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Abstract

In this work, we present a method for
exploiting weakly annotated images to
improve text extraction pipelines. The
weak annotation of an image is a list of
texts that are likely to appear in the im-
age without any information about the
location. An arbitrary existing end-to-
end text recognition system is used to
obtain text region proposals and their,
possibly erroneous, transcriptions. A pro-
cess that includes imprecise transcription
to annotation matching and edit distance
guided neighbourhood search produces
nearly error-free, localised instances of
scene text, which we treat as “pseudo
ground truth” used for training.

We apply the method to two weakly-
annotated datasets and use the obtained
pseudo ground truth to re-train the end-
to-end system. The process consistently
improves the accuracy of a state of the art
recognition model across different bench-
mark datasets (image domains) as well as
providing a significant performance boost
on the same dataset, further improving
when applied iteratively.

Keywords: text detection and
recognition, weakly-supervised learning
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Abstrakt

V této praci predstavujeme metodu vyu-
zivajici slabé anotované obrazky pro vy-
lepseni systému pro extrakci textu. Slaba
antoace spoCiva v seznamu textu, které
se v daném obrizku mohou vyskytovat,
ale nevime kde. Metoda pouziva libovolny
existujici systém pro rozpoznavani textu
k ziskani oblasti, kde se pravdépodobné
vyskytuje text, spolu s ne nutné sprav-
nym piepisem. Vysledkem procesu zahr-
nujictho parovani nepfesnych prepistu se
slabymi anotacemi a prohledavani okoli
vedené Levenshtein vzdalenosti jsou skoro
bezchybné lokalizované texty, se kterymi
déle zachazime jako s pseudo-anotacemi
vyuzivanymi k uceni.

Aplikovani metody na dva slabé ano-
tované datasety a douceni pouzitého sys-
tému pomoci ziskanych pseudo-anotaci
ukazuje, ze nami navrzeny proces kon-
zistentné zlepsuje presnost rozpoznavani
na ruznych datasetech (jinych doménéch)
bézné vyuzivanych k testovani a velmi
vyrazné zvysuje presnost na stejném da-
tasetu. Metodu lze pouzit iterativné.

Klicova slova: detetkce a rozpoznavani
textu, uceni s nedplnou informaci

Pteklad nazvu: Uceni s netiplnou
informaci pro detekci a rozpoznavani
textu v obrazech
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Chapter 1

Introduction

Written text is an important source of information for humans. It comes
in many forms. Books and text documents are likely to come to mind as
the first thing but it is also frequently a part of outdoor environments. The
moment we leave our home, we are surrounded by text - a sign in front of the
bakery tells us we can get a free croissant with a coffee, but we do not have
the time because we can recognize the number of the bus we need to catch in
the distance. In the bus, we subconsciously skim through the advertisments
and the moment we get out, we encounter a sign telling us we have to take a
different path then usually because of construction work in one of the streets.
If we capture some of those texts by a camera, we refer to them as scene text
or text in the wild images.

Knowing the text which appears in images can be beneficial to many
applications. In order for the text to be usable by the computers, it needs to
be converted to a machine-readable format. This task can be seen as a special
case of object detection and recognition, text is actually a frequent class in
the Common Objects in Context [38] dataset - a large-scale object detection,
segmentation, and captioning dataset. Text detection and recognition are two
closely related tasks, jointly referred to as end-to-end recognition, end-to-end
text spotting or simply end-to-end reading. The goal of text detection is to
localize all the text present in an image. The localization usually takes the
form of enclosing polygons and can be done at different degrees of granularity
- characters, words, lines or larger text regions. Text recognition follows text
detection, its goal is to convert the image capturing a text into a sequence of
characters. Scene text detection and recognition, unlike for example optical
character recognition in documents, brings challenges in form of imperfect
imaging conditions (perspective, blur), font variety, complex backgrounds
and occlusion. It is a very active research field attracting the attention of
both researchers and companies. It is an essential part of many applications
ranging from translation systems and autonomous driving to image retrieval
or visual question answering.

In the recent years, all state of the art methods have been based on deep
neural networks. Deep neural networks require large-scale annotated data
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Figure 1.1: An example source of weakly annotated data - images of book
covers with the author and the title of the book as weak annotations. The
ABC Dataset images, collected from Amazon books, are diverse, some have (a)
both a simple layout and font, (b) a very artistic, almost illegible font and (c¢) a
font that resembles handwriting. Others have (d) both dense background and
hand-written text or (e) the background varies significantly even at the word
level.

(b)

for training and in order to generalize well, such data should be rich in
geometry, style and content. Ground truth data is typically defined at the
granularity of words and consists of polygonal regions in the image along with
the corresponding text transcriptions. The acquisition of such data requires
substantial human effort and is very costly.

The lack of human-annotated data is usually mitigated in two different
ways, either by generating synthetic data as in [4} [8, 40, 12, 21}, 26] or with
different forms of weakly, semi or unsupervised learning on real data as in

12, 36, 32].

There is also a large volume of weakly annotated data, i.e. images with
a set of words likely to appear in them. This kind of weak annotations,
obtained automatically, have not been exploited so far for text detection
and recognition. An example source of such weakly annotated data are
product databases where we can readily obtain the name of the product
and other meta-data. Images from mapping services like are
another potential source where street names and numbers or business names
are words very likely to appear in an image and easily obtainable through
location-based search. For example, given images from the location where a
restaurant is supposed to be, it is expected that the name of the restaurant
will be visible in some of them. Illustration of one such source of weakly
annotated data, book covers from [ Amazon Books| used in our experiments,
is shown in Figure 1.1

This work presents a method that uses an existing end-to-end reading
system (E2E), pretrained on fully-annotated data, to localize and recognize
the text that potentially overlaps with text from the weak labels. The core
idea behind our method is that the output of the recognition model can be
used to identify the most probable text match from the weak annotations by
finding the one with the lowest edit distance. The detections that produce
an exact match with the weak label are assumed correct. Furthermore, the
recognition output can be used to find the modifications of the detected region
that minimize the edit distance to the matched text. For example, if we
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have predicted the word ’car’ and the best match was ’cartoon’, running the
recognition again on the detected region extended to the right may decrease
the distance between the matched and predicted text, possibly leading to the
prediction of the matched word ’cartoon’ The probability of the recognition
model giving the same output as the weak label for a wrong text region is very
low, thus it is safe to use such regions as ground truth for recognition training.
Therefore, we will refer to it as pseudo ground truth (PGT). Furthermore,
it may be possible to use the PGT to improve the detector as well. To our
knowledge, previous methods for weakly supervised learning used weak labels
which alleviate but do not eliminate human participation, such as annotating
only the areas of interest or localizing words instead of characters.

In summary, given an image and a dictionary of words as an input, the
method outputs a subset of the dictionary words with their corresponding
text regions in the image. The method is independent of the underlying
implementation of the models used and it is able to handle incomplete (not
all the text in the image is in the dictionary) and noisy labels (the dictionary
contains words that are not present in the image).

Possible applications of our method are improving the performance of an
existing E2E system and domain adaptation, where the source domain has
full ground truth data available whereas only weak labels are available for
the target domain.

We apply the method to data from two different sources - a database of
images of book covers downloaded from Amazon books, using the title and
the author of the book as weak annotations, and the Uber-Text dataset [42],
which is very similar to the kind of data that could be obtained using a
mapping system. We train a recognition model with the PGT generated from
both sources on various benchmarks, showing that it consistently improves
the recognition accuracy across a wide range of datasets. While the images
from the Uber-Text dataset are annotated and applying our method to them
does not produce additional value in terms of generated PGT, working with
a large-scale annotated dataset allows us to compare the performance of our
method to fully supervised training, showing its applicability for domain
adaptation. An estimate of the upper bound of the false positive rate of the
method is estimated - less than 2 % of the generated PGT is incorrect.

The contributions of the work are:

8 A new method for automatically generating pseudo ground truth data
from images with weak annotations.

8 We show that models trained with the PGT generated from two different
sources perform well on a wide range of benchmarks datasets, consistently
boosting the accuracy, even when the PGT data originates from a very
different distribution.

® Training with PGT improves the recognition performance significantly
in weakly-supervised domain adaptation.

