
Bournemouth University

Prediction and Modelling of Complex Social
Networks and Their Evolution

by

Akanda Wahid -Ul- Ashraf

A thesis submitted in partial fulfilment for the degree of
Doctor of Philosophy

in the
Department of Computing and Informatics

June 2020

University Web Site URL Here (include http://)
aashraf@bournemouth.ac.uk
Department or School Web Site URL Here (include http://)


Declaration of Authorship

I, Akanda Wahid -Ul- Ashraf, declare that this thesis titled, ‘Adaptive and robust approach for

predictive modelling of dynamics and evolution of Complex Social Networks’ and the work

presented in it are my own. I confirm that:

� This work was done wholly or mainly while in candidature for a research degree at this

University.

� Where any part of this thesis has previously been submitted for a degree or any other

qualification at this University or any other institution, this has been clearly stated.

� Where I have consulted the published work of others, this is always clearly attributed.

� Where I have quoted from the work of others, the source is always given. With the excep-

tion of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others, I have made clear

exactly what was done by others and what I have contributed myself.

Signed:

Date:

i



“In my scientific work, I have hunches. I can’t explain always why I think a certain path is the

right way, but I need to trust it and go ahead. I also have the ability to check these hunches and

find out what they are about. That’s the science part.”

Gerd Gigerenzer



Bournemouth University

Abstract
Department of Computing and Informatics

Doctor of Philosophy

by Akanda Wahid -Ul- Ashraf

This thesis focuses on complex social networks in the context of computational approaches

for their prediction and modelling. The increasing popularity and advancement of social net-

works paired with the availability of social network data enable empirical analysis, inference,

prediction and modelling of social patterns. This data-driven approach towards social science

is continuously evolving and is crucial for modelling and understanding of human social be-

haviour including predicting future social interactions for a wide range of applications. The

main difference between traditional datasets and network datasets is the presence of the rela-

tional components (links) between instances (nodes) of the network. These links and nodes

induce intricate local and global patterns, defining the topology of a network. The topology is

ever evolving, determining the dynamics of such a networked system. The work presented in

this thesis starts with an extensive analysis of three standard network models, in terms of their

properties and self-interactions as well as the size and density of the resultant graphs. These

crucial analysis and understanding of the main network models are utilised to later develop

a comprehensive network simulation framework. A set of novel nature-inspired link prediction

approaches are then developed to predict the evolution of networks, based solely on their topolo-

gies. Building on top of these approaches, enhanced topological representations of networks are

subsequently combined with node characteristics for the purpose of node classification. Finally,

the proposed classification methods are extensively evaluated using simulated networks from our

network simulation framework as well as two real-world citation networks. The link prediction

approaches proposed in this research show that the topology of the network can be further ex-

ploited to improve the prediction of future relationships. Moreover, this research demonstrates

the potential of blending state-of-the-art Machine Learning techniques with graph theory. To

accelerate such advancements in the field of network science, this research also offers an open-

source software to provide high-quality synthetic datasets.
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Chapter 1

Introduction

“Networks are everywhere”, among all the different types of networks (e.g. social, biologi-

cal, internet, road networks, etc.) interest in social networks has experienced particularly rapid

growth, mainly due to the availability of large real-world network datasets (Liben-Nowell and

Kleinberg 2007; Brandes et al. 2013; Barabási and Bonabeau 2003). Research in social net-

works, leveraging these large-scale data, is mainly focused on patterns and evolution of the

social structure. According to Freeman et al. (1987), “social structure refers to a relatively

prolonged and stable pattern of interpersonal relations”. Although large-scale social networks

analysis is ubiquitous nowadays, the groundwork in the shape of small-scale social network

analysis began long before the era of MySpace or Facebook. The origin of network science can

be traced back to the 18th-century scholar Euler, who introduced graph theory (Euler 1999).

However, for social networks, the field which had been previously known as sociometry is now

transformed into social network analysis and has become a part of much broader research area

called network science. The study of social network dynamics could be found as early as 1934

when Moreno (1934) designed a hand-drawn friendship diagram. However, this social network

is minimal when compared with today’s hundreds of millions or even billions of nodes in online

social networks like Facebook and Twitter. From that friendship diagram, Moreno (1934) in-

ferred simple conclusions that there were more friendships or connections between the same

gender than opposite genders. Although these findings are relatively straightforward and intu-

itive, the study had pioneered today’s social network analysis. The friendship diagram analysis

by Moreno (1934) demonstrated that social behaviour can be understood more easily when the

interactions are represented in the form of a diagram, i.e. a network.

A network is typically represented as a graph and consists of a set of connected entities. In

the field of network science, following from the graph theory, these entities are referred to as

nodes or vertices while the connections between them are known as edges or links (Newman

2010a). A network could be defined by its E edges and V vertices. The evolution of societies is

1
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captured, mainly, through the emergence and disappearance of nodes and edges in the network

that is a representation of complex system – in here a society. However, changes in the node and

edge attributes also reflect the evolution of societies. Thus, analysis of such network could give

a broader understanding of the evolution of societies. The field of network science could also be

thought of as the study of the collection, management, analysis, interpretation, and presentation

of relational data (Brandes et al. 2013). Another large quantity of network science work is

also dedicated towards mathematical modelling of the networks (Barabási and Bonabeau 2003;

Erdös and Rényi 1959; Watts and Strogatz 1998). Network science is still an emerging field

as more and more complex and large-scale network data becomes available. Network science

does not belong to a single discipline but is a combination of multiple disciplines, including

graph theory, physics (statistical mechanics), data mining and sociology (Brandes et al. 2013;

Tiropanis et al. 2015).

Due to the availability of large-scale network data, for the first time in history, we have the pos-

sibility to process ‘big data’ (gathered by computer systems) about the interactions and activities

of millions of individuals. It represents an increasingly essential yet under-utilised resource be-

cause due to the scale, complexity and dynamics, Complex Social Networks (CSN) extracted

from this data are extremely difficult to analyse. A coherent and comprehensive approach to

analyse such networks and their dynamics is crucial to advance our understanding of people’s

continuously changing behaviour. Networked systems and their evolution are usually analysed

by building models of interactions using the classic random, scale-free, and small-world models.

However, these do not precisely reflect the complex nature of real-world networked systems and

their dynamics.

To develop predictive models for a social network, it is essential to recognise its complex topo-

logical patterns and changes in those patterns with respect to time. In the majority of complex

networks, three aspects affecting the whole network, can typically change. These are (1) changes

in links (e.g. emergence and disappearance), (2) changes in nodes (e.g. emergence and dis-

appearance of nodes), and (3) changes of properties/features (of both nodes and links). This

project, firstly, focuses on the first type of changes listed above, i.e. changing the number of

relationships (emergence of links).

A social network dataset with topological information only, can contain enough information for

predicting future relationships with better than random accuracy (Liben-Nowell and Kleinberg

2007). The complex structure or topology of a social network includes information which is not

visible to the naked eye but can be used to make predictions for future interactions (e.g. link

prediction based on the intrinsic topological patterns). This predictability from topology of the

network only, is a very intriguing aspect of the data with relational components. We discuss our

approach to the link prediction problem in Section 1.1. Secondly, going further than predict-

ing relationships based on topology only, in this research, the topology of a network is fused
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with the node features for the prediction of node labels (e.g. a person’s political views in so-

cial networks). This type of classification problem is formally known as the node classification

problem for networks. Attributes like gender, political preferences or age are a few examples of

the standard node features in social networks. In this thesis we also work on the area of node

classification in social networks. Elaborated in Section 1.2, our work on the node classification

domain also indirectly leverages the link prediction problem for social networks. In the famous

study by Liben-Nowell and Kleinberg (2007), it has been discussed that the link prediction prob-

lem in social networks is related to the problem of predicting missing links. Although missing

link prediction and link prediction may sound similar, there are subtle differences between these

two concepts (based on the upper bound of the kind of problems they deal with). In a missing

link prediction task, it is assumed that there are hidden interactions between nodes that need to

be inferred. Whereas in a link prediction task, the goal could also be predicting missing links but

in combination with the main goal of predicting links which are likely to be formed in future.

In other words, a link prediction can be thought of as forecasting links, whereas a missing link

prediction does not deal with the time dimension. Perhaps, it can also be argued that the missing

link prediction problem is a subset of the link prediction problem. An example of link predic-

tion could be future friend prediction in social networks, whereas, an example of the missing

link prediction is, predicting suspicious interactions in a mobile network which the users are

trying to hide. Hence, although, most of the existing link prediction and missing link prediction

techniques can be used interchangeably Liben-Nowell and Kleinberg (2007), the difference in

their underlying problem-specific concepts, their precise theoretical benefits become more ap-

parent for a particular application. For the node classification problem, use of the concept of

missing link prediction makes more sense (as opposed to the link prediction problem), based on

the argument that we are inferring already existing hidden interactions of the network. These

hidden interactions can be predicted for a richer representation of the network, which interns,

increases the performance of the node classification task (a more detail explanation is given in

Section 1.2). In our node classification related contributions, we make use of this very notion

of mission link prediction (see Section 1.2). This concept of missing link prediction can be

useful for the task of recognising node patterns in networks which is termed as the classifica-

tion problem. The difference between the classification problem for datasets with the relational

components (i.e. networks) and without the relational components is that the relational elements

contain intricate and potentially useful topological information. These topological patterns are

crucial elements of the datasets for any predictive modelling applied to networked data. If a pre-

dictive model for networks does not consider these topological patterns, it can under-utilise the

available information within the datasets, leading to suboptimal performance. In this work we

show that these relational components can be further enhanced using our proposed approaches

in Chapter 7 which are based on the concept of missing link prediction.
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1.1 Link Prediction

As discussed earlier, the prediction of social relations, i.e. the link prediction is one of the

most essential parts of the evolution of a social network, alongside new node appearance. This

link prediction is the first goal of this project. The existing techniques for link prediction are

discussed in Chapter 2. Developing new link prediction techniques or improving the existing

approaches firstly requires identifying the main contributing factors to the formation of new

links. The second step is to determine how to combine or utilise these contributing information

for a better link prediction method. In this thesis two main contributing factors to link prediction

are identified from the literature, namely popularity and similarity (Papadopoulos et al. 2012;

Thwe 2013). The popularity of a node implies how popular or influential a node is in a social

network, whereas similarity implies how similar two nodes are. Popularity can be measured

using Centralities, such as the Degree Centrality and similarities can be measured using shortest

path length between two nodes and other widely used similarity measures such as Katz, Rooted

PageRank etc. This work proposes to combine these two contributing factors using a law found

not necessarily in the social science but in the natural world, namely Newton’s law of universal

gravitation.

If we consider a social network, at its local level, how two people make a connection or inter-

act could rely on two factors, (1) how popular, and (2) how similar these people are. These

two concepts are well established in the link prediction paradigm (Papadopoulos et al. 2012;

Thwe 2013). Intuitively, for social networks, predicting the appearance of links between two

people, having both the popularity and similarity factors should entail better prediction accuracy

than considering only one of these factors. In social networks, we already have a wide range

of measures for calculating the popularity of nodes and similarities between them. Different

centrality measures (e.g. degree centrality, closeness centrality or betweenness centrality) could

be thought of as notions of popularity. On the other hand, scores from link prediction methods

like Katz or AdamicAdar could be thought of as measurements of nodes’ similarity (Freeman

1977; Katz 1953; Adamic and Adar 2003). However, the challenge is how to combine these

two types of metrics in order to predict links between two particular nodes in the future. This is

where we make use of Newton’s law of gravity. In Newton’s explanation of gravity, the force

between two particles is proportional to the product of their masses and inversely proportional

to the squared distance between them. We argue that this law of attraction between two point

masses could also be applicable in social networks. We measure the popularity or importance

of a node using centrality and consider it as mass. We measure dissimilarity by the inverse of

similarity (i.e. scores from link prediction methods like Katz, AdamicAdar etc.) or by the path

length, and consider them as distance. The detailed theoretical and empirical analysis of this

novel Newtonian gravity inspired method is described in Chapter 5.



5

1.2 Missing Links and Node Classification

A link prediction algorithm typically predicts future links based on the current information avail-

able within the network. However, link prediction methods (many of them measure node similar-

ity) can also be categorised as predicting missing links for a network at the current time (i.e. not

for a future snapshot) (Liben-Nowell and Kleinberg 2007; Goldberg and Roth 2003; Popescul

and Ungar 2003; Taskar et al. 2004). A link prediction method infers links which are not directly

visible within the network but have a high likelihood of forming in the future (Liben-Nowell and

Kleinberg 2007). This consideration of node similarities as missing links can address some of

the limitations of the Graph Convolutional Network (GCN) (Kipf and Welling 2017), a state-

of-the-art method for node classification, which we discuss in Chapter 7. GCN has been shown

to outperform other state-of-the-art models on citation networks and a knowledge graph for the

task of node classification. The GCN can efficiently combine the graph topology with the node

features for the task of node classification. However, the mentioned limitation for the GCN is

that at a particular lth layer of the neural network model, it can only consider up to the lth order

of neighbourhood of nodes as influential, which may not always hold. This strong dependency

between the highest layer and the size of node-neighbourhood can limit the node classification

accuracy, especially for friendship-based networks. This is because, for a given node, a distant

node (i.e. not directly connected) may have higher similarity than the directly connected nodes.

These similarities between two distant nodes indicate that they will likely connect in the future,

which in turn implies a missing link between them. In the work where GCN has been introduced

by Kipf and Welling (2017), it has been applied and benchmarked for citations and knowledge

networks. Thus, the evaluation of the full potential of the GCN on a friendship-based social

network also requires openly available datasets in larger quantities. However, most available

social network datasets are not complete (i.e. they represent a subset of the original networks

e.g. ego-networks, not the entire graph or do not include the entire set of node features 1). On

top of that, the majority of the available social network datasets not only do not contain any

features but also ground truth labels. Although there are mathematical models available for gen-

erating graphs, these do not generate features and labels, thus only the topology of the graph is

obtainable. To address the need for good quality synthetic social network data with ground truth

labels and features we provide a guideline on how to simulate dynamic social networks, with

ground truth labels and features, both coupled with the topology of the network (Section 1.3).

We then use three node-similarity measures, our Newtonian gravity inspired method coined as

the Graph Gravity (GG), Katz and, rooted PageRank to increase node classification accuracy

of the GCN. The models based on the combination of these similarity measures with a unique

data reconfiguration technique outperform the original GCN model in 27 out of 30 simulated

datasets that we have used. They also outperform or match the original GCN on two real-world
1Node attributes and features are used interchangeably in this work
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citation network datasets. Additionally, we have proposed another variation of the GCN, which

includes a weight matrix to learn the strength of each feature for defining the node labels for all

the nodes. Chapter 7 includes the detailed discussion about these four new deep learning models

based on the GCN concept.

1.3 Social Network Simulation

As mentioned in Section 1 there is now an unprecedented availability of social network datasets,

however, most of the openly available datasets are not complete, i.e. they only represent subsets

of bigger networks and/or do not contain node attributes. One major limitation of the neural

network-based learning systems is that they require a large amount of data for training. This

is one of the most significant differences between human intelligence and artificial non-general

intelligence like an artificial neural network. Unlike a deep learning (i.e. deep neural network)

model, a human can learn from a minimal number of examples, whereas a deep learning model

requires to see a substantially larger number of samples to learn. Thus, it is essential to have

access to a large number of training data instances to unlock and evaluate the full potential of the

neural network-based model. A straightforward technique to solve this problem of insufficiency

of the high quality real-world datasets for neural network-based learning systems is to simulate

high quality real-world alike synthetic data and use it to train the model. Additionally, if not for

training, simulated datasets are particularly useful to evaluate the models’ performance, i.e. dur-

ing the testing phase. In many cases, it is far more convenient to simulate test cases representing

exceptional situations than collecting data for those situations in the real world. In fact, for some

real-world scenarios, it might not even be possible to get a dataset describing some exceptional

scenarios due to the rarity of the event or ethical constraints.

It is, however, crucial to test the trained model in those exceptional scenarios because the cost

of failure for those unlikely situations can be significantly higher than a regular situation. One

such area where high quality simulated and augmented data is extensively being used is in the

neural network-based learning systems for self-driving cars. Almost all advanced autonomous

vehicle technologies use simulated datasets. For example, Nvidia has developed the Nvidia

Drive Constellation, a Virtual Reality Autonomous Vehicle Simulator (NVIDIA n.d.). Billions

of miles have been driven in the simulated environment by Google’s Waymo (Waymo n.d.)

etc. Similar to the self-driving cars, in many other applications of deep learning, high quality

simulated datasets are now in high demand.

With the advancement of graph specific neural network-based models, the demand for such

datasets is growing rapidly. Furthermore, it is becoming more and more difficult to have access

to complete (i.e. inclusive of node attributes) datasets representing social networks mainly due

to user privacy concerns that we discuss later in this section.
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Social network datasets are very complex in nature, thus, they can be difficult to simulate and

there is a lack of comprehensive guidelines on how to simulate social network datasets with both

the features and ground truth labels.

As mentioned earlier, graph data mining has become an active research area due to the recent

advancement and popularity of social networks (Wasserman and Faust 1994; Newman 2018),

especially the online ones. Advancements in graph-based predictive modelling or graph commu-

nity detection algorithms require datasets with ground truth labels for evaluation purposes (Sa-

pountzi and Psannis 2018). However, the majority of the available social network datasets do

not contain labels. Moreover, real-world social network datasets contain high dimensional fea-

tures (Pecli et al. 2018) that represent information about both nodes and relationships. For

example, a Facebook user generates a variety of information such as posts he/she likes, photos,

status updates, etc. Even in citation networks, there are features such as the domain, authors’

affiliations, documents with thousands of words, etc (Popescul and Ungar 2003). In publicly

available datasets, such features are rarely included.

This is due to the fact that during the anonymisation process of networked data, in most cases

we need to get rid of the majority of features as these could be used to identify individu-

als (Townsend and Wallace 2016), potentially raising ethical concerns. De-identification of

network datasets is particularly tricky because of the unique topological structure a network

may have. In a 2011 Kaggle link prediction competition, the winning team successfully de-

identified most of the network data by matching the anonymised network topology with the real

network, instead of using the actual link prediction algorithm (Narayanan et al. 2011). On top

of that, nowadays, even such graph datasets are becoming very difficult to obtain due to the

aftermath of the notorious usage of the real-world dataset from social networks for the purpose

of political influence (Hand 2018; Cadwalladr and Graham-Harrison 2018).

One of the infamous recent developments in data misuse is that around 50 million Facebook

users’ profiles have been analysed without their consent by Cambridge Analytica, a British

political consulting firm. Moreover, it has been claimed that the data analysis was performed in

order to influence the outcome of 2016’s US election (Cadwalladr and Graham-Harrison 2018).

This incident of the data breach along with many others, has ignited a backlash from social

network users and politicians.

To ensure user’s data is only used with explicit consent, governments and political unions are

increasingly putting pressure on the technology companies on protecting user’s data (Quinn

2018). Additionally, new regulations, such as the European General Data Protection Regulation

(GDPR) on the usage of personal data, have already come into force in many countries, such as

the UK (Bennett 2018). Unquestionably, such regulations are essential to guarantee user privacy.

However, as a result, availability of datasets from social media in the public domain is sharply

declining. Maintaining the advancement of the research in social networks requires good quality
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real-world datasets. One solution is to supplement the real-world social network datasets with

synthetic, good quality, real-world alike data.

Typically, a link prediction algorithm is tested based on its predictive power on a future snapshot

of the network. A supervised link prediction algorithm should ideally utilise both the topology

and available node attributes (Lichtenwalter et al. 2010; Pecli et al. 2018). For example, Scel-

lato et al. (2011) found that including features such as places and other related user activity

improves the accuracy of link prediction considerably. Most of the developments in link predic-

tion have been based on a single snapshot of the network, although, incorporating the evolution

of the graph may result in better performance in link prediction as shown by Tylenda et al.

(2009) and Xu et al. (2018).

To address the need for openly available high-quality social network datasets, we have intro-

duced an open-source Python-based social network simulation library with GPU computation

and multiprocessing. In our social network simulation, we argue that the topology of the net-

work is driven by a set of latent variables, termed as the ‘social DNA’ (sDNA), which define

the preference of nodes towards the features of other nodes, and which are not necessarily ex-

clusive to a single node, whereas the single node’s entire set of features is. We consider the

sDNA as labels for the nodes, mimicking the real-world social network scenario. We describe

our simulation process along with the validation of the simulated datasets in Chapters 6 and 7.

1.4 Original Contributions and Outputs

1.4.1 Research Contribution

The four main research contributions of this thesis are:

1. In depth comparison and analysis of the three classical network models (random, small-

world and scale-free networks models), leading to new insights on how different these

three network models’ properties (many of these properties do not have analytical so-

lutions) are, for a fixed-size network. This has also laid the foundation of our network

simulation framework in Chapter 8.

2. Development of a class of new nature inspired and robust link prediction approaches

called Graph Gravity (GG). The proposed link prediction algorithms have better predictive

power when compared with many of the existing link prediction methods.

3. Combining graph theory based link prediction with modern deep learning models in a

coherent approach, resulting in development of four new node classification algorithms,

outperforming the existing methods.
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4. Comprehensive social network simulation framework, able to jointly model network topol-

ogy and node features.

This thesis has several research outputs including, high-quality publications and open-source

software developed in order to disseminate the research findings. Following are the publications

resulting from the research presented in this thesis:

1. Wahid-Ul-Ashraf, A., Budka, M. and Musial-Gabrys, K., 2017, November. Newton’s

gravitational law for link prediction in social networks. In International Conference on

Complex Networks and their Applications (pp. 93-104). Springer, Cham.

DOI: https://doi.org/10.1007/978-3-319-72150-7_8

Chapter: 5

2. Wahid-Ul-Ashraf, A., Budka, M. and Musial, K., 2018. NetSim – The framework for

complex network generator. Procedia Computer Science, 126, pp.547-556. DOI: https:

//doi.org/10.1016/j.procs.2018.07.289

Chapter: 4

3. Wahid-Ul-Ashraf, A., Budka, M. and Musial, K., 2019. How to predict social relation-

ships – Physics-inspired approach to link prediction. Physica A: Statistical Mechanics

and its Applications, 523, pp.1110-1129.

DOI: https://doi.org/10.1016/j.physa.2019.04.246

Chapter: 5

4. Ashraf, A.W.U., Budka, M. and Musial, K., 2019. Simulation and Augmentation of Social

Networks for Building Deep Learning Models. Preprint.

arXiv Preprint: https://arxiv.org/abs/1905.09087

Chapter: 6, 7

5. Ashraf, A.W.U., Budka, M. and Musial, K., 2020. SocialDNA - Capturing Complex

Nature of Human Behaviour in Social Networks. Submitted, Scientific Reports.

Chapter: 6

There are three software libraries that have been developed during this project, two of which

have been made open-source:

1. NetSim is developed in R to robustly (i.e. comparing many different parameter settings for

each of the models) compare properties of three network models with different sizes and

density. The library can generate networks with any given set of parameters and relevant

reports for analysis. The code has been made open-source. The GitHub repository for the

https://doi.org/10.1007/978-3-319-72150-7_8
https://doi.org/10.1016/j.procs.2018.07.289
https://doi.org/10.1016/j.procs.2018.07.289
https://doi.org/10.1016/j.physa.2019.04.246
https://arxiv.org/abs/1905.09087
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code:

https://github.com/AkandaAshraf/netsim

2. LinkPrediction, an R library to benchmark and evaluate the new link prediction technique

along with 12 other widely used link prediction methods. The software library uses multi-

threading to optimise the performance. This library is now also being used by the under-

graduate students in the University of Technology Sydney as a part of their coursework in

Computing Science Studio and Research Projects.

3. VirtualSoc is a software developed in Python 3 to generate dynamic synthetic social net-

work datasets with ground truth labels and features. There are two versions of this soft-

ware, one for the CPU and another one for the GPU. No other network analysis library has

been used to develop this software. The source code is available under the MIT license.

The GitHub repository for the package can be accessed using the following link:

https://github.com/AkandaAshraf/VirtualSoc

1.5 Thesis Structure

FIGURE 1.1: The relation between research domains, concepts, and Chapters 4-7

This thesis is organised as follows. In Chapter 2 we discuss related work and also propose a new

categorisation of the link prediction methods. Chapter 3 is where we describe the methodology

of the study, including the research questions, objectives, and tasks that have been undertaken

to fulfil those objectives. Chapter 4 includes the analysis of different network models, sizes,

densities and properties. We then describe the new link prediction methods with empirical

https://github.com/AkandaAshraf/netsim
https://github.com/AkandaAshraf/VirtualSoc
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analysis in Chapter 5. Afterwards, a comprehensive network simulation framework is presented

in Chapter 6 which is developed primarily based on our understanding of the three network

models from Chapter 4. In Chapter 7, we validate the simulated networks and propose four

new variants of the GCN. Finally, in Chapter 8 we conclude this thesis, also outlining future

research directions. This thesis also includes an Appendix A with additional figures, statistics

and information on the developed software libraries.



Chapter 2

Literature Review

In this chapter, different properties of a network are introduced from literature which is related

to Chapter 4 where the behaviour of these properties with respect to different size and types

of networks are analysed. Understanding these network properties are essential to any network

analysis or modelling. After introducing the network properties, the focus is then shifted to

network evolution in the form of link prediction. Also, the importance of link prediction from

literature is brought forward in this chapter. In Chapter 5, a new physics inspired link prediction

method is proposed. Literature related to this physics inspired link prediction are then pointed

out. Additionally, the classification of the link prediction method is proposed in this chapter.

A number of link prediction methods are then discussed in this chapter. Afterwards, different

network models are presented which is relevant to the network simulation process in Chapter 6.3

and 7. These three network models are essential for the development of our network simulation

library in Chapter 4 and 6.3. Finally, the Graph Convolutional Networks (GCNs) are discussed

related to the four proposed new variants of the GCNs models that are developed and designed

in Chapter 7.

2.1 Properties of Networks

There are different properties and measures of network characteristics, some of them are very

easy to calculate precisely while others are must be estimated. They give insights and help infer

essential properties of a network (Newman 2010a; Costa et al. 2007).

The two most important and straightforward measurements of networks are Degree and Shortest

path.

Degree and degree Distribution: One of the most essential and fundamental properties of a

network is its degree distribution. The degree of a node is the number of edges connected to it

12
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and histogram of the degree of each node is the degree distribution of that network (Costa et al.

2007).

Shortest Path: The shortest path between a pair of vertices are called shortest path for that

pair of vertices. In a whole network, the average shortest path could be calculated by taking the

average of all shortest paths between all pairs of vertices. It could be calculated through breadth-

first search (Dreyfus 1969). The shortest path is also known as the geodesic path (Newman

2010a).

Diameter: The longest shortest path in a network is known as the diameter of a network (New-

man 2010a).

Transitivity: Transitivity is a critical concept, mainly for social networks. This is because high-

level transitivity seems to be a very apparent feature of a social network (Newman and Park

2003). Transitivity was first introduced by (Newman 2001b). A straightforward explanation of

transitivity could be that friend of my friend is also my friend. Perfect transitivity only occurs

in a clique where three vertices form a fully connected subgraph. If A is connected to B, B is

connected to C, and C is also connected to A then it could be said that this subgraph of A, B,

and C forms a clique which is a perfect transitivity. If vertex C and A are not connected then A,

B, and C are partially transitive. If A knows B, B knows C then we have a path of ABC of two

edges in the network. If now A knows C then we have the triad. Clustering coefficient 1 in a

network is the measurement of triads.

The Clustering Coefficient, C is measured using the following formula:

C =
number of closed path of length two

number of paths of length two
(2.1)

In Equation 2.1, if C= 1, it implies perfect transitivity and all the components are cliques, c=0

implies no closed triads which indicates the network is a tree (Newman 2010a). In social net-

work terms, it could be explained as the fraction of pairs with a common friend which are also

friends with themselves.

C =
number of triangles *3

number of connected triples
(2.2)

Here in Equation 2.2, three is multiplied because the connected triples are counted three times (New-

man 2001b). Equation 2.2 is also known as the fraction of connected triples. Socials networks

usually have higher clustering coefficient when compared with other technological and biologi-

cal networks (Mislove et al. 2007). The high value of clustering coefficient is thought to be due
1this is not the same clustering coefficient where we measure groups or clusters of vertices
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to the fact that we do not pick our friends randomly, rather two people have higher chances of

being friends if they have a common friend.

Clustering Coefficient for a single vertex: It is a measurement of how strongly the neighbours

of a vertex A is connected between pairs (Watts and Strogatz 1998). It is measured via:

C =
The number of pairs that are connected
number of pairs of the neighbours of A

(2.3)

Equation 2.3 is called local clustering coefficient, and it has a rough dependence on the degree.

Vertices with a higher degree have lower local clustering coefficient. This high local clustering

coefficient is also an indicator of the structural hole (Butt 1992). The missing links between

pairs of vertices are defined as structural holes. Structural holes are especially important in

social networks. If we are interested in efficient information flow in a network, then this high

clustering coefficient is undesirable. These structural holes reduce the number of alternative

routes information can take through the network (Butt 1992). However, structural holes could

also be a good thing, as having no connection between the adjacent pair of a vertex A means

the adjacent pair have to connect via A which gives A the power to control information flow. In

that sense, Structural holes could be a type of centrality measure as it defines the importance of

a node in a network regarding controlling information flow. Centrality measures are discussed

in later sections.

Mean Local Clustering Coefficient: Watts and Strogatz (1998) proposed a clustering coeffi-

cient for the entire network as a mean of local clustering coefficients for each vertex.

