
forward time of ERFNet, the input image size will be reduced to half. Cameras
on TRADR robot provide resolution 1232× 1616 with 3 RGB channels, we
will change it to 616× 808 with 3 RGB channels and features obtained with
ERFNet will have spatial resolution 308× 404 with 16 feature channels.

3.2 Voxel Map

LiDAR provides only sparse measurement and that is the reason why DEM
includes holes with unknown information in the beginning, as can be seen in
Figure 3.4. For creating dense DEM convolutional neural network that fills
blind spots provided by Ing. Vojtěch Šalanský is used.

(a) : Visualization of sparse DEM. (b) : Visualization of dense DEM.

Figure 3.4: Comparison of sparse (a) and dense (b) DEM.

To build a 3D voxel map, the 2D DEM is converted to 3D. Every point in
grid contains information about height, so each point needs to be set at that
height and voxels below will be filled. Such built voxel map is visualized in
Figure 3.5.

Figure 3.5: Voxel map visualized in ROS visualization tool RViz.
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3. Projection of Features.................................
3.3 Camera Model

For image features assignment a camera model for demonstration of how 3D
point in world coordinates maps to 2D point on image plane needs to be
created.

Figure 3.6: Projection of 3D object on a 2D image plane using Pinhole Camera
Model.2

According to [HS17] and [Kit17], the simplest model is Pinhole Camera
Model. The goal is to find transformation between world coordinates and
image plane of camera, see Figure 3.6. Mathematically speaking, C must
satisfy the condition as follows:

P = CPw, (3.1)

where P is 2D point on image plane of camera and Pw is 3D point in
world coordinates, both in homogenous coordinates. Camera matrix C can
be decomposed to 2 matrices. Intrinsic matrix K and extrinsic matrix X.
Intrinsic matrix K is unique for every camera type, because it contains camera
parameters.

K =

f 0 cx

0 f cy

0 0 1

 , (3.2)

where f is focal length of camera, cx and cy is principal point.
2Taken from [OGC17]

14



................................. 3.4. Ray-Tracing Method

Extrinsic parameters depends on transformation between camera coordinate
system and world coordinate system. Thus it contains rotation part R and
translation part t.

X =
[
R t

]
=

r1,1 r1,2 r1,3 t1
r2,1 r2,2 r2,3 t2
r3,1 r3,2 r3,3 t3

 (3.3)

Knowing both intrinsic matrix K and extrinsic matrix X, the mathematical
model of camera was created as follows:

P = K
[
R t

]
Pw = KXPw = CPw. (3.4)

3.4 Ray-Tracing Method

For assignment of image features obtained in Section 3.1 ray-tracing rendering
technique will be used. Ray-tracing is method of 3D rendering in computer
vision, which is also very common in games graphics.

We have already built camera model in Section 3.3 and voxel map of
surroundings of robot in Section 3.2. We will combine these to shoot ray
from camera origin through pixel in image plane to find its intersection with
voxel map, as can be seen in Figure 3.7.

Figure 3.7: Tracing ray from camera origin through image plane.3

Because ray-tracing method is computationally demanding, the ray will
not be shot through every pixel of the image plane. There will only be 3600
rays shot in 1 image. Because we use 5 cameras, it is 18000 traced rays in

3Taken from An Overview of the Ray-Tracing Rendering Technique on Scratchapixel,
www.scratchapixel.com/lessons/3d-basic-rendering/ray-tracing-overview
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3. Projection of Features.................................
total. Rays are traced through linearly spread out pixels in upper part of
image plane. We do not shoot through the bottom pixels, because there robot
sees only itself, which is also shown in Figure 3.3.

Figure 3.8: Projected image features to built voxel map.

Figure 3.8 shows projection of image features to corresponding heights.
Blue or green boxes are coloured based on features projected to them, white
blocks are without projection of image features.

For implementing ray-tracing in our traversability estimation, voxel_map
Python package provided by Ing. Tomáš Petříček, Ph.D, was used.

16



Chapter 4

Self-Supervised Learning

As proposed in Section 1.3, self-supervised learning will be used in order to
estimate traversability of robot’s surroundings from RGB camera images and
heightmap. Used data were measured during several human-operated paths
through some environments.

We will work with both indoor environments and outdoor environments.
Indoor environments consist of paths driven around hallways and staircases.
Outdoor environment is a combination of mines and common outdoor terrains,
like grass, pavements or roads. Firstly, these environments will be trained
separately and afterwards combined for training as much general neural
network as possible.