3
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® We show that it is possible to reach on-par performance with state of the
art methods with no architecture changes and no human-annotated data
for recognition training. The model can recognize very difficult texts
which are, without context, challenging even for humans.

® The localization of the PGT texts in the Amazon Book Covers dataset,
as well as the pretrained models, will be made public at
https://github.com/klarajanouskova/text-detection-recognition-PGT.
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Chapter 2

Related work

Following a short introduction of scene text detection and recognition methods
and an overview of methods for generating synthetic data, we focus on weakly-
supervised and semi-supervised learning, specially in the field of text detection
and recognition.

B 2.1 Text Detection and Recognition

Before the deep learning era, methods based on SWT or MSERs were used
for text detection, for example [7, [30]. These methods are not being applied
anymore with the exception of scenarios with hardware constraints and
scenarios where the methods perform well. Subsequent models were mostly
based on region proposal approaches like [15]. Recently, methods have rather
turned to segmentation-based approaches like [20] and focused on representing
arbitrarily shaped text, for example [2, 25].

Recent approaches for text recognition also rely on deep learning. Most
methods can be described by 4 stages - transformation, feature extraction,
sequence modelling and prediction. In the transformation stage, a Spatial
Transformer Network [16] is used to normalize the input image. For feature
extraction, a CNN such as VGG [35] or ResNet [13] maps the input image
to feature maps. In the sequence modelling stage, BiLSTMs [10] are used to
provide contextual information to the feature maps. The last stage employs
either CTC [II] or attention-based prediction [5] to convert the encoded
features into a character sequence.

Some methods treat the two tasks jointly, sharing features for both detection
and recognition, for example [24, [38] BI]. Such end-to-end models have shown
superior performance to treating the tasks separately.

All recent state of the art methods have relied on deep learning approaches,
both in detection and recognition. The method for generating PGT proposed
in this work does not make any assumptions about the implementation of
the models and thus, any of the methods could be used. The methods used

5
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in our experiments are explained in detail in Chapter |6l

| W) Synthetic Data for Text Detection and
Recognition

The work of [12] and [I5] had a great influence on the performance of text
detection and recognition systems. Synthetic data have proven to be very
effective for training generic text localisation systems. Still, the lack of realism
(both in terms of positioning, and blending with the scene), diversity (in
terms of text styles and scene backgrounds) and contextualisation of the text
in the scene, have been limiting factors. More recent work aims to improve
some of these aspects [4, 40, 21, 26] or exploit real scene text data to do
augmentation [8] but in our experience, still does not replicate the quality of
real-world data.

B 23 Weakly and Semi-Supervised Learning

Both weakly and semi-supervised learning tackle the lack of annotated data.
Semi-supervised learning refers to learning with both annotated and unanno-
tated data. Usually, there is only a small amount of annotated data available
and training with unannotated data can significantly improve performance.

In weakly supervised learning, the annotations are known to have some
limitations and are usually inexpensive, often obtained automatically or from
another task. The limitations may be due to noise, lack of accuracy or
precision. Our method combines both approaches, building on top of the
pseudo-labelling technique first introduced in [19]. It is a simple strategy
for semi-supervised learning where part of the data is fully labelled and
Pseudo-Labels are created for unlabelled data as the class with the maximum
predicted probability and further treated as true labels. This is equivalent to
entropy regularization [9], favoring low-density separation between classes.

B 23.1 Weakly and Semi-Supervised Learning for Text
Detection and Recognition

In [37], focused on Chinese street view images, weak annotations are used
where only the text-of-interest region is annotated. They suggest an online
proposal matching module incorporated in the whole model. The main
difference from our method is that they do not do any modification of the
proposed regions.

In [31], an existing OCR engine different from the one being trained
is used to provide partial labels for one million unlabelled images. The
partially labelled data is then used to train the recognition part of an E2E

6
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model, improving the results significantly. The method relies on a confidence
threshold to filter out noisy labels while our method relies on weak annotations
to minimize the risk of incorrect labelling.

Focusing on text detection, [32] propose multiple approaches for unsuper-
vised and weakly supervised learning. Their unsupervised approach simply
relies on filtering out predictions with low confidence score. An improved
approach requires weak annotations, where regions containing text are anno-
tated and it is known that regions distant from the annotated ones do not
contain any text, allowing for more accurate false positives filtering. Their
last approach relies on rectangular bounding boxes as weak labels.






Chapter 3

Fully Annotated Datasets

In this section, we present the existing fully annotated datasets that were
used in the experiments for PGT generation, training and evaluation.

MJSynth (MJ) contains almost 9M synthetically generated images of En-
glish words for text recognition. The text generation process performs
the following steps: Font rendering, border/shadow rendering, coloring,
projective distortion, natural data blending and noise introduction [15].

SynthText (ST) is a synthetic dataset designed for scene-text detection,
widely used for recognition, too. It has over 7M text instances in 8,000
images [12].

Synthetic Multi-Language in Natural Scene Dataset (MLT) contains
245,000 images in total with text instances in multiple scripts: Arabic,
Bangla, Chinese, Japanese, Korean and Latin. The dataset was pub-
lished in [3] and the authors have adapted the framework of [12]. A
non-latin dictionary was used and it contains special, non-alpha-numeric
characters. We only use the Latin script subset of the dataset, which
contains 288,917 text instances in total [3]. An example image shown in
Figure |3.1.

ITIT 5K-word (IIIT) is a collection of 5,000 cropped words from Google
image search using queries such as “billboards” or “movie posters”, which
are likely to contain text [29]. The training set consists of 2,000 images,
the remaining 3,000 form the test set.

Street View Text (SVT) was collected from the Google Street View, pro-
viding annotators with a lexicon for each image, containing texts such
as business names. Only the words from the lexicon were localised and
provided with transcription, the rest of the text is ignored. There are
257 and 647 images of cropped words in the training and test sets [39].

Street View Text - Perspective (SVT-P) is a dataset of 645 images
collected from Google Street View focused on perspective projections
[33].
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ICDAR2003 (IC03) has 258 training and 251 testing images with 1,156
and 1,110 annotated words respectively. It was collected for the ICDAR
2003 Robust Reading competitions [28].

ICDAR2013 (IC13) is a dataset with “focused text”, the text being the
main content of the image. It consists of a training set of 229 image with
848 words and a test set of 233 images with 1095 words. [1§].

ICDAR2015 (IC15) , in contrast to IC13, focuses on incidental scene-text
- the images were not taken with text in mind. The training set contains
1000 images (4,468 words) and the test contains 500 images (2,077 words)

[1.

An example from the dataset is shown in Figure 3.1

Total-Text (TT) is a dataset of 1,555 scene images with 9,330 annotated
words. The images were collected with curved text in mind and the
images often contain texts of different orientations [6].

CUTESO0 (CT) contains 80 images with 288 words, focusing on curved text

(a) : MLT-L [3] - (b) : IC15 [17]

Figure 3.1: Synthetic (left) and real world (right) datasets for text detection.

Images of cropped words from the datasets are shown in Figure 3.2

10
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Figure 3.2: Examples from real-world datasets (a) CT [34] (b) IC03 [28] (c)
IC13 [18] (d) SVT [39] (e) SVT-P [33] (f) IIIT [29] and from synthetic datasets

(g) MJ [15] (h) ST [12]
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Chapter 4

Weakly Annotated Datasets

This chapter discusses some of the potential sources of weakly annotated
data and introduces the datasets that were used for PGT generation in our
experiments.

The idea behind automatic acquisition of weakly annotated data is that for
a lot of images, a collection of texts that are likely to appear in that image
can be obtained easily and we believe such data can be exploited for text
detection and recognition training, alleviating the work of human annotators.
We mainly considered two different kind of sources: Product databases and
mapping systems.

B 21 Weak Labels from Mapping Systems

One possible source of weakly annotated data are mapping systems. Given a
picture and the GPS location where it was taken, one could retrieve a list
of nearby businesses, street names, house numbers, restaurants and other
texts. If some of it is actually present in the picture, it is possible that some
of the text from the list is present in that image. This is illustrated in Figure
4.1l The data collected in this way has similar characteristics to many of the
existing scene-text datasets.