2.1.1 Centrality

Vertex centrality measures are fundamental in network analysis. Centrality quantifies how im-

portant or central vertices are in a networked system.

Degree Centrality: A simple, but perhaps the most crucial measure of centrality is the degree

of vertices in a network. The degree of a vertex in a network is referred to the number of edges

attached to it. Degree centrality is a handy measure of centrality in social networks.

Closeness Centrality: which is calculated based on the mean geodesic path from a given vertex

to all other vertices in the network (Newman 2010b). High closeness centrality of a vertex means

the vertex has better access to information or more direct influence on other vertices. Closeness

centrality is defined as:

CC(vi) =
1∑

n6=i d(vi, vn)
(2.4)
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Here, d is the geodesic distance between two vertices. As it can be seen in Equation 2.4, if

there are a total n + 1 vertices in a graph, closeness centrality for vertex vi is calculated using

the inverse of the average length of the shortest path from/to all other vertices except itself

vi 6∈ {v1, v2, ..., vn}. If the path does not exist between two vertices, then the total number of

vertices is used instead of path length (Csardi and Nepusz 2006).

Betweenness Centrality: this centrality gives a score to a vertex vi based on how many paths

connecting any two vertices in the network go through that vertex vi. If the number of those

paths is high, then vertex vi will have high betweenness centrality.

Vertices that are frequently on the shortest paths between any two vertices of the graph have more

control over information flow (Freeman 1977; Anthonisse 1971). Removing a vertex with high

betweenness centrality has a negative influence on the overall information flow in a network.

The betweenness centrality is different from other centrality measures as it does not consider

how well-connected a vertex is but it measures how much a vertex falls in between others.

This way it is possible to have a vertex with a low degree but high betweenness centrality.

For example, two groups of vertices can be connected via a single path and then a vertex that

connects those groups (a.k.a. bridge node or broker) can have a high betweenness centrality.

If a network has set of vertices V , source vertex s ∈ V and target vertex t ∈ V , the betweenness

centrality of vertex vi can be defined as (Freeman 1977; Anthonisse 1971; Brandes 2001):

BC(vi) =
∑

s6=vi 6=t

σst(vi)

σst
(2.5)

where σst is number of shortest paths between two vertices s and t and σst(vi) is the number of

shortest paths between two vertices s and t that passes through node vi.

Eigenvector Centrality: This centrality measure could be thought of as a bit more complicated

measure of degree centrality. In degree centrality, a vertex gets one point if it has one neighbour,

but in eigenvector centrality, the neighbours also get a rating. This centrality measure was first

proposed by (Bonacich 1987). Eigenvector centrality for a vertex vi is,

vi = K−1
1

∑
j

AijXj′ (2.6)

Here, Mij is the an element of adjacency matrix M , K1 is the largest value from eigenvalues

Ki. To understand eigenvector centrality from a social network point of view, a person might

have few friends or connection but still, have high eigenvector centrality measure because most

of his/her connections are very important or central (have higher centrality measure). Usually,

the value of eigenvector centrality is not normalised. This centrality works best for undirected
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networks for directed networks it arises complicacy. In directed networks, the outward con-

nection from a node does not necessarily give importance to the node from which it is pointed

outwards. For example, a web page has an outward connection to thousands of other pages, and

some of them could be very important). To get around this problem the eigenvector centrality

of an undirected network is measured by the number of inward connections. One big problem

with this centrality measure in the directed network is if a vertex has many inward connections

and those vertices also have connections pointed towards other vertices. If we encounter one or

many vertex or vertices have no inward connection, in this case, we will get zero measure by

using eigenvector centrality.

Katz Centrality (Katz 1953): This centrality measure solves the major problem that we face

with eigenvalue centrality, the problem of zero centrality discussed earlier. This problem is

solved via adding a free weight to every node. Although the Katz Centrality is proposed to deal

with the problem with directed network but it can still be applied, and sometimes very useful in

undirected networks. It allows a vertex to have high centrality regardless of their neighbour’s

centrality measure if it has many connections.

vi = α
∑
j

MijXj + βi (2.7)

In Equation 2.7, α and β are positive constants. α is the eigenvector centrality, and it is the

sum of centralities connecting to vertex i, and β is the extra constant value that all the vertices

receive by default.

PageRank: One drawback of Katz centrality is if a vertex has high centrality value and if it

points to another vertex, then the pointed vertex gains more centrality. Let’s assume the case that,

Facebook is pointed to millions of websites, so it has high centrality. However, if it points to a

particular website, that website will gain centrality just because of Facebook has high centrality.

Facebook is probably pointed to millions of other websites which are not particularly important.

The idea behind solving this problem is by changing the centrality gain by dividing the gain by

the vertices’ out-degree. This centrality is the core of web ranking technology, and Google gave

its trade name PageRank (Brin and Page 2012).

vi = α
∑
j

Aij
Xj

Kout
j

+ β (2.8)

In both Equations 2.7 and 2.8, the Katz and PageRank centrality there is a parameter α. This

α parameter needs to be tuned. For undirected networks, α is less than one, and in the directed

networks it is different, and in practical use usually, it is in the order of one. In PageRank, it is

also possible to define different additive constant for different vertices.
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2.2 Mesoscale Structures

One important aspect for the topology of social networks are their mesoscale structures, such as

communities and core-periphery.

2.2.1 Communities

Community structures represent groups of nodes which have stronger interactions within them-

selves, i.e. intra-interactions, but weaker interactions with nodes outside that community, i.e.

weaker inter node interactions. In social networks, these interactions are formed via links or

edges (Fortunato 2010; Lancichinetti et al. 2010). There are several ways to identify commu-

nities in a graph. Identifying communities requires algorithms which can infer the best parti-

tions between different subgraphs, representing different communities. Modularity optimisation

or more specifically maximisation is one such algorithm which can quantify communities in

graphs. A modularity maximisation algorithm typically measures the quality of the communi-

ties by finding a division of the network which gives the highest modularity. However, because

the number of division of the network can be exponentially high, an exact solution is not practi-

cal, thus an approximation of best modularities are inferred for detecting communities in a large

graph (Newman 2016). Another pathway to detect or infer communities in a network is by using

statistical inference. In statistical inference, one fits a generative network model to the observed

network. Initially, a total of n number of nodes is taken without any edges to attach to them,

and then they are divided (using some stratigies (Newman 2016)) into q groups. Then edges

are independently attached between all the nodes at random. The difference of probability of

edges being attached within the nodes in a group and between the groups gives fitness of score

of the community structure (Newman 2016). For nodes in a community, the probability of edges

being attached within themselves is expected to be higher than nodes which are in a different

community.

2.2.2 Core-periphery

A core-periphery structure of network implies that the network consists of two different struc-

tures, core and periphery. The core nodes are connected densely and the periphery nodes are

sparsely connected (Da Silva et al. 2008; Borgatti and Everett 2000; Rombach et al. 2014; Zhang

et al. 2015). A simple way to determine the core-periphery structure in networks is to divide

the nodes based on their degrees. However, for more precise detection of the structure other

algorithms such as fitting a stochastic block model (which fits the observations using expecta-

tion–maximisation algorithms) can be used (Zhang et al. 2015).
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In this work, we do not explicitly measure the above mentioned mesoscale structures. However,

there is implicit consideration of these structures within this work. For example, the community

detection techniques mentioned in Section 2.2.1 are unsupervised, however, there are modern

deep learning approaches which can identify communities in a supervised or semi-supervised

context, which we talk about later in Section 2.4 and in Chapter 7 (Kipf and Welling 2017).

For our link prediction algorithms developed in Chapter 5, we consider methods such ask Katz,

rootedPageRank, Average Commute Time (ACT), and they implicitly consider the surrounding

of a pair of nodes to predict link formation (Katz 1953; Brin and Page 2012; Lü and Zhou 2011).

These surroundings generally contain information of the connectedness of nodes, thus consid-

ering the mesoscale structure. For example, if a pair of nodes’ surrounding neighbourhood is

more densely connected then the total number of paths between those two nodes is expected to

be higher as well. We discuss these link prediction methods in more details in the next section.

2.3 Link Prediction

Networks are ubiquitous. Ranging from food webs, to protein, brain or social networks, they

underpin many natural phenomena (Cohen et al. 2012; Jeong et al. 2001; Bassett and Bull-

more 2016; Krioukov et al. 2012). In the broad landscape of network science, networks which

are formed via social interactions, have been increasingly drawing a lot of research attention

in recent years, due to the heterogeneity of their components and non-trivial dynamics. Data

representing small-scale social networks were available and analysed in the past, for example,

the famous Zachary’s karate club network has been studied extensively since it was published

by Zachary (1977) in 1977. However, Zachary’s karate club contains only 34 nodes and 78 ver-

tices, whereas today’s social networks (e.g. Facebook, scientific paper citation, Twitter), contain

billions of nodes and are far more complex and dynamic (Scott 2017).

2.3.1 Physics-inspired Approaches for Link Prediction in Social Networks

Although these large-scale social networks are formed by social interactions, their topological

properties and dynamics are similar to those of networks found in nature. For example, most bi-

ological networks exhibits power-law degree distribution, cellular networks have high clustering

coefficient, network encoding the large-scale causal structure of spacetime in our accelerating

universe exhibits power-law degree distribution and high clustering coefficient (Barabasi and

Oltvai 2004; Krioukov et al. 2012). Both these characteristics are also commonly found in

social networks.
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The similarity between anthropogenic social networks and naturogenic networks gives the op-

portunity to apply many different prediction and modelling tools developed in the field of natur-

ogenic networks, to social networks. This is due to the fact that large-scale physical and biolog-

ical networks and social networks exhibit similar topological properties (e.g. degree power-law

distribution, high clustering coefficient) (Bassett and Bullmore 2016; Sporns and Zwi 2004;

Krioukov et al. 2012). However, the similarities are explored at the global level and this causes

some issues with precision of adopted models and methods because the local dynamics are not

considered. This raises the question if we could also adopt laws which govern a physical system

to predict social network at a local level. Local level of the network implies the level of nodes

and links, where the interactions between at most two nodes are considered. Whereas, similarly

to the physical world, the analytical solution at the global level are usually governed by theories

such as chaotic dynamics (e.g. the three-body problem) in social networks.

Tools which are primarily used in order to analyse, model, or describe physical world have been

used in social network analysis on numerous occasions (Borgatti et al. 2009). Some examples

include Memetic algorithm for community detection in social networks, reaching of Bose gas

state of complex social networks or the molecular model of social network (Gong et al. 2011;

Krioukov et al. 2012; Bianconi and Barabási 2001; Juszczyszyn et al. 2009). The field with

applications of physical models to social networks has been named as social physics by Urry

(2004).

One of the main focuses of this research is the link prediction problem. The proposed model

is inspired by the earliest theory of gravity, where Newton described the law of universal grav-

itation based on the force between two point masses. Authors have already attempted to use

models from physics in the context of network structure prediction. In Budka et al. (2013)

and Juszczyszyn et al. (2009) they adopted molecular models in the context of evolution of so-

cial network. Now, by applying Newton’s gravitational law, we can extend the nature-inspired

link prediction framework with a new method that allows to take into account more than one

characteristic of the network, and not only distance between nodes as it was done in the molec-

ular model.

2.3.2 Newton’s Gravity in Social Sciences

Physics-inspired approaches in networked systems have been used in the context of force-

directed graph drawing, where node centralities were used as masses Bannister et al. (2012).

However, as opposed to our method, Bannister et al. (2012) did not use a measurement of dis-

tance or Newton’s gravitational equation for predicting future interactions. One of the first appli-

cations of gravity in social science dates back to as early as in the mid-19th century, when Simini
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et al. (2012); Carey (1867) reasoned that physical laws are also applicable in social phenom-

ena (Griesinger 1979). There are also some approaches using the theory of gravity to solve

link prediction problem, however, most of these works are related to modern physics i.e. quan-

tum mechanics (Urry 2004; Budka et al. 2013; Juszczyszyn et al. 2009; Bianconi and Barabási

2001).

In the study by Levy and Goldenberg (2014), Newton’s gravitational law is used in link pre-

diction. The authors used spatial distance (i.e. not topological) and substituted friendliness for

masses. In fact, inverse square law in terms of geographical distance has been used earlier than

in (Levy and Goldenberg 2014). Not specifically in link prediction but in the field of social

gravity, Zipf (1949) and Stewart (1948) both have applied the inverse square law. In fact, they

have considered the original notion of Newtonian gravitational law where the interaction be-

tween two groups of people is proportional to their cardinality, and inversely proportional to

their squared geographical distance (Griesinger 1979; Zipf 1949; Stewart 1948). The problem

with this approach in online social networks is that in some cases the physical distance is ei-

ther not available or not indicative of the relationship strength. Therefore, in this study we take

the inverse of different similarity measurements from scores of Katz, AdamicAdar, and Rooted

PageRank (RPR) as a measurement of distance, and use centrality measures as masses.

Recent developments in the use of gravitational law include the study by Bastami et al. (2019),

where the concept of gravity has been used to find optimised subgraphs to reduce the search

space for link prediction techniques. In our approach, we have used the concept of Newtonian

gravity directly for predicting future links by combining the notions of popularity and similarity,

which is different than the approach proposed by Bastami et al. (2019), where the Newtonian

gravity is used only to reduce the search space. In another study by Salha et al. (2019), the New-

tonian gravity has been used for Graph autoencoders, and variational autoencoders – a class of

link prediction approaches targeted towards directed link prediction. The Newtonian gravity has

been used to reconstruct the directed graph topology from the node embedding. The authors

recognise the fact that Newtonian gravity has limitations and the modern Einstein’s theory of

relativity is a better candidate to explain gravity as the spacetime curvature instead of a Newto-

nian force, however, the application of Newtonian gravity is still useful, for example, for precise

approximation of the effect of gravity when the gravitational fields are not extreme (Salha et al.

2019). In this section, we have given a review of the uses of Newton’s gravity in social sciences,

which extends the application of Newtonian gravity beyond physics.

2.3.3 Link Prediction Methods Classifications

There exists different types of link prediction methods. Numerous works have been dedicated to

review and classification of link prediction methods (Getoor and Diehl 2005; Liben-Nowell and
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Kleinberg 2007; Lü and Zhou 2011; Al Hasan and Zaki 2011; Wang et al. 2015; Martı́nez et al.

2016). One of the widely used and accepted classifications is by Liben-Nowell and Kleinberg

(2007), where the authors grouped link prediction methods as follows:

1. Methods based on node-neighbourhoods (e.g. Common Neighbours (Newman 2001a),

Jaccard’s Coefficient (Salton and McGill 1986), AdamicAdar (Adamic and Adar 2003),

Preferential Attachment (Barabâsi et al. 2002))

2. Methods based on the ensemble of paths between a pair of nodes (e.g. Katz (Katz 1953),

Hitting time (Liben-Nowell and Kleinberg 2007), PageRank (Brin and Page 2012))

3. Higher-level approaches (Low-rank approximation (Deerwester et al. 1990; Liben-Nowell

and Kleinberg 2007), unseen biagrams (Essen and Steinbiss 1992; Lee 1999; Liben-

Nowell and Kleinberg 2007), clustering (Liben-Nowell and Kleinberg 2007))

Classifications, like the one above, give us a better understanding of the principles that are used

when link prediction methods are proposed, e.g. if a method works at a local or global level

of the network or use path or node based similarity, etc. However, they neglect the information

about applicability of different methods, i.e. those classifications do not answer a question

in what circumstances and for what networks the methods can be used. For example, for some

methods (e.g. Katz) an input is a single snapshot of a network, while others (e.g. Triad Transition

Matrix (TTM)) require a time series as an input (i.e. a sequence of historical snapshots of the

network) (Juszczyszyn, Musial and Budka 2011; Backstrom and Leskovec 2011). As a result,

methods like TTM are not applicable to network datasets where only vertices and links are

given without historical information (Juszczyszyn, Musial and Budka 2011). Also, there are

other methods which may use additional information about node attributes like age, location,

etc. (Lichtenwalter et al. 2010; Chen et al. 2009). Based on the type of information exploited by

link prediction methods, we categorise link prediction methods into four groups:

1. Unsupervised – based on topological information, which are methods that only use

structural information such as mutual friend count in social networks, path lengths, triad

profiles etc. Some examples include methods like Katz, PageRank, and AdamicAdar (Liben-

Nowell and Kleinberg 2007). These methods only require a snapshot of the network topol-

ogy at any given time t to make predictions for time t + 1, and are useful when past and

non-topological information is not available. These methods are applicable to any type of

network dataset and do not require training.

2. Supervised – based on topological information, which are methods only applicable

to networks where historical information regarding network’s topology is available. For

example, if snapshots of a network at t − 1 and t are given, then t − 1 is considered as
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historical information. Network characteristics like degree of certain nodes at time t − 1

can also be considered as historical information. One example of such method is the

Triad Transition Matrix (TTM) (Juszczyszyn, Musial and Budka 2011; Backstrom and

Leskovec 2011). A wide range of machine learning approaches also fall into this category

if the topological information such as mutual nodes, shortest distance etc. is considered

as features, and link appearance is considered as class label (Lichtenwalter et al. 2010;

Lichtenwalter and Chawla 2011; Fire et al. 2011). Methods in this category do not use

non-topological information such as age, location etc.

3. Unsupervised – based on non-topological and/or topological information, which are

methods that consider non-structural information like age, location, preferences etc. (Tan

et al. 2013; Lichtenwalter et al. 2010; Chen et al. 2009). In this category topological

information of the network could also be used in combination with the non-structural

attributes mentioned above.

4. Supervised – based on non-topological and/or topological information, which are

methods applicable to the same kind of datasets as in point two above. If non-structural

historical information of a network is considered (with or without topological informa-

tion) any binary classifier could be used to make predictions in this setting (Al Hasan

et al. 2006).

There are quite a few methods that fall into the first category (Getoor and Diehl 2005; Liben-

Nowell and Kleinberg 2007; Lü and Zhou 2011; Al Hasan and Zaki 2011; Wang et al. 2015;

Martı́nez et al. 2016). These methods are applicable to any kind of network where only one

structural snapshot is available. Despite the fact that these methods only exploit network topol-

ogy without historical information or node attributes, they make more accurate predictions

for future links compared with a random predictor, according to Liben-Nowell and Kleinberg

(2007). This is because the sole topology of a social network encodes the predictive patterns

(e.g. the number of mutual friends, path length etc.) of the network. The link prediction ap-

proaches consider these patterns of the social networks from its topology to make predictions.

Definitions of popular linked prediction methods falls into the first category are outlined below:

2.3.4 Link Prediction Methods

1. Common Neighbours (CN), which is a similarity metric where the likelihood of two

nodes vi and vj to develop a link depends on the number of mutual friends (Newman
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2001a). This method could be quantified via Equation 2.9 (Γ represents the set neighbour

of a node v):

Score(vi, vj) = |Γ(vi) ∩ Γ(vj)|, (2.9)

2. Jaccard’s Coefficient (JC), which is a version of Common Neighbours (Salton and

McGill 1986) normalised by the total number of neighbours of both nodes:

Score(vi, vj) =
|Γ(vi) ∩ Γ(vj)|
|Γ(vi) ∪ Γ(vj)|

(2.10)

3. AdamicAdar (AA), which is a similarity metric used in information retrieval (Liben-

Nowell and Kleinberg 2007) similar to the Jaccard’s Coefficient (JC). In this method

the likelihood of two nodes being connected in the future depends on the number of

Common Neighbours (e.g. mutual friends in a social network) relative to the nodes’ de-

grees (Adamic and Adar 2003): In Equation 2.11, C denotes rare features (in this case a

rare feature is having many mutual friends while the degree of both nodes is low) common

between nodes A and B:

Score(vi, vj) =
∑

vk∈Γ(vi)∩Γ(vj)

1

log |Γ(vk)|
(2.11)

As an example, consider nodes A (with 500 friends) and B (with 300 friends) which are

not yet connected and have 30 mutual friends. Now, if another two not yet connected

nodes X and Y have 100 and 70 friends respectively, and also 30 mutual friends, using

this formula the (X,Y ) pair will get a higher score although the number of mutual friends

between both pairs is the same.

4. Preferential Attachment (PA), which is based on the social concept of ‘rich get richer’

implying that nodes with higher degree are more likely to get new links (Barabâsi et al.

2002):

Score(vi, vj) = |Γ(vi) · Γ(vj)| (2.12)

In our approach product of node’s degree has also been used, as it is in here. However,

Preferential Attachment does not consider shortest path as we have utilised it in equa-

tion 5.2.
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5. Katz, which considers the number of all the paths from node vi to vj (Katz 1953). The

shorter paths have bigger weight (i.e. are more important), which is damped exponentially

by path length and the β parameter (M denotes the adjacency matrix):

Score(vi, vj) =
l=∞∑
l=1

βl |̇pathlvi,vj | (2.13)

Score(vi, vj) = βM + β2M2 + β3M3 + · · · (2.14)

|pathlvi,vj | is the number of paths between vi and vj , and the length of this path is l. β is a

scalar parameter, which needs to be smaller than the reciprocal of the highest eigenvalue

of M (Landherr et al. 2010).

6. Rooted PageRank (RPR), which is used by search engines to rank websites. In graph

analysis it works by ranking nodes, and the rank is determined by the probability of

each node being reached via random walk on the graph (Brin and Page 2012). The

Score(vi, vj) is calculated using the stationary probability distribution of vj in a ran-

dom walk. The random walk returns to vi with the probability α at each step, moving to

a random neighbour with probability 1 − α. We have calculated RPR for every dataset

using two different α parameters and they are α ∈ {0.15, 0.25}.

7. Average Commute Time (ACT), which is an average number of steps it takes to visit

node vj from node vi and come back to vj using random walk (Lü and Zhou 2011):

Score(vi, vj) = RandWalk(vi, vj) +RandWalk(vj , vi) (2.15)

This could be obtained using pseudoinverse of the laplacian matrix (L), which is L+,

where L = B−M (Kunegis and Lommatzsch 2009; Fouss et al. 2007; Klein and Randić

1993). Here, B is the degree matrix (a diagonal matrix which contains degree of every

vertices) and M is the adjacency matrix.

Score(vi, vj) =
1

C(l+ii + l+jj − 2l+ij)
(2.16)

Because we are considering the rank, constant C could be removed. Here l+ are the

elements in matrix L+.

8. Average Commute Time Normalised (ACTN), which is the same as ACT but nor-

malised by stationary distribution, π = B∑
v B

(Lovász 1993; Zhou and Schölkopf 2004).
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9. Pseudoinverse of the Laplacian matrix (PsInLap), which is simply the pseudoinverse

of the graph Laplacian L+. PsInLap defines kernel of a graph and can be interpreted as a

similarity measurement (Fouss et al. 2007).

10. Local Path Index (LPI), which is based on the number of paths of different lengths be-

tween two vertices. LPI is a generalisation of CN. While CN measures similarity based on

mutual friend count, which effectively gives the number of paths with length two between

two vertices, LPI also takes into account paths of length three (Zhou et al. 2009; Lü et al.

2009). LPI is hence a more global similarity measure than CN but not as global as Katz:

Score(vi, vj) = M2 + εM3 (2.17)

Here, ε is a free parameter. M2 gives us path counts for distance two and M3 gives us

path counts for distant three. If we choose it to be zero then this would give us common

neighbours, and if we consider all higher orders of M (the adjacency matrix) then this

would essentially become Katz. In our experiments we have used two values for ε ∈
{0.01, 0.02}.

11. Leicht-Holme-Newman Global Index (LGI), which is a similarity metric utilising the

concept that if two nodes vi and vj have neighbours who are themselves similar, then they

have higher similarity score (Leicht et al. 2006):

Score(vi, vj) = B−1

(
I − θ

λ
M

)−1

B−1 (2.18)

Here θ is a free parameter and λ is a the largest eigenvalue of adjacency matrix M . We

have used theta ∈ {0.5, 0.7} in our setup.

12. Matrix Forest Index (MFI), which is a similarity score between vi and vj , defined as

ratio of the number of spanning rooted forests, such that vertices vi and vj belong to the

same tree which is rooted at vi to all spanning rooted forests of the entire network (Cheb-

otarev and Shamis 2006):

Score(vi, vj) = (I + L)−1 (2.19)

Here, I is the identify matrix. A spanning subgraph of a graph contains the same vertices

as the main graph, but not all the edges. A forest is a cycleless graph and a tree is a

connected forest. A rooted tree is a tree which has only one root (Chebotarev and Shamis

2006).
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2.3.5 Network Models

There are many different types of network models. The purpose of studying network models is

to generate artificial networks in the large scale which enables us to understand behaviour and

properties of networks.

Random-graph Model: In the random graph network model, one creates a network with some

properties of interest (specific degree distribution) and otherwise random. Although random

graph model was first studied by Solomonoff and Rapoport (1951) this model is mainly asso-

ciated with Paul Erdős and Alfréd Rényi (Erdös and Rényi 1959; Erdős and Rényi 1961). The

random graph model can also be thought of as choosing uniformly a network from the set of

all possible networks with exactly n vertices and m edges. This model is often referred to as

G(n,m) model for networks where n is the number of nodes and m being the number of edges.

A slightly different definition is for G(n, p) model, where p defines the probability of edges

appearing between all possible pairs of vertices.

Scale-free Model: The scale-free model shows power law node degree distribution P (k) ∼ k−α

(where k is the node degree and typically 2 < α < 3) for a social network. This kind of distri-

bution was first discussed by Price (1976). Price, in turn, was inspired by Herbert Simon, who

discusses power law in a variety of non-network economic data (Simon 1955). Simon showed

mathematically the fact that ‘rich get richer’ effect results in power law distribution, calling this

mechanism ‘cumulative advantage’, but it is more often known as ‘preferential attachment’ as

coined by Barabási and Albert (Barabási and Albert 1999). However, a recent study by Broido

and Clauset (2019), seems to have refuted the idea that social networks are highly scale-free.

The analysis by Broido and Clauset (2019), based on 927 real-world network datasets from

five different domains (including social networks), found that a strong scale-free structure in

social networks is very rare. They have also found that among all the network types, a handful

of technological and biological networks appear as strongly scale-free as opposed to the social

networks (Broido and Clauset 2019). However, this study has sparked a debate as the view of

scale-free networks being representative social networks has been very prevalent (Holme 2019;

Voitalov et al. 2019; Serafino et al. 2019). We discuss this issue in Section 6.7 in more details.

Small-world Model: Transitivity measured by the network clustering coefficient despite being

extensively studied, is still one of the least understood properties in network analysis according

to Newman (2010a). Another important property we observe in real networks is the small-

world effect – all nodes are connected with each other by relatively short paths. To model these

two properties Watts and Strogatz introduced a small-world network model (Watts and Strogatz

1998). Classical small-world model rewires edges in a simple circle model to random positions.

In a slightly modified version, the whole process starts from a circle and no edges are removed,



27

but new edges are inserted between randomly chosen vertices (Newman and Watts 1999). An

important model parameter is p – the probability of rewiring/adding edges.

Forest-fire Model: In this model the new node, i, connects to another existing node j, and then

again makes a connection with the adjacent node j1 of the newly connected node j0. The node

i then carries on making connections with a probability p based on adjacent nodes (Leskovec

et al. 2005; Drossel and Schwabl 1992). For example, in citation networks, an author finds a

paper and cites it. He or she then cites more papers through that paper recursively (Leskovec

et al. 2005). In a social network, a friend j may introduce someone i with his/her mutual friend

and then the friend circle grows for the person i (Leskovec et al. 2005). The model is named

as forest fire because it imitates self-organising behaviour of a forest fire (Drossel and Schwabl

1992). The spread of forest fire model follows three rules, (1) a burning tree becomes an empty

site, (2) a green tree burns if at least one of the adjacent tree is burning, and (3) at an empty site

a new tree grows with probability p (Drossel and Schwabl 1992). However, similar to the other

models discussed, this model does not account for node features and labels which are present

in a social network. Connections made with mutual friends in social networks are not purely

random; rather both parties evaluate each others features before making a connection.

These quintessential network models are one of the most important contribution towards un-

derstanding and modelling complex networks. However, these mathematical models are solely

driven by the topology of a network. For example, the Scale-free model considers the degree of

a node and the Small-world model considers mutual friends. Neither features nor labels of nodes

and/or connections are mimicked by those models. However, one can generate synthetic social

networks with features is to find similarities/correlations between randomly assigned n number

of features and let those similarities define connections (Papadimitriou et al. 2011; Symeonidis

et al. 2010; Papadimitriou et al. 2012). For obvious reasons, this naı̈ve approach is not ideal

due to several limitations. Firstly, correlations between feature vectors do not consider the net-

work topology. Secondly, a common correlation metric would assume every person in a social

network views and prefers a potential friend’s features equally in a linear fashion. Finally, it is

often not obvious what the node labels are, which is an issue we discuss in detail in Section 6.1.

However, there are some recent developments in agent and event-based social network mod-

elling which are discussed below.

Agent-based modelling: Bruch and Atwell (2015) provide a guideline on the agent-based mod-

elling of social networks. In the paper by Bruch and Atwell (2015), it is argued that the interplay

between the micro and macro level characteristics is complex, and the macro level characteris-

tics are not emergent solely from the simple aggregation of micro level characteristics or low

level entities such as social network users (Granovetter 1978). Instead, micro and macro level

behaviour or characteristics form a feedback loop, resulting in a nonlinear interaction. From a
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social network point of view, the graph level and node level characteristics could be thought of

as macro and micro level characteristics of the network respectively.