4.1 Labels Estimation

In order to train any neural network, labels for our input training data must
be obtained. Ideal approach would be assign labels manually to precisely
decide whether is area traversable or not.

Another possibility is to simulate, where would the robot end up after
placing it on a given surface and decide whether its position is safe enough
to also traverse such surface. Such decision is mainly done by pitch and roll
angles.

17



4. Self-Supervised Learning................................
Simulation of this problem is provided by my supervisor doc. Ing. Karel
Zimmermann, Ph.D. It is based on avoiding collision with surface and also
minimizing potential energy of robot. Unfortunately, it struggles with time as
well as manual labelling. Our heightmap has resolution 256× 256, and every
point of this heightmap should be simulated. One simulation takes about
300 ms which results in approximately 5 and a half hours per heightmap.

Figure 4.1: Visualization of robot’s position estimated on given patch of
heightmap, with robot drawn as a grid skeleton.

Unfortunately, we are unable to spend hours of manual labelling or computing
simulation of robots position. More straightforward method for labels
estimation is proposed, which uses linear regression on local areas of heightmap.
The plane is fitted to the closest 13 points of heightmap to estimate slope ϕ of
the plane. We define a traversable threshold θT = 0.5 rad and non-traversable
threshold θN = 0.8 rad. If |ϕ| < θT such point is determined as a traversable.
If |ϕ| > θN such point is determined as a non-traversable. Otherwise we do
not estimate if it is traversable or not and it will not be used for training.

Furthemore, we explicitly say that places which were truly driven through
by operator are surely traversable. These methods are combined to get both
true negatives based on very steep slope, e. g. walls, and true positives, which
are flat enough or were overcome in past.

18



.................................... 4.2. Training CNN

(a) : Visualization of heightmap as bird-
view grayscale.

(b) : Visualization of estimated labels
(white - traversable, black - non-
traversable, grey - uncertain).

Figure 4.2: Estimated labels (b) to its input heightmap (a) with marked visible
area of sight of robot (red rectangle).

As can be seen in Figure 4.2, traversability is estimated nearly correctly.
Black parts (non-traversable) correspond to walls, and white parts (traversable)
correspond to flat way in mine.

4.2 Training CNN

With labelled dataset the last step in workflow is to design and train
convolutional neural network to estimate traversability of robots environment.
Input consists of data prepared as described in Chapter 3 and labels estimated
in Section 4.1.

4.2.1 CNN architecture

For our purpose of estimating traversability, convolutional neural network with
convolutional layers, max-pooling layers and upsampling layers is designed.
Full architecture is visualized in Figure 4.3. Input is tensor with shape
256× 256× 17 according to used heightmap plus 16 image features channels.
Output is 256 × 256 × 2 tensor with 2 channels of class probabilities, first
channel is probability of traversability for each point in heightmap, second
channel is probability of non-traversability.

19



4. Self-Supervised Learning................................
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Figure 4.3: Architecture of CNN used for traversability estimation.

4.2.2 Training

Python module PyTorch is used for building and training the designed CNN.
As an optimizer Adam optimizer with learning rate α = 0.001 was used.

As a loss function we used common segmentation task loss called
Cross-Entropy loss, given by formula:

H(w) =
N∑
i

−yi log syi(f(xi,w)), (4.1)

where s(f(x,w)) stands for softmax function in order to get class probability.
The problem in this thesis is defined as two class, the loss function is actually
Binary Cross-Entropy loss, where N = 2 in (4.1).

Designed CNN was trained on 3 datasets, indoor dataset, outdoor dataset
and combination of indoor and outdoor dataset.

Indoor dataset The indoor dataset consists in total of 1253 training sets
of data and 162 validation sets of data. Data are obtained from bagfiles
of movement along hallways with easy obstacles such as palette, and
staircases in both directions.
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.................................... 4.2. Training CNN

Outdoor dataset As for outdoor dataset we prepared 1465 training and 153
validation sets of data from bagfiles from mines and outdoor environment
such as roads, pavements, grass including high grass with obstacles as
well.

Combination of indoor and outdoor dataset For combination both
indoor and outdoor dataset were merged together which results in 2718
training and 315 validation sets of data.

Loss on validation data follows loss on training data, as shown in Figure
4.4. It means that the designed CNN does not extremely overfit to training
set. Further training with more epochs was done, but there was not any
useful improvement.
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(a) : Loss function graph during training
CNN on indoor dataset.
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(b) : Loss function graph during training
CNN on outdoor dataset.
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(c) : Loss function graph during training
CNN on combination of indoor and
outdoor dataset.