A very simple way of obtaining such data would be making use of the
Google Places API. GPS locations can be fed into the “Nearby Search”,
which outputs a list of nearby places and information about them, including
URLs of pictures uploaded by users. For example, the images associated
with a restaurant are likely to contain the name of the restaurant. Another
possibility would be to make use of a Street View Crawler to collect the
images. However, none of those options could be implemented due to policies
that do not allow to store the collected data for academic or another purposes.
Also, the API billing is per call which does not scale very well.

There are other mapping systems and it may be possible to use some of
them, possibly together with images collected specifically for the purpose of

13



4. Weakly Annotated Datasets

51.523784, -0.158314 (London, Baker Street)

Figure 4.1: Localising weak annotations from a mapping system. The "Nearby
search" in the Google Maps Places API for the GPS location of a photo returns
a list of businesses. The top (i.e. nearest) results might contain the following
text: [The Sherlock Holmes Museum, 221b Baker St]. If the words highlighted
in green are detected and recognised, possibly with errors, by an end-to-end text
spotting system and reliably matched, the spatially localised text is treated as
(pseudo) ground truth, PGT.

creating a weakly annotated datasets, however, none of those options was
within the scope of this work.

To first test the viability of our approach, we decided to simulate the
scenario of having scene-text like weakly annotated images on an existing
dataset, the Uber-Text dataset [41].

Uber-Text dataset (UT) is one of the biggest datasets for text detec-
tion and recognition. It contains 117,969 images with 571,534 labelled text
instances split into training, validation and test sets. Each set is divided into
two subsets according to the image resolution - either 1K or 4K. The images
were obtained through the Bing Maps Streetside program and come from 6
different cities in the US. The annotations are line-level. Most of the text
regions form semantic units such as business names, street signs or street
numbers. The datasets contains a lot of unannotated text, some text regions
are not annotated at all, some readable text is labeled as unreadable. Images
and annotations from the dataset are shown in Figure [41].

14
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Figure 4.2: The Uber-Text [4I] training dataset. Annotation polygons: with
complete transcription (blue), with unannotated characters (red). Some text
regions are not annotated, some readable text is annotated as unreadable.

. 4.2 Weak Labels from Product Databases

Ranging from food to music, there are many product databases which have
one thing in common - for each product, there is a photo of the product with
corresponding metadata, which can be used as weak labels for the photo.
With many of the images being born-digital documents, one may argue that
they are very far from scene-text and may not be relevant. However, those
images have one important thing in common - they often feature artistic texts
written in uncommon fonts, possibly designed for single use only. Business
owners want a unique style for their sign-boards, companies for their product
logo, artists for their work. Furthermore, the same texts, like brand logos,
are likely to appear in both scene-text images and product databases, using
the same style. Figure shows images from the |[Amazon CDs and Vinyl|
database that illustrate the variability of texts present in CD covers, which can
contributed to different factors like font, distortion or complex background.
It is very hard to cover all the possibilities when generating synthetic data.
We can see that the name of the artist and the albums are present in the
image, being the only text present, which makes the weak annotations less
noisy then other possible sources.

For initial experiments, we chose book covers, which will be referred to as
the Amazon Book Covers dataset.
Amazon Book Covers (ABC) is a dataset created from images of book
covers downloaded from [Amazon Books. We used a set of more than 200,000
images together with the author and the title for each book, which serve as
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4. Weakly Annotated Datasets

Figure 4.3: Weak annotations from the Amazon Music product database - the
artist and the album name. The text style is very diverse and challenging for
detection and recognition - the images contain curved and distorted text, complex
background and difficult fonts.
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Figure 4.4: Searching for ‘Cafe London’ photos with the ‘Modifications allowed’
license in the flickr application.

> B

weak annotations. The same data were already used for genre prediction in
[14]. Images from the dataset are shown in Figure

. 4.3 Other sources

In future, we would like to explore the possibility of using the online
photo management and sharing application, which seems to have research
friendly policies and free API, enabling develoeprs to filter images by the
associated license. The API allows to search for photos by a tag. In this way,
we could collect images of businesses and some of them would contain the
texts from the image in their description.
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Chapter 5

Method for Weakly Annotated Data
Exploitation

This section describes the pseudo ground truth (PGT) generation algorithm
(PGT-GEN). The algorithm uses weakly annotated images and an existing
end-to-end reading system (E2E) performing text detection and recognition.
All the steps are executed independently for each image, therefore, we define
the algorithm for a single input image. First, we define the E2E output and
the structure of the weak annotations. Then we describe the algorithm and
its components in detail.

Given an image I, the output O of the end-to-end reading system,
O = {(bby,tt1),...(bby, tty)}, (5.1)

is a set of ¢ text bounding box predictions and the corresponding text transcrip-
tions. The transcriptions T = (tt1,...,tt;) are strings (possibly containing
spaces) and the bounding boxes are oriented rectangles characterized by their
center coordinates, width, height and angle: bb; = (¢z, ¢y, w, h, ). It is also
possible to obtain the recognition output from a bounding box bb separately:

REC(I, bb) = tt. (5.2)

Each image is associated with a list of texts A = (t1,t2...t,) where each
text t; = (wq,wa, ..., wy) is a non-empty ordered sequence of words. Words
are strings that do not contain spaces. The set of weak labels G = i, g; is
obtained as a union of sets of k-grams, k € {1,..5}. Each set of k-grams g; is
formed by strings — consecutive words from ¢;, sub-sequences of t; of length
k joined into a single string by the space character. In the simplest of cases,
each text t; only consists of a single word but because the texts are assumed
to be extracted automatically as metadata accompanying the images, it may
even be multiple words that form a semantic unit — a name of a product, its
description, a business’ name, contact information. These words are likely to
appear in the image close to each other and get merged by the detector.

For example, the image from Figure [4.1] could be annotated with the texts
“Sherlock Holmes, consulting detective” and “221B Baker Street”. In that
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5. Method for Weakly Annotated Data Exploitation

case, A and G would be

A = ((“Sherlock”, “Holmes”), (“221B”, “Baker”, “Street”))
G = {“Sherlock”, “Holmes”, “Sherlock Holmes”, “221B”,
“Baker”, “Street”, “221B Baker”, “Baker Street”,
“221B Baker Streeet”}.

Note that there is other text in the image, highlighted in blue, which is not
present in A. On the other hand, A contains texts that do not appear in the
image.

B 51 PGT-GEN algorithm

The PGT-GEN algorithm takes the image I, E2E output O and the set of
weak labels represented as k-grams G as an input and outputs the PGT - a
localized subset of G.

Algorithm 1: PGT-GEN
Input: 1,0,G
Output: PGT
P := AssignWeak(O, G);
PGT :={};
foreach (bb,tt,g) € P do
(bbs,ttr) = FindOptimalBox (I, bb, tt, g);
if IsPGT (tty,g) then
| PGT = PGT U{(bbg, 9)};
end

end
return PGT

AssignWeak - Weak annotation assignment. Each element from O
is assigned at most one weak annotation from G. We construct a directed
bipartite graph Bg = (V, E) between O and G, thus V = O U G. For each
proposal o € O, o = (bb, tt) and weak annotation g € G it holds that

G|
(0,9) € E < dist(tt,g) = mi{l dist(tt, g;) (5.3)
1=
. Iz
(g,0) € E < dist(tt,g) = min dist(tt;, g) (5.4)
1=
where dist is the Levenshtein distance.
Finally, a set of proposals P is created:
O]
P = [ J Assign(o;, E) (5.5)
i=1
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5.1. PGT-GEN algorithm

0 for W =10
Assi E) = .
ssign(o, ) {[W] r otherwise (5.6)

W(o,E) ={(0,9) : (0,9) € EN(g,0) € EAmatch(o,g)}. (5.7)

We define match((bb, tt),g) = % # 1 as a function to filter out

proposals that do not make sense and [.]g selects a random element from a
set. In most cases, |W| = 1.