In our approach, we consider both the graph and node level characteristics for a comprehen-

sive representation of the real social networks. These characteristics are captured through the

well-studied behaviours and mathematical properties of social networks. The node level char-

acterises are the features, and individual preferences. Graph level characteristics are properties

such as, considering path length while making connections, common preferences among groups

of nodes etc. We discuss these in more details in the Section 6.1. We provide detailed and

specific instructions, i.e. equations and algorithms, on how to model these characteristics of

social networks resulting from the well-studied social network properties. Our study provides a

detailed guideline which can be used straightaway to simulate social networks.

In another work by Kavak et al. (2018), the authors have argued that modelling should be per-

formed by explicitly using available real-world dataset. In their experiment, they have simulated

human mobility model based on 826,021,868 twitter messages. Furthermore, they have uncov-

ered the Geolocation of 92,296 users for the purpose of modelling. However, the purpose of our

simulation is to produce synthetic good quality graph structured datasets when real-world data

is not available, which is increasingly the case.

Event based modelling: One recent interesting development in modelling dynamic event-based

graph is the Cognition-driven Social Network (CogSNet) model (Michalski et al. 2018). The

CogSNet models social network-based on the human memory model. Authors argue that, simi-

lar to the human memory, a social event is strengthened by repeated exposure to a similar event

and weakens by deprivation of that event. Although CogSNet proposes a new paradigm in social

network modelling, it does not provide an explicit explanation modelling features within the dy-

namic event based graph. Providing open-source social network datasets with labels, features,

and graph or topological characteristics is the primary goal of this study.

To address the issues discussed above, i.e., (1) lack of guidelines on implementing both the well-

studied network properties in social networks and features, (2) insufficient research on simulat-

ing dynamic social networks with node features, (3) lack of rigorous study providing directions

on defining node labels in social networks, we propose a framework for social graph simulation.

In our model, the simulated networks have the following characteristics based on understanding

of Facebook-type social networks, along with well-studied social network properties such as

preferential attachment (Chapter 6.3 and 7).
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2.4 GCN - A Neural Network Model for Graphs

Graph Convolutional Network (GCN) is a semi-supervised classification model shown to outper-

form other state-of-the-art graph classification approaches based on as little as 0.07% of labelled

nodes per class (Kipf and Welling 2017). In the paper where GCN is introduced, datasets con-

sidered in the experiment were citation networks and knowledge graphs with explicitly defined

class labels (Kipf and Welling 2017). However, defining class labels for Facebook, Twitter,

LinkedIn like social networks is not trivial. As discussed earlier, the difficulty is mainly asso-

ciated with obtaining real-world graph datasets with labels and node attributes. The GCN has

a limitation of assuming a strong dependency between the layer of the model and the node-

neighbourhood, which is also pointed out by Kipf and Welling (2017). This strong dependency

results in limiting the receptive field of the GCN up to the higher number of layer used in the

model. To solve this issue of the dependency between the highest number of layer and the node-

neighbourhood we have proposed three new variants of the GCN model discussed in Chapter 7.

These new models are mainly inspired by the analysis of link prediction methods in Chapter 5.



Chapter 3

Methodology

This chapter discusses the methodology of the research project. First, we talk about the Research

Questions for this project in Section 3.1. Then the objectives of the thesis are described in

Section 3.2. Finally, the tasks that are undertaken to meet the objectives of the project are given

in Section 3.3.

3.1 Problem Statement and Research Questions

Availability of large-scale online social network data combined with modern computational

power has given the opportunity to infer answers to questions social scientists have been asking

for a long time. Understanding how communities form, how information flows through social

interaction, the evolution of social interactions etc. are only few examples of useful insights

that we can derive from social network analysis. The approach of understanding social science

through computational approaches is termed as computational social science (Lazer et al. 2009).

One of the most crucial inquiries in the social network analysis is how a social network evolves.

Evolution of the social network is termed as dynamics of a social network and has been intro-

duced in Chapter 1. Understanding the pattern of social interactions between people in a social

network is essential if we were to capture or understand the dynamics of the network. Under-

standing the dynamics of the social network is also a requirement for the prediction of the future

states of a network, unless a black box classifier model from machine learning approach is used.

In a black box model, the model captures the dynamics of the network and uses it for prediction,

however, the captured model is largely not human interpretable.

In Chapter 1 three different aspects that affect the evolution of a network have been introduced,

i.e.(1) changes in links (e.g. emergence and disappearance), (2) changes in nodes (e.g. emer-

gence and disappearance of nodes), and (3) changes of properties/features (of both nodes and

30
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links), and one of the main ways an online social network evolves is through node interactions,

i.e. by forming new links. In this project, link prediction is the main focus.

Given a network at time t, the link prediction problem is to identify new links that will be present

in the network at time t+ 1 (Bliss et al. 2014; Hristova et al. 2016). Assuming the network has

a set of nodes V and set of edges E at time t expressed as G(V,Et), and that a link between

a pair of vertices vi and vj is denoted by L(vi, vj), the goal of link prediction is to predict

whether L(vi, vj) ∈ Et+1, where L(vi, vj) /∈ Et (Equation 3.1). The prediction is performed

by using topological and/or non-topological information about nodes characteristics and their

relationships.

Predict L(vi, vj) ∈ Et+1, Where L(vi, vj) /∈ Et (3.1)

To predict or understand how new links form we also need to understand if there are patterns that

the network follows for the formation of new links. These patterns mainly emerge from different

rules vertices follow for forming new links. For example, the scale-free is the rule where new

links are formed with vertices which already have many links (Barabâsi et al. 2002). Whereas,

Common Neighbour based rules prefer forming new links with nodes which have a high number

of mutual connections (Newman 2001a). However, these rules could also change as the network

ages. It is reasonable to think that, if we have multiple patterns or rules for interactions in

a social network, combining those multiple rules should entail better prediction compared with

when only one rule is considered. Different nodes in a social network are different topologically.

Also, in real life, everyone has a different preference towards social interactions. Some people

in society have more influence, attention, fame or weight than the others, from a social network

analysis point of view. Most of the link prediction methods do not consider these differences

in nodes. Treating different nodes according to their characteristic and then combining with

rules of link formation may improve the prediction accuracy. One way to distinguish (social

importance and influence through the graph topology) between nodes is through measuring their

centrality. Centrality reflects a person’s importance in society. Another important aspect in

link prediction is whether we should consider local topological properties of a pair of nodes or

we should consider larger more global characteristic of a pair of vertices for predicting future

links between them. Some of the methods such as Common Neighbour consider very local

information, whereas some others utilise more global topological properties, such as rooted

PageRank.

The link prediction problem can also be formalised as the missing links problem. There are

several deep learning models which are specifically designed for graph type datasets, such as

the Graph Convolutional Networks (GCNs). These models directly consider the adjacency ma-

trix as the topology of the network for predicting important information such as node labels.
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The adjacency matrix is a type of representation of the graph where node-similarities are not

considered, whereas the node-similarity matrices (i.e. link prediction methods) measure node

similarities, and a high value of the similarity can imply a missing link. Whereas lower value in

the similarity may imply the link is not very important or may disappear in the future.

In summary, the research questions naturally emerging from this discussions are as follow:

1. How different are the network properties such as clustering coefficient, average shortest

path or node centrality for the three standard network models (random graph, scale-free,

and small-world)?

2. What is the principled way to combine both the node importance and similarities between

nodes for a better link prediction approach? Additionally, is there a generic approach to

fuse both the global measures with local measures for a pair of nodes to predict links

between them?

3. How to increase the accuracy of the modern deep learning based models on graphs using

the traditional graph theory approaches such as link prediction methods for node classifi-

cation?

4. Can usage of the node-similarity measures solve one of the limitations (the strong depen-

dency between the layer and node-neighbourhood) associated with the GCN?

5. How to simulate social network datasets beyond the capacity of the basic mathematical

network models? How to combine these models in a single generative process?

6. How can we validate the coupling of the features, labels, and the topology in the simulated

networks?

3.2 Objectives

Based on the research questions, the following seven objectives are defined:

1. Compare and contrast different properties of the three fundamental network models (i.e.

scale-free, random graph, and small-world) with varying size and the density on a net-

work.

2. Design and evaluate a new link prediction technique capable of incorporating individual

node’s importance and similarity between a pair of nodes.
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3. Develop a software library to benchmark the proposed link prediction methods along with

the existing ones. Also, based on the developed software, analyse the performance of the

newly developed link prediction methods.

4. Adapt the state-of-the-art GCN model to exploit information from link prediction methods

in order to increase the predictive power.

5. Develop and validate a comprehensive guideline to simulate social networks such that

both the topology and features of the network are coupled together, incorporating dynamic

network generation within the simulation process.

6. Develop a simulation software package for the developed simulation algorithms.

7. Disseminate the new findings, methods, analysis, and the developed software packages.

Objective 1 is to answer Research Question 1. Objectives 2 and 3 corresponds to Research

Question 2 and Objective 4 is to answer Research Questions 3 and 4. Finally, Objectives 5 and 6

are associated with Research Questions 5 and 6. The evaluation of these objectives is presented

in Section 8.1.

3.3 Tasks

In order to fulfil the objectives, the following tasks were undertaken:

1. Random graph, scale-free, and small-world networks are analysed and compared for a

wide range of size and density. The detailed analysis are described in Chapter 4. This task

is for the partial fulfilment of Objective 1.

2. To understand how a network’s property changes as the network’s model type changes

an open-source software has been developed (link to the software package is given in

Chapter 1, Section 1.4). This task is also to fulfil Objective 1.

3. To fulfil Objective 2, based on the existing literature, anthropogenic and naturogenic net-

works are compared in Chapter 2, Section 2.3.1. In Chapter 5 based on this comparison

(i.e. between anthropogenic and naturogenic networks), a Newtonian gravity inspired link

prediction method is proposed. This technique can effectively combine both the local and

global measures of a network in addition to combining both the popularity and similarity

measures.

4. For Objective 3, an optimised (parallelised) software package, implementing 12 widely

used link prediction methods along with our proposed ones, has been developed. The li-

brary also produces Precision-Recall Curve (AUC), and Receiver Operating Characteristic
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(ROC) curve-based ranking of the methods. The usage of the library along with examples

of the produced plots and statistics are given in Appendix A, Section A.2.

5. Additionally, for Objective 3, the performance of the proposed, Newtonian gravity in-

spired link prediction technique are analysed using precision-recall (PR) curve (in Chap-

ter 5) for seven real-world network datasets. Results from the ROC curves are also given

in Appendix A, Section A.2.

6. Three new variants of the GCN model has been proposed based on Newton’s gravity in-

spired node-similarity measure along with two other link prediction methods in Chapter 7.

This task has been accomplished to address Objective 4.

7. Another variation of the GCN has been developed which can learn the relative importance

for each of the features in a network for all the nodes. This has been discussed in Chapter 7

and corresponds to Objective 4.

8. In Chapter 6, a detailed analysis and modelling techniques to simulate social networks

have been developed based on our understanding of the three classical network models and

today’s Facebook-type friendship-based social networks. Furthermore, two algorithms are

proposed for the simulation process of dynamic network datasets with features and ground

truth labels. This is to address Objective 5.

9. For Objective 5, experiments have been designed to validate the coupling of the topology

and features. The simulation process is validated based on the outcome of the experiments

(Chapter 7).

10. A highly parallelised (supporting both the Graphics Processing Unit (GPU) and Central

Processing Unit (CPU) computation) simulation software package has been developed

to simulate social network datasets based on our simulation strategy. Sample scripts of

the software to simulate networks are given in the Appendix A, Section A.6. This task

addresses Objective 6.

11. The proposed new models for node classification have been tested on the generated sim-

ulated (using our simulation framework) and two real-world citation networks. This task

addresses Objective 4.

12. Two articles in peer-reviewed conference proceedings and one in a peer-reviewed domain

specific high impact factor journal have been published. Another article is currently under

review and the preprint of the submitted paper has been made available through arXiv.

Additionally, the two developed software packages have been made open-source and are

currently on GitHub. This is to fulfil Objective 7. The list of published articles and the

open-source software are given in Chapter 1, Section 1.4.



Chapter 4

Overview of Network Models -
Simulation Study

In this chapter, we analyse three basic network models which are crucial for understanding real-

world social networks and their properties. All these network models represent some partial

aspects of real-world social networks. We analyse different network properties for the three

networks and how they relate to each other and varying size and density.

Network properties such as closeness centrality, betweenness centrality, degree distribution,

clustering coefficient, and average geodesic path vary depending on the network’s type and

size. These properties contain essential information about the network’s structure and dynam-

ics. For instance, a high clustering coefficient with low average geodesic path might indicate a

social network, i.e. a specific type of network that is formed through social interactions. Degree

distribution could indicate a particular growth mechanism unique to a specific kind of network

– power law in the degree distribution indicates that the growth mechanism is likely based on

preferential attachment and the network has been formed based on the ‘rich get richer’ rule. To

understand how different properties of a network behave with regards to the type of the net-

work, and how properties change with network’s size, we have designed and performed a num-

ber of simulations. In these simulations we have compared properties of three network models:

(1) Barabási-Albert model for scale-free network (2) Watts-Strogatz model for the small-world

network, and (3) Erdős-Rényi model for the random network.

To compare properties across three different network models of varying size and density, all

these models for a particular size needs to have the same number of vertices and edges. Due to

the different underlying mechanisms of these three network models, this is not very trivial. This

difficulty is encountered mainly with scale-free and small-world network models, and we discuss

it further in Section 4.2.2. To obtain comparable results we have developed a set of mathematical

formulas that allow generating networks following these three models with a set number of

35
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vertices and edges. This, together with a network simulator that can be easily extended to

include other network models and properties, is the primary contribution of this work. The

developed simulator, together with generated networks have been open-sourced on GitHub as

an R package1. The entire simulation workflow has been automated, so the user only needs

to define input parameters to get a comprehensive set of results in the shape of multiple plots

and tables. The second and equally important contribution of this research is the comprehensive

analysis of the results of over 30,000 simulations which we have run to generate and investigate

networks following different network models.

We have measured three types of network properties: (1) centralities (betweenness and close-

ness), (2) average shortest path, and (3) global clustering coefficient. For a given network model,

we varied the number of vertices and edges, yet keeping them fixed across all three network types

to make the results comparable.

In Section 4.1 we present a brief overview of existing network generators. Next, the proposed

NetSim framework together with implemented network models are introduced in Section 4.2.

In Section 4.3, we describe the design of the experiment that enables comparison of properties

of implemented models, followed by results analysis in Section 4.4.

4.1 A Brief Overview of Network Generators Landscape

To our knowledge, there does not exist any framework which generates comparable simulated

networks in a comprehensive way for the random graph, scale-free, and small-world networks

with a wide range of freedom in parameters but keeping the number of edges and vertices equal

for all networks. Below we briefly introduce a few widely used packages.

The igraph software package (Csardi and Nepusz 2006) is a collection of network analysis

tools available in R, Python and C. In our developed framework we have used igraph library in

R for generating individual models and calculating network properties. However, our NetSim

framework allows to generate all three models, with same the same number of edges and vertices

for a range of different parameters and to save all the calculated properties as serialised objects

which are then used to present the results in a transparent manner with generated plots. The

whole process is automated and the user does not need to worry about keeping the number of

edges and vertices the same, only vertices are taken as inputs.

Brain Connectivity Toolbox (Rubinov and Sporns 2010) is a MATLAB toolbox for complex net-

work analysis of structural and functional brain connectivity data sets. This toolbox has several

models, including random and scale-free networks, and includes tools for network comparison

which however focus mainly on different community structures, not network properties.
1https://github.com/AkandaAshraf/netsim
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MatlabBGL (Gleich 2007) is another MATLAB package for working with graphs. It is based

on the Boost Graph Library and enables generation of simple models like random graphs and

cycle graph (Siek et al. 2001).

Stanford Network Analysis Platform (SNAP) (Leskovec and Sosič 2016) is a library written in

C++ for high-performance large-scale complex network analysis. It allows to generate regular

and random graphs.

There exist a plethora of other software packages that allow to generate networks. While those

presented above are just a few examples, it is important to emphasize that none of them enables

to generate, in an automatic way, networks that are easily comparable. Existing tools enable

to generate networks of different models, but each model is used in isolation. If a user wants

to create networks that can be compared, i.e. having the same number of nodes and edges

regardless of their structure, they have to work out all parameters by themselves which, as

presented in the next section, is not a trivial task.

4.2 Proposed NetSim Framework

In this section, we introduce the network models implemented in the NetSim framework as well

as our approach to generate networks with a consistent number of nodes/edges regardless of

their structure. We have mathematically derived and empirically demonstrated our framework

to be able to simulate and support analysis with varying important parameters of three differ-

ent network models. Our proposed framework, which has been turned into an open-source R

package, NetSim, is very user-friendly. We can simulate large-scale networks once, calculate

their properties and then save those network properties as serialised objects which can then later

be fetched from hard-drive to generate plots and perform comparative analysis. This helps to

reduce the complexity of the process as generating a large scale network is computationally ex-

pensive. Our R package is based on igraph (Csardi and Nepusz 2006) and ggplot2 (Wickham

2011), where the former is used for the core graph calculations and the latter for generating high

resolution plots.

4.2.1 Network Models

In our study, we have simulated three widely used network models: (1) Barabási-Albert model

for the scale-free network (Barabási and Albert 1999), (2) Watts-Strogatz small-world model for

the small-world network (Watts and Strogatz 1998), and (3) Erdős-Rényi model for the random

graph network (Solomonoff and Rapoport 1951; Erdös and Rényi 1959; Erdős and Rényi 1960;

Erdős and Rényi 1961). A brief introduction of these models is given below.
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4.2.2 Network Generation Approach

To compare different properties of the three different types of networks, two parameters have

been chosen to be fixed. These are the number of edges m and the number of vertices n. For the

random graph model, it is very simple as we use the G(n,m) model and generate the ensemble

directly.

In case of a scale-free network, because this is a growing network model, the final number of

edges in the network depends on how many edges are attached in each step S as well as on the

total number of vertices n.

The total number of edges in a scale-free network with n nodes and S edges added in each

growth step is:

m = n·S − S· (S + 1)

2
. (4.1)

For a small-world network, the total number of edges for a network with n vertices and Nei

number of neighbourhood within which the vertices of the lattice will be connected are:

m = n·Nei. (4.2)

To keep the number of edges to m for the small-world network same as the scale-free network

(i.e. same as in Equation 4.1) we randomly delete a fixed number of edges x from the small-

world network in Equation 4.2. As a result, the total number of edges for a small-world network

can be represented using the following equation:

m = n·Nei− x. (4.3)

If we now solve both Equations 4.1 and 4.3 for x:

x = n· (Nei− S) +
S· (S + 1)

2
(4.4)

From Equation 4.4, we can see that number of edges that needs to be deleted does not depend

on the number of vertices when Nei and S are equal as the first part of the equation on the

right-hand side becomes 0. This is why in our comparison, we have considered S and Nei

parameters to be equal. When it is 0, S(S+1)
2 might not have an impact on the type of the model

for a large number of vertices as long as S is comparatively small. In our comparisons, we have

considered S up to 16. The value is chosen as power of 2, where the power is from 1 to 4 i.e.

S ∈ {2, 4, 8, 16}.
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The effect on the number of edges deleted from the small-world network is negligible, as the

number of edges that we delete are very small compared to the total number of edges. Addition-

ally, we simulate 30 times for each of the models and report the average from those 30 networks.

The highest number of edges that need to be deleted (x) in our simulation is 120, when the pa-

rameterNei is set to 16 based on Equation 4.4. In Table 4.2, we show the corresponding number

of edges for all the networks when Nei is set to 16. As we can see that the number of edges

that needs to be deleted is constant for a particular parameter of Nei, as a result as the network

starts to grow the fraction of deletion of edges becomes increasingly smaller. However, if there

were any significant effects on the networks generated we would see that effect for networks

which are small but with a higher value of the Nei parameter. In Table 4.1, we can see that the

effect of the removal of random edges on the average shortest path for the small-world network

with Nei = 16 and difference in the shortest path in Table 4.1 is very small. Moreover, for

a particular value of Nei, the number of edges that are deleted is constant, hence, the trends

within the network properties for a particular value of Nei are unaffected.

Nodes 100 200 300 400 500

deleted 1.701063973 1.856758794 1.949889260 2.035537176 2.115439412

original 1.676787879 1.847455611 1.939777778 2.025406850 2.105063727

TABLE 4.1: Average shortest path length of small-world networks with deleted and not deleted
edges for p = 0.3 and Nei = 16. Each of the networks are sampled 30 times.

We have generated networks for scale-free and random graphs with n vertices and m edges.

The number of edges is calculated from Equation 4.1, which is the number of edges we get

in scale-free networks for a different number of vertices n. For small-world networks, first, a

lattice with n vertices andNei number of neighbourhood within which the vertices of the lattice

will be connected is generated. From the generated lattice x edges (Equation 4.4) are randomly

removed. After that, the edges are rewired with probability p to obtain small-world network.

Following the process described above, we obtained networks of the three discussed models

that are comparable as they have the same number of nodes and edges which, in turn, enables

comparative analysis of different networks’ properties including clustering coefficient, different

types of centralities and average shortest paths.

4.3 Design of the Experiment

In our simulation study, we have varied a number of parameters to generate different net-

works within three basic mathematical models. For all three network types we have n ∈
{100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000,
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Network Model | n | | α | | p | | S | or | Nei | Sampling
Scale-free 19 19 × 9 = 171 171 × 4 = 684 684 × 30 = 20520
Small-world 19 19 × 5 = 95 95 × 4 = 380 380 × 30 =11400
Random Graph 19 19 19 19 × 30 = 570

Total 1083 32490

TABLE 4.3: Number of simulated networks.

9000, 10000} vertices. For scale-free networks we have used different values of α which are

α ∈ {1.5, 1.75, 2, 2.25, 2.5, 2.75, 3, 3.25, 3.5}. In the case of small-world networks we used a

range of values of p ∈ {0.3, 0.4, 0.5, 0.6, 0.7}.

Number of edges for scale-free and small-world networks is calculated using Equations 4.1

and 4.3 from section 4.2.2 respectively. For the random graph, we have used G(n,m) model

where the number of edges is directly defined. Note, that number of edges will be the same

for all networks for a given set of S and Nei values. Table 4.2 shows number of edges which

correspond to each S and Nei parameters for each vertex count defined from set n.

S Nei Number of edges in a network

2 2
197, 397, 597, 797, 997, 1197, 1397, 1597, 1797, 1997, 3997, 5997, 7997, 9997,

11997, 13997, 15997, 17997, 19997

4 4
390, 790, 1190, 1590, 1990, 2390, 2790, 3190, 3590, 3990, 7990, 11990, 15990,

19990, 23990, 27990, 31990, 35990, 39990

8 8
764, 1564, 2364, 3164, 3964, 4764, 5564, 6364, 7164, 7964, 15964, 23964, 31964,

39964, 47964, 55964, 63964, 71964, 79964

16 16
1464, 3064, 4664, 6264, 7864, 9464, 11064, 12664, 14264, 15864, 31864, 47864,

63864, 79864, 95864, 111864, 127864, 143864, 159864

TABLE 4.2: Number of edges for different values of S and Nei

In our simulation, we have shown empirically that our method keeps the number of edges and

vertices the same for all types of networks and is consistent with Equations 4.1 and 4.3.

For each combination of α and p, both S and Nei are increased as a power of 2. S,Nei ∈
{2, 4, 8, 16}. The reason behind keeping S andNei the same is described in Section 4.2.2. Each

of the networks was generated 30 times, and the mean for each analysed property was calculated

over those 30 samples. Table 4.3 summarises the total number of generated networks. Without

sampling, we have in total 1083 different types of networks with different parameters that we

have analysed in our study.
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4.4 Results and Analysis

In this section, we present results that were obtained using the NetSim framework. Those include

betweenness and closeness centralities, average shortest path, and global clustering coefficient.

We compare those properties and analyse them with respect to number of nodes and edges as

well as network types.

4.4.1 Number of Edges and Vertices
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FIGURE 4.1: Edge and Vertices plot for random graph networks, small–world networks, and
scale–free networks; S = 2 Nei = 2.

Figure 4.1 shows the number of edges in relation to the number of vertices for different networks.

Plots for all networks overlap and form a straight line. This is because in each of the networks

we have the same number of vertices and edges which shows empirically that our proposed

method described in section 4.2.2 is viable. In Figure 4.1 the number of edges in relation to the

number of vertices is presented for Nei = 2 and S = 2, but the same trend holds for all other

experimental settings from Table 4.2.
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4.4.2 Closeness Centrality
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(C) S & Nei=8

●

●

●

●

●

●

●

●
●

●

●
●

● ● ● ● ● ● ●

●

●

●

●

●

●

●

●
●

●

●

●
● ● ● ● ● ● ●

●

●

●

●

●

●

●

●
●

●

●

●
● ● ● ● ● ● ●

●

●

●

●

●

●

●

●
●

●

●

●
● ● ● ● ● ● ●

●

●

●

●

●

●

●

●
●

●

●

●
● ● ● ● ● ● ●

●

●

●

●

●

●

●

●
●

●

●

●
● ● ● ● ● ● ●

●

●

●

●

●

●

●

●
●

●

●

●
● ● ● ● ● ● ●

●

●

●

●

●

●

●

●
●

●

●

●
● ● ● ● ● ● ●

●

●

●

●

●

●

●

●
●

●

●

●
● ● ● ● ● ● ●

●

●

●

●

●

●

●

●
●

●

●

●
● ● ● ● ● ● ●

●

●

●

●

●

●

●

●
●

●

●

●
● ● ● ● ● ● ●

0.000

0.002

0.004

0.006

0 50000 100000 150000
Number of Edges

M
ea

n 
C

lo
se

ne
ss

 C
en

tr
al

ity

networkType

●

●

●

randomGraph

SF (alpha=1.5)

SW (P=0.3)

SW (P=0.4)

SW (P=0.5)

SW (P=0.6)

SW (P=0.7)

SF (alpha=1.75)

SF (alpha=2)

SF (alpha=2.25)

SF (alpha=2.5)

SF (alpha=3)

SF (alpha=3.25)

SF (alpha=3.5)

(D) S & Nei=16

FIGURE 4.2: Closenesss Centrality in relation to number of edges for random graph, small-
world, and scale-free networks with different values of S andNei. Enlarged plots are available

in Appendix A, Section A.1.1

Figure 4.2 shows mean closeness centrality in relation to the number of edges. Closeness cen-

trality measure is calculated as inverse of the average geodesic path. Closeness centrality is

expected to have higher values in social networks due to the small-world effect, which implies

that every vertex should be connected with other vertices via a short path even if the network is

very large.

As network size is increased closeness centrality decreases for all types of networks. This is

because all generated networks become sparser as they grow in size (i.e. moving from left to

right of a single plot). Although we have increased the number of vertices and edges together,
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the number of edges is not increased sufficiently quickly with respect to vertices to maintain

a dense network. However, increasing the value of S and Nei implies more edges, thus a

denser network. For the value of 16 of both Nei and S, the simulation results in networks

with the biggest number of edges among all generated networks. For Nei = 16 and S = 16

mean closeness centrality is similar for all generated networks. This implies that as the network

density grows, different types of networks might exhibit similar behaviour.

Compare different network types one can see that random graph has the lowest value for mean

closeness centrality. This is something expected as a pure randomly grown network does not

have the small-world effect. Scale-free networks with higher values of α seem to have a higher

value of mean closeness centrality. This might, in turn, implies that the “rich get richer” effect

has a positive impact on the mean closeness centrality of the entire network.

4.4.3 Betweeness Centrality

Betweenness centrality is a measure of how much influence a vertex has on the information flow

within a network. In our study, we see a linear increase in the mean betweenness centrality

values for all the networks with increasing size of the network (Figure 4.3). This is because as

the network becomes bigger in terms of the number of vertices, each vertex lies between more

vertices in general.

One crucial observation here is that there are apparently two clusters of networks in each of

the plots. There is a definite difference between scale-free networks and small-world/random

networks. As we make networks denser by increasing values for S and Nei, networks in those

two clusters remain separate but tend to behave more like each other within the same cluster.

We also see that as the network gets denser, betweenness centrality decreases.

Scale-free networks tend to have lower values of betweenness centrality, and the value decreases

with growing values of α. This can imply that the ”rich get richer” effect is responsible for the

decrease in mean betweenness centrality values. Although for small-world and random networks

this centrality measure is far higher than for scale-free networks, randomness tends to play a

negative role here. We see that with higher values of p in small-world networks, they tend to

have lower mean betweenness centrality although they lie in the upper cluster. Higher values of

p in small-world network imply more randomness as the lowest value of all in the upper cluster

is a random graph network.
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FIGURE 4.3: Betweenness Centrality in relation to number of edges for random graph, small-
world, and scale-free networks with different values of S andNei. Enlarged plots are available

in Appendix A, Section A.1.2

4.4.4 Average Shortest Path

The average shortest path is calculated as the mean shortest path for all pairs of vertices. In our

analysis, we have taken the average of shortest paths between all pairs of vertices and plotted

against growing number of edges, see Figure 4.4.
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FIGURE 4.4: Average Shortest Path in relation to the number of edges for random graph, small-
world, and scale-free networks with different values of S andNei. Enlarged plots are available

in Appendix A, Section A.1.3

It is interesting to see that as S and Nei are increased resulting in a denser network, the shortest

path is decreased for all three types of networks with different parameters. This implies that

the small world phenomena are more apparent in a denser network and this is true for every

small-world, random graph, and scale-free network.

Another important observation is, when plotted, every figure shows two clusters with regards to

the average shortest path length. Small-world networks with lower values of p tend to fall in the

lower cluster which has shorter average shortest paths, whereas networks with higher values of p

fall in the upper cluster. This is intuitive as having lower values of pmeans fewer connections are

rewired in our networks from the initial lattice which has less small-world phenomena. When

the value of p is increased, it is closer to a random network, which has lower values of average
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geodesic path. The purely random network falls into the lower cluster having a very low value

of average geodesic path in comparison to the top cluster. All scale-free networks fall in the

cluster with lower values of the average geodesic path.