Figure 4.4: Binary Cross-Entropy loss function during training CNN.
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Chapter 5

Experimental Results

In this chapter, the trained convolutional neural networks from Section 4.2
will be tested in various environments which are the same as in which the
CNN was trained.

5.1 Flat Terrains

Let’s start with easy samples, such as hallways or just flat terrain.

Hallway case is easy to evaluate in terms of traversability. All CNNs made
correct decision as can be seen in Figure 5.1, despite the fact, that there
were obstacles, such as chair, which can be seen as a non-traversable patch
directly in front of robot, or palette, which is currently under robots body as
a traversable obstacle.
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5. Experimental Results .................................

(a) : Coloured point cloud to visualize
robot’s surroundings.

(b) : CNN trained on indoor dataset.

(c) : CNN trained on outdoor dataset. (d) : CNN trained on combination of
indoor and outdoor dataset.

Figure 5.1: Visualization of traversability in hallway. Green voxels refer to
traversable, red to non-traversable.

(a) : Coloured point cloud to visualize
robot’s surroundings.

(b) : CNN trained on indoor dataset.

(c) : CNN trained on outdoor dataset. (d) : CNN trained on combination of
indoor and outdoor dataset.

Figure 5.2: Visualization of traversability on flat terrain. Green voxels refer to
traversable, red to non-traversable.
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...................................... 5.2. Staircases

Figure 5.2 shows visualization of traversability on a flat terrain which should
be entirely traversable. As well as in case of hallways, all CNNs provide correct
estimation. CNNs trained on outdoor and on combined dataset are a little
bit more accurate in comparison with CNN trained on indoor dataset. There
are few points estimated incorrectly, which is probably due to imperfectly
filled heights. But those errors occur pretty far from robot’s current position
and they would be corrected during exploration lately.

5.2 Staircases

The designed network will be tested on a harder terrain - staircases, as well.

(a) : Coloured point cloud to visualize
robot’s surroundings.

(b) : CNN trained on indoor dataset.

(c) : CNN trained on outdoor dataset. (d) : CNN trained on combination of
indoor and outdoor dataset.

Figure 5.3: Visualization of traversability on staircases. Green voxels refer to
traversable, red to non-traversable.

Staircases themselves are harder to analyse. For example, they can be
traversed only in a specific direction, which we do not take in consideration
in this thesis. Even filling up heightmap is problematic, as our LiDAR does
not see, where the end of stairs is and what follows next. For this reason, it
is easy to determine wrong heights to be analysed, which is shown in Figure
5.3.
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5. Experimental Results .................................
The result of traversability estimation on staircases is visualized in Figure

5.3. We can see, that all CNNs outputs stairs as a traversable, but indoor
and combined CNNs outperform outdoor CNN. That is expected, as outdoor
CNN was not trained on stairs at all. In upper parts of staircases, best
estimation provides combined CNN even with big height differences, which
are suppressed thanks to image features.

5.3 Prepared Experiment

The desired goal was to be able to distinguish similar heights with different
image features. As an experiment we used high grass next to rocks with
almost the same height. Due to the problem’s complexity the results will be
discussed separately for each trained CNN.

(a) : Coloured point cloud to show
position of rock and grass.

(b) : Estimated traversability from indoor
CNN.

Figure 5.4: Visualization of traversability on experiment with grass and rocks
with the same height. CNN trained on indoor dataset.

CNN trained on indoor dataset performed as expected, it estimates grass
and rocks non-traversable as they are too high to be traversed, see Figure
5.4. It is caused by training, where this CNN has not been trained on grass
nor rocks features.

(a) : Coloured point cloud to show
position of rock and grass.

(b) : Estimated traversability from
outdoor CNN.

Figure 5.5: Visualization of traversability on experiment with grass and rocks
with the same height. CNN trained on outdoor dataset.
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................................. 5.3. Prepared Experiment

CNN trained on outdoor dataset provides much better results. It distinguished
rocks from grass and outputs high grass as traversable and rocks as non-
traversable, which is visualized in Figure 5.5. We can also see that traversability
estimation is not that perfect, as there are a few voxels estimated as non-
traversable even though they should be traversable.

(a) : Coloured point cloud to show
position of rock and grass.

(b) : Estimated traversability from
combined CNN.