At this point, we could apply some simple filtering to the set of proposals
P instead of the edit distance guided neighbourhood search, for example,
select

P ={pe Pp=((bb,tt),q)|dist(tt,g) = 0} (5.8)

and then output
PGT = |J (b tt). (5.9)
((bb,tt),g)eP’

This would be equivalent to selecting such proposals where the predicted
transcription was equivalent to the weak label text for PGT - we implement
this version and compare it to the proposed one, showing the superiority of
the proposed method.

FindOptimalBox - Edit distance guided neighbourhood search.
For each proposal (bb,tt,g) € P, we search for an optimal bounding box bb
which minimizes the Levenshtein distance between the recognized text ¢t
and g.

If dist(tt, g) = 0, we assume that bb is already optimal and assign bby = bb.
If not, we predefine a set of new boxes in the neighbourhood of the original
one and run the recognition on those in parallel, selecting one with minimal
distance from g for bby. The generation of the set of predefined boxes in
discussed in Subsection [5.1.11

We compute
tty = REC(I,bby) (5.10)

and the normalized edit distance between ¢ty and g as

B dist(tty, g)
~ max(len(ttf),len(g))

(5.11)

Finally, we find out whether (bbs,tty) satisfies our requirements for being
a PGT (IsPGT) as:

True ford=0V (d<OA [ty >ANtth =g At = g7t

False otherwise

IsSPGT(tt s, g) = {
(5.12)
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Figure 5.1: Localization of weak labels via neighbourhood search - the detected
bounding boxes are shown in blue, the transformed ones in green. In some cases,
the recognition model needs more context to recognize the text correctly. In
others, the detection was imprecise.

where 5% is the first character and s~! is the last character of a string s.
The thresholds 0, A are set to & = 0.35,\ = 4. The intuition behind our
choice of the IsPGT function is that even if the recognized text ¢ty and the
assigned text g are not identical, it is possible that there was simply an error
in the recognition step. If the relative edit distance between two longer texts
is low and the the first and the last characters are the same, it is likely that
tty should actually be g. For example, if ¢ty is “Boker” but g is “Baker”, it
is accepted as PGT. However, if tt; was “Baked”, it would not have been
accepted.

Examples of how the neighbourhood search aids the PGT generation process
can be seen in Figure 5.1

B 5.1.1 Bounding box transformations

We define the following transformations to generate a set of bounding boxes
in the neighbourhood of an input bounding box: Extending/shrinking the
bounding box on the left/right/top. Angle modification and bottom exten-
sion/shrinkage were also considered but the benefits were insignificant. To
keep the computational cost reasonable, we also assume that changes to
the left side of the bounding box do not influence the recognition of the
characters on the right side and vice versa, the optimization on each side is
done independently. Horizontally, we extend/shrink the box with width w
and height h in each direction by up to ¢ characters, the character length
being estimated as the average character length chg.,g = M;UTH On the top,
we extend by up to % and shrink by up to %

Each of the transformed bounding boxes can be characterized by three
integer parameters relative to the original bounding box - (¢, 1, r) - defining the
extension/shrink (distinguished by the sign) by ¢, [, r units on top/left/right,
where the horizontal unit is dﬂ% and the vertical unit is % Consequently,
l,r €[—c-d;c- 6] and t € [-£;25]. The transformed bounding boxes that
exceed the image or do not overlap with the original one are immediately
discarded.
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5.1. PGT-GEN algorithm

To obtain the final bounding box bbs characterized by (t¢,1f,7¢), we find an
optimal bounding box in both directions (left and right). For each direction,
we find the set of boxes B = {(ti,l;,7;)}i=1..n that result in the lowest
edit distance from g. The sets T = U, 1, e tin L = U, 1renli and
R = U, 1,,r)ep i are created.

From the boxes transformed in the left direction, we obtain

t; =minT (5.13)

and
min L + min(max L, 0 + min L)

I = 5 (5.14)

Analogously, for the right direction, we obtain

tr =minT (5.15)
and
- min R + min(max R, 0 + min R) (5.16)
/ 2
We set
ty = max(t,,t;) (5.17)

In our experiments, the constants were assigned as follows: ¢ =7, § = 2,
vy=4,0 =4, k =4, o = 8. They were selected by observing qualitative
results, attempting to minimize the amount of incorrect PGTs without loosing
too many of the correct ones. The optimal numbers may vary according
to the E2E system used and a more elaborate parameter search will likely
improve the results.
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Chapter 6

End-to-End Reading System

In this chapter, the end-to-end reading system (E2E) used in our experiments
is described. Separate models for detection and recognition were used.

. 6.1 Detection

For text detection, we adopt TextSnake [25]. It is based on a fully convolu-
tional network - U-net with VGG-16 [35] as stem network - which estimates
the geometry attributes of text instances. A text instance is described as a
sequence of ordered, overlapping disks centered at symmetric axes (center
lines), each of which is associated with potentially variable radius and orien-
tation. The architecture of the network is shown in Figure 6.1} and the text
instance representation in Figure 6.2

The following values are predicted for each pixel: tcl,tr,r and «, corre-
sponding to the text center line, text region (which covers the text instance
area), radius and angle. Those values are then post-processed to construct
the text instances. In the original work, focused on arbitrary-shaped text,
thresholds are applied to tcl and tr to obtain binary masks. Afterwards,
the center lines are extracted as connected components of ¢r - tcl to account
for tcl naturally being part of the ¢r. Each center line is associated with
one text instance and the radius and angle predictions from the center line
pixels are used to extract the sequence of disks that represent it. The whole
pipeline is shown in Figure For more details on the original text instance
reconstruction, we refer the reader to the original paper as our work is focused
on straight text and we will only describe the adapted post-processing steps
used in our experiments.
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fi f2 f fa fs/M

@ concat conv 1x1, 32
conv 3x3, 32 deconv, x2

Figure 6.1: The architecture of TextSnake, reprinted from [25, Figure 4].

P

text region text center line Masked TCL

Text Instances Striding Algorithm Instance Segmentation
Reconstruction

(a) : Text instance representation (b) : Detection pipeline

Figure 6.2: Text instance representation and the detection pipeline od TextSnake,
reprinted from [25], Figure 2, 3]

B 6.1.1 Least squares fitting based text instance
reconstruction

Taking into account the subsequent recognition, obtaining a rectangular
bounding box for each text instance in an unavoidable step. We could use
the original disk representation and convert it to a general polygon by simply
merging all the instance disks and then obtain the bounding boxes as the
minimum area rectangles of the polygons. This may result into sub-optimal
angle prediction while the predicted tcl would have given a more precise
estimate. Because the angle is essential to the PGT generation, we have
adapted the post-processing method to skip the disk representation. We first
convert tr and tcl into binary masks and obtain the connected components
K from the masked center line prediction, ¢r - tcl. This step is the same as
in the original method. Then, for each component k € K, where k are all
the component points, we estimate the bounding box (¢, ¢y, w, h, @) (center
coordinates, width, height and angle) directly.

The angle « is estimated by total least squares fitting (LSQ) of a line to
the points of k shifted by the mean value of the coordinates m = (m,, my) to
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Figure 6.3: LSQ bounding box calculation - the ¢r prediction (light grey) and
both the original tcl and the shifted tcl points (dark gray). M is the median
point of the predicted tcl points.

the origin, using the slope of the best fitting line as the bounding box angle.

The height h is determined via the biggest radius predicted within the
component: h = max(r[k]) - 2. To determine the width w, we project the
shifted points onto the line with slope « passing through the origin and
find the projected vectors with maximum norm in both directions, p4 and
p—. The width is calculated as w = |py — p—| + h. The extra h is added
to the width because during training, the tcl is shrank by % (assuming the
radius is constant, %, for straight text with rectangular ground truth) on each
side. Afterwards, we shift p;,p_ back by m and calculate the center of the
bounding box as the middle point: (cz,cy) =m + %.

The LSQ method is visualised in [6.3

B 6.2 Recognition

We adopt the best performing architecture from [I], which is very similar to
the one of STAR-net [23] but with a different prediction mechanism. First,
the input image is transformed into a rectified image using a variant of spatial
transformer network (STN) [16]. The rectified image is then fed into a feature
extraction module based on ResNet [13], which is followed by BiLSTM and
an attention-based decoder. The nature of the decoder requires the set of
characters to be extended by a special (EOS) (end of sentence) symbol.