Interestingly size of the network does not seem to influence the value of average geodesic path

of scale-free networks, and they stay almost constant, whereas for the cases of small-world and

random graph networks the more edges and vertices, the higher the value of average shortest

path. In fact, for some of the scale-free networks, increasing the size of the network tends to

result in smaller values of the average geodesic paths. This is expected, as new edges tend to be

attached to vertices where we already have edges due to the “rich get richer” phenomena. This

results in a stable value of average geodesic path with regards to the size of the network.

Scale-free networks with a high value of the α parameter, have an almost constant path length of

two. This is due to the network’s preference new link attachment towards nodes which already

have a higher degree (higher number of links attached to them). This higher rate of preferential

attachment creates hubs, where few nodes are connected with all other nodes in the graph,

resulting in at most two path length in the graph for most of the nodes (as every pair of nodes

will have one high degree node in common as a mutual friend).

One important note for all the plots in Figure 4.4 is that as we go right on the x-axis, we have

more edges and vertices as detailed in Table 4.2. However, with a higher number of vertices,

the network tends to become sparser as we are not increasing the number of edges at a rate

which will keep the density constant. So, on a single plot, as we move from left to right, we

have sparser and larger networks while in four plots with different parameters of S and Nei,

increasing the number of S and Nei results in denser networks.

4.4.5 Global Clustering Coefficient

The global clustering coefficient (a.k.a. transitivity) is measured as the ratio of the triangles (for

given three vertices it includes three closed triplets) to the connected triples in networks.

We observe larger values for transitivity for small-world networks with lower values of p, which

is to be expected (Figure 4.5). The lower the value of p the smaller the number of connections

rewired, and the network is closer to the initial lattice which has a higher number of connected

triples. Also, scale-free network tends to have lower values of transitivity, and it decreases with

increasing α (Figure 4.5). This is also expected as a scale-free network is constructed based

on biases towards already existing links, and edges are not evenly spread, resulting in a lower

number of connected triples.

Another important observation is that transitivity seems to be constant with respect to increasing

number of edges and vertices but not density. With denser networks (increasing S and Nei)



47

●

●

●

●

●●

●
●

●●

●
● ● ● ● ● ● ● ●

●

●

●

●

●

●●

●

●

●

● ● ● ● ●
● ● ● ●

●

●

●

●

●

●
●

●

●●

●
● ●

● ● ● ● ● ●

●

●

●

●

●

●●

●

●

●

● ● ● ● ●
● ● ● ●

●

●

●

●

●

●
●

●

●●

●
● ●

● ● ● ● ● ●

●

●

●

●

●

●●

●

●

●

● ● ● ● ●
● ● ● ●

●

●

●

●

●

●
●

●

●●

●
● ●

● ● ● ● ● ●

●

●

●

●

●

●●

●

●

●

● ● ● ● ●
● ● ● ●

●

●

●

●

●

●
●

●

●●

●
● ●

● ● ● ● ● ●

●

●

●

●

●

●●

●

●

●

● ● ● ● ●
● ● ● ●

●

●

●

●

●

●
●

●

●●

●
● ●

● ● ● ● ● ●

●

●

●

●

●

●●

●

●

●

● ● ● ● ●
● ● ● ●

●

●

●

●

●

●
●

●

●●

●
● ●

● ● ● ● ● ●

●

●

●

●

●

●●

●

●

●

● ● ● ● ●
● ● ● ●

●

●

●

●

●

●
●

●

●●

●
● ●

● ● ● ● ● ●

●

●

●

●

●

●●

●

●

●

● ● ● ● ●
● ● ● ●

●

●

●

●

●

●
●

●

●●

●
● ●

● ● ● ● ● ●

0.00

0.02

0.04

0.06

0.08

0 5000 10000 15000 20000
Number of Edges

G
lo

ba
l C

lu
st

er
in

g 
C

oe
ffi

ce
nt

networkType

●

●

●

randomGraph

SF (alpha=1.5)

SF (alpha=1.75)

SF (alpha=2)

SF (alpha=2.25)

SF (alpha=2.5)

SF (alpha=3)

SF (alpha=3.25)

SF (alpha=3.5)

SW (P=0.3)

SW (P=0.4)

SW (P=0.5)

SW (P=0.6)

SW (P=0.7)

(A) S & Nei=2

●

●

●

●

●

●
●

●
●●

●
● ● ● ● ● ● ● ●

●

●

●

●
●

●
●

●
●●

● ●
● ● ● ● ● ● ●

●

●

●

●

●

●
●

●
●●

●
● ● ● ● ● ● ● ●

●

●

●

●
●

●
●

●
●●

● ●
● ● ● ● ● ● ●

●

●

●

●

●

●
●

●
●●

●
● ● ● ● ● ● ● ●

●

●

●

●
●

●
●

●
●●

● ●
● ● ● ● ● ● ●

●

●

●

●

●

●
●

●
●●

●
● ● ● ● ● ● ● ●

●

●

●

●
●

●
●

●
●●

● ●
● ● ● ● ● ● ●

●

●

●

●

●

●
●

●
●●

●
● ● ● ● ● ● ● ●

●

●

●

●
●

●
●

●
●●

● ●
● ● ● ● ● ● ●

●

●

●

●

●

●
●

●
●●

●
● ● ● ● ● ● ● ●

●

●

●

●
●

●
●

●
●●

● ●
● ● ● ● ● ● ●

●

●

●

●

●

●
●

●
●●

●
● ● ● ● ● ● ● ●

●

●

●

●
●

●
●

●
●●

● ●
● ● ● ● ● ● ●

●

●

●

●

●

●
●

●
●●

●
● ● ● ● ● ● ● ●

●

●

●

●
●

●
●

●
●●

● ●
● ● ● ● ● ● ●

●

●

●

●

●

●
●

●
●●

●
● ● ● ● ● ● ● ●

0.00

0.05

0.10

0.15

0 10000 20000 30000 40000
Number of Edges

G
lo

ba
l C

lu
st

er
in

g 
C

oe
ffi

ce
nt

networkType

●

●

●

randomGraph

SF (alpha=1.5)

SF (alpha=1.75)

SF (alpha=2)

SF (alpha=2.25)

SF (alpha=2.5)

SF (alpha=3)

SF (alpha=3.25)

SF (alpha=3.5)

SW (P=0.3)

SW (P=0.4)

SW (P=0.5)

SW (P=0.6)

SW (P=0.7)

(B) S & Nei=4

●

●

●

●

●

●

●
●

●
●

●
● ● ● ● ● ● ● ●

●

●

●

●

●

●
●

●●●

●
● ● ● ● ● ● ● ●

●

●

●

●

●

●

●
●

●
●

●
● ● ● ● ● ● ● ●

●

●

●

●

●

●
●

●●●

●
● ● ● ● ● ● ● ●

●

●

●

●

●

●

●
●

●
●

●
● ● ● ● ● ● ● ●

●

●

●

●

●

●
●

●●●

●
● ● ● ● ● ● ● ●

●

●

●

●

●

●

●
●

●
●

●
● ● ● ● ● ● ● ●

●

●

●

●

●

●
●

●●●

●
● ● ● ● ● ● ● ●

●

●

●

●

●

●

●
●

●
●

●
● ● ● ● ● ● ● ●

●

●

●

●

●

●
●

●●●

●
● ● ● ● ● ● ● ●

●

●

●

●

●

●

●
●

●
●

●
● ● ● ● ● ● ● ●

●

●

●

●

●

●
●

●●●

●
● ● ● ● ● ● ● ●

●

●

●

●

●

●

●
●

●
●

●
● ● ● ● ● ● ● ●

●

●

●

●

●

●
●

●●●

●
● ● ● ● ● ● ● ●

●

●

●

●

●

●

●
●

●
●

●
● ● ● ● ● ● ● ●

●

●

●

●

●

●
●

●●●

●
● ● ● ● ● ● ● ●

●

●

●

●

●

●

●
●

●
●

●
● ● ● ● ● ● ● ●

0.0

0.1

0.2

0 20000 40000 60000 80000
Number of Edges

G
lo

ba
l C

lu
st

er
in

g 
C

oe
ffi

ce
nt

networkType

●

●

●

randomGraph

SF (alpha=1.5)

SF (alpha=1.75)

SF (alpha=2)

SF (alpha=2.25)

SF (alpha=2.5)

SF (alpha=3)

SF (alpha=3.25)

SF (alpha=3.5)

SW (P=0.3)

SW (P=0.4)

SW (P=0.5)

SW (P=0.6)

SW (P=0.7)

(C) S & Nei=8

●

●

●

●

●

●

●
●

●
●

●
●

● ● ● ● ● ● ●

●

●

●

●

●

●
●

●
●●

●
● ● ● ● ● ● ● ●

●

●

●

●

●

●

●
●

●
●

●
●

● ● ● ● ● ● ●

●

●

●

●

●

●
●

●
●●

●
● ● ● ● ● ● ● ●

●

●

●

●

●

●

●
●

●
●

●
●

● ● ● ● ● ● ●

●

●

●

●

●

●
●

●
●●

●
● ● ● ● ● ● ● ●

●

●

●

●

●

●

●
●

●
●

●
●

● ● ● ● ● ● ●

●

●

●

●

●

●
●

●
●●

●
● ● ● ● ● ● ● ●

●

●

●

●

●

●

●
●

●
●

●
●

● ● ● ● ● ● ●

●

●

●

●

●

●
●

●
●●

●
● ● ● ● ● ● ● ●

●

●

●

●

●

●

●
●

●
●

●
●

● ● ● ● ● ● ●

●

●

●

●

●

●
●

●
●●

●
● ● ● ● ● ● ● ●

●

●

●

●

●

●

●
●

●
●

●
●

● ● ● ● ● ● ●

●

●

●

●

●

●
●

●
●●

●
● ● ● ● ● ● ● ●

●

●

●

●

●

●

●
●

●
●

●
●

● ● ● ● ● ● ●

●

●

●

●

●

●
●

●
●●

●
● ● ● ● ● ● ● ●

●

●

●

●

●

●

●
●

●
●

●
●

● ● ● ● ● ● ●

0.0

0.1

0.2

0.3

0.4

0 50000 100000 150000
Number of Edges

G
lo

ba
l C

lu
st

er
in

g 
C

oe
ffi

ce
nt

networkType

●

●

●

randomGraph

SF (alpha=1.5)

SF (alpha=1.75)

SF (alpha=2)

SF (alpha=2.25)

SF (alpha=2.5)

SF (alpha=3)

SF (alpha=3.25)

SF (alpha=3.5)

SW (P=0.3)

SW (P=0.4)

SW (P=0.5)

SW (P=0.6)

SW (P=0.7)

(D) S & Nei=16

FIGURE 4.5: Global Clustering Coefficient in relation to number of edges for random graph,
small-world, and scale-free networks with different values of S and Nei. Enlarged plots are

available in Appendix A, Section A.1.4

transitivity tends to decrease until it reaches a stable point. This is more visible with small-

world networks that have a smaller number of edges rewired. Other networks seem not to be

significantly influenced by the changes in density.

Our NetSim software allowed us to conduct a simulation study that resulted in comparative

analysis of three main network models: random, small-world and scale-free. For all generated

networks, we analysed closeness and betweenness centrality as well as average shortest path and

global clustering coefficient.

Our experiments allowed to compare selected properties of different network models. The con-

ducted study revealed some interesting insights into how different network structures influence

the properties in question.
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Results for clustering coefficient and average shortest path confirmed the analytical results that

are known for the three considered models (Newman 2010a). Additionally, it is apparent that for

scale-free networks the average shortest path does not depend on network density, whereas for

small-world and random networks the average shortest path decreases as the density increases.

The clustering coefficient achieves the biggest value, regardless of the density, for the small-

world network with the smallest probability of rewiring p = 0.3. This confirms the theoretical

consideration as this network in its structure, is closest to regular lattice which has very high

clustering.

For closeness centrality, especially for denser networks, there is not much difference in its val-

ues across the network models. For sparse networks, closeness centrality tends to be smaller

for small-world and random networks than in the case of scale-free networks. For scale-free

networks, density does not influence closeness centrality, and it becomes stable whereas for

small-world and random networks the closeness centrality is bigger as the network gets denser.

For betweenness centrality, there is a clear difference between scale-free networks and other

models. Betweenness for scale-free networks is consistently smaller than for other models. We

attribute that to the ‘rich get richer’ phenomenon that causes a concentration of edges in hub

nodes.

4.4.6 Discussion

In our approach we have not normalised the metrics as we are interested in comparing them

against each other and analysing their trends with respect the the size and density. In order to

compare the properties of graphs generated based on different models, with different model spe-

cific parameters, we need to calculate their actual properties as opposed to simply normalising

them based on their size and density. This is due to the complex nonlinearity existing in all

the graph models. For example, the trend we see in a graph for different properties does not

linearly scale with respect to its size and density. In a complex system the behaviour is governed

by chaotic dynamics, and such complex system’s future behaviour may even result in drastic

changes which are impossible to predetermine even though they are fully deterministic (e.g.

a system’s drastic change in characteristics after the tipping point (Bellamy and Hulme 2011;

Lindsay and Zhang 2005)). In Section 6.7.1, we have discussed this deterministic nonlinear

behaviour of social networks in more detail.

4.5 Chapter Summary

This study offers a generic network simulator and a set of analyses which have revealed some in-

teresting, and previously unknown characteristics of the networks. Our results indicate that only
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by looking at a wide spectrum of generated networks we can identify extraordinary phenomena

(e.g. mean betweenness centrality differentiates a scale-free network from a random graph or

small-world network) that can otherwise be overlooked. Such information could be useful not

only to identify the type of real-world networks but also to calculate properties that cannot be

derived analytically.

Based on the analysis in this chapter we can see that all three network models represent some

aspects of the real-world social networks, but their properties and characteristics are vastly dif-

ferent from each other for any given size or density. For a comprehensive, real-world alike social

network simulation, all these network model’s characteristics should ideally be considered and

combined within the simulation process.



Chapter 5

Newton’s Law of Universal Gravitation
in Link Prediction

In this chapter, we develop a novel, nature-inspired link prediction approach, which can combine

both the local and global characteristic of a network. This advanced link prediction approach can

also combine both the popularity of nodes and similarities between them to predict interactions

between nodes, i.e. links. The developed link prediction approaches are evaluated on seven

real-world datasets.

To predict the formation of new links, we consider measures which originate from network

science and use them in the place of mass and distance within the formalism of Newton’s Grav-

itational Law. The attraction force calculated in this way is treated as a proxy for the likelihood

of link formation. In particular, we use three different measures of vertex centrality as mass,

and 12 dissimilarity measures including shortest path and inverse Katz score in place of dis-

tance, leading to over 50 combinations that we evaluate empirically. The combination through

gravitational law allows us to couple popularity with similarity, two important characteristics

for link prediction in social networks. Performance of our predictors is evaluated using Area

Under the Precision-Recall Curve (AUC) for seven different real-world network datasets. The

experiments demonstrate that this approach tends to outperform the setting in which the vertex

similarity measures like Katz are used on their own. This approach also gives us the oppor-

tunity to combine network’s global and local properties for predicting future or missing links.

Our study shows that use of the physical law which combines node importance with measures

quantifying how distant the nodes are, is a promising research direction in social link prediction.

Our approach to link prediction in social networks is inspired by Newton’s law of universal grav-

itation, which states that the force exerted between two masses is proportional to the product of

50
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those masses, and inversely proportional to the squared distance between their centres (Newton

1987):

F = G
m1 ·m2

r2
, (5.1)

where F is the force between masses m1 and m2, G is the gravitational constant, and r is

the distance between m1 and m2. Newton derived this equation by empirical observation and

inductive reasoning (Crombie 1957), which is an approach that we have also taken.

As discussed earlier, we use importance or popularity of a node to express mass. We argue that

different centrality measures are direct measurements of how important, central or popular a

node is in a given network. Dissimilarity or distance is measured via path distances (e.g. shortest

path) or inverse of various similarity measures (e.g. AdamicAdar, Jaccard’s Coefficient). It is

also possible to define distance in terms of dissimilarity in non-topological node properties, like

age, physical distance etc. A weighted sum of these factors can be incorporated into the distance,

allowing to naturally exploit non-topological information. This however is not the focus of our

study.

The above analogy leads to the following formula for calculating the score of two nodes forming

a link in the future:

Score(vi, vj) = Score(vj, vi) ∝
P (vi) · P (vj)

D(vi, vj)2
, (5.2)

where P denotes popularity or centrality and D is dissimilarity or distance for an undirected

graph.

The formula in Equation 5.2 can be interpreted as a modification of the Preferential Attachment

method (i.e. product of centralities), where the resultant scores are weighted by the inverse

of squared distance between the two nodes in question. This arguably gives our method more

expressive power by taking proximity into account, which as demonstrated in Table 5.1 and

Section 5.3.1.12, not only makes sense intuitively, but also tends to produce more accurate

predictions in practice.

As for the gravitational constant G, without loss of generality we have assumed G = 1, since

in order to make a prediction, a ranked list of scores is required with their absolute values being

irrelevant. Note, that if the score was to be interpreted as probability, for a particular network

this could be achieved by setting the value of G as follows:

G =
min∀(i,j),i 6=jD(vi, vj)

2

max∀iP (vi) ·max∀j 6=iP (vj)
, (5.3)
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where the numerator is equal to 1, which reflects the obvious existence of a direct link between

at least one pair of nodes.

Figure 5.1 depicts a simple social network to illustrate the intuition behind the proposed method

using degree centrality and shortest path for Equation 5.2 (Wahid-Ul-Ashraf, Budka and Musial-

Gabrys 2018). Application of Equation 5.2 produces a ranked list of scores for all pairs of nodes

which are not already directly connected, given in Table 5.1. The following observations can be

made here:

• If two people have many friends but are themselves distant (e.g. nodes 1 and 10) then the

distance will make it improbable for these nodes to connect. On the other hand, someone

who joins a network and have fewer friends might connect with the nearest friend who

has many connections. This is why the score for nodes 10 and 16 is the same as for nodes

1 and 10, although node 16 just have one link in the network, whereas 1 and 10 have

the highest degrees. This phenomenon is intuitive in social networks as people who have

just made their first connection (we assume that node 16 has joined the network relatively

recently), tend to connect with people at shorter distance, who are popular (i.e. have a

high degree).

• If two nodes have many connections and are close to each other yet not connected, it is

very likely they have many mutual friends and will eventually connect. This is the case

for nodes 2 and 10, which have the highest score of connecting according to the proposed

algorithm.

6

5

1 3 2 8 10 15 16

9

7

11

13

12

14

FIGURE 5.1: Example for link prediction with a simple graph

Rank 1 2 3 4 5 6 7 8

Score 6.0 4.0 1.5 1.5 1.33 1.0 1.0 0.89 0.89 0.67 0.67 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Vi 2 1 1 10 3 3 8 1 2 7 9 3 3 3 3 3 7 8 8 8

Vj 10 2 10 16 10 8 15 8 15 10 10 4 5 6 7 9 8 9 11 12

TABLE 5.1: Prediction value for a simple graph in Figure 5.1

5.1 Experimental Setup

In order to empirically evaluate our approach proposed in Equation 5.2 we use three different

centrality measures along with 12 similarity measures.
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Centrality measures which used as a measurement of popularity are:

1. Degree Centrality (DC), which is the degree of a vertex in a network.

2. Closeness Centrality (CC), High closeness centrality of a vertex means the vertex has

better access to information or more direct influence on other vertices.

3. Betweenness Centrality (BC), this centrality gives a score to a vertex vi based on how

many paths connecting any two vertices in the network go through that vertex vi. If the

number of those paths is high, then vertex vi will have high betweenness centrality.

All these three centralitites are discussed in details in Chapter 2 Section 2.1.1.

12 link prediction methods described in Chapter 2 Section 2.3.4 give different similarity scores

that denote how likely two nodes will be connected in the future. For Equation 5.2, inverse of

these similarity measures are used as dissimilarity scores, D. Table 5.2 shows different param-

eters for the 12 similarity measures. In Table 5.2, only Katz has different sets of parameters for

different datasets. This difference is because β parameter in Katz needs to be smaller than the

reciprocal of the highest eigenvalue of M (Landherr et al. 2010). -

Methods Parameter collegeMsg contact hep-th hep-ph hypertext infectiousContact MITContact

CN N/A N/A N/A N/A N/A N/A N/A N/A

JC N/A N/A N/A N/A N/A N/A N/A N/A

AA N/A N/A N/A N/A N/A N/A N/A N/A

PA N/A N/A N/A N/A N/A N/A N/A N/A

Katz β
0.001, 0.0005,

0.00005

0.001, 0.0005,

0.00005

0.001, 0.0005,

0.00005

0.001, 0.0005,

0.00005

0.001, 0.0005,

0.00005

0.005, 0.0005,

0.00005

0.1, 0.05,

0.005
RPR α 0.15, 0.25 0.15, 0.25 0.15 ,0.25 0.15, 0.25 0.15, 0.25 0.15, 0.25 0.15,0.25

ACT N/A N/A N/A N/A N/A N/A N/A N/A

ACTN N/A N/A N/A N/A N/A N/A N/A N/A

PsInLap N/A N/A N/A N/A N/A N/A N/A N/A

LPI ε 0.01, 0.02 0.01, 0.02 0.01, 0.02 0.01, 0.02 0.01, 0.02 0.01, 0.02 0.01, 0.02

LGI θ 0.5, 0.7 0.5, 0.7 0.5, 0.7 0.5, 0.7 0.5, 0.7 0.5, 0.7 0.5, 0.7

MFI N/A N/A N/A N/A N/A N/A N/A N/A

TABLE 5.2: Similarity measures with parameters, Common Neighbours (CN), AdamicAdar
(AA), Preferential Attachment (PA), Rooted PageRank (RPR), Average Commute Time (ACT),
Average Commute Time Normalised (ACTN), Pseudoinverse of the Laplacian matrix (PsIn-
Lap), Local Path Index (LPI), Leicht-Holme-Newman Global Index (LGI), and Matrix Forest

Index (MFI)

In Table 5.2, the given parameters are selected based on the study conducted by Kleinberg

(1999). In this work we are comparing different approaches, thus extensive parameter search is

not performed. For all the approaches, the set of parameters are kept the same.
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In our method we use the inverse of these scores to denote the dissimilarity/distance1, plugging

them into the formula of Equation 5.2.

5.1.1 Datasets

For the experimental comparative evaluation of the proposed method we selected seven datasets

from various domains and of different sizes, frequently used in the literature, all representing

undirected graphs and arrival of new nodes for the future snapshots are not considered:

1. hep-th: Collaboration graph of authors of scientific papers from High Energy Physics

– Theory (hep-th) Section, where edges between two nodes represent a common pub-

lication. This dataset is acquired from the KONECT database (Kunegis 2017b, 2013b;

Leskovec et al. 2007) and has been used in the experiment of Liben-Nowell, which is a

very important research work in the area of link prediction (Liben-Nowell and Kleinberg

2007).

2. hep-ph: Collaboration graph of authors of scientific papers from High Energy Physics

– Phenomenology (hep-ph) Section, where edges between two nodes represent a com-

mon publication. This dataset is acquired from the KONECT database (Kunegis 2017a;

Leskovec et al. 2005).

3. contact: Dataset representing a network where edges are human contacts using small

portable wireless devices distributed among different groups of people (Chaintreau et al.

2007; Kunegis 2013a).

4. hypertext: Face-to-face contacts of ACM Hypertext 2009 conference attendees, where

edges represent interactions between people lasting at least 20 seconds (Isella et al. 2011;

Kunegis 2017c).

5. collegeMsg: Private messages sent via an online social network at the University of Cal-

ifornia, Irvine for over 193 days (Panzarasa et al. 2009).

6. infectiousContact: This dataset represents network of the face-to-face interactions of

people during an exhibition INFECTIOUS: STAY AWAY in 2009 at the Science Gallery

in Dublin. Each node is a person and edges between two nodes represent face-to-face con-

tacts that lasted at least for 20 seconds. This network contains data about the interactions

gathered on the day of the exhibition when highest number of contacts took place. This

dataset is also acquired from KONECT database (Kunegis 2017d; Isella et al. 2011)
1We are considering dissimilarity as distance, noting that in some cases the symmetry and triangle inequality

may not hold. For an unweighted and undirected graph Score(vi, vj) = Score(vi, vj) (symmetry) but other than
shortest path, triangle inequality may or may not hold for every dissimilarity score.
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7. MITContact: This dataset is based on human contact and it is a part of Reality Mining

experiment preformed in 2004. In this network, vertices represent physical contact be-

tween a group of students from Massachusetts Institute of Technology (MIT) (Kunegis

2017e; Eagle and Pentland 2006). This dataset is also acquired from KONECT. Data has

been collected over a period of nine months.

As it can be seen from Figure 5.2 and Table 5.3, the selected datasets differ greatly in size

and most of them represent typical social networks with power law node degree distribution,

normal distribution of shortest path and small mean shortest path length as well as high global

clustering coefficient. There are of course some exceptions to this profile, e.g. collegeMsg has

very low global clustering coefficient, making the network more similar to random rather than

social network. For a fully connected graph the highest density of a network is one. However,

networks with multiple edges, density can be higher than one, as multiple links between two

vertices is possible. We can see this higher than one density for, hypertext and MITContact

contact datasets. The density is higher than one for both the datasets and both of these networks

have multiple edges. However, in the training portion (i.e. the part of the data which is used for

making prediction. Discussed in more details in the next Section 5.1.2) of those two networks

we still have many nodes where no edges exist. In Section 5.3 we make predictions for these

missing edges or links.
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FIGURE 5.2: Network properties (distribution). NDD: node degree distribution, ASP: average
shortest path, TD: local transitivity (clustering coefficient) distribution
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dataset
no.

vertices
no. edges density

node degree

dist.

avg.

shortest

path dist.

avg.

shortest

path

transitivity

dist.

global

clustering

coeff.

collegeMsg 1899 59835 0.033 power law normal 3.055 power law 0.057

contact 274 28244 0.755 power law normal 2.424 power law 0.566

hep-th 6776 290484 0.013 power law normal 3.224 normal 0.333

hep-ph 10324 955423 0.018 power law normal 2.946 normal 0.351

hypertext 113 20818 3.290 power law normal 1.656 power law 0.495

infectiousContact 410 17298 0.206 power law normal 3.631 power law 0.436

MITContact 96 1086405 238.247 power law normal 1.445 power law 0.725

TABLE 5.3: Basic statistics of the datasets selected for the experiment

5.1.2 Data Partition

All networks considered in this study are with timestamps that indicate when a given relationship

was created. This allows us to test prediction results against actual links that appeared in the

future. We have divided each of the datasets into two parts based on the timestamps available.

A similar setup has been used by Liben-Nowell and Kleinberg (2007) for benchmarking several

link prediction methods, and in particular:

1. The hep-th dataset has been divided into two parts. Part one consisted of publications

from years 1992-1994 and part two consisted of publications from years 1995-1997. Part

one is where the link prediction is performed and part two is used as a ground truth in

order to evaluate the method.

2. The hep-ph is also divided into two parts, part one containing publications between year

1994 and 1996, and part two with publications between year 1997 and year 1999. Similar

to the previous dataset, part one is where the link prediction is performed and part two is

used as ground truth.

3. Datasets contact, hypertext, collegeMsg, infectiousContact, and MITContact have

also been divided into two parts with respect to time. However, the timespans within

each part are not equal. Each part contains approximately2 equal number of edges.

5.2 Experimental Setup

In our experiment, we apply each of the link prediction algorithms (12 existing and the pro-

posed ones) on the first snapshot of the network. We then evaluate the prediction of new links
2For collegeMsg and MITContact datasets have an odd number of edges, thus there there is one less than half

number of edges in the first part of the datasets
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from each of the link prediction methods against the second snapshot of the network. Arrival of

new nodes in the networks are not considered in this experiment. We evaluate the performance

of each of the predictors on each of the datasets based on the area under the Precision Recall

Curve. Additionally we also measure the area under the curve of Receiver Operating Charac-

teristic curve, given in Appendix A, Section A.4. We discuss why Precision Recall Curve is a

superior choice in next section. In order to have an effective comparison of our approaches to

link prediction against the existing ones, we have developed an extensive comparison technique

which is described in Section 5.3.1.

5.3 Results

We are using Area Under the Precision-Recall Curve (AUC) to evaluate performance of each

of the predictors. In total, we have calculated AUC for combinations of 74 different predictors

and seven datasets. These 74 predictors involve (1) similarity measures from Chapter 2 Sec-

tion 2.3.4, (2) combinations of these similarity measures with centrality measures from Chap-

ter 2 Section 2.1.1 and, (3) combinations of shortest path with the centrality measures mentioned

above.