Figure 5.6: Visualization of traversability on experiment with grass and rocks
with the same height. CNN trained on combined dataset.

The general convolutional neural network trained both on indoor and
outdoor data provides result of this experiment somewhere between the other
2 CNNs. In Figure 5.6 we can see it outputs rock as non-traversable, which is
correct. But as for grass, it outputs it as traversable and also non-traversable.
Such result is more successful than indoor CNN, but also a bit worse than
outdoor CNN.

(a) : Coloured point cloud to show
position of rock and grass.

(b) : Estimated traversability from
combined CNN.

Figure 5.7: Visualization of wrong traversability on experiment with grass and
rocks with the same height. CNN trained on combined dataset.

Occasionally networks output completely wrong results as shown in Figure
5.7.

To sum up, outdoor and combined CNN are able to distinguish rocks from
grass, but height information is still pretty powerful feature and makes them
decide wrong in some cases. Indoor CNN was not successful in rocks from
grass distinction, on the other hand, it is correct because there were no rocks
or grass in the indoor training dataset.
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Chapter 6

Discussion and Conclusion

6.1 Discussion

Three CNNs with the same architecture (Section 4.2.1) were trained but on
different datasets - indoor, outdoor and combination of indoor and outdoor
data. Results of each CNN are visualized and evaluated in Chapter 5.

All CNNs can be used for easy terrain traversability estimation, where they
provide precise results, as evaluated in Section 5.1. On the other hand, for such
terrain such complex approach is not needed and for example, only heightmap
information could have been used for these. More challenging terrain such as
staircases, analysed in Section 5.2, uses additional measurements obtained
from RGB cameras to be able to "correct" heights errors with image features.
Especially for staircases, both indoor and combined CNN can be used, as
they are both trained on such terrain.

The most challenging problem with same heights, but different traversability,
is for example the experimental situation with high grass and rocks described
in Section 5.3. This problem requires RGB image features to be able to
distinguish grass from rock. Outdoor and combined CNN was trained on
grass and rocks as well, so they provide some distinction. For robot’s safety
an output threshold can be set in order to define how certain output of
CNN is desired. For this reason, false negatives (traversable spots estimated
inaccurately as non-traversable) can be preferred and such approach can be
considered as more conservative.
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6. Discussion and Conclusion ...............................
For real usage, probably most useful would be the general CNN trained

both indoor and outdoor as it provides pretty reasonable results. The CNN
trained on indoor dataset can be also used for more cautious approach.

There are few reasons, why the networks designed in this thesis lack higher
precision. Firstly, with image features we would need bigger datasets. Image
features analysis is pretty complex task and even with pretrained segmentation
ERFNet more training data is needed to train better CNN. Secondly, the
estimation of labels for the input data was rough. With precise labelling,
more precise outputs of network can be expected.

Another imperfection in our approach is filling heights to blind spots in
depth measuring. Even though we use also image features, we still rely on
heights heavily. For example, high rocks (as used in our experiment) are not
traversable, but the same rocks could be traversable if they were flat.

6.2 Conclusion

In this thesis, a workflow for traversability estimation from heightmap and
RGB images obtained from LiDAR and RGB cameras using convolutional
neural network was proposed. We trained those from scratch and described
results on several terrains.

Satisfying results were achieved on easier terrains such as hallways, mines
or flat ground. We also achieved interesting results on challenging terrains
such as staircases or high grass, where our networks worked with some
imperfections.

Can the designed networks be used for real terrain traversability estimation?
Our models of networks are not perfect, but they could be used for simpler
terrains safely. For harder problems we should probably firstly fine-tune
networks for such environment, if it is possible. Otherwise we should desire a
higher certainty on the output of CNN for more conservative approach, in
order not to damage our robot. Also time requirements are pretty high for
our method, so it is not useful for fast decisions about traversability without
powerful hardware including GPU on our robot.
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6.3 Future Work

Some points of possible improvements were already discussed in Section 6.1.
We will continue with that in this section.

For improving precision of CNN bigger and more accurate dataset is
required. Dataset should contain all possible environments, which can robot
face in future tasks. Another improvement could be in data, where filled
heights to blind spots are not correct enough, e. g. staircases. That could be
fixed with fine-tuning CNN used for filling heights.

Input data are followed with labels, which should be also improved. Ideally
human-labelled or at least labelled as described in Section 4.1 using simulation
of position of robot. But in combination with bigger dataset, this would be
very time demanding.
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