The input are grayscale images and the input dimension is fixed to H x W,
H = 32 and W = 150 pixels. All images are first resized isotropically to
height H. If the width of the resized image is less than W, the image is
extended to the left and padded with zeros. If the width exceeds W, the
image is horizontally shrunk to W - only in this case the aspect ratio of the
input images is not preserved.

B 6.2.1 Transformation

The transformation module transforms an input image I into a rectified image
I. Tt is an STN [16] which predicts the parameters of a thin-plate spline
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6. End-to-End Reading System

Layers Configurations
Input grayscale image
Convl c: 64 k: 3 x3
BN1

Pooll |k:2x2 s 2x2
Conv2 c: 128 k: 3 x 3
BN2 -

Pool2 | k:2x2 s 2x2
Conv3 c: 256 k: 3 x 3
BN3 -

Pool3 | k:2x2 s 2x2
Conv4 c: 512 k: 3 x 3

BN4 -
AdPool — 512

FC1 — 256

FC2 — 2F

Table 6.1: The architecture of the localization network from [I] - given a
grayscale image as input, it outputs the (z,y) coordinates of the F' fiducial
points.

(TPS) transformation. The whole module consists of a localization network,
a grid generator and a grid sampler.

A localization CNN predicts the coordinates of a set of k fiducial points C'
in the original image, C = [c1, ..., cx] € R?*¥ where the i-th fiducial point
¢ = [z, yi]T. A normalized coordinate system is used. No point annotations
are needed to train the localization network, everything is trained in an
end-to-end manner. The network architecture is summarized in Table [6.1.

The grid generator creates a sampler grid from the predicted parameters of
the TPS transformation. A constant set of k base fiducial points, C’, evenly
distributed along the top and the bottom edge of the output rectified image,
is generated.

The TPS transformation is represented by a matrix 7' € R2x(k+3)

T = (Ag} [OC;;D (6.1)

where A¢r is a constant

1k+1 C/T R
Acr=1]0 0 1'%k (6.2)
o o0

and

Tij = dfj * ln(d?j), dij being the euclidean distance between ¢} and c/.
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6.2. Recognition

Figure 6.4: Transformation network output (left) and the original input image
(right).

The grid of pixels on the rectified image I is denoted by P’ = {p;}i=1..n,
p' = [zi,9i]T being the coordinates of the i-th pixel and N is the number of
pixels. For each p}, the corresponding point p from the original image I is
found:

rij = dij + n(d) (6.3)
ﬁ: = [1ax;7y;aT;17"'7T;k] (64)
p=Tp; (6.5)

where d;; is the euclidean distance between p) and the k-th base fiducial point
cg. Iterating over P’, a grid P = {p;}i=1,.. .~ is generated.

Finally, the value of the pixel at p/ is bilinearly interpolated from the
neighbourhood of p; and by setting all the values, the rectified image I’ is
obtained

The rectified image has the same dimensions as the input image.

Transformed images are shown in Figure
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6. End-to-End Reading System

Layers Configurations
Input grayscale image
Convl | c: 32 k: 3 x 3
Conv2 | c: 64 k: 3 x 3
Pooll ki 2 x2 s:2x2

c:128, k: 3 x 3
Blockl c:128, k: 3 x 3 > 1
Conv3 | c: 128 k: 3 x3
Pool2 ki 2x2 s:2x2
c:256, k: 3 x 3
Block2 ( c:256, k: 3 x 3 ) 2
Conv4d | c: 256 k: 3 x3
k: 2 x 2
Pool3 $$2%x2 p:1x0
5

Blocka ( c:512,k: 3 x 3 )

c:512, ki 3 x 3
Convb | c: 512 k: 3 x 3
c:512,k: 3 x 3
Block4 (c:512,k:3><3 > x5
c: 512 k: 2 x 2
ss1x2 p:1x0
c: 512 k: 2 x 2
s:1x1 p:0x0

Conv6

Conv7

Table 6.2: The architecture of the 32-layer ResNet based model from [T}, [5] -
batch normalization excluded for the sake of compactness.

B 6.2.2 Feature Extraction

Given the rectified image I, the feature extractor outputs a feature map

V =CNN(I) = {v;},i=1,... K (6.6)

where K = 38 is the number of columns in the output feature map.

The CNN is a 32-layer ResNet based model, the architecture details are in
Table 6.2

B 6.2.3 Sequence modeling

BiLSTM creates contextual features from the visual features v; and outputs

H = Seq(V). We use 2-layer BiLSTM. An " layer identifies two hidden
states: Forward hgt)’f and backward hgt)’th. A fully-connected layer between
the two BiLSTM layers determines one hidden state, }Ef), from hl(-t)’f and
hl(t)’b. The dimension of the hidden states and the FC layer is 256.
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6.2. Recognition

B 6.2.4 Prediction

Finally, a single layer LSTM attention decoder produces the output sequence
of characters Y = y1,42,...9yn

yr = softmax(Ws; + b,) (6.7)

(W,, by are trainable parameters, s; is the decoder LSTM hidden state at
time t).

The LSTM hidden state s; is computed as:

St — LSTM(yt_l, Ct, St—l) (68)

where ¢; is a context vector which is computed as a weighted sum of H:

1
Ct — Z Ozm‘hi. (6.9)
i=1

The attention weight «y; is obtained as

ay = P (6.10)
> k=1 €xp(ek)
where
exp(e) = vl tanh(Wsy_1 + Vh; + b) (6.11)

(v, W, V, b trainable parameters).
The decoding stops when the (EOS) symbol is emitted.
The model is trained with the cross entropy loss function

L=-) InP(j|X) (6.12)

t

tth

where g is the ground truth of the character and X is an image.

This recognition model is used in all of our experiments and will be referred
to simply as OCR.
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Chapter 7

Experiments

This chapter is dedicated to experimental results. The proposed pseudo
ground truth (PGT) generation method was tested with two different sources
of weakly annotated data, the Amazon book covers (ABC) and the Uber-Text
(UT) training set where we ignored line-level localization information.

The method was applied iteratively, re-training the OCR model with the
newly obtained data after each iteration. The recognition performance of
the models was evaluated on the UT dataset, allowing for comparison with
fully supervised training on the same dataset, as well as a number of different
benchmarks. The generated data was also used to re-train the detection
model and compared the number of generated PGT and performance on
ICDAR2015 and UT.

. 7.1 Evaluation metrics

This section explains the evaluation metrics used in the experiments. When
possible, conventional evaluation metrics were used, however, for the UT
dataset, new metrics were created to account for different ground truth and
detection granularity.

Two metrics are used for recognition evaluation - accuracy and average
normalized edit distance. The accuracy of the model is computed as
|C%T| where |CRT| is the number of correctly recognized texts and |17 is
the total number of texts. We use “texts” rather than “words” because in
the UT dataset, the images with text to be recognized may contain multiple
words. The normalized edit distance between a ground truth text g and a
predicted text ¢ is computed as % where dist is the Levenshtein
edit distance and len(s) is the number of characters in a string s.

For detection evaluation, we compute the recall and precision. We adopt
the evaluation protocol of [17], slightly modifying how don’t care regions are
treated. For a detection to be considered a true positive, it needs an overlap
of at least 50 % with a ground truth bounding box. Detecting or missing
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words marked as don’t care does not have any influence on the results. In
[17], any detections overlapping with a don’t care bounding box by at least
50 % are ignored. We ignore any detections that have the intersection over
detection ratio with some don’t care bounding box of at least 30 % instead.
This is to compensate for the inconsistencies in labelling don’t care regions
explained in Subsection [7.1.1. Ground truth regions marked as don’t care
are not further taken into account.

On the UT dataset, the detection recall and precision can not be computed
directly because the ground truth is line-level and the detector output is
not. We design two metrics that give us an insight into both the end-to-end
performance (which reflects detection recall) of the model and the number of
false positives.