The summary of results is given in Figures 5.3 and 5.4. In Figure 5.3 AUC values are sorted

in descending order. Each of the bars is the sum of all the AUCs over all datasets for a given

approach (i.e. a given predictor from the three categories listed above) to link prediction. For

example, the bottom-most bar in Figure 5.3 represents AUCs for combination of closeness cen-

trality and MFI using Equation 5.2. This predictor has the best overall performance if we sum

AUCs for this method for all seven datasets. On the other hand, Figure 5.4 depicts individual

performance for all the predictors for individual datasets. From Figures 5.3 and 5.4 we see

that for some of the datasets, overall AUCs are very small. However, later in Sections 5.3.1.1–

5.3.1.12 we have compared each of methods with a random predictor. The results show that

overall low values of AUC for a certain dataset do not necessarily mean that particular dataset

has low predictability. This is because all networks are different in size. For a larger (in terms of

vertices) or less dense network, the total number of predictions made is higher. This is because,

we make predictions for a total of |V |(|V |−1)
2 − |E| links. As a network gets denser, the term |E|

also becomes larger. As a result, the total number of predictions gets lower. Because our AUC

is from Precision-Recall curve, when we make predictions for a higher number of links there is

a higher chance of having more false positives. This is because of the number of new links that

a network forms may not increase at the same rate as the growth of the network. The Precision

is calculated as:

Precision =
TP

TP + FP
(5.4)
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From Equation 5.4, where TP is true positives and FP is false positives, we could see that, if we

have larger values for false positives (FP) the value for Precision gets lower.

In Figure 5.3 it can be seen that the first three overall best performing methods are the ones

with our Newton’s gravitational law inspired combination approach. On the other hand, ACTN

used as a standalone method makes worst prediction among all the 74 predictors. Interestingly,

when ACTN is combined with DC using Equation 5.2 its performance jumps to rank 32 from

74. In addition, this combination of ACTN with DC performs better than DC with shortest

path. This improvement reveals that the increment in predictability is not because of DC, or

ACTN’s independent predictability but because of the combination that we use. More on this

improvement due to the combination is discussed later in Section 5.3.1. We also see a similar

improvement with CN, where CN combined with CC ranks as the fourth overall best method.

Improvements due to the combination approach we take could also be seen in several other

combinations of predictors with MFI, Katz, RPR, etc. These improvements suggest that our

combination approach has a great potential in the area of link prediction.

We further analyse the results in two ways: (i) we group methods based on the similarity measure

used and then we compare the results within the groups (Sections 5.3.1.1–5.3.1.12) and (ii) we

discuss the results in the context of each dataset separately and try to interpret why certain

methods work on some datasets and not on others (Section 5.3.3).
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FIGURE 5.3: Combined Average (AUC)
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FIGURE 5.4: Individual Method’s Performance (AUC)

5.3.1 Overall performance using AUC

For any pair of vertices vi and vj , we can consider all the similarity methods from Chapter 2 Sec-

tion 2.3.4 as a set of predictors S = {Katz1,Katz2,Katz3, AA, .., CN}. Similarly, all cen-

trality measures from Chapter 2 Section 2.1.1, could be expressed as a set P = {DC,BC,CC}
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where DC = DCi · DCj , BC = BCi · BCj , CC = CCi · CCj . As we use dissimilarity

or distance by taking the inverse of each similarity measure for Equation 5.2, our proposed

combination approach could be expressed as:

W = {P × S}, (5.5)

where each of the elements w ∈ W is a particular predictor which gives prediction for any two

vertices vi and vj . For any predictor w ∈ W , it is a combination of one particular similarity

measure s ∈ S and one particular centrality measure p ∈ P . For such a combined predictor w,

with similarity measure s and centrality p we check if:

(
AUC(w) > AUC(s)

)
∧
(
AUC(w) > AUC(p/d2)

)
(5.6)

Here in Inequality 5.6, d is the shortest path. If for a particular combination approach w, In-

equality 5.6 holds, those AUC values are highlighted using dark grey boxes in Tables 5.4–5.14.

The dark grey boxes indicate if a particular well-established similarity measure s ∈ S, when

combined with centralities using Equation 5.2 performs better than the similarity measure on its

own. The improvement could also be due the product of centralities in p which we have in the

combination method w. In fact, product of degree centrality of vi and vj is a similarity measure,

Preferential Attachment (PA) from Chapter 2 Section 2.3.4. Similarly, it is possible to use a

product of another centrality measure as a standalone predictor. Due to this we also check if

AUC of a particular combination w ∈W is greater than the AUC of p
d2

. The denominator of d2

in most cases increases the performance with respect to only considering the centrality measures

(see Section 5.3.1.12) (Wahid-Ul-Ashraf, Budka and Musial-Gabrys 2018), where dividing by

shortest path squared mostly improves (where it does not, the difference is very small) the score

as compared with the standalone product of centralities. The analysis in Table 5.3.1.12 con-

firms this improvement. As a result, if Inequality 5.6 holds, the inverse of similarity measure

improves the predictor when used for Equation 5.2. It also shows that the improvement is due

to the combination approach we take using Equation 5.2 but not due to the independent pre-

dictability of the similarity measure or product of centralities divided by squared shortest path.

In Sections 5.3.1.1–5.3.1.11, when the performance of a combination method is said to be better

or improved, it entails that Inequality 5.6 holds.

In addition to validating Inequality 5.6, for each of the datasets, we also identify if AUC of a

predictor is smaller than the AUC of a random predictor. A random predictor predict occurrence

of a link randomly without considering any information of the graph. For each predictor, AUC

is calculated using R package called PRROC (Keilwagen et al. 2014; Grau et al. 2015). The

AUC of a random predictor is also generated from the same package. For each dataset AUC

of a random predictor is calculated from an ensemble of 1000 random predictors (Keilwagen
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et al. 2014). In Tables 5.4–5.15, values of AUC which are not higher than the AUC of a random

predictor for a particular dataset, have been highlighted as light grey.

5.3.1.1 Combinations with Katz

college

Msg
rnk contact rnk hep-th rnk hep-ph rnk

hyper

text
rnk

infectious

Contact
rnk

MIT

Contact
rnk

Katz1 0.01132 39 0.35702 22 0.13032 8 0.16138 8 0.22064 52 0.00532 60 0.12643 68

Katz2 0.01061 43 0.35138 25 0.13167 5 0.16412 5 0.22377 49 0.00815 38 0.12842 66

Katz3 0.00969 50 0.34395 30 0.13258 2 0.16578 3 0.22576 48 0.00826 37 0.1265 67

DC1 ∗DC2 ∗Katz12 0.01286 29 0.36789 9 0.12653 15 0.14505 22 0.23282 37 0.00499 66 0.12262 71

DC1 ∗DC2 ∗Katz22 0.01229 35 0.36401 13 0.12775 12 0.1479 21 0.23663 35 0.00673 48 0.13064 64

DC1 ∗DC2 ∗Katz32 0.01121 40 0.36078 18 0.12869 10 0.14986 19 0.23854 32 0.00703 46 0.13417 63

BC1 ∗BC2 ∗Katz12 0.01405 15 0.28444 41 0.09813 28 0.11762 40 0.25738 15 0.00534 59 0.12364 70

BC1 ∗BC2 ∗Katz22 0.01351 25 0.28187 42 0.09871 27 0.1207 36 0.26073 12 0.00743 44 0.12947 65

BC1 ∗BC2 ∗Katz32 0.01242 32 0.27896 43 0.09922 26 0.12444 31 0.2619 10 0.00766 41 0.14257 58

CC1 ∗ CC2 ∗Katz12 0.0114 37 0.36158 16 0.13031 9 0.16125 9 0.2234 50 0.00518 62 0.11112 74

CC1 ∗ CC2 ∗Katz22 0.01069 42 0.3567 24 0.13166 6 0.16398 6 0.22683 45 0.00753 43 0.11415 73

CC1 ∗ CC2 ∗Katz32 0.00974 49 0.35033 26 0.13257 3 0.16557 4 0.22879 43 0.00767 40 0.12089 72

TABLE 5.4: AUC for Katz with different centralities. Highlights in dark grey represent that
Inequality 5.6 holds (no such case exist in this table), and light grey represents AUC values

lower than the AUC of a random predictor.

Katz similarity performs poorly for infectiousContact and MITContact datasets – we can see

from Table 5.4, most of the AUC values are lower than random predictors. Also, we do not see

any combination of Katz performing better than both the standalone Katz and the product of

centralities divided by distance (Table 5.15), which means the combination does not satisfy In-

equality 5.6. As a result, we do not have any empirical evidence suggesting that using inverse of

Katz as distance in our proposed approach of Equation 5.2, could entail improved performance.

5.3.1.2 Combinations with AdamicAdar (AA)

college

Msg
rnk contact rnk hep-th rnk hep-ph rnk

hyper

text
rnk

infectious

Contact
rnk

MIT

Contact
rnk

AA 0.00845 61 0.34479 29 0.13344 1 0.16241 7 0.22985 40 0.01069 26 0.17158 29

DC1 ∗DC2 ∗ AA2 0.01183 36 0.36166 15 0.12377 19 0.11257 42 0.24188 28 0.00541 57 0.16746 42

BC1 ∗BC2 ∗ AA2 0.01263 30 0.2785 45 0.07275 40 0.07279 53 0.26434 8 0.00978 30 0.16848 38

CC1 ∗ CC2 ∗ AA2 0.00947 52 0.35018 27 0.12764 13 0.1371 26 0.23314 36 0.00658 50 0.17386 26

TABLE 5.5: AUC for AdamicAdar (AA) with different centralities. Highlights in dark grey
represent that Inequality 5.6 holds (no such case exist in this table), and light grey represents

AUC values lower than the AUC of a random predictor
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In Table 5.5 we also see similar pattern to Katz that, inverse of AdamicAdar (AA) similarity

measure as a measurement of distance for Equation 5.2 does not entail improved3 performance

(i.e. it does not satisfy Inequality 5.6).

5.3.1.3 Combinations with Common Neighbours (CN)

college

Msg
rnk contact rnk hep-th rnk hep-ph rnk

hyper

text
rnk

infectious

Contact
rnk

MIT

Contact
rnk

CN 0.00825 62 0.3433 31 0.13139 7 0.1572 12 0.22578 47 0.00984 28 0.17138 30

DC1 ∗DC2 ∗ CN 2 0.0114 38 0.36073 19 0.12757 14 0.13528 27 0.23876 30 0.00563 55 0.1673 43

BC1 ∗BC2 ∗ CN 2 0.01236 34 0.27863 44 0.0884 34 0.09332 49 0.26171 11 0.00898 32 0.16842 39

CC1 ∗ CC2 ∗ CN 2 0.00965 51 0.34967 28 0.13173 4 0.15674 13 0.22885 42 0.0064 51 0.17366 28

TABLE 5.6: AUC for Common Neighbours (CN) with different centralities. Highlights in dark
grey represent that Inequality 5.6 holds, and light grey represents AUC values lower than the

AUC of a random predictor

We can see in Table 5.6, that combining inverse of Common Neighbour (CN) with centrality

(as a measurement of popularity or mass for Equation 5.2) improves performance of link pre-

diction for one dataset. This is expressed by the fact that one of the values of AUC satisfies

Inequality 5.6. There is one such case which is highlighted using dark grey box in Table 5.6.

This improvement is seen when the combination of CN is with closeness centrality for hep-th

dataset. However, except for combination of CN with CC in the hep-th dataset, there is no other

evidence that any other combination of CN satisfies Inequality 5.6.

5.3.1.4 Combinations with Jaccard’s Coefficient (JC)

college

Msg
rnk contact rnk hep-th rnk hep-ph rnk

hyper

text
rnk

infectious

Contact
rnk

MIT

Contact
rnk

JC 0.00476 68 0.16494 57 0.06883 43 0.14048 25 0.22959 41 0.02935 19 0.25703 2

DC1 ∗DC2 ∗ JC2 0.00615 65 0.31865 37 0.00574 73 0.01561 73 0.25224 19 0.00508 64 0.19332 18

BC1 ∗BC2 ∗ JC2 0.00721 64 0.24436 48 0.0103 71 0.02022 72 0.2725 1 0.01009 27 0.16706 44

CC1 ∗ CC2 ∗ JC2 0.00541 67 0.04442 72 0.00489 74 0.0151 74 0.20351 61 0.00524 61 0.2237 7

TABLE 5.7: AUC for Jaccard’s Coefficient (JC) with different centralities. Highlights in dark
grey represent that Inequality 5.6 holds, and light grey represents AUC values lower than the

AUC of a random predictor

In quite a few cases, as presented in Table 5.7, Jaccard’s Coefficient (JC) combined with be-

tweenness centrality gives improved performance (i.e. satisfies Inequality 5.6). These improve-

ments are seen for contact, hep-ph, and hypertext datasets. In fact, for hypertext dataset, JC
3Throughout this section, whenever we say a combination approach performs better or has improved performance,

we imply it satisfies Inequality 5.6. Please see Section 5.3.1 for more details.
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combined with betweenness centrality entails the best result (i.e. AUC value ranked one). These

improvements support that, JC combined with betweenness centrality using 5.2 is a better link

prediction method than using JC alone. Also, there is one case where for hypertext dataset, JC

performs better when combined with degree centrality. However, closeness centrality combined

with Jaccard’s Coefficient (JC) does not satisfy Inequality 5.6.

5.3.1.5 Combinations with Average Commute Time (ACT)

college

Msg
rnk contact rnk hep-th rnk hep-ph rnk

hyper

text
rnk

infectious

Contact
rnk

MIT

Contact
rnk

ACT 0.0134 26 0.35688 23 0.08106 38 0.06478 56 0.23875 31 0.00481 68 0.157 51

DC1 ∗DC2 ∗ ACT 2 0.01371 22 0.38183 6 0.08451 35 0.06308 58 0.24294 25 0.00468 71 0.15241 56

BC1 ∗BC2 ∗ ACT 2 0.01508 8 0.30064 38 0.04642 50 0.0492 61 0.26911 5 0.00535 58 0.1515 57

CC1 ∗ CC2 ∗ ACT 2 0.01351 24 0.3632 14 0.08108 37 0.06486 55 0.24524 23 0.00466 73 0.16568 45

TABLE 5.8: AUC for Average Commute Time (ACT) with different centralities. Highlights in
dark grey represent that Inequality 5.6 holds, and light grey represents AUC values lower than

the AUC of a random predictor

In Table 5.8 there are several cases when ACT combined with any of the three centrality mea-

sures gives better performance than using ACT alone or only centralities divided by the squared

shortest path. However, such improvements are mainly observed for the collegeMsg dataset.

Other than the collegeMsg dataset, combination of ACT with closeness centrality gives better

prediction for hep-th. From this analysis we can see that, ACT combined with closeness central-

ity has more predictive power in link prediction than ACT combined with degree or betweenness

centrality. This is because the first combination, ACT with closeness centrality, performs better

(i.e. satisfies Inequality 5.6) in two (collegeMsg and hep-th) datasets and the other best perform-

ing combination, ACT with closeness centrality performs better in only one (hep-th) dataset.

However, the number of datasets for which the combination with ACT satisfies Inequality 5.6

is lower than what we have seen for JC, MFI, and RPR. Combination of JC performs better i.e.

satisfies Inequality 5.6 in two datasets whereas JC, MFI, and RPR performs better in three, four,

and five datasets respectively.



66

5.3.1.6 Combinations with Average Commute Time Normalised (ACTN)

college

Msg
rnk contact rnk hep-th rnk hep-ph rnk

hyper

text
rnk

infectious

Contact
rnk

MIT

Contact
rnk

ACTN 0.00216 74 0.03339 74 0.03996 56 0.0634 57 0.12492 73 0.02379 21 0.17125 31

DC1 ∗DC2 ∗ ACTN 2 0.01398 18 0.38394 5 0.09163 32 0.07025 54 0.24261 27 0.00475 69 0.15853 50

BC1 ∗BC2 ∗ ACTN 2 0.01516 7 0.17047 55 0.02844 64 0.04175 66 0.26346 9 0.00896 33 0.17062 34

CC1 ∗ CC2 ∗ ACTN 2 0.00581 66 0.35745 21 0.04116 55 0.07523 52 0.16509 67 0.00583 54 0.21415 11

TABLE 5.9: AUC for Average Commute Time Normalised (ACTN) with different centralities.
Highlights in dark grey represent that Inequality 5.6 holds, and light grey represents AUC

values lower than the AUC of a random predictor

Table 5.9 shows two cases of ACTN, where the predictability is improved when combined with

degree centrality for collegeMsg and hep-th datasets. There is also one similar improvement

with betweenness centrality for the collegeMsg dataset. However, there is no combination with

closeness centrality which satisfies Inequality 5.6. Based on the number of datasets where com-

bination with ACTN perform well, we could argue there is weak evidence that the two different

combinations of ACTN with degree and closeness centrality may have good potential for pre-

dicting future links.

5.3.1.7 Combinations with Rooted PageRank (RPR)

college

Msg
rnk contact rnk hep-th rnk hep-ph rnk

hyper

text
rnk

infectious

Contact
rnk

MIT

Contact
rnk

RPR0.15 0.01025 45 0.11534 62 0.06051 48 0.15376 17 0.23686 34 0.15386 6 0.20978 13

RPR0.25 0.00991 47 0.11244 63 0.06116 46 0.15653 15 0.23106 38 0.12798 8 0.21024 12

DC1 ∗DC2 ∗RPR0.152 0.01403 17 0.33405 33 0.12221* 21 0.15744 11 0.25588 16 0.01163 23 0.16394 46

DC1 ∗DC2 ∗RPR0.252 0.01404 16 0.33078 35 0.12806 11 0.17288 1 0.2575 14 0.01265 22 0.16996 35

BC1 ∗BC2 ∗RPR0.152 0.01499 11 0.17568 51 0.0588 49 0.09366 48 0.26893 6 0.06414 11 0.19521 17

BC1 ∗BC2 ∗RPR0.252 0.01504 10 0.17169 54 0.06406 44 0.10471 43 0.26978 4 0.06413 12 0.20235 15

CC1 ∗ CC2 ∗RPR0.152 0.01058 44 0.1488 58 0.0607 47 0.15398 16 0.24394 24 0.07155 10 0.21519 10

CC1 ∗ CC2 ∗RPR0.252 0.01018 46 0.138 59 0.06137 45 0.15673 14 0.23727 33 0.05944 13 0.21563 9

TABLE 5.10: AUC for Rooted PageRank (RPR) with different centralities. Highlights in dark
grey represent that Inequality 5.6 holds, and light grey represents AUC values lower than the

AUC of a random predictor

Inverse of Rooted PageRank (RPR) is one of the best measures for distance (according to Equa-

tion 5.2) from Chapter 2 Section 2.3.4. Table 5.10 shows that for hep-th, collegeMsg, hypertext

and, hep-ph datasets, when RPR is combined with degree centrality, the combination outper-

forms individual performance of RPR or degree centrality divided by shortest path (i.e. satisfies

Inequality 5.6). Also, for collegeMsg, hep-th and, Contact datasets similar improvement is ob-

served when RPR is combined with betweenness centrality. Only in one case (with two different
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values for α parameter of RPR) we see that combination of RPR with closeness centrality satis-

fies Inequality 5.6. From this analysis it is apparent that, RPR combined with degree centrality

could be a better choice for link prediction than only using RPR.

5.3.1.8 Combinations with Pseudoinverse of the Laplacian matrix (PsInLap)

college

Msg
rnk contact rnk hep-th rnk hep-ph rnk

hyper

text
rnk

infectious

Contact
rnk

MIT

Contact
rnk

PsInLap 0.00909 54 0.2641 47 0.03336 61 0.10005 45 0.21214 59 0.25286 1 0.17385 27

DC1 ∗DC2 ∗ PsInLap2 0.01239 33 0.33506 32 0.02588 65 0.08148 50 0.15964 68 0.17834 4 0.16009 49

BC1 ∗BC2 ∗ PsInLap2 0.01374 21 0.08809 67 0.02189 68 0.04634 62 0.20339 62 0.1288 7 0.24667 3

CC1 ∗ CC2 ∗ PsInLap2 0.00245 73 0.03747 73 0.00873 72 0.03238 70 0.11912 74 0.23169 2 0.28475 1

TABLE 5.11: AUC for Pseudoinverse of the Laplacian matrix (PsInLap) with different central-
ities. Highlights in dark grey represent that Inequality 5.6 holds, and light grey represents AUC

values lower than the AUC of a random predictor

In Table 5.11, there are two combinations (with betweenness centrality and closeness centrality)

with Pseudoinverse of the Laplacian matrix (PsInLap) which perform better than PsInLap or

product of these centralities divided by shortest path. Because these improvements are only

seen for one dataset, we do not have strong evidence to support the use of the combination of

PsInLap using Equation 5.2 for link prediction.

5.3.1.9 Combinations with Local Path Index (LPI)

college
Msg

rnk contact rnk hep-th rnk hep-ph rnk hyper
text

rnk infectious
Contact

rnk MIT
Contact

rnk

LPIeps0.01 0.01495 12 0.36019 20 0.12541 16 0.15286 18 0.21593 55 0.00762 42 0.16774 40
LPIeps0.02 0.01547 5 0.3609 17 0.12387 18 0.14961 20 0.21409 56 0.0073 45 0.16773 41
DC1 ∗DC2 ∗ LPIeps0.012 0.01506 9 0.36898 8 0.12182 22 0.1301 28 0.22758 44 0.00627 52 0.16357 47
DC1 ∗DC2 ∗ LPIeps0.022 0.01557 3 0.36979 7 0.12083 23 0.12967 29 0.22596 46 0.00603 53 0.16355 48
BC1 ∗BC2 ∗ LPIeps0.012 0.0161 2 0.28604 40 0.09365 31 0.09973 46 0.25459 17 0.00839 36 0.16875 37
BC1 ∗BC2 ∗ LPIeps0.022 0.01663 1 0.28689 39 0.09398 30 0.10043 44 0.25346 18 0.00796 39 0.16882 36
CC1 ∗ CC2 ∗ LPIeps0.012 0.01491 14 0.36414 12 0.12466 17 0.14473 23 0.21932 53 0.007 47 0.17081 33
CC1 ∗ CC2 ∗ LPIeps0.022 0.01556 4 0.36552 11 0.1234 20 0.14378 24 0.21743 54 0.00665 49 0.17082 32

TABLE 5.12: AUC for Local Path Index (LPI) with different centralities. Highlights in dark
grey represent that Inequality 5.6 holds, and light grey represents AUC values lower than the

AUC of a random predictor

From Table 5.12 we could see that Local Path Index (LPI) performs better when combined with

betweenness centrality than on its own. This improvement can be observed for collegeMsg and

MITContact datasets. In addition, for collegeMsg dataset, LPI improves when it is combined

with degree centrality and closeness centrality. These improvements are not due to the product

of centralities or LPI itself but due to the applied combination. This is because these combi-

nations satisfy Inequality 5.6. However, there is more prevalent evidence that, LPI combined
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with betweenness centrality is a better predictor of future links than LPI combined with degree

centrality.

5.3.1.10 Combinations with Leicht-Holme-Newman Global Index (LGI)

college

Msg
rnk contact rnk hep-th rnk hep-ph rnk

hyper

text
rnk

infectious

Contact
rnk

MIT

Contact
rnk

LGI0.5 0.00418 70 0.05162 70 0.04235 54 0.12159 35 0.14685 70 0.04951 14 0.18933 21

LGI0.7 0.00385 72 0.04821 71 0.04477 52 0.12031 39 0.14028 72 0.04178 15 0.1923 20

DC1 ∗DC2 ∗ LGI0.52 0.00851 59 0.32063 36 0.11859 24 0.16784 2 0.19186 65 0.01133 25 0.17625 22

DC1 ∗DC2 ∗ LGI0.72 0.0094 53 0.33098 34 0.11305 25 0.15801 10 0.18625 66 0.00982 29 0.17523 24

BC1 ∗BC2 ∗ LGI0.52 0.01244 31 0.13035 61 0.07136 42 0.12059 37 0.24265 26 0.03963 16 0.22435 6

BC1 ∗BC2 ∗ LGI0.72 0.01333 27 0.13741 60 0.07271 41 0.11554 41 0.23936 29 0.02988 17 0.22917 4

CC1 ∗ CC2 ∗ LGI0.52 0.0043 69 0.06027 69 0.04242 53 0.12161 34 0.15047 69 0.02967 18 0.19328 19

CC1 ∗ CC2 ∗ LGI0.72 0.00398 71 0.06144 68 0.04486 51 0.12031 38 0.1441 71 0.02439 20 0.19758 16

TABLE 5.13: AUC for Leicht-Holme-Newman Global Index (LGI) with different centralities.
Highlights in dark grey represent that Inequality 5.6 holds, and light grey represents AUC

values lower than the AUC of a random predictor

In Table 5.13 we can see that Leicht-Holme-Newman Global Index (LGI) when combined with

degree centrality always exhibits improved performance for hep-th and hep-ph datasets. These

improvements might indicate that, this combination performs well for collaboration networks.

Because hep-th and hep-ph both are the only collaboration networks we have. These improve-

ments could suggest that for collaboration networks, combining LGI with degree centrality us-

ing Equation 5.2 could be a good approach for predicting future collaborations. However, this

claim for collaboration network needs to be corroborated by evaluating this combination for

more network datasets of collaboration networks. Performance for combination of LGI with be-

tweenness centrality for the hep-th and MITContact datasets, and closeness centrality for hep-ph

dataset, are also improved. Here, we have weak evidence of degree and betweenness centrality

to perform better when combined with LGI, thus a better predictor than LGI itself.

5.3.1.11 Combinations with Matrix Forest Index (MFI)

college

Msg
rnk contact rnk hep-th rnk hep-ph rnk

hyper

text
rnk

infectious

Contact
rnk

MIT

Contact
rnk

MFI 0.00978 48 0.27332 46 0.03846 58 0.12256 33 0.21244 57 0.21582 3 0.17394 25

DC1 ∗DC2 ∗MFI2 0.01397 19 0.38795 3 0.09617 29 0.12733 30 0.24704 20 0.00846 35 0.13802 62

BC1 ∗BC2 ∗MFI2 0.01535 6 0.20197 49 0.03556 60 0.06253 59 0.27084 2 0.07619 9 0.15345 55

CC1 ∗ CC2 ∗MFI2 0.01114 41 0.36762 10 0.03858 57 0.12314 32 0.26806 7 0.15773 5 0.22291 8

TABLE 5.14: AUC for Matrix Forest Index (MFI) with different centralities. Highlights in
dark grey represent that Inequality 5.6 holds, and light grey represents AUC values lower than

the AUC of a random predictor
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Table 5.14 shows that Matrix Forest Index (MFI) when combined with degree centrality using

Equation 5.2 outperforms the predictability of (1) MFI when used on its own and (2) product of

degree centrality divided by shortest path. This can be observed for four out of seven datasets:

collegeMsg, hep-th, hep-ph, and hypertext. Also, in two datasets, similar improvement is seen

when combined with closeness (hep-ph and hypertext) and betweenness (collegeMsg and hyper-

text) centrality. We hence argue that MFI combined with degree centrality is a strong method

for link prediction.

5.3.1.12 Combinations with Shortest Path

college
Msg

rnk contact rnk hep-th rnk hep-ph rnk hyper
text

rnk infectious
Contact

rnk MIT
Contact

rnk

DC1 0.00778 63 0.10156 64 0.03643 59 0.04261 65 0.20073 64 0.00543 56 0.15655 52
DC2 0.00893 56 0.17552 52 0.02298 66 0.03956 68 0.20564 60 0.00472 70 0.12636 69
BC1 0.00886 57 0.09526 65 0.01959 69 0.0358 69 0.22064 51 0.00947 31 0.15653 53
BC2 0.00907 55 0.18862 50 0.01516 70 0.03071 71 0.21233 58 0.01139 24 0.13938 59
CC1 0.00847 60 0.0902 66 0.03301 62 0.04356 64 0.23007 39 0.00507 65 0.20749 14
CC2 0.00865 58 0.16996 56 0.02245 67 0.04154 67 0.20218 63 0.00449 74 0.17528 23
DC1 ∗DC2 0.01377 20 0.38969 2 0.08237 36 0.05854 60 0.24605 21 0.00466 72 0.13807 61
DC1 ∗DC2 ∗ 1/sp2 0.0136 23 0.38976 1 0.08983 33 0.07696 51 0.24601 22 0.00483 67 0.13812 60
BC1 ∗BC2 ∗ 1/sp2 0.01492 13 0.17511 53 0.0288 63 0.04596 63 0.26983 3 0.0085 34 0.15626 54
CC1 ∗ CC2 ∗ 1/sp2 0.01314 28 0.38662 4 0.07964 39 0.09746 47 0.25756 13 0.00511 63 0.22749 5

TABLE 5.15: AUC for Shortest path with different centralities. Highlights in dark grey repre-
sent that a combination method performs better than PA, and light grey represents AUC values

lower than the AUC of a random predictor

From Table 5.15 we could see that for the case where we use the shortest path in combination

with degree centrality, even with a slight variation of shortest path length (due to the small-world

phenomena the range of shortest path tend to be small) gives better performance than only using

the product of degree centrality i.e. the Preferential Attachment (PA) similarity measurement.