FE calculates the number of false positives as the number of detections that
do not have the intersection over detection ratio with any of the ground truth
regions of at least 50 %. If D; are the detections predicted for the image i,
R; is the set of ground truth polygons for the image i and iod(d,r) is the
intersection over detection ratio of a ground truth polygon r and a detected
polygon d, then

Z‘e[ |FZ|
EF===~=_".100 7.1
Zz‘e[ D, ( )
where

F; ={d € Djj max iod(d,r) < 0.5} (7.2)

Q estimates the percentage of the ground truth text that was recognized
correctly. While it only uses the recognition output, the quality of the
recognition is conditioned by the detections and a better detector with the
same recognition model should achieve higher values. It is computed as

el 2gec() Minger(s) dist(g, ) ‘

O S S len(g)

100 (7.3)

where I is the set of images, G(i) is the set of ground truth words and
T'(7) is the set of predicted region transcriptions split into separate words for
image I and dist is again the Levenshtein distance and len(s) is the number
of characters in a string s.

B 7.1.1 Evaluation protocols drawbacks

Throughout the work, we have noticed several shortcomings of current eval-
uation protocols. While we mostly discuss the one of ICDAR2015 [I7], the
same or very similar protocols are used with most of the datasets.
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The first problem stems from the inconsistent annotation of the don’t
care regions.. During evaluation, the detections that have the intersection
over union of more than 50 % with a don’t care region are discarded. This
works well when separate words are annotated but in a lot of cases, the
ground truth bounding boxes covers multiple words or even lines. This results
into higher false positive rate for methods that detect this kind of texts.
Also, even small but readable texts may be marked as don’t care. Some
very blurred text is not annotated at all. Jointly, these characteristics may
favour detectors that ignore small and blurred texts altogether. Given the
high precision numbers reached by recent methods, higher numbers may not
necessarily correspond to better detectors anymore. The problem of imprecise
annotations is illustrated in Figure |7.1}

Another question is how strongly should word-level detection be enforced.
If the detector merges two words, the detection is usually matched with the
longer one and the shorter one is considered undetected, which may not be
the desired behaviour - currently, a detector that does not predict the shorter
word at all obtains the same score as a detector that merged them. Often, in
an end-to-end scenario, those merged words would be recognized as separate
words by the recognition and it would not harm the end-to-end performance.
The only case when the horizontal merge is really undesirable is when the
words come from different semantic unit, like merging the text from two
different street signs together.

So far, scene-text detection and recognition has only focused on separate
words or lines detection. While that is a good starting point, the textual
information is usually structured and with the emergence of new applications
like visual question answering, it should be taken into account, possibly
leading to a scene-text analogy of document layout analysis.

Overall, the evaluation protocols may benefit from a revision taking into
account the advancement of the field, possibly leading to better end-to-end
reading systems.

B2 Pretraining E2E

The detection part of E2E (TextSnake) was trained on a mix of SynthText,
ICDAR2015 and Total-Text datasets. Basic augmentation techniques like
cropping and rotation are used. The post-processing thresholds of TextSnake
were set to tr = 0.4 and tcl = 0.7, which lead to the best PGT generation
performance on a small subset of UT and ABC images. We do not filter out
the text marked as unreadable or don’t care during training to maximise
the use of available data. Detection recall is more important than precision
for PGT generation — the more words detected, the more potential pseudo-
labelled examples are available. On the other hand, false positives are very
unlikely to be matched against weak annotations, thus they have minimal
impact, besides slowing down the process.
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The recognition part (OCR), which also serves as a baseline model (OCRy)
in our experiments, was trained on the ST (Synth-text), MJ (MjSynth) and
MLT (Synthetic Multi-Language in Natural Scene) datasets. The OCRy
recognizes 70 characters — letters, not distinguishing lower and upper case,
digits and frequent special characters like punctuation, brackets, the (E0S)
symbol and the space.

Most recognition datasets provide word-level annotations, and thus space
is never part of the transcription. We included space in the character set for
three different reasons. First, if the model is capable of predicting spaces, it
helps to guide the PGT generation process - a bounding box that is too wide
leads to a space being predicted at the beginning or end of the transcription.
Second, if the detector merges horizontally adjacent words into a single
bounding box, the recognizer often splits the text by recognising a space
between the merged words. Third, it allows exploiting annotations that
contain multiple words.

Synthetic datasets used for training have word-level annotations and thus
provide no training data for the space character. We therefore extended
some of the bounding-boxes and included spaces at the beginning and end of
the ground truth annotations. This produced a model with a limited ability
to recognize the space. The ability was further improved during training
on PGT, since it contains multi-word texts. During evaluation, we strip any
leading/trailing spaces from the predictions.

The OCR processes images with fixed resolution of 32 x 150. Input images
are first resized isotropically to height 32. If the width of the resized image is
less than 150, the image is extended to the left and padded with zeros.u If
the width exceeds 150, the image is horizontally shrunk to 150 - only in this
case the aspect ratio of the input images is not preserved.

The implementation builds on top of
https://github.com/princewang1994 / TextSnake.pytorch and
https://github.com/clovaai/deep-text-recognition-benchmark.

B 7.3 PGT from the Uber-Text Dataset

The experiment evaluates the PGT method as an adaptation technique to
the Uber-Text dataset domain. The performance is also compared to fully
supervised training in the UT domain.

A reference method, OCRyr,, is obtained by fully supervised training
on UTy, the set of 138,437 transcriptions and corresponding rectangular
crops from the UT training set that contain no unreadable characters in
transcription. The crops are the minimum area enclosing rectangles of the
ground truth polygons. OCRyry, as well as other OCRs described in this
section, are validated on a set of 5,000 random transcriptions from the UT
validation set is created.
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7.3. PGT from the Uber-Text Dataset

Iteration # | Mined total | Mined w/o n. s. | Mined n. s.
1 92,909 72,990 19,919
2 105,126 86,295 18,831
3 109,557 90,480 19,077
4 111,663 92,660 19,003
5 113,046 93,994 19,052
6 113,810 94,890 18,920

Table 7.1: The results of six iterations of the PGT generation method on
Uber-Text dataset with simulated weak labels. It shows how many images were
generated in total and how many would have been obtained with/without the
neighbourhood search.

For PGT generation, the whole UT training set is used. To facilitate GPU
computations, we split large (about 4K) images into 16 blocks ensuring no
text instance is split and discard those with no text. Such empty blocks are
common, since text instances are sparse in many images. Each of the original
ground truth transcriptions is a weak label in our experiment, the ground
truth polygons are discarded. The weak labels are transformed into a set of
n-grams, as explained in the PGT generation section. N-grams containing
the * symbol (unreadable or unknown characters) are discarded.

The PGT generation and OCR training progresses iteratively. First, the
OCRjy, results are processed, creating the UT; PGT dataset. Next, an updated
model, OCRyr,, is trained with UT;. In the k-th iteration, £ > 1, while
keeping the detections fixed, the OCR trained in the previous iteration,
OCRuyr,,, generates the new PGT UT}, dataset.

PGT generation and OCR training. In the first iteration, 92,909 PGT text
instances were obtained. The number of PGT texts increased in all iterations,
reaching 113,810 texts after six iterations when the OCR performance stopped
improving — a summary is shown in Table|7.1. The recognition rate, calculated
on 20 000 randomly selected transcriptions from the UT test set, increased in
each iteration from the baseline 41.6 % to 66.1 % in the sixth iteration. The
accuracy of the fully supervised OCRyr,, is 78 %. The PGT has reduced
the gap between the baseline model and the fully-supervised one by 67%.
The performance of PGT training is limited by the detector which was not
trained on the new domain. Improving the detector may help to reduce the
gap further.

To test the contribution of the neighbourhood search and of allowing
imperfect matches, a dataset, denoted UTY, is created. It contains only the
detections that matched with 0 edit distance with some of the weak labels.
The accuracy of the model trained with UT) is 2.7 % lower, showing the
importance of the additional retrieved PGT text. Table 7.2 summarizes the
UT experiments.

PGT precision analysis was performed on a set of 5,000 images. For each
image I, we denote the set of generated PGT as PGT(I) = {(pi, ti) }i=1,..n
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7. Experiments

Training datasets - example %
Full Weak
MJ | ST | MLT | UTf | UT (30) | Acc. | Norm. ED
[42] 56.4
OCRy 45 | 45 10 0 - 41.6 35.2
OCRyp, | 30 | 30 | 10 0 | UT, |52 280
OCRyr, | 30 | 30 | 10 0 | UT, |57.9| 262
OCRyrt, | 30 | 30 10 0 UT, 62.7 23.3
OCRuyr,; | 30 | 30 10 0 UTj; 64.4 22.5
OCRyr, | 30 | 30 10 0 UTy 65.4 21.5
OCRuyr; | 30 | 30 10 0 UTs 66.0 21.1
OCRyty | 30 | 30 10 0 UTg 66.1 21.2
OCRuyT | 30 | 30 10 30 - 78.0 10.0

Table 7.2: Recognition rates (acc.) and the normalized edit distance on the Uber-
Text test set. The data obtained from the i*" iteration of the PGT generation is
denoted as UT;. UTF is the fully annotated dataset and UT] is a subset of UT
obtained without the neighbourhood search.

Iteration / Mined: total w/o neigh. s. | with neigh. s.
1 1,536,583 1,234,219 302,364
1,581,109 | 1,354,219 226,890
3 1,594,333 1,375,571 218,762

Table 7.3: Pseudo-ground truth (PGT) generation performance on the ABC
dataset. The number of boxes with text generated: in total, without and with
the neighbourhood search.

where p; and t; are the bounding box and the transcription of the i-th PGT
element. and the ground truth set as GT(I) = {(ps, ;) }i=1,..m-

For each (p,t) € PGT(I), we attempt to find (p/,¢') € GT(I) such that
a(pnp’)/a(p’) > 0.3 and ¢ is a substring of ¢'; a(.) is the area of the polygon.
If no such GT element exists, the PGT element is considered a false positive.
The estimated number of false positives in PGT was 1.6%. We consider this
an upper bound on PGT precision since often the detected “false positives”
are in fact texts that do appear in the image but were not annotated, while
the same texts appear and were annotated in a different part of the image
and thus were among the weak labels - an example would be the name of
a restaurant written on a sign board and also on the entrance door. The
majority of the real false positives are very common short words such as 'the’,

) b

'to’, ’in’ or ’on’ that are being predicted for false positive detections.

Some of the PGT failure cases are shown in Fig. [7.2
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7.4. PGT from Book Covers

. 7.4 PGT from Book Covers

The PGT is generated from the ABC dataset. Over 200,000 images of book
covers together with the author and the title of each book were used. The
title often includes a subtitle - while the author and title are almost always
present in the image, the subtitle is less common, or there may only be a
part of it.

We performed three iterations, in the first, the OCR}; model generates
the ABC; PGT dataset of 1,536,583 cropped images of texts. The model
trained with this data is referred to as OCRaBc,. In the second iteration,
using OCRsB(, instead of OCRy, we obtain the ABC, dataset with 1,581,109
images. Finally, the OCRApc, model is trained and used to generate ABCs,
a dataset of 1,594,333 images. A summary of the PGT generation results
from all the iterations can be found in Table [7.3l

B 75 Recognition results on Benchmark Datasets

A recognition model trained with the PGT data from the previous experiments
is evaluated on different domains using various commonly used recognition
datasets - IIIT 5K-word (ITIIT), Street View Text (SVT), ICDAR2003 (IC03),
ICDAR2013 (IC13), ICDAR2015 (IC15), Street View Text - Perspective
(SVT-P) and CUTES0 (CT). We evaluate on test set subsets commonly used
by researches as identified in [I]. All the models were validated on a union of
the training sets of all the previously mentioned datasets.

To evaluate models trained on word-level data only, a test set of 20,000
images where each image only contains a single word, referred to as UTw,
is created. While we evaluated the models on UTyy, it was not included in
the validation set. We remove any spaces from all the predictions and when
evaluating on datasets with images that contain punctuation but the ground
truth does not, we filter any non-alphanumeric characters out.

Training with either UT; or ABC; generated in the first iterations of the
PGT generation consistently improved the performance. For some datasets,
UT boosted the performance more than ABC and vice versa and training
with both leads to a superior performance on all evaluated datasets. Training
with the data from the last iterations, UTg and ABCs, further improved the
accuracy with an average improvement of 3.7 % relative to OCRy,.

A model trained with the UT} and ABC] datasets was also evaluated.
These datasets are subsets of the UT; and ABC; datasets that would have
been obtained if no neighbourhood search or edit distance filtering was used.
With the exception of IC03 dataset, this model’s performance was always
inferior to the model trained with all the data.

The results also show that while the baseline model trained on synthetic data

37



7. Experiments

Training datasets - % in batch

Full Weak
MJ|ST|MLT |UT| ABC
OCRy 45 |1 45| 10 0 0
OCRARC, 30 | 30| 10 0 30
OCRuyr, 30 (30| 10 | 30 0

OCRuyr,+aBc, | 20 | 20| 10 | 20| 30
OCRuyTg+aBc, | 20 20| 10 | 20| 30
OCRypy ey | 20 (20| 10 |20 | 30
OCR{ 50 |50 0 | 0 0
OCR$,iapc, | 25| 25| 0 [20] 30

Table 7.4: Recognition models and their training datasets, evaluated in Tables
7.5 and |7.6|

Evaluation on Summary

IIIT | SVT | IC03 | IC13 | IC15 | SP | CT A UTyw A

3000 | 647 | 867 | 1015 | 2077 | 645 | 288 | avg | min | max || 20 000
OCRy 89.8 | 86.7 | 94.3 | 91.2 | 68.5 | 77.2 | 723 | 0.0 | 0.0 | 0.0 52.8 0.0
OCRABC, 92.8 | 88.9 | 94.8 | 93.0 | 71.0 | 775|736 | 1.7 | 0.3 | 3.0 53.9 1.1
OCRyT, 92.2 | 88.6 | 95.0 | 94.1 | 70.6 | 79.2 | 76.4 | 2.3 | 0.7 | 4.1 61.6 8.8
OCRyT,+ABC; | 93.0 | 89.2 | 95.2 | 94.1 | 71.6 | 79.2 | 77.8 |29 | 0.9 | 55 61.8 9.0
OCRyTg4+aBCs | 93.5 | 90.7 | 95.5 | 94.0 | 74.6 [ 80.1 | 77.8 | 3.7 | 1.2 | 6.1 67.8 | 15.0
OCRUT/1+ABC/1 91.4 | 88.1 | 95.5 | 93.9 | 69.5 | 77.1 | 74.0 | 1.4 | -0.1 | 2.7 59.1 6.3

Table 7.5: Recognition results on standard benchmarks, non-alphanumeric
characters included. Validation was performed on the union of training sets,
with the exception of the UT dataset. Average, min. and max. increments of
each model relative to OCRy, (A).

only performed well over a wide range of different datasets, the performance
on UT dataset was rather poor - only 52.8 % accuracy. This shows the
challenging nature of the dataset, which is partially due to the presence
of heavily blurred images and the high frequency of vertical/diagonal text
direction. The summary of the experiments can be seen in Table [7.5]

For better comparison with other methods, we also trained and evaluated
our best performing model on alpha-numeric characters only. The baseline
model was pretrained with MJ and ST and fine-tuned with the the UTg and
ABCj3. During evaluation, all images with unknown characters were filtered
out. The boost in performance here was slightly lower, 3.3 % on average.

It should also be taken into account that the relatively poor performance
on the IC15 dataset is partially due to the presence of highly rotated text,
which we have not addressed at all.