These improvements are seen in five out of seven datasets. This finding is consistent with find-

ings by Wahid-Ul-Ashraf, Budka and Musial-Gabrys (2018). Here we have compared degree

centrality combined with the shortest path against PA because PA is the product of degree cen-

trality. The baseline method here is PA instead of Inequality 5.6 as the combination of centrality

and the shortest path itself served as baselines for other results of combination methods dis-

cussed so far. PA is a well-established link prediction method that we have discussed further in

Chapter 2 Section 2.3.4 (Barabâsi et al. 2002). Other than the DC with the shortest path, BC

and CC combined with the shortest path also perform better than PA. BC with the shortest path

performs better in four datasets and CC with the shortest path performs better in three datasets

(although it performs better than PA for the infectiousContact dataset the predictability is not

better than a random predictor).
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5.3.2 Best Methods

Methods which satisfy Inequality 5.6 are the only ones which we analyse here. The reason for

this selection is discussed in Section 5.3.1. From the selected combination methods, we use

three different evaluation techniques to calculate scores in Table 5.16. The ‘Dataset variability

score’ is the number of datasets for which a combination approach satisfies Inequality 5.6. We

also calculate a score based on ranks. In our analysis the lowest rank of a method is 74, as we

have 74 methods in total including the standalone methods from Tables 5.4-5.15. We subtract

73 (so that the worst method with rank 74 will have a score 1) from the rank of a method in

a dataset to get a score instead of rank. Afterwards, we sum the scores up to get the final

score which is represented as ‘Score (73-Rank)’ in the table. This score not only tells us for

how many datasets a method performs well but also that method’s relative performance among

all the other methods. Finally, we normalise ‘Score (73-Rank)’ by the number of datasets for

which a method satisfies Inequality 5.6. This normalised version of the rank-based score is

represented as ‘Normalised Score (73-Rank)’ and considers a combination method’s rank based

on the average performance on all datasets.
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Method
college

Msg
contact hep-th hep-ph hypertext

infectious

Contact

MIT

Contact

Dataset

Variablity

Score

Score

(73-Rank)

Normalised

Score

(73-Rank)
RPR0.25+DC Y(16) Y(11) Y(1) Y(14) 4*** 254*** 63.5

MFI+BC Y(6) Y(2) 2* 140 70*

MFI+DC Y(19) Y(29) Y(30) Y(20) 4*** 198** 49.5

RPR0.15+DC Y(17) Y(11) Y(16) 3** 178* 59.3

DC+SP Y(1) Y(33) Y(51) Y(60) 3** 151 50.3

LGI0.5+DC Y(24) Y(2) 2* 122 61

LGI0.7+DC Y(25) Y(10) 2* 113 56.5

LPIeps0.02+BC Y(1) Y(36) 2* 111 55.5

LPIeps0.01+BC Y(2) Y(37) 2* 109 54.5

MFI+CC Y(32) Y(7) 2* 109 54.5

LGI0.7+BC Y(41) Y(4) 2* 103 51.5

JC+BC Y(48) Y(72) Y(1) 3** 101 33.67

LGI0.5+BC Y(42) Y(6) 2* 100 50

ACTN+DC Y(18) Y(32) 2* 98 49

RPR0.25+BC Y(10) Y(44) 2* 94 47

ACT+CC Y(24) Y(37) 2* 87 43.5

RPR0.15+BC Y(11) Y(51) 2* 86 43

PsInLap+CC Y(1) 1 73 73***

PsInLap+BC Y(3) 1 71 71**

LPIeps0.02+DC Y(3) 1 71 71**

CN+CC Y(4) 1 70 70*

LPIeps0.02+CC Y(4) 1 70 70*

ACTN+BC Y(7) 1 67 67

ACT+BC Y(8) 1 66 66

LPIeps0.01+DC Y(9) 1 65 65

RPR0.25+CC Y(14) 1 60 60

RPR0.15+CC Y(16) 1 58 58

JC+DC Y(19) 1 55 55

ACT+DC Y(22) 1 52 52

LGI0.5+CC Y(34) 1 40 40

LGI0.7+CC Y(38) 1 36 36

TABLE 5.16: Methods which satisfy Inequality 5.6. The dataset(s), in which a method satisfied
Inequality 5.6 is marked as Y, and the rank of that method mentioned in the parenthesis, i.e.
Y(rank). First best score is marked with ***, second best with** and third best with *. For all
the scores, higher is better. The ‘+’ operator entails a combination based on the Equation 5.2.

5.3.3 Results Analysis for each Dataset

Based on the methods we use and the combination of them we conclude that some datasets can

be more predictable than others. By comparing AUC of the PR curves, it seems that hep-th

and collegeMsg datasets are the most predictable, as only two methods perform worse than a

random predictor. Overall the collaboration networks hep-th and hep-ph have good predictabil-

ity. Only two methods for the hep-th and three methods for the hep-ph collaboration network
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perform worse than a random predictor. On the other hand, infectiousContact dataset has the

lowest predictability – there are 37 out of 74 (including combinations) methods whose perfor-

mance is worse than a random predictor. The second worst dataset in terms of predictability is

MITContact where 11 methods perform lower than a random predictor. For hypertext we have

six methods performing worse than a random predictor. Overall, except contact dataset, where

we have only three methods with AUC lower than a random predictor, all the networks repre-

senting human contact seem to have low predictability. We discuss below the results from the

perspective of individual datasets and interpret those outcomes in the context of characteristics

of each social network tested:

1. collegeMsg: Overall, performance of methods on collegeMsg does not appear to be very

good when compared to the remaining datasets. However, when we compare with a ran-

dom predictor, many of the predictors seem to perform better. The best performing meth-

ods for collegeMsg are those based on LPI in combination with BC. As LPI in its nature

is similar to CN it is surprising that the highest rank for CN–based method for collegeMsg

dataset is ranked 34. It means that consideration of friend-of-friend-of-friend (path of

length three) in LPI rather than friend-of-a-friend (CN) makes a (positive) difference for

prediction.

2. contact: For contact network the best performing methods are the ones based on DC

and the top ranked is DC coupled with the shortest path. Also, DC on its own (rank two),

DC+MFI (rank three), CC+shortest path (rank four), DC+ACTN (rank five) and DC+ACT

(rank six) perform well. All these methods are path-based but they must be combined with

information about node degree to achieve good performance, e.g. DC+ACTN has rank

five and ACTN on its own is last in the ranking (rank 74). However, this improved per-

formance when combined with DC might be due to the fact that Preferential Attachment

(product of degrees) is the second best predictor. Thus, although dividing DC by ACTN

still makes it a good predictor, its performance is worse than when only degree product is

used.

3. hep-th: Although the best method for hep-th is AA, the best performing set of methods

are those based on Katz and combined with CC. Katz2 and Katz3 also performed very

well with ranks five and two respectively. Also, methods combing CC with Katz3, CN,

and Katz2 were performing very well (rank three, four, and six respectively). However,

standalone Katz performs better than in a combination. On the other hand, note that

again, we need to have a proper combination of metrics because CC combined with JC

gives the poorest performance. It shows that taking into account the greater network (Katz

enables that) not only the immediate neighbourhood of a node (JC) may result in better

performance. It is surprising that although AA is very similar to JC, their performance

differs so much with AA being ranked one and JC - 43 (0.06 accuracy for JC and 0.13
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for AA). The interpretation may be that AA gives importance to the degree of common

neighbour and if common neighbour degree is lower then there is a bigger chance that

he/she will introduce two of his/her neighbours to each other. JC on the other hand focuses

only on overall number of common friends. This indicates that when developing new

prediction methods, we should also focus on other factors and capacity of other nodes

rather than just the nodes in question.

4. hep-ph: Overall, for hep-ph dataset methods based on Katz and Katz combined with CC

and DC perform best. However, the top two results are those that combine DC with RPR

and LGI. Methods based on JC combined with different centralities give the worst results.

It seems that merging local information (DC) with knowledge about paths throughout

the network and appropriately weighting them (Katz, RPR, LGI) gives the best results.

Similarity RPR and LGI combined with degree centrality outperform DC, RPR or LGI

used as a standalone predictor. Similarly, for this dataset, LGI performs better (compared

with using it independently) when combined with betweenness and closeness centrality.

5. hypertext: For the hypertext dataset the best set of methods are those that use BC as the

centrality measure which is the most overreaching centrality out of those we analysed. BC

is present in 11 out of 13 top ranked methods for this dataset. This improvement could be

explained by looking at Table 5.15. We can see that BC combined with shortest path is

the third best predictor for this dataset. In addition, Table 5.7 shows that JC works well

for a measurement of distance for hypertext dataset when JC is combined with BC, it has

the best predictability.

6. infectiousContact: Most of the predictors perform poorly for the infectiouseContact

dataset. This low predictability may be indicative of the dataset containing many ran-

dom interactions between people. Each of the edges represents interaction between two

people at the INFECTIOUS: STAY AWAY exhibition at the Science Gallery in Dublin,

Ireland, from April 17th to July 17th, 2009 (Isella et al. 2011). This dataset captured in-

teractions between members of general public at the exhibition (Isella et al. 2011). Other

contact networks however, such as the hypertext network, capture interaction between the

attendees (Kunegis 2017c). It would be more likely that in the conference people would

have interacted less randomly than the exhibition. This is because in the conference, peo-

ple would speak to other people who might have similar research interests. Also, in a

conference one person who might have a very interesting research contribution might get

more interaction with other people. Methods based on PsInLap work best for infectious-

Contact network. It is very interesting as PsInLap can be interpreted using the concept of

conductance and it can be very much connected with the fact that the network is a set of

face-to-face interactions that took place in one location.
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7. MITContact: This dataset is interesting as methods that include Katz are the ones whose

performance is the poorest and this is very uncommon that Katz performance capabil-

ity is so low. 11 out of 12 worst performing methods include Katz element. However,

Katz seems to perform better for collaboration networks as it has been seen in the study

by Liben-Nowell and Kleinberg (2007). We also see similar result in Table 5.4 that for

both of the collaboration networks hep-th and hep-ph, performance of Katz is good. It is

interesting to see that when PsInLap is combined with closeness centrality and between-

ness centrality, it outperforms PsInLap used as a standalone predictor. Also, using inverse

of PsInLap instead of geodesic path as a measurement of distance gives better perfor-

mance for this dataset only. In addition, LPI combined with BC satisfies Inequality 5.6.

5.3.4 Computational Complexity

In terms of computational complexity, we have discussed in Section 5.3 that we need to make

predictions for |V |(|V |−1)
2 − |E| links in total. Thus the time complexity is O(|V |2), if we wish

to predict all possible non-existing links based on Equation 5.2. However, based on different

algorithms, each of the methods (i.e. CN, Katz, rooted PageRank etc.) we have used in our

combination approach may have different time and space complexities. For example, for CN,

JC and AA, where traversal of node neighbourhood is required, the computational complexity

is at least O(|V |b2), where b is the average degree of the graph (Papadimitriou et al. 2012; Lü

et al. 2009). Among all the methods, PA has the lowest computational complexity of O(2|V |),

as we only need to multiply the predicted pair of nodes’ degree. RPR could be calculated using

different algorithms and the complexities vary from O(|V |) to O(|V |2) (in case of a sparse

network) (Haveliwala et al. 2003; Berkhin 2005). The computational complexity of calculating

an inverse or pseudoinverse of a matrix is usually O(|V |3) (Courrieu 2005) which is required

for MFI, PsInLap, ACT, ACTN, Katz, and LGI. However, there is a faster alternative algorithm

proposed especially for Katz, reducing the computational complexity from O(|V |3) to O(|V |+
|E|) (Foster et al. 2001). LPI has a computational complexity of O(|V |b3) (Lü et al. 2009).

As for centralities, DC from adjacency matrix has a time complexity of O(|V |) (if calculated

from a list of edges then complexity of the search algorithm will become the complexity of cal-

culating DC). BC has O(|V ||E|) (Brandes 2001) and CC also has the same time complexity of

O(|V ||E|) (Brandes 2001; Okamoto et al. 2008; Landherr et al. 2010). However, the complexity

may vary depending on the algorithm used as pointed out in (Landherr et al. 2010).

For shortest path calculation, there is a range of algorithms available and time complexity de-

pends on the used algorithm. Algorithm selection for shortest path calculation of a graph is based

on several factors, such as available computational power and memory, graph type (weighted,

directed etc.), graph size, and graph density. Additionally, calculating a selective set of pairs’
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shortest path or calculating an all pair shortest path could require different algorithms, resulting

in different computational and space complexities. For example, all pair shortest path calcula-

tion using the Floyd–Warshall algorithm has a time complexity ofO(|V |3) (Floyd 1962) and the

Seidel’s algorithm has complexity ofO(H(|V |)log|V |) (whereH(|V |) is the time complexity of

multiplying two |V |× |V |matrices of small integers) (Seidel 1992). The time complexity of the

Johnson’s all pair shortest path is O(min(|V |2+ 1
k +|V ||E|, |V |2log|V |+|V ||E|log|V |)) (John-

son 1977).

The space complexity of CN, AA, JC is O(|V |b2) (Lü et al. 2009) and for a matrix inversion it

is O(|V |2) (Lü et al. 2009). Floyd–Warshall algorithm has a space complexity of O(|V |2).

All the time complexities discussed here are based on a serial processor. However, with the

advancement of GPU and distributed computing, parallel and distributed graph algorithms are

emerging and can be found in the literature very often. For example, You et al. (2017) proposed

an algorithms to calculate degree, closeness, and betweenness centrality measures in directed

graphs. In terms of GPU computation, Gunrock is an excellent library which can calculate dif-

ferent centrality measures and shortest path (Wang et al. 2016). In his paper Wang et al. (2016)

used very large graphs with millions of vertices and edges and shown the performance of their

GPU computation from their graph analysis library Gunrock, which is much better than the per-

formance of a serial processor. There is also another graph processing library with GPU com-

putation available, which comes free with CUDA (NVIDIA’s parallel computing framework)

named nvGraphs, which shows a very fast PageRank calculation on a very large 1.5 billion edge

dataset (Nvidia 2019). The library currently supports PageRank, single-source shortest path, and

single-source widest path calculation (Nvidia 2019). The recent revolution of the GPU compu-

tation is not only benefiting deep learning but also graph computation (Aher and Walunj 2019;

Merrill et al. 2012; Harish and Narayanan 2007; Zhong and He 2014; Shi et al. 2018).

In this research, we proposed a new approach to link prediction in social networks, inspired by

Newton’s law of universal gravitation, which states that the force exerted between two masses

is proportional to the product of those masses, and inversely proportional to the squared dis-

tance between their centres (Newton 1987). We have performed extensive empirical analysis to

investigate the potential of our link prediction method.

5.4 Results Conclusion

Our experiments indicate that in many cases a combination method, using Equation 5.2 im-

proves performance in terms Precision-Recall Curve, with respect to either standalone similar-

ity measure used in that combination or the product of centralities divided by distance squared
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(Inequality 5.6). In cases where we see these improvements (i.e. for all the datasets except in-

fectiousContact), we have also seen that AUC values are higher than that of a random predictor.

The selection of a method for a particular dataset seems to be related with the type of network

the dataset represents, for example, the significant improvements of RPR, LGI,and MFI in terms

of the AUC on average, demonstrate that our combination approach has great potential as a link

prediction method. Combinations of LGI, shortest path, and MFI with DC work well for both

of the collaboration networks, hep-th and hep-ph. ACT, ACTN with DC, LPI with DC, BC, and

CC, MFI and RPR with DC and BC, work best for collegeMsg dataset. JC with BC and shortest

path with DC work best for contact dataset. As for hypertext dataset JC with BC and DC, RPR

with DC, MFI with DC, BC, and CC, work best. In MITContact dataset, PSInLap with BC

and CC, LPI with BC, LGI with BC perform best. As for infectiousContact none of the com-

binations works well. In fact, most of the standalone similarity measures perform worse than a

random predictor. The exception is PsInLap which works best for infectiousContact dataset.

From our empirical analysis, we have concluded that there are a number of combinations which

perform better than others. The combination of RPR with degree centrality in Table 5.3.1.7

can be used as a better predictor than using RPR on its own. In addition to RPR, LGI with

DC for collaboration networks, MFI with DC, and DC with shortest paths are the best overall

combinations that we found in our study.

One powerful property of our approach also allows us to combine local and global measures

(e.g. DC with RPR, which considers the larger structure of the surrounding vertex or vertices

such) for link prediction. For a pair of vertices, it might happen that the global structure may not

indicate link formation probability strongly enough, but the local structure indicates otherwise

or vice versa. Due to the combination of local and global measures, in such cases, the final

score of link formation would still be higher compared with considering only a local or global

measure. Thus, a combination of global and local may improve link formation predictability for

pairs of nodes which are likely to be ignored (i.e. false negatives) by a predictor which considers

only single local or global measure.

We have discussed similarities between physical networks and social networks in Chapter 2

Section 2.3.1. Our Newtonian gravity inspired link prediction method shows that even at a local

level the dynamics of a social network can be interpreted through physical law. The similar-

ity between physical and social world are often encountered. Perhaps one of the most well-

known examples is the similarity between complex weather models and social dynamics (Hel-

bing 2012), which supports the idea of benefiting from this kind of similarities between social

and physical world. The benefits would come from cross-applying modelling and analytical

tools from these domains. However, most of these similarities are emergent phenomena due to

the characteristics of a complex system, at a global level. For example, we have discussed how

physical and social networks exhibit similar global properties like high clustering coefficient,
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degree centrality etc. However, our study shows that we may also benefit from applying laws

from physical world to a social network even at the local level.

In terms of computational and space complexity, we have discussed in Section 5.3.4 that we

need to make a prediction of |V |(|V |−1)
2 −|E| links in total. Thus the worst case time complexity

is at least O(|V |2), if we wish to predict all possible non-existing links. However, each of the

methods (i.e. Katz, rooted PageRank etc.) we have used in our combination approach may

have different time and space complexity. For example computational complexity of different

algorithms to calculate Katz could range from O(|V |3) to O(|V |+ |E|) (Foster et al. 2001).

5.5 Chapter Summary

The link prediction approaches developed in this chapter can also be used as missing link pre-

diction techniques (Liben-Nowell and Kleinberg 2007). As will be shown in further parts of this

thesis, the consideration of link prediction as missing link prediction turns out to be a powerful

property to overcome one of the limitations and increase performance of node classification al-

gorithms in the context of deep learning. In Chapter 7, we propose a set of deep learning based

node classification algorithms inspired by the link prediction methods analysed and developed

in this chapter.



Chapter 6

Dynamic Social Network Simulation

In this chapter, we develop a guideline for simulating real-world dynamic social network datasets

with ground truth labels and features (i.e. node attributes). Our understanding from the intensive

analyses of the three network models in Chapter 4 has contributed to this network simulation

development framework. In Chapter 4, we have found that, although all the main three network

models are primarily focused on modelling real-world social networks, their simulated networks

properties and characteristics are vastly different from each other. Thus a comprehensive net-

work simulation process should blend all the three main network models together (as they all

model some aspect of the real-world social networks which we discuss later in Section 6.2) to

achieve better modelling of the real-world social networks. In this chapter, the developed sim-

ulation process does precisely that and additionally, a novel approach to integrate features and

ground truth labels of social networks are also developed.

Graph Convolutional Networks (GCNs), a neural network-based classification model on graphs,

have been shown to outperform (in terms of accuracy of node classification) other state-of-the-

art models. However, one major limitation of the GCN is that it assumes at a particular lth layer

of the neural network model only the lth order neighbourhood nodes of a social network are

influential. Furthermore, the GCN has been evaluated on citation and knowledge graphs, but

not especially on friendship-based social graphs. Moreover, the drawback associated with the

dependencies between layers and the order of node-neighbourhood for the GCN can be more

prevalent for friendship-based social graphs. The evaluation of the full potential of the GCN on

friendship-based social network requires openly available datasets in larger quantities. However,

most available social network datasets are not complete (i.e. represent a subset of the original

networks, not the entire graph or do not include the entire set of node features). On top of that,

the majority of the available social network datasets not only do not contain any features but

also ground truth labels. To address the need for good quality synthetic social network data with

ground truth labels and features we firstly provide a guideline on how to simulate dynamic social

78
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networks, with ground truth labels and features, both coupled with the topology of the network.

Secondly, we introduce an open-source Python-based social network simulation library with

GPU computation and multiprocessing 1. In our social network simulation, we argue that the

topology of the network is driven by a set of latent variables, termed as the social DNA (sDNA).

We consider the sDNA as labels for the nodes, mimicking the real-world social network scenario.

Finally, by evaluating on our simulated datasets, we propose four new variants of the GCN,

mainly to overcome the limitation of dependency between the order of node-neighbourhood and

a particular layer of the model. We then evaluate the performance of all the models and our

results show that on 27 out of the 30 simulated datasets our proposed GCN variants outperform

the original model.

To address the issues discussed above, i.e., (1) lack of guidelines on implementing both the well-

studied network properties in social networks and features, (2) insufficient research on simulat-

ing dynamic social networks with node features, (3) lack of rigorous study providing directions

on defining node labels in social networks, we propose a framework for social graph simulation.

In our model, the simulated networks have the following characteristics based on understanding

of Facebook-type social networks, along with well-studied social network properties such as

preferential attachment.

• Node features are evaluated by other nodes before connecting. If two nodes are forming a

connection, the decision of forming a link is taken by both of the nodes, thus both parties

should evaluate each other’s features.

• The decision of forming a connection is based on the preferences of nodes, which are

consist of a set of latent variables. These preferences are not directly linked with users’

features. For example, two people could live in any state or county, but the preference

towards a particular political party could be same, thus resulting in different features but

common preferences.

• People have common preferences. For example, a group of people in social network may

prefer a common ideology or political view.

• The node and graph level characteristics should both be taken into account while mod-

elling a network. Node level characteristics consist of features (i.e. node attributes such

as age, gender, etc.), individual preferences (latent variables such as preference towards

a particular type of people, discussed in more detail in the Section 6.1), node degree (i.e.

preferential attachment). Whereas, graph level characteristics is e.g. smaller path length

preference, i.e. connecting with friends who are nearer in terms of the graph topology.
1https://github.com/AkandaAshraf/VirtualSoc
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6.1 Proposed Approach

The proposed simulation is based on preferences (i.e. a set of latent variables) of nodes, which

can be interpreted as social rules. Node preference represents the preference of a person in a

social network, and at the same time the network-based projection of personality and behaviour.

This in turn translates into the network topology. For example, one of network-based behaviours

might be to only connect with people with many mutual friends, shaping the topology of the ego

network.

We identify the types of preference a node can have based on their topological and non-topological

characteristics. The preferences/behaviours emerge from the following phenomena:

• Feature-based (non-topological): From node/user point of view, a combination of variable

preferences towards the features of other nodes/users acts as a deciding factor for who

they wish to connect with. For example, someone may prefer to connect with people

who live near in terms geographic location (e.g. city, town), thus similar location feature

is preferred. Whereas, for some other features such as gender, being opposite or same,

could be preferred. Thus, for this particular node, preference towards geographic location

in combination with gender is considered while connecting.

• Topology-based: Besides node features, the local topological characteristics may also

play important role, e.g. someone may prefer to connect with other people with whom

he/she has mutual friends, whereas others may be more open. Secondly, some people may

still prefer to connect with someone who has many friends, i.e. popular nodes. Both of

these preferences are solely based on the graph topology and could be mostly identified

via the topological properties of the social graph.

• Hybrid feature and topology based (combination of topological and non-topological fea-

tures): People in social networks may prefer someone who is nearer to them in terms of

geographic location and has similar age, education level and has many mutual friends. In

this scenario, we have a combination of both the feature-based and topology-based pref-

erences. Someone may also only connect with a politician who has many friends, only if,

he or she has similar political views.

All three types of human preferences are reflected in both non-topological features of a node and

the topology of a graph. Although the first, feature-based preference, solely emerges from the

non-topological component of a node, once the connections are made, these preferences are also

reflected or encoded within the topology of the graph. Without the consideration of the graph or

relations between nodes, the predictive model will not be able to capture these complex patterns,
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which may negatively influence model performance. As a result, by including node attributes in

graphs we can achieve higher predictive power.

We propose that the labels of social networks in supervised or semi-supervised classification

will capture patterns resulting from the preferences discussed above. We name these prefer-

ences or behaviours for a particular node as their social-DNA (sDNA). Although most people in

a social graph have different features, many people have a similar sDNA (i.e. they share pref-

erences). As a result, the sDNA is the most valuable and meaningful candidate for class labels

for grouping nodes in a graph. However, these labels may not be explicitly defined for a given

node classification problem. For example, a classification task may require identifying a group

of nodes who may prefer to buy a certain type of product, for marketing purposes. The label for

the class who have bought the products should capture a certain group of people with similar

preferences in the social network. In semi-supervised classification, if we have a dataset for

only a few people who may have bought the product, the classification model would associate a

certain type of sDNA in the social network as the most likely group to buy that product. In ad-

dition, if we do not have any historical information which tells us who have bought the product,

it may be possible that a group of people with similar sDNA may prefer the product more often

than others. However, a person or node itself in a social network, may not entirely know his or

her preferences or sDNA. As a result, finding these preferences (i.e. labels) in terms of sDNA

is a nontrivial task. One solution to this problem could be to define a few randomly selected

nodes with different labels. These labels could also be selected based on a strategy of focusing

on the features of nodes. For example, selecting a few nodes with very different features from

each other. After labelling, the semi-supervised classification algorithm, such as GCN will infer

other nodes with similar preferences/sDNA. Even if no prior knowledge is available, randomly

selected nodes with different class labels could be used with only one label per class. GCN is

shown to be powerful enough to accurately classify nodes with only one label per class (Kipf

and Welling 2017).

6.2 Graph Formation

Let’s assume that we have |N | = n number of nodes with f features each. Each element

or feature in the f could be unbounded or bounded. Each and every node subscribes to an

sDNA. There is a total of y different sDNAs, such that y <= n. Nodes which subscribe to

the same sDNA have the same preference, thus the same label. Each sDNA consists of two

vectors of length f (i.e. the same as the number of node features). These two vectors are, (1) w̃,

which defines the strength or weight of a particular feature’s preference and ranges between

0 and 1, and (2) l̃, which defines whether similar or dissimilar features are preferred with a

binary attribute 1 or −1. Although l̃ could be incorporated into w̃ as its sign, to make the
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preference standout separately for user readability and its contribution in the sDNA mutation

process discussed in Section 6.5 for dynamic graphs, the vector l̃ is used. This also allows to

have a separate label for the preferences within the sDNA, which could be learned using machine

learning algorithms from the graph enabling a more in-depth predictive analysis. The feature-

based scores between two nodes i and j are calculated as (where � is the Hadamard product):

Φi→j = |fi − fj |>(w̃i � l̃i) (6.1)

Equation 6.1 gives feature-based score which entails if node j is a potential friend for node i.

In this case, node i evaluates if it wants to connect with node j or not, as we consider only

i’s sDNA. In many social networks, mainly for the undirected ones, the final connection or

friendship decision is made by both of the nodes. We can introduce two-way evaluation simply

by adding node j’s sDNA based score in Equation 6.1.

Φi↔j = Φi→j + Φj→i (6.2)

If both the i and j subscribe to the same sDNA then Φi↔j = 2Φi→j . However, Equation 6.2 does

not prefer similar sDNA over different sDNA or vice versa. In a social network, the preference

or sDNA is a set of latent variables. It may well be that two people have a similar preference

and this results in a lower score. For example, if two social network users prefer to connect with

the opposite gender more often, then if they have the same gender then they are less likely to

connect.

FIGURE 6.1: Two types of sDNA subscribed by 5 nodes (The lines do not represent edges in
the graph and sDNAs are not nodes. The arrows define subscription or common preferences of

different nodes as sDNAs)

Equation 6.2 does not consider topological (i.e. graph based geometric features) of the nodes

while calculating the score. In social networks, popularity, i.e. the degree of the nodes is a

common topological feature with a significant effect on the growth of the network. Typically,
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people tend to prefer other people who have large number of connections. This is why famous

people tend to get more connections. This phenomenon is well studied and known as preferential

attachment (Barabási and Albert 1999). To add the preferential attachment effect, we can simply

add the degree of the connected nodes to the score. If node j hasmj degree or connections, then

from i’s perspective, the popularity-based score can be calculated as follows:

δi→j = mj (6.3)

However, the preference for nodes with higher degrees varies from person to person. We can

incorporate this variability by including sDNA’s preferential attachment parameter while calcu-

lating the score, resulting in:

∆i→j = mj d̃i (6.4)

Equation 6.4 only considers score of i and j from i’s perspective (i.e. i’s sDNA), where d̃i is an

sDNA variable from i which determines the preference of j’s popularity (i.e. degree). For an

undirected graph, we can use the following Equation 6.5 to calculate preferential-attachment-

based score from both i and j’s perspective by adding both of their scores from each other’s

perspective:

∆i↔j = ∆i→j + ∆j→i (6.5)

A social network user tends to prefer people who are nearer to them in terms of the graph

topological distance (Wahid-Ul-Ashraf et al. 2017). Creating a connection with somebody who

is friend-of-our-friend is usually more likely than starting a relationship with someone who is

further away from us in the structure. However, this preference is also subjective and varies

among social network users. As a result, we add this variability of path length preferences

subjective to a user by using sDNA’s k̃ = k̃2, k̃3, ....k̃q variables, where q is the longest path-

length in the graph that the model is considering, and k̃2 > k̃3 > .... > k̃q. The sDNA’s k̃ vector

has a length of (q − 1).

[Ax[i, j]] =

0 Ax[i, j] = 0

1 Ax[i, j] > 0
(6.6)

Πi→j = [A2[i, j]]k̃(i, 2), [A3[i, j]]k̃(i, 3),

...., [An[i, j]]k̃(i, q)
(6.7)
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In Equation 6.7, [Ax[i, j]] is a generalised Kronecker delta function in the Iverson bracket where

A is the adjacency matrix of the graph. The value of [Ax[i, j]] is one, if a path of length x

between i and j exists, and zero otherwise. This function of path length introduces non-linearity

in the score. Equation 6.7 gives the score of j when i is evaluating j’s potential to be able to

connect or become friends with i. This is done by using i’s sDNA parameter to calculate the

score of J . This imitates the behaviour, firstly, i may find someone j interesting to send him

a friend request on Facebook. Secondly, the final connection will be made if j also finds i

interesting. Equation 6.7 accounts for the first case and the following Equation 6.8, similar to

score based on features in Equation 6.2 accounts for the score from j’s point of view for i. The

final score function based on path topology is:

Πi↔j = Πi→j + Πj→i (6.8)

Equation 6.8 is required if we were to simulate a directed graph. For an undirected graph, we

only consider Equation 6.7.

Finally, we add all three scores, i) feature based from Equation 6.2, ii) popularity based from

Equation 6.5, and iii) shortest path length based from Equation 6.8 (directed) or 6.7 (undirected)

to calculate the final score s. We consider an undirected graph where both i and j make mutual

decision to connect with each other. In case of an undirected graph, for i connecting with j,

we can simply consider Equations 6.1, 6.4, and 6.7. For simplicity we are not including the

subscript i↔ j in the final score function s.

s(Φ,∆,Π) = Φ + ∆ + Π (6.9)

Equation 6.9 gives the score between any two nodes. The scores are weighted or modified ac-

cording to the sDNA a node belongs to. To further enforce some global graph level control in

the effects of feature-based, popularity-based, and shortest-path scores we introduce two hy-

perparameters. This global control is useful in many situations, for example, one may wish to

generate networks where strong preferential attachment phenomena exist. To be able to control

this global weighting, we introduce r and c global weighting factors in Equation 6.9. c is a

vector of length q − 1, where q − 1 is the number of shortest path length considered starting

from length two. We discuss on the selection of these global parameters in Section 6.7.

s(Φ,∆,Π) = Φ + r∆ + c>Π (6.10)

Equation 6.10 contains sDNA = {w̃, l̃, d̃, k̃} variables from Φ, ∆, and Π. These do not come

from the nodes directly but from their sDNAs, which in turn expresses their behaviour in the
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network. Equation 6.10 is one possible linear combination of Φ, ∆, and Π, however, other

possible nonlinear combination functions may be used depending on the target domain.

6.3 Simulation Process

The link formation process for a graph with n nodes is given in Algorithm 1. Each node sub-

scribes to exactly one of y different types of sDNA (Figure 6.1) and contains f features. In

Line 2 the algorithm generates all pairs of nodes. In case of an undirected graph, the pairwise

permutation (without repetition) is considered. Furthermore, if self-connection is desired then

self pairwise combination is also included. Social network users do not necessarily explore all

potential friends whom they might connect with. For example, a Facebook user does not explore

all existing Facebook users to connect with. As a result, the simulation process selects a pair of

nodes to calculate scores with the exploration probability p (Line 6), much like how connections

are made in a random graph. p = 1 will result in calculation of scores for all possible pairs,

while for p = 0, no score will be calculated between any pair of nodes. The exploration prob-

ability p incorporates controlled stochasticity. In order to determine the minimum score a pair

of nodes should have to connect, we define a cut-off point t. The top scoring t fraction of nodes

are connected.

To sum up, first, we calculate scores between pairs selected based on the exploration probability

p and then we sort these scores in descending order. After that, we connect t fraction of pairs

of nodes in the entire graph. Smaller values of t will result in a social network where the

users are very particular about with whom they connect. On the other hand, very high values

of t will result in a network where users do not care about features or topological properties

while connecting. Thus the latter will be close to a random graph model with probability of

edge occurring being equal to p, i.e. t = 1 will result in a pure random graph model with p

probability of edges formation. In Line 4 and 5, from all sets of pairs we select a pair for score

calculation with probability, p. In Line 5, r(0, 1) is a random number generator function which

returns a random number from 0 to 1 from uniform distribution. In Line 6, we use Equation 6.10

to calculate a score between the selected pairs of nodes. Afterwards, the stopping length based

on the suggested fraction of node pairs to be connected is calculated (Line 11). In Line 12 we

sort the selected pairwise nodes’ scores in descending order. Afterwards, in Line 14, we connect

the first t fraction pairs of nodes’ for which we have calculated scores in Scors, in Line 12, thus,

pairs with higher scores will have a higher likelihood of forming connections.
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Algorithm 1 Socialise algorithm
1: procedure SOCIALISE(N, p, t)
2: Pairs← PairCombination(N)
3: i← 0
4: for all pair in Pairs do
5: if r[0, 1] ≤ p then
6: Scores[i]← s(pairs)
7: i+ +
8: end if
9: end for

10: i← 0
11: StoppingLen← bt× Length(Pairs)c
12: Scores← sort(Scores, descending = True)
13: for all score in Scores do
14: Connect(pairs)
15: if i ≥ StoppingLen then break
16: end if
17: i+ +
18: end for
19: end procedure

6.4 Curse of Dimensionality in Networks

Real-world social networks contain high dimensional features. If we consider a Facebook user’s

posts, likes, photos, comments, etc. as features, then we have thousands of features for each

of the node. One problem with nodes with high dimensional features is the linear increase of

computational complexity for the simulation process discussed in Section 6.3. To overcome this

problem, GPU computation can be used to calculate Scores in Equation 6.10. In our simulation

library, we have enabled GPU computation and Figure 6.2 shows computation time with 300

nodes with increasing number of features.

6.5 Dynamic Graphs

Real social networks evolve over time and are dynamic in their nature. However, dynamic

graph datasets are very rare to find, especially with ground-truth labels and node attributes.

These datasets are crucial in the field of dynamic graph research, but also essential for the

evaluation of a link prediction, which usually deals only with static graphs or a snapshot of

a graph at time t. The link prediction problem is to identify new links that will be present

in the network at time t + 1 (Bliss et al. 2014; Hristova et al. 2016). Assuming the network

has a set N of nodes and set E of edges at time t expressed as G(N,Et), and that a link

between a pair of vertices i and j is denoted by L(i, j), the goal of link prediction is to predict

whether L(i, j) ∈ Et+1, where L(i, j) /∈ Et. The prediction is performed by using topological
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FIGURE 6.2: CPU vs GPU computation time with varying number of features. (CPU: Intel(R)
Xeon(R) W3680 @ 3.33GHz 6 cores and 12 threads, system memory: DIMM DDR3- 20 GB,

GPU: NVIDIA GeForce GTX 1080Ti)

and/or non-topological information about node characteristics and their relationships. Thus, to

evaluate or test the performance of a link prediction method, a future snapshot at t + 1 time

is required. Additionally, machine learning based link prediction algorithms require a future

snapshot of the network at time t + 1 as ground truth for training purposes. Interestingly, by

using multiple runs of Algorithm 1 we can already get dynamic graphs, i.e. a future snapshot

of the network. Every time we socialise the graph using Algorithm 1 containing pairs of nodes

which are not yet connected, we will get new connections occurring within the graph. However,

this is perhaps not the best simulation of the dynamic nature of real social networks. The reason

is that by running Algorithm 1 multiple times we are forcing each of the social network users

to make consideration and connect with people which they did not find interesting enough in

the previous run(s)2. What we really want is not to force the users in the graph to make new

connections but allow the users’ interest and preference to change and then run the Socialise

Algorithm 1. This will result in a concept drift in the user preferences, which can be achieved

via changing values of the variables in the sDNA’s of the nodes. This changes in the sDNA reflect

the phenomenon that, the rules that govern social networks can and do change over time. This

change of preference can be achieved via the sDNA Mutation given in Algorithm 2. The intensity

of mutation can be controlled by mutation intensity parameter z, which results in changing

values of the variables in sDNA = {w̃, l̃, d̃, k̃}. A lower value of z would change only few

2Here, we are assuming no arrival of new nodes or a constant number of nodes. In case of new nodes, we can
easily run Algorithm 1 with the new nodes and include them in the graph.
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of the w̃. As a result, the user’s preference towards a potential friend’s feature f would change.

In case the value of the mutation intensity parameter z is defined larger, this would result in

changes to the entire preference vector l̃. In Algorithm 2, in Line 1, the procedure takes all y

existing sDNAs from the graph, andmutatePreference, a Boolean parameter to determine if

l should also be changed. In Line 2 we iterate through each of the sDNAs, one at a time. For the

given sDNA, we then iterate through each of the elements in w̃ and l̃ in Line 3. We then reassign

the value of w̃ with the probability z (Line 5). In Line 7 we check if the mutatePreference

is set True. If so, then we also reassign the value of l̃, 1 or −1, with a probability of z (Line 9).

The selection between 1 or−1 selected randomly from uniform random distribution. In Line 14

we reassign the d̃ parameter of sDNA, which is for preferential attachment strength. Afterwards,

in Line 16, q number of random numbers are generated, for each path length preference in

Equation 6.7. The intervals are selected such that it satisfies, k̃2 > k̃3 > .... > k̃q. Afterwards,

in Line 20, we again iterate through each elements of k̃ and reassign from the already generated

random numbers in Line 16.

Algorithm 2 Mutation algorithm

1: procedure MUTATE(z, sDNA,mutatePreference)
2: for all sDNA in sDNA do
3: for all w̃, l̃ in w̃,̃l do
4: if r(1) ≤ z then
5: w̃ ← r(1)
6: end if
7: if mutatePreference then
8: if r(1) ≤ z then
9: l̃← rand(−1|1)

10: end if
11: end if
12: end for
13: if r(1) ≤ z then
14: d̃← r(1)
15: end if
16: K r ← r[1, q−1

q ), r[ q−1
q , q−2

q ), ..., r[1
q ,

q−q
q )

17: i← 0
18: for all k̃ in k̃ do
19: if r(1) ≤ z then
20: k̃ ← K rand[i]
21: i++
22: end if
23: end for
24: end for
25: end procedure

An interesting observation is, generally people’s behaviours or preference changes are corre-

lated with time. This change in behaviour, for social network users, contributes to change in the
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topology of the social network. In our simulation strategy, a snapshot to snapshot time differ-

ence then should also be correlated with the change of the users’ behaviour or preferences, i.e.

sDNAs. The parameter z in Algorithm 2 defines this intensity of mutation in sDNA or intensity

of social network users change in behaviour. As a result, the value of z is proportional to the

time between two snapshots of the network. For example, if one wishes to run the Socialise

algorithm (Algorithm 1), it will produce a social network with the first snapshot, snapshot− 1.

Then running the Mutation algorithm (Algorithm 2) will result in change in preferences with a

particular value of the parameter z, and then rerunning the Socialise algorithm will result in an-

other snapshot of the network in a forward time dimension, snapshot−2. A high value of z will

result in higher time difference between these two snapshots, snapshot− 1 and snapshot− 2.

One may wish to generate event based dynamic networks, i.e. time-stamped link formation.

This can also be achieved by setting the ‘fraction of nodes to be connected’ parameter t from

the Socialise Algorithm 1 such that only one link is formed. A repeated run of Algorithm 1 will

result in edge stream with timestamp for each of the edges. As we have discussed earlier in the

section, the time between each of the edge appearing could also be manipulated by changing the

value of parameter z.

6.6 Generated Networks

We have generated a total of 1400× 3 = 4200 (three snapshots for each of the 1400 networks)

networks for the purpose of inspecting their properties. Three snapshots of all the 1400 networks

are generated with 50 node features. The features are integer type and the range is [1, 500). All

the features are generated from a discrete uniform distribution.

The wide combinations of parameters are selected based on standard sampling method for global

sensitivity analysis. Each of the model inputs are sampled using Saltelli’s extension of the Sobol

sequence (Sobol 2001; Saltelli 2002; Saltelli et al. 2010). These input parameters are generated

using the open-source library SALib - Sensitivity Analysis Library in Python (Herman et al.

2014). The range of the parameters for sampling are given in Table 6.1

exploration

probability

p

popularity

Preference

Intensity, r

node-pair

fraction

connection, t

Path (len:2) Preference

Intensity c1

Path (len:3) Preference

Intensity

c2

Path (len:4) Preference

Intensity

c3

[0.1, 1.0] [0.1, 10] [0.1, 0.80] [0.7, 0.9] [0.3, 0.6] [0.1, 0.2]

TABLE 6.1: Range of input parameters for the simulated networks. Generated from the sam-
pling approach developed by Saltelli (2002) (Saltelli et al. 2010; Herman et al. 2014) for global

sensitivity analysis.
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FIGURE 6.3: Kernel density estimation of the underlying distribution for the properties of the
generated 4200 networks

In Figure 6.3a we see that most of the networks exhibit a healthy range (see Figure 7.1 in Chap-

ter 7 for examples of real-world online social network’s global clustering coefficient) of global

clustering coefficient for social networks (Watts and Strogatz 1998; Lee et al. 2014; Mislove

et al. 2007). The high clustering coefficient is indicative of community structure that is expected

in a real-world social network (Newman 2003; Girvan and Newman 2001; Ravasz and Barabási

2003; Davidsen et al. 2002). This emergence of high global clustering coefficient is mainly due

to the path length preference in a social network (Jost and Joy 2002), which can be controlled

by the c parameter in Equation 6.10. Based on Figure 6.3b, we can see that the average path

length of most of the networks is low, indicating a strong small-world effect. The real degree

of separation for social networks is decreasing significantly according to the study by Edunov

et al. (2016a). However, this study has been published in 2016, as more and more people are

joining, the interconnectivity within Facebook is expected to increase more and the degree of

separation may reduce even further (Edunov et al. 2016b). As for degree centrality, we have
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calculated mean and standard deviation of the degree of all nodes, which are presented in Fig-

ure 6.3c and 6.3d. The high range for standard deviation for the degree is consistent with the high

level of variation in degree that is found in real-world social networks (Barabási and Bonabeau

2003). The scale-free network model is built-in within our network topology simulation and can

be controlled with the parameter r in Equation 6.10.

Rather than limiting ourselves with a few specific types of network models, our simulation

framework allows us to model a wide range networks based on any specified input parameters.

In this generated networks, we do not model any specific network type, rather analyse a wide

range of possible types of networks. Our example of simulated networks is limited by the ranges

shown in Table 6.1, which can also be changed depending on the user’s preference.

6.7 Individual Properties and Simulation Validation

It is impossible for any simulator to replicate all the complex human behaviour which are the

main source of real-social networks as it would require us to simulate a human brain and the

nature. Thus, our network generator’s goal is not to produce real-world networks, but to imitate

some of their aspects and dynamics to provide us with high quality synthetic datasets. We have

discussed how simulated datasets are still beneficial for the advancement of deep learning in

Section 1.3. In this section, we show some properties of five individual simulated networks to

demonstrate that our simulation framework can imitate real-world social networks.

6.7.1 Nonlinear Dynamics of Social Networks

The evolution of any social network with thousands or millions of nodes are governed by chaotic

dynamics (Gregersen and Sailer 1993; Smith 1998; Thietart and Forgues 1995; Lorenz 1963).

The Newtonian physics view of the universe as ‘clockwork’, where the complexity of the (sim-

ilar to a clock) universe can be reduced to its basic components. Additionally, the Newtonian

physics argues that, in this ‘clockwork’ universe, by understating and modelling its basic com-

ponents we can make a very precise prediction of the future. This Newtonian epistemology

has been successful in predicting a linear system, but for a richer system which is complex and

consists of two or more components and their nonlinear interaction, the Newtonian view has

been proven to be unsuccessful (e.g. the three-body problem) (Nielsen et al. 2001; Mazzocchi

2008; Lorenz 1963). In fact, for modelling a complex system, the gradual inability for long term

prediction is the sign of a good predictive model (Sugihara and May 1990; Ashraf 2016). For a

social network, even if we assume that the social interactions are fully deterministic, i.e. fully

dependent on their previous states, due to its complexity and nonlinearity, the network should

become unpredictable in long run. As a result, similar to a real-world social network, a social
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network simulator can be fully deterministic but due to its nonlinearity and chaotic nature, ac-

curate prediction of the long-term properties is not possible with our current understanding of

the physics of nonlinear dynamical systems (Kellert 1993; Firth 1991; Lorenz 1963). On top

of that, in our simulation framework, we incorporate some randomness using the parameter p

in Algorithm 1. Additionally, also in the generation of features and sDNA are random. This

randomness is included in order to capture the chaotic nature of social networks. However, one

may argue that the real-world social networks are fully deterministic (the arguments regarding

determinism of human behaviour largely fall in the realm of philosophy). However, even if one

assumes that the social network is fully deterministic, as discussed earlier in this section, due to

the sheer complexity of a social network, it becomes almost impossible to capture its determin-

istic complexity in a model. The nonlinarity is introduced in our simulation model mainly in

two ways, 1) the sDNA variable l̃ in Equation 6.1 and 6.2 2) the parameter t as a cut-off point

for the score in Algorithm 1, which results in a nonlinear complex system. As a result, long

term states of the networks from our simulation have a sensitive dependence on all the initial

features, the parameter p, and sDNA variables. However, one may wish to generate networks

with some desired properties and in order to achieve that, in our simulation software we provide

a fast multi-threaded approach to simulate a large number of social networks with an automatic

selection of a variety of parameters. One can then select networks based on the desired prop-

erties (see Appendix A, Section A.6). This type of generative approach to model network has

already been used in network modelling (Newman 2016). Although a short term prediction of

the behaviour of the simulated networks can be achieved by the input parameters of the simu-

lation, as the networks grow (i.e. more snapshots into the future), their properties will start to

become unpredictable although they are still governed by all the input parameters and random

states of the simulator.

6.7.2 Properties of Simulated Networks

In this section we show few of the network’s properties vs properties of real-world networks. In

Table 6.3 we show the properties of the simulated networks and in Table 6.2 the input parameters

used to simulate the networks. However, our network’s dynamics are also governed by the

sDNA variables and the feature sets, which are provided online on Kaggle 3. The parameters

reported here provide some global control, but much like real-world networks, each node has

its own preferences and features (see Section 6.2). These preferences (sDNA in our simulator)

and features also dictate the dynamics and topology of the network.
3https://www.kaggle.com/akandaashraf/virtualsoc1

https://www.kaggle.com/akandaashraf/virtualsoc1
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Networks p r t c1 c2 c3

23 0.591308594 6.007128906 1.077148438 0.813867187 0.475488281 0.175488281

24 0.591308594 4.054199219 2.465820313 0.813867187 0.475488281 0.175488281

25 0.591308594 4.054199219 1.077148438 0.735351563 0.475488281 0.175488281

26 0.591308594 4.054199219 1.077148438 0.813867187 0.534082031 0.175488281

27 0.591308594 4.054199219 1.077148438 0.813867187 0.475488281 0.140722656

101 0.185253906 2.816699219 71.59082031 0.810351562 0.421582031 0.153222656

1247 0.572412109 5.296533203 11.06787109 0.733300781 0.497607422 0.116455078

1250 0.572412109 5.296533203 44.31884766 0.733300781 0.497607422 0.116455078

TABLE 6.2: Input parameters of the simulated networks. The parameters are: exploration prob-
ability p, popularity preference intensity r, node-pair fraction connection t, path 2 preference

intensity c1, path 3 preference Intensity c2, path 4 preference intensity c3

In Table 6.2, we can see that the node-pair fraction connection t and exploration probability p

controls the density of the networks. Networks 23-27 have a lower value of t but higher value

of p, thus these networks’ nodes tends to explore more potential nodes to connect with (see

Algorithm 1). The parameter p controls the keenness of nodes to explore potential connections

and the parameter t controls the fraction of the potential nodes that a node is likely to connect

with. For a higher value of t, nodes will be more open in terms of who they connect with. In

network 101, the nodes tend not to explore many potential friends but they are more likely to

connect with nodes which they do explore (low p and high t). We see that for network 1250,

both the p and t are high, thus resulting in a very dense network. We also see that network 101

has the lowest value of r, thus the degree distribution of the network in the final snapshot starts

becoming less scale-free. This parameter is the global weight of for the scale-free preference of

a node (see Equation 6.5). As for the input parameters c1, c2, and c3, they indicate if a person

would prefer to connect with someone who is two, three, or four nodes away (i.e. path length

distance). As mentioned in Section 6.2, for the description of Equation 6.8, these parameters

are set such that c1 > c2 > c3. Due to these two parameters, we can see that in Table 6.3,

the simulated networks have a high range of global clustering coefficient. Most of the real-

world networks shown here, many of them are only a subset of the original networks, thus

their properties may not represent the entire network. Additionally, the real-world networks are

vastly different from each other (also see the real-world network properties shown in Chapter 5,

Figure 5.2) and it is very difficult to pinpoint a single precise property or indicator range which

may indicate if a network is indeed a social network (Broido and Clauset 2019; Holme 2019;

Voitalov et al. 2019). However, we see that the transitivity increases and the average geodesic

path decreases over time for the simulated networks as we move from the first snapshot to the

third one. These indicate that the simulation imitates the aspect of a real social network, where

people tend to have more friends and become well connected (Edunov et al. 2016a). As for the

degree distribution, we have shown the network’s degree distribution in terms of the fraction of
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nodes’ degree. There seems to be some debate if scale-free network’s are unique or common for

social networks (Broido and Clauset 2019; Holme 2019; Voitalov et al. 2019). There are also

debates on the procedure to determine if a network is scale-free (Holme 2019; Voitalov et al.

2019). Voitalov et al. (2019) argued that the assumption that real-world social networks should

be very precisely scale-free may not be true and in that case observation of scale-free networks

are not rare as Broido and Clauset (2019) argued in their study. The finding from the study

of Voitalov et al. (2019) states that “According to their estimates, real-world scale-free networks

are definitely not as rare as one would conclude based on the popular but unrealistic assumption

that real-world data come from power laws of pristine purity, void of noise, and deviations.”. In

our study we take a neutral view on this issue of whether social networks are indeed scale-free or

not, thus, we do not validate our simulated datasets based on their scale-freeness. However, we

focus on the global clustering coefficient of the simulated networks to validate if our generated

networks are sufficiently similar to real-world networks.

In terms of parameter selection, if one wishes to increase the scale-free behaviour the parameter

r can be defined to have a larger value, in case one wishes to generate a denser network then

p and t parameters need to have a higher value. As we discuss in Section 6.3, defining the

parameter t high (close to 100%) would result in nodes ignoring their preferences dictated by

the sDNA and features, but only dependent on the probability p, similar to a random graph.

Additionally, the c1, c2, and c3 parameters can be defined with higher value to ensure higher

level of clustering coefficient.
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Network Vertices Edges GCC CCS CDM CCM CDS CCS AGPL

23-0 1000 7283 0.056 0.0704 14.57 7.79E-06 15.0 2.42E-06 2.922

23-1 1000 14460 0.122 0.1056 28.92 2.21E-05 31.5 4.37E-06 2.549

23-2 1000 21533 0.199 0.1637 43.07 5.38E-05 50.7 6.80E-06 2.329

25-0 1000 3182 0.059 0.0666 6.36 1.50E-06 9.7 4.99E-07 2.845

25-1 1000 6344 0.118 0.1040 12.69 1.67E-06 18.9 6.02E-07 2.486

25-2 1000 9486 0.173 0.1597 18.97 2.10E-06 28.1 8.35E-07 2.410

26-0 1000 3182 0.058 0.0955 6.36 1.63E-06 10.0 5.81E-07 2.951

26-1 1000 6344 0.101 0.1062 12.69 2.12E-06 18.9 8.41E-07 2.631

26-2 1000 9486 0.128 0.1828 18.97 2.79E-06 27.2 1.13E-06 2.476

27-0 1000 3182 0.079 0.1210 6.36 1.91E-06 10.5 7.39E-07 3.386

27-1 1000 6344 0.139 0.1156 12.69 2.62E-06 20.2 1.06E-06 2.802

27-2 1000 9486 0.173 0.1579 18.97 3.03E-06 29.5 1.22E-06 2.493

101-0 1000 10135 0.095 0.1193 20.27 4.11E-06 24.0 1.57E-06 2.492

101-1 1000 20064 0.185 0.1330 40.13 5.00E-06 47.5 1.81E-06 2.245

101-2 1000 29792 0.261 0.1572 59.58 6.46E-06 69.8 2.16E-06 2.142

1247-0 1000 10169 0.040 0.0480 20.34 3.53E-05 14.7 5.52E-06 2.677

1247-1 1000 20131 0.088 0.0615 40.26 6.92E-05 31.1 7.65E-06 2.315

1247-2 1000 29890 0.141 0.0777 59.78 9.78E-05 49.1 9.04E-06 2.174

1250-0 1000 31646 0.203 0.1116 63.29 5.73E-05 59.8 7.02E-06 2.228

1250-1 1000 61287 0.361 0.1377 122.57 5.31E-04 120.2 4.23E-05 1.898

1250-2 1000 89050 0.405 0.1855 178.10 5.55E-04 170.8 6.25E-05 1.822

Facebook 2888 2981 0.000 0.3871 2.06 9.19E-05 22.9 1.29E-05 3.867

Google Plus 23628 39194 0.004 0.4196 3.32 2.22E-06 35.2 7.50E-08 4.033

Hamster 2426 16631 0.231 0.3288 13.71 8.22E-07 19.9 3.01E-07 3.588

Twitter 23370 32831 0.021 0.4177 2.81 3.89E-08 10.0 8.02E-09 6.305

TABLE 6.3: Properties of simulated and real-world networks. Simulated networks are repre-
sented as numbers (https://www.kaggle.com/akandaashraf/virtualsoc1 to
download the datasets). GCC - Global Clustering Coefficent , CCS - Clustering Coefficent
Standard Deviation, CDM - Centrality Degree Mean, CCM - Centrality Closeness Mean, CDS
- Centrality Degree Standard Deviation, CCS - Centrality Closeness Standard Deviation, AGPL
- Avg Geodesic Path Length. The real-world networks Facebook and Google Plus are friendship
based ego networks (Leskovec and Mcauley 2012; Facebook (nips) network dataset KONECT
2017; Google+ network dataset – KONECT 2017). Twitter (De Choudhury et al. 2010; Twitter
lists network dataset KONECT, 2017) containing information on who follows whom on Twit-
ter. The Hamster network is a full network containing friendships and family links between

users of the website hamsterster.com (Hamsterster full network dataset KONECT 2017)

https://www.kaggle.com/akandaashraf/virtualsoc1
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FIGURE 6.4: Real-world network properties (distribution). NDD: node degree distribution,
ASP: average shortest path, TD: local transitivity (clustering coefficient) distribution
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FIGURE 6.5: Snapshot-0 of the selected simulated networks. Network properties (distribution).
NDD: node degree distribution, ASP: average shortest path, TD: local transitivity (clustering

coefficient) distribution
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FIGURE 6.6: Snapshot-1 of the selected simulated networks. Network properties (distribution).
NDD: node degree distribution, ASP: average shortest path, TD: local transitivity (clustering

coefficient) distribution



99

0

50

100

150

200

0 100 200

degree

co
un

t

(A) 101-NDD

0e+00

1e+05

2e+05

1 2 3 4

Path Lengths

Pa
th 

Co
un

ts

(B) ASP

0

20

40

60

0.00 0.25 0.50 0.75 1.00

LocalTransitivity

co
un

t

(C) TD

0

25

50

75

100

0 100 200 300

degree

co
un

t

(D) 1247-NDD

0e+00

1e+05

2e+05

3e+05

1 2 3 4 5

Path Lengths

Pa
th 

Co
un

ts

(E) ASP

0

30

60

90

0.00 0.25 0.50 0.75 1.00

LocalTransitivity

co
un

t

(F) TD

0

20

40

0 200 400 600 800

degree

co
un

t

(G) 1250-NDD

0e+00

1e+05

2e+05

3e+05

4e+05

1 2 3

Path Lengths

Pa
th 

Co
un

ts

(H) ASP

0

20

40

60

0.2 0.4 0.6 0.8

LocalTransitivity

co
un

t

(I) TD

0

50

100

150

0 100 200 300

degree

co
un

t

(J) 23-NDD

0e+00

1e+05

2e+05

3e+05

2 4 6

Path Lengths

Pa
th 

Co
un

ts

(K) ASP

0

20

40

60

0.00 0.25 0.50 0.75 1.00

LocalTransitivity

co
un

t

(L) TD

0

100

200

300

400

500

0 50 100 150

degree

co
un

t

(M) 25-NDD

0

30000

60000

90000

1 2 3 4 5

Path Lengths

Pa
th 

Co
un

ts

(N) ASP

0

10

20

30

40

50

0.00 0.25 0.50 0.75 1.00

LocalTransitivity

co
un

t

(O) TD

0

100

200

300

400

0 50 100 150

degree

co
un

t

(P) 26-NDD

0e+00

5e+04

1e+05

2 4 6

Path Lengths

Pa
th 

Co
un

ts

(Q) ASP

0

20

40

60

80

0.00 0.25 0.50 0.75 1.00

LocalTransitivity

co
un

t

(R) TD

0

100

200

300

0 50 100 150 200

degree

co
un

t

(S) 27-NDD

0e+00

5e+04

1e+05

2 4 6

Path Lengths

Pa
th 

Co
un

ts

(T) ASP

0

25

50

75

100

0.00 0.25 0.50 0.75 1.00

LocalTransitivity

co
un

t

(U) TD

FIGURE 6.7: Snapshot-2 of the selected simulated networks. Network properties (distribution).
NDD: node degree distribution, ASP: average shortest path, TD: local transitivity (clustering

coefficient) distribution

6.7.3 Validation of the Feature and Topology Integration

In our simulation framework we provide a novel technique to simulate node features. The mod-

elling of the node features needs to be validated separately from the topology of the network.
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As we already use network models within the topology generation, the topology generation is

supported by theoretical understanding of social networks and the integration of the features

and the topology should be valid regardless of the topology of the network. Thus to validate

the integration of the features and topology we select the first 10 networks, generated from

our 1400 simulated networks and use a deep learning approach to validate this integration of

the network topology and features. More specifically, we compare the predictive power of the

graph convolutional networks (GCNs) with and without the inclusion of the node features. The

higher predictive power of the GCNs models with the node features compared with the ones

without the node features indicates a better integration of the node features within the simulated

networks’ topology. Similar approaches to validate causal relations between different compo-

nents in a system are prevalent for a range of well established statistical causality detection

techniques, namely the Granger Causality tests (Granger 1988; Bressler and Seth 2011; Ashraf

2016). Additionally, in the next chapter, we also provide four new deep learning models for

node classification and evaluate their accuracy on two real-world social networks.

6.8 Chapter Summary

In this chapter, we proposed a comprehensive guide for simulating social networks. The simula-

tion is facilitated by a set of equations which are supported by our current understanding of the

three main network models. The algorithms developed in this research provide opportunities to

generate a wide range of networks. Due to their complex nature, no two networks are exactly

the same. Furthermore, these complex patterns also change over time. Our Mutation Algorithm

(Algorithm 2) provides a novel approach to render such changes in complexity. Thus, the simu-

lation approach is capable of modelling the evolution of networks, which are defined by social

interactions. In the next Chapter 7 we validate the integration of the features and topology of

the simulated networks.



Chapter 7

Deep Learning on Graphs

In Chapter 5 we have analysed a variety of widely used existing link prediction approaches along

with the ones we our proposed. These link prediction algorithms can also be considered as miss-

ing link prediction algorithms (Liben-Nowell and Kleinberg 2007). In this chapter, this concept

is utilised in the context of node classification. More specifically, the link prediction algorithms

are used to improve the performance of a deep learning based model, Graph Convolutional Net-

work (GCN), for classifying nodes in a network. Additionally, we have also developed and

applied a novel strategy to validate our simulation framework presented in Chapter 7. This

validation of the simulated network is also constructed using GCN.

In order to assess if the desired integration of features, labels, and topology is achieved, we

measure and compare different trained model’s predictability of the labels of the nodes. This

comparison is done by designing different setups of the models such that, the models are able to

perform predictions with the entire set of information (features, labels, and topology) as well as

with partial information.

We validate the integration of features, labels, and topology of the simulated graphs through the

measurement and comparison of the predictability of labels.

Furthermore, we propose four new variations of the GCN. Three of these variations are inspired

from the node-similarity analysis that has been performed in Chapter 5, and the fourth one is

inspired from the social network specific scenario for networks where not all the features play

the same role. All the models have been tested on our simulated networks and compared with

the original GCN.

101
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7.1 How to validate simulation

Here we discuss the validation setup. In a network, the prediction of the label of a node, i.e.

sDNA, can be performed via the following configurations of an ideal (what we mean by ideal is

discussed later in this section) machine learning model:

1. Predictability of nodes’ sDNAs with features combined with the graph topology

2. Predictability of nodes’ sDNAs using features only

3. Predictability of node’s sDNA using topology only

We can expect for an ideal machine learning model to fully capture and learn patterns both

from the topological and feature based information from the network without over-fitting or

being susceptive to the noise or stochasticity in the network. Needless to say, such an ideal

model is not currently available in the real-world. However, we should at least use a machine

learning model which can directly utilise both the topological and non-topological information,

i.e. features.

In our case we use the GCN (Kipf and Welling 2017) to analyse sDNA predictability of the

simulated networks, which can be regarded as one of the best models to directly combine both

the topological and non-topological information of the graph (Li et al. 2018).

7.1.1 Graph Convolutional Networks (GCNs)

GCN is a multi-layer graph based neural network. In each layer, the features are multiplied

with the topology of a graph in the spectral domain (i.e. symmetric normalised Laplacian ma-

trix (Kipf and Welling 2017)). Weights of connections (edges/links by which the features of a

node are passed, considered or summed) are learned using backpropagation. However, as most

of the real-world social networks are not regular graphs, one single weight is learned for all links

of a particular node.

The layer-wise propagation rule for the lth layer is:

H(l+1) = σ(GH(l)W (l)) (7.1)

In Equation 7.1, W (l) are the trainable weight matrices for each layer. H(0) = X (the fea-

ture matrix) and G is a graph representative matrix that we will discuss in more detail in Sec-

tion 7.1.2. G is fed in every layer of the model until the output layer. Finally, σ denotes a

nonlinear activation function.
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For this model, the receptive field grows with the depth of the network (Kipf and Welling 2017).

In the first layer, only friends’ features are considered, and in the second layer friend of friends’

features are also considered, i.e. summed before passing through a non-linearity. This is because

the summarised friends’ information is already gathered in the first layer.

The direct translation from a graph to the structure of the neural network1 is achieved via the

graph representative matrix G. Symmetric normalised Laplacian matrix of the adjacency matrix

A has been used in the original formulation of GCN, i.e. G = ˜Lsym (Kipf and Welling 2017).

L̃sym = D̃−
1
2 ÃD̃−

1
2 (7.2)

Ã = A+ IN (7.3)

In Equation 7.3, the identity matrix (same dimensions as the adjacency matrix A) IN adds self-

connections for each of the nodes in A, D̃ is the degree matrix (a degree matrix is a matrix with

the same dimensionality of A where the diagonal elements represent the degree of a graph and

all other elements are set to zero) and Ã is the adjacency matrix with added self-connections.

The addition of self-connections facilitates incorporation of self-features of the nodes for better

predictability. For example, a social network user’s friends may give away his or her preference

or class label (i.e. predictability based on the labels of the connected nodes), but additionally,

his or her own features (i.e. self-connections in the graph) are also important to be considered

to predict his or her preference.

In Equation 7.1, the main transformation to the neural network from a graph is performed

through G = ˜Lsym. If the adjacency matrix A in ˜Lsym (Equation 7.2) is replaced with a differ-

ent representative function of the graph, the structure of the neural network itself will change.

However, this does not change the input feature matrix X . As a result, this is not exactly data

preprocessing technique but rather a change in the architecture of the neural network. We discuss

this usage of different graph representatives later in Section 7.1.2.

Using the GCN we calculate the three mentioned setups for node label predictions in Section 7.1

by changing the propagation rule in Equation 7.1 as follows:
1In this paper when we talk about a graph (i.e. a social network) we mention it as a ‘graph’ or a ‘network’ but

when we talk about a neural network it is written in its full form.
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1. Prediction of nodes’ sDNA with both the features and graph topology using propagation

rule of Equation 7.1 for the first layer, where G = L̃sym, and H0 = X , where X is the

feature matrix:

H
(1)
(Φ,∆,Π) = σ(L̃symXW (0)) (7.4)

This is the straightforward GCN model proposed by Kipf and Welling (2017). Here, the

graph representative G = L̃sym is fed in every layer of the model, but the feature matrix

X is fed only in the first layer.

2. Prediction of nodes’ sDNA with features excluding graph topology with the following

propagation rule:

H
(1)
(Φ) = σ(IAXW

(0)) (7.5)

In this first layer propagation rule in Equation 7.5, IA is the identity matrix with the

dimension of the adjacency matrix A. IA is fed into the model until the output layer 2.

Thus, only features of each node are considered and the graph topology does not play any

role for label or sDNA predictions.

3. Prediction of node’s sDNA excluding the features but solely with the graph topology:

H
(1)
(∆,Π) = σ(L̃symIXW

(0)) (7.6)

In this propagation rule in Equation 7.6, IX is the identity matrix with the dimensions of

the feature matrix X 2. As a result, only the graph topology is considered, and features

do not play any role in the model. Here, the graph representative G = L̃sym is fed in each

layer of the model until the output layer of the model, however H0 = IX is fed only in

the first layer of the model.

We assume that during the simulations, the first setup will produce more accurate results than

the remaining two. This hypothesis is represented through the following inequality:

(
Acc(H(Φ,∆,Π)) > Acc(H(Φ))

)
∧
(
Acc(H(Φ,∆,Π)) >(

Acc(H(∆,Π)) ∨Acc(H(∆,Π)
)
)) (7.7)

where Acc is the test accuracy of the trained neural network model for four different setups,

based on four different propagation rules in Equations 7.4, 7.5, 7.6, and 7.17 (Equation 7.17 is
2the identify matrix provided in here just for the purpose of comparison and how the implementation of the model

works but for obvious reason this identify matrix doesn’t have any mathematical significance
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discussed later in Section 7.2). However, the assumption of GCN is that for a lth layer of the

model, only the lth order neighbourhood nodes are influential (Kipf and Welling 2017; Li et al.

2018). To work around this problem, we develop a strategy of replacing the adjacency matrix

A in the Laplacian transformation in Equation 7.2 graph representative function G, with three

different existing node-similarity measures. In social networks, not all connected nodes have the

same influence and in fact, some non-directly connected nodes in the graph may have greater

influence over a node in question than the directly connected ones. As a result, usage of the

adjacency matrix A as a graph representative G may not always entail the best performance of

the neural network.

7.1.2 Node-similarities as Graph Representatives for GCN

In social networks, the adjacency matrix represents direct links between nodes. In GCN the

features propagate through those links. Thus, a node’s label is predicted by utilising patterns on

the surrounding connected nodes’ features and labels. However, in social networks, not all the

connections of a given node have same or even similar effect on this node. It can be assumed

e.g. that the influence that one node has on its neighbour will increase with the number of

their mutual friends. In a similar way, it may happen that a friend of a friend of node i can

influence node i more than a directly connected node (a not influential node, e.g. does not have

any common friend with the node i). As a result, this effectively changes the representation of

the network so one can incorporate these relationship characteristics as a form of social node-

similarity-based matrix for the GCN. One way to extract and represent these types of social

relationship (not necessarily direct ones) strengths and other information between nodes is to

use a matrix which describes the similarity between nodes instead of an adjacency matrix. For

example, the Katz similarity measurement considers the number of all direct paths from node i

to j (Katz 1953). Thus, more mutual friends would result in a higher number of paths, resulting

in a higher value of the Katz score. In this study, we replace the adjacency matrix A with the

three different types node-similarity matrices, Â as they encompass richer information about

underlying structure than traditional adjacency matrix. Following are the three node-similarity

measures we have considered:

• Katz, which considers the number of all the paths from node i to j (Katz 1953). The

shorter paths have bigger weight (i.e. are more important), which is damped exponentially

with the increase of the path length and the β parameter (where A is the adjacency matrix

and see Chapter 2, Section 2.3.4 for more details on the β parameter):

Similarity(i, j) = βA+ β2A2 + β3A3 + · · · (7.8)
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The above similarity in Equation 7.8 will result in the following graph representative

Gkatz = L̃symkatz

L̃symkatz = D̃−
1
2 ÃkatzD̃

− 1
2 (7.9)

Ãkatz = Âkatz + IN (7.10)

In Equation 7.9 and 7.10, Âkatz represents the nodes-similarity matrix (for all possible

links) based on Katz similarity measure from Equation 7.8

• Rooted PageRank (RPR) is used by search engines to rank websites. In graph analy-

sis it ranks nodes by the probability of each node being reached via random walk on the

graph (Brin and Page 2012). The Similarity(i, j) is calculated using the stationary prob-

ability distribution of the degree matrix D in a random walk. The random walk returns to

i with probability α at each step, moving to a random neighbour with probability 1 − α.

This results in the following graph representative GRPR = L̃symRPR:

L̃symRPR = D̃−
1
2 ÃRPRD̃

− 1
2 (7.11)

ÃRPR = ÂRPR + IN (7.12)

In Equation 7.11 and 7.12, ÂRPR represents the nodes-similarity matrix (for all possible

links) based on RPR.

• Graph Gravity (GG), Inspired by the Newton’s law of universal gravitation, this node-

similarity measure uses degree centrality as the mass of the nodes, while the lengths of

shortest paths between them act as distances (Wahid-Ul-Ashraf et al. 2017, 2019). The

above analogy leads to the following formula for calculating the score between two nodes:

Similarity(i, j) =
CD(i)× CD(j)

SP (i, j)2
, (7.13)

where CD denotes the degree centrality, SP is the shortest path. Node-similarity in Equa-

tion 7.13 will result in the following graph representative GGG = L̃symGG :

L̃symGG = D̃−
1
2 ÃGGD̃

− 1
2 (7.14)

ÃGG = ÂGG + IN (7.15)
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In Equation 7.14 and 7.15, ÂGG represents the nodes-similarity matrix (for all possible

links) based on GG in Equation 7.13.

For all the above three node-similarity measures, each Â, represents the nodes-similarity matrix

(only for all possible links) which has been preprocessed and reconfigured further which is

discussed in Section 7.2.2.

7.1.3 Weighted Feature Matrix

GCN is a powerful model for node classification, and it has been shown to perform well even

only with the graph topology, i.e. without the feature matrix Kipf and Welling (2017). The

reason for such a good predictability without the features could be due to two reasons. Firstly,

when our focus is on node classification for graph-structured datasets, the preferred features of

the nodes should be reflected in the topology of the graph as we have discussed in our simulation

process in Section 6.2. The fact that these features are encoded in the topology may result in

a good predictability even when the features are not directly considered in the model. Addi-

tionally, this better predictability based on feature only or topology only may vary from node to

node. For some nodes, the topology only may have better predictability when compared with

the node’s feature. This could be due to the fact that topological position of a node overshadows

the importance of the features.

Secondly, the good performances solely based on topology could be because, similar to real-

social network users, we have defined our sDNA for nodes such that it results in some of the

features of other nodes being preferred and some others not (Section 6.2). In other words, not

all the features play similar roles when it comes to the predictability of the sDNA. As a result,

in the entire graph, some of the features may be disliked or not preferred by the majority of the

nodes when forming graph connections. This is why an additional learnable common weight

for a particular feature for all the nodes may result in better predictability. In our analysis, we

have found that adding this additional weight, which defines the weight for each of the features

for all the nodes, seems to perform best, and this is what we present in Section 7.3. To introduce

this relative importance of features we use one additional weight vector in the GCN model.

We use a common weight for a particular feature for all the nodes. If we have a network with

1, 000 nodes and 50 different features each, for each feature of all the 1, 000 nodes a common

(i.e. across all the nodes) weight is used to learn the strength of each feature. This additional

feature weight matrix is the size of the number of features and is used only in the first layer of

the model. Hence all the input features, X are weighted before passing to the hidden layers.
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This additional weight vector results in the following first layer propagation rule based on the

Equation 7.1:

H(2) = σ(G((1S)�X)W (1)) (7.16)

where S1×|f | is the matrix containing the unbounded learnable parameters to define strength of

the feature matrix X |N |×|f |. 11×|f | is an all one matrix. The operator � defines the Hadamard

product (i.e. element-wise product) between the feature matrix X and the dot product of 1 and

S.

7.2 Experimental Setup

In the experiments, we simulate 30 social networks, with 1, 000 nodes each. Each of the net-

works has four different types of sDNAs with 250 nodes subscribing to a single type. We take

three different snapshots of the same network, resulting from an initial 10 networks to a total of

30 networks (i.e. three snapshots of the same network). Each of the nodes has 50 features, each

set of features of a node is generated from a uniform distribution. All the variables for the sDNA

(described in Figure 6.1 and Section 6.2) are also sampled from uniform distributions. The

input parameters used to simulate these 30 networks are given in Appendix A, Table A.3. Addi-

tionally, we also report the properties of the 30 simulated networks in Appendix A, Table A.4.

Social networks tend to have high clustering coefficient, and in our networks we observe the phe-

nomenon (Barabasi and Oltvai 2004; Watts and Strogatz 1998; Lee et al. 2014; Mislove et al.

2007). In our simulation, we have considered to replicate the dynamics of the modern online,

friendship-based social networks. Figure 7.1 shows the approximated clustering coefficient of

a number of modern online social networks as reported in (Lee et al. 2014). Based on this, the

global clustering coefficients of our simulated networks, are well within the range of the real-

world online social networks. Additionally, we present the degree, path length, and transitivity

distribution of the simulated networks. In Figure 7.2 the first snapshot, Figure 7.3 the second

and, in Figure 7.4 the third snapshot of the simulated network’s distributions are presented. It

is apparent that as we move from the first to the third snapshot the networks’ average geodesic

path length becomes smaller, i.e. the small-world phenomena. In the final snapshot many of the

networks become so small that all nodes can be accessed via one mutual friend which we see in

the real-world networks we have used earlier in Chapter 5, Figure 5.2.



109

9-2 9-1 9-0 8-2 8-1 8-0 7-2 7-1 7-0 6-2

Face
book-1

Face
book-2

Flic
kr

Orku
t

Live
journ

al
6-1 6-0 5-2 5-1 5-0 4-2 4-1 4-0 3-2 3-1 3-0 2-2 2-1 2-0 1-2 1-1 1-0 0-2 0-1 0-0

Network Datasets

0.1

0.2

0.3

0.4

0.5
G

lo
ba

l C
lu

st
er

in
g 

C
oe

ffi
ci

en
t

Colour:
Simulated
Real-world
Type:
Simulated
Facebook-1
Facebook-2
Flickr
Orkut
Livejournal

FIGURE 7.1: Global clustering coefficient for the simulated network datasets and real-world
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Another classical understanding of social networks, is the power-law degree distribution (Barabási

and Albert 1999). However, we have discussed in Chapter 6, Section 6.7, that we do not compare

the simulated networks in terms of their scale-freeness to deem if they are close to real-world

networks.
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FIGURE 7.2: Snapshot-0 of the selected simulated networks. Network properties (distribution).
NDD: node degree distribution, ASP: average shortest path, TD: local transitivity (clustering

coefficient) distribution
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FIGURE 7.3: Snapshot-1 of the selected simulated networks. Network properties (distribution).
NDD: node degree distribution, ASP: average shortest path, TD: local transitivity (clustering

coefficient) distribution
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FIGURE 7.4: Snapshot-2 of the selected simulated networks. Network properties (distribution).
NDD: node degree distribution, ASP: average shortest path, TD: local transitivity (clustering

coefficient) distribution
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For all the models, we have four graph convolutional layers. All layers except the output layer

use rectified linear units (ReLU) as nonlinear activation functions. The output graph convolu-

tional layer contains softmax activation and categorical cross entropy loss is calculated for the

four types of sDNAs or node labels. Each of the layers, except for the output layer contains

32 units of neurons, and the output layer has 1, 000 units, the same as the number of nodes

that need to be classified. Finally, we used Adam optimiser, a first-order gradient-based algo-

rithm for our differentiable neural network model to learn the weights (i.e. to optimise the loss

function). Each and every model is evaluated with the same setup. On every network, 10-fold

cross-validation is performed and the average accuracy is reported. Additionally, the standard

deviation of the accuracy is reported for the best accuracy and the original GCN in Table 7.3.

All the hyperparameters are kept fixed for all the models. We have used the learning rate of

0.01, L2 kernel regularisation (i.e. weight decay) for all the hidden layers with the decay rate

of 0.0005, and a dropout layer after each hidden layer with p = 0.5, i.e 50% of the randomly

selected neurons are trained in each training iteration.

Model Description Graph representative G Eq.

FTVanilla Original GCN, feature + Toplogy G = ˜Lsym 7.1

T Original GCN, Topology only G = ˜Lsym 7.6

TLR Original GCN, Topology only G = ˜Lsym 7.17

F Original GCN, feature only N/A 7.6

FTKatz Feature + Katz based Toplogy Gkatz = L̃symkatz 7.9

FTRPR Feature + RPR based Toplogy GRPR = L̃symRPR 7.11

FTGG Feature + GG based Toplogy GGG = L̃symGG 7.13

TABLE 7.1: Models used along with the original GCN. All of the models with features are
trained twice, once with the weighted feature matrix in Equation 7.16 and once without

In Table 7.1, for the topology only model, T (Equation 7.6), the weight matrix contains more

trainable parameters compared with the the model in FTVanilla (Equation 7.4). This is because

we have 1000 nodes per network with 50 features each. As a result for the model with both the

topology and feature matrix model, FTVanilla the dimension of the first layer weight matrixw(0)

needs to be 50× 32, where 32 is the hyperparameter for the number of units we consider in all

the models, i.e. L̃sym,1000×1000X1000×50W (0),50×32, and the resulting matrix has a dimension

of 1000 × 32, while the output from the first layer has a dimension of 1000 × 32. Whereas for

the topology only T, in Equation 7.6, where the feature matrix is only an identity matrix, IX , the

weight matrix w(0) is directly multiplied with the graph representative, i.e. the graph topology,

L̃sym,1000×1000. As a result the dimension of the weight matrix is a lot higher (1000 × 32), i.e.

L̃sym,1000×1000W (0),1000×32 , and the resulting output from the first layer has a dimension of
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1000 × 32. As we can see there are more trainable parameters in the T model compared with

FTVanilla, i.e. 50× 32 vs 1000× 32. If we were to compare both of the models’ performance,

T vs FTVanilla, to test if the Inequality 7.7 holds as a validation of the feature and topology

integration process, the total number of trainable parameters for both models should be as close

as possible. To make both the models comparable, we introduce another setup for the topology

only model to keep the number of parameters at the similar level to the model using both the

features and topology.

H
(1)

(∆,Π)
= σ(L̃symIXW

(a0)W (b0)) (7.17)

In Equation 7.17, weight matrix W (0),1000×32 is split into two matrices W (a0)1000×1 W (b0)1×32

to keep the number of trainable parameters roughly in line with the FTVanilla model.

7.2.1 Citation Networks

In addition to testing the models on the simulated network datasets, we have also tested our

models on two of the real-world citation network datasets, Cora and Citeseer (Kipf and Welling

2017; Yang et al. 2016). It’s worth re-iterating (detailed discussion in Chapter 6) that node at-

tributes in the citation networks do not have the same semantics as in the friendship-based social

networks. However, high-quality real-world datasets, with both features and node attributes are

very rare to obtain. We have thus used our simulated network datasets, for which our proposed

variations of the GCN models are designed. However, we test our proposed models on the

citation networks to compare the accuracy with the original GCN (i.e. FTV anilla) model.

We closely imitate the experimental setup of Kipf and Welling (2017). The citation network

contain sparse bag-of-words as features and each of the papers are considered as nodes and the

edges are citation links (Sen et al. 2008). The citation links are considered as undirected links

between nodes in this experiment, similar to the experiment of (Kipf and Welling 2017). The

number of classes for the Cora dataset is seven and for the Citeseer it is six.

Network Nodes Edges Classes Features Label rate

Citeseer 3,327 4,732 6 3,703 0.036

Cora 2,708 5,429 7 1,433 0.052

TABLE 7.2: Two citation networks’ statistics (Kipf and Welling 2017)

In Table 7.2, the label rate is the number of labelled nodes that are used in training divided by

the total number of nodes in the network. In the case of citation networks, we imitate the similar
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setup by (Kipf and Welling 2017), where not all the node labels are used during the training

steps (i.e. semi-supervised classification). A two layer GCN and our versions of the GCN from

Table 7.1 are used for all the experiments. Each of the models is trained for a maximum of 200

epochs with an early stopping threshold of 10 (i.e. if the loss does not decrease after 10 iteration

the training is stopped). The learning rate used for these models is 0.01 and 16 units within the

hidden layers are used. Additionally, a dropout rate of 0.5 and L2 regularisation set to 0.0005 are

used during the training steps. For each of the models, weights are randomly initialised 46 times

(the random seeds are available in Section A.9.1, Appendix A) and we report the mean accuracy

and standard deviation in Table 7.4. Additionally, in Table 7.5, we randomly split each of the

networks into test and training sets a total of 100 times (with the same label rate in Table 7.2 and

by Kipf and Welling (2017)).

7.2.2 Augmented Node-similarity Matrix

For ÂGG (Equation 7.15), the similarity scores for all the non-existing links are calculated and

then all the scores are normalised between zero and one. Afterwards, the adjacency matrix A

is summed with the calculated scores for all the non-existing links. As a result, all the existing

links for ÂGG has a value of one and for the non-existing links, the value ranges from zero

to one. For Âkatz and ÂRPR, the path-based similarity scores are calculated for all possible

links. For all the networks, to calculate Katz score, with the highest exponent of five for the

adjacency matrix A (i.e. A5 in Equation 7.8) and the β = 0.005 is used. As for the RPR, the α

parameter is set to 0.85. For each of the calculated similarity matrices (ÂGG, Âkatz and ÂRPR
), the row is normalised for each of the non-zero elements using the L2 norm. Moreover, on the

similarity-based adjacency matrices (i.e. Âkatz , ÂRPR, and ÂGG), several thresholds are used.

The thresholds are applied on the L2 row normalised matrices. The thresholds are set in a way

that, if the value in the similarity-based matrix is less than or equal to the first threshold then it

is set to zero. Whereas for the second threshold point, if the value is greater than the threshold,

it is set to one. If the thresholds are set as zero and one respectively, then none of the values is

changed in the matrix. Also, for some set of thresholds, if they are not the same, the elements

in the matrix which are in between the two thresholds, are unaltered in the matrix. The sets of

thresholds are selected based on empirical analysis, i.e. cross-validation accuracy of the model.

However, we also select a threshold based on the mean value of the elements of the matrix. The

mean value threshold hold is applied such that, if a non-zero element in the matrix is less than

or equal to the mean value then it is set to zero and one otherwise.

In GCN, for the lth layer, only the lth path length neighbouring nodes are considered (Kipf and

Welling 2017). Thus, it limits the scope of the receptive field of the node in each layer and also

the maximum receptive field is limited by the maximum number of layers used in the model.

This limitation has also been pointed out in the paper where GCN was first introduced (Kipf and
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Welling 2017). However, using node-similarity measures along with the augmentation process

we describe here allows the model to consider a three-path distant node j even in the first layer

(i.e. a direct connection) for the classification of the node i, assuming that they have a high

node-similarity score. As a result, this augmented node-similarity measure solves the limita-

tion of layer-wise node-neighbourhood dependencies for the GCN. Similar augmentation of the

network is also used by (Bahulkar et al. 2018) for better community detection algorithm.

7.3 Results and Discussion

In Figure 7.5, we show accuracy for all the models that we have tested on 30 simulated networks.

All the results are 10-folds cross-validated and average accuracy is reported. In Figure 7.5 and

Table 7.3, we observe that according to the hypothesis of Equation 7.7, the accuracy of the

model which uses node features only, i.e. F , is very low. In fact, the predictability is not better

than random chance (the accuracy is around 0.25 and we have four equally represented labels

or sDNA types to predict). Additionally, from Figure 7.5 and Table 7.3 we can see that for the

majority of the datasets (except only three networks) models which utilise both the topology and

features of the graph perform better than the two other setups where topology and features are

considered independently. When only topology is used (i.e. T), the model T performs the best

in three networks. Two of them are a third snapshot(i.e. the 3rd run of the Algorithm 1) of a

network (networks 1, 2 and 6-2), and the third one is the second snapshot of the network (2-1).

This can be due to the fact that as we run Algorithm 1 multiple times, the patterns of preferences

get encoded within the network topology so that the topology only model performs better. This

is something we also expect in real world networks i.e. as people make more connections, their

tendency towards who they choose to connect with become eminent.
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FIGURE 7.5: Node label prediction accuracy (in fractions i.e. 0.7 implies 70% accuracy and
the top horizontal bar show colour map for accuracy) from different Models (average from 10-
fold cross-validation), networks are in X axis and models in Y axis. Models written as, F -
feature only, T - topology only, FT - both the feature and topology, FTvanilla - the original
GCN. Models with S in the right box (the blue outlined boxes) represents if an additional
feature weight matrix in the first layer (Equation 7.16). The left box shows results for models
that use graph representative G = ˜Lsym, Equation 7.1 (i.e. adjacency matrix). The middle
box uses GNS = L̃sym

NS , where NS is a node-similarity (Katz, RPR, and GG) measure
with different thresholds ( Equation 7.9, 7.11 and , 7.13). Similarity-based G is preprocessed
based on Section 7.2.2. The preprocessing threshold auto implies automatic selection of a
threshold based on the mean value of the Â (Section 7.2.2). All the networks are represented
in terms of snapshots. For example, 0-0, is the first network’s first snapshot, 0-1 is the first

network’s second snapshot.
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Amongst methods using node-similarity matrices instead of the node adjacency matrix, we see

that the choice of threshold seems to have a significant effect on the model-performance. How-

ever, we can also see that using the mean value of the L2 normalised node-similarity matrix as

a threshold (described in Section 7.2.2) performs quite well. In fact, on seven networks with

the setup of using mean value as a threshold on the node-similarity matrix (discussed in Sec-

tion 7.2.2) outperforms all the other models (Table 7.3). The models with the mean value as

thresholds are written as ‘auto’ in Table 7.3.

If we do not consider differences between thresholds and usage of the vector S on the node-

similarity measures, Katz significantly outperforms the original GCN (i.e. FTvanilla) and

two other node-similarity measures (RPR and GG) based on the results in Table 7.3. On five

networks, RPR performs the best and GG on one network. However, on the basis of average

best-performing models on all the datasets from all the 20 different models, following models

performs best: (1) FTGG0.0 − 1.0, (2) SFTkatz0.0 − 0.5, and (3) FTkatz0.0 − 0.5. Thus,

on average, GG performs best across all the datasets.

The results also show that, the usage of a trainable parameter S based on Equation 7.16 gives

us a better model for many datasets than when not using it. In 15 out of 30 datasets, using S on

the first layer of the model outperforms the other models (Table 7.3). Furthermore, models with

S which perform best are mainly not the original GCN but the node-similarity-based models,

except for one dataset. However, this may not imply that the use of additional weights in the

first layer based on Equation 7.16 only performs well on node-similarity-based models. This is

because the usage of node-similarity may have better predictability in general than the adjacency

matrix.

From Figure 7.5 and Table 7.1 we can see that the performance of a node-similarity-based model

varies depending on the network the model is trained on. This is because all the networks are

simulated with different rules, and no two networks are exactly the same. We can expect to see

the same in real-world networks as well. Thus, the choice of a node-similarity method could

be based on empirical analysis. However, one may also use the mean value of the normalised

node-similarity matrix, especially with GG as we have discussed earlier in this section.

The results in Figure 7.5 show that we can achieve high accuracy (in fact higher than using only

the adjacency matrix) on node classification when a node-similarity-based graph topology is

used. This is particularly useful for very dense networks. The training time that is required for a

very dense network is extremely high for GCN. Many real-world datasets, such as face-to-face

interaction