The results confirm that training with automatically generated PGT from
very different domains, such as born-digital documents, can significantly
improve the performance of a recognition model over a wide range of scene-
text datasets. Also, adding only a relatively small number of those images
helps significantly, implying the variety of data is an important factor. Some
common characteristics of the images where the PGT data has improved
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7.6. Detection training with PGT

Evaluation on Summary
IIIT | SVT | IC03 I1C13 IC15| SP | CT A UTw A
3000 | 647 | 867 1015 1922 | 645 | 287 | avg | min | max || 18 956
OCRy 87.6 | 88.6 | 94.5 91.9 75.2 | 789 (732 | 0 0 0 54.9 0.0
OCRUp 1aBc, | 91.7 | 91.8 | 95.7 94.2 80.0 | 82.5 | 774 |33 | 1.2 | 4.8 68.9 | 14.0
Publ. SOTA 95.3 | 91.8 | 96.4 96.4 79.4 | 84.5 | 88.5
References 201 | 22] | [22) | 27,1200 | [22] | [22] | [20]

Table 7.6: Recognition results on standard benchmarks excluding images con-
taining non-alphanumeric characters. For comparison with other methods, the
model was only pre-trained with MJ and ST datasets. Average, min. and max.
increment relative to OCRy (A).

the model’s performance are blurred images, perspective distortions, artis-
tic/handwritten fonts or occluded/cropped characters. Some of these are
shown in Figure [7.3 while images where the performance has deteriorated are
shown in Figure [7.4l

B 7.6 Detection training with PGT

Detection training with PGT is not as straightforward as recognition training
where we could simply crop out the PGT regions to create a new training set.
The situation is the following: For each image, we have a set of detections.
Some of those (possibly modified) detections were confidently matched with
a weak label and form a part of the PGT but we can not say much about the
remaining ones. Those could be either false positives or true positives. Also,
we do not know anything about the possible false negatives.

The problem of the “unconfirmed” detections could be addressed by using
the recognition output confidence to obtain more information and discard
detections below a certain threshold as false positives. During training, the
regions corresponding to detections that did not make it to the PGT could be
masked so that no loss is computed in those regions. However, that does not
solve the false negatives problem and thus, training on the original images
similarly to training on regular fully-supervised datasets does not seem like a
feasible solution.

We propose training on positive PGT examples only. To use the GPU
efficiently and given the image size is fixed to H x W, we create new training
images by concatenating the cropped PGT regions. For each row of the
image, we randomly pick a height h; from [hjow, hnign] and fill it with cropped
PGT regions resized so that the height of the cropped image is h;, preserving
the aspect ratio. If the next image does no fit in the row anymore, we fill
any remaining columns in the row by copying the last column of the last
cropped image. If H — E§:1 hj < hpign, we set hi1 = H — Z§:1 h; instead
of selecting it randomly and create the last ¢ + 1-th row. The limits on height
are set to hjpy = 25 and hpign = 80. One of the resulting images is shown in
Figure [7.5] together with the corresponding text center line and text region
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7. Experiments

Training dataset %
Full Weak Evalaution
IC15 | TT | MLT-L | UT; | ABC; | Recall | Precision | CRT
Al 70 20 10 0 0 77.2 70.4 1169
B 50 20 10 10 10 77.4 74.1 1156
C| 60 20 10 10 0 77.0 74.0 1147
D 50 20 10 20 0 74.4 71.5 1130
E | 45 15 10 15 15 75.5 73.5 1148
F 70 10 10 10 0 75.4 67.5 1139
G| 70 10 10 5 5 73.0 73.5 1084

Table 7.7: Detection evaluated on the ICDAR2015 [17] test set. OCRyr, was
used to obtain the number of correctly recognized texts (CRT).

training masks.

The results of TextSnake trained on different combinations of IC15, TT,
MLT-L, UT; and ABC; datasets evaluated on the IC15 test set, using
OCRuyT, as recognizer, are reported in Table 7.7. Due to the lack of a
validation set for IC15, the results are not conclusive and the small changes
in performance could be attributed to oscillations in between training epochs.
There may be a small increase in model precision at the cost of worse end-to-
end performance in terms of the number of correctly recognized words.

We also evaluate the Q and E metrics on a subset of 5000 images of the UT
test set. The results are summarized in Table 7.8l The results seem consistent
with the observations made on the IC15 dataset - while the percentage of
false positives, as well as the number of detections, decreases, the end-to-end
performance deteriorates. We have also performed the second iteration of
the PGT generation, this time using one of the retrained models as well
as the retrained OCRyr,. The number of PGT generated was lower than
the number of PGT generated while keeping the detector unchanged. This
confirms our approach is not feasible.

40



7.6. Detection training with PGT

Training dataset %
Full Weak Evalaution
IC15 | TT | MLT-L | UTy | ABC; | Q E | Detections | Mined
Al 70 20 10 0 0 36.5 | 24.9 16214 105126
B | 50 20 10 10 10 38.6 | 17.8 14050 -
Cl| 60 20 10 10 0 39.7 | 18.5 13891 -
D | 50 20 10 20 0 38.8 | 19.5 15020 101929
E | 45 15 10 15 15 39.0 | 15.7 13646 -
F | 70 10 10 10 0 378 | 224 15584 -
G| 70 10 10 5 5 40.3 | 194 13012 -

Table 7.8: Evaluation on a 5000 image subset of the Uber-Text [4I] test set.
OCRuyT, was used to compute Q. The number of mined PGT regions is not
evaluated for the majority of the models as the time and gpu demands are high
and the results are unlikely to bring extra value.
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7. Experiments

(a) : Some don’t care polygons span (b) : Some ground truth polygons are
multiple lines - with the evaluation pro- bigger than necessary. As a result, even
tocol of [17], this would result in multiple detections that actually cover the whole
false positive predictions. word do not pass the 50 % intersection

over union threshold.

Figure 7.1: Problematic ground truth polygons in [I7]. The top images show
the ground truth polygons, both regular (blue) and don’t care (yellow). The
bottom images show the predicted detections with - true positives (green), false
positives (red) and ignored during evaluation (blue).

42



7.6. Detection training with PGT

Figure 7.2: Failure cases of our PGT method (blue) - sometimes, very blurred
texts, texts in unknown scripts or text-like patterns are recognized as short,
common words such as ’on’, 'the’ or ’in’.
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Figure 7.3: Images where the edit distance between the prediction and the
ground truth decreased after training with PGT. OCR prediction (first line)
and OCRyr,+aBc, prediction (second line) are shown below each image. Some
common characteristics are blur, occlusion, perspective distortion or artistic
fonts.
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tape arlboro tgbu
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Figure 7.4: Images where the edit distance between the prediction and the
ground truth increased after training with PGT. OCR prediction (first line) and
OCRuT,+ABC, prediction (second line) are shown below each image.
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Figure 7.5: Detection training with PGT - the concatenated PGT image and
the corresponding text center line and text region training masks.
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Chapter 8

Conclusions and future work

In this work, we proposed and tested a method that exploits weakly annotated
images. The weak annotations are texts that are being extracted automatically
as metadata accompanying the images. An existing end-to-end reading system
is used to localize the weak annotations, improving the results with an edit-
distance guided neighbourhood search, alleviating human effort in annotating
data for text detection and recognition. The method produces very little false
positives and the output can be treated as regular ground truth, therefore we
call it pseudo ground truth (PGT).

We applied the method to two different sources of weakly annotated data,
the Uber-Text dataset and book covers from Amazon. The generated PGT
was used to retrain both the detection and recognition models. It was shown
that training with PGT consistently improves the accuracy of a state of the
art recognizer both on images from the same domain and across different
benchmark datasets (different domains). The proposed approach to detection
training — training on positive samples only concatenated into a single image
— showed small increase in precision but a decrease in recall and end-to-end
performance on all evaluated datasets and does not seem feasible. Throughout
the work, we have encountered several shortcomings of current evaluation
protocols, which are discussed in Subsection [7.1.1.

The promising results open multiple directions of future work, which are
discussed in the rest of the chapter.

. 8.1 Limitations and future work

We are aware of multiple limitations of our work which open the space for
multiple directions of future work.

The first one stems from evaluating detection and recognition separately.
The PGT images used to improve the recognition model were obtained through
the detector, cropping out rotated bounding boxes, while the recognition test
set often contained axis aligned bounding boxes created by human annotators.
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8. Conclusions and future work

Working with an end-to-end system and focusing on end-to-end performance
may benefit from the PGT even more.

Our work was also limited by the fact that we only focused on straight-text
— an adaptation of the PGT generation method to handle curved text is likely
going to obtain more diverse and abundant data. Another way to improve
the PGT data would be looking into more sources of weak annotations like
flickr, as explained in Section [4.3.

Lastly, while our approach to detection training turned out as infeasible,
it does not mean detectors can not benefit from the PGT. Even the msot
recent synthetic datasets still lack the text style diversity of real world images
and one possibility to improve that would be a combination of the PGT with
style-transfer techniques, but those experiments were out of the scope of this
work.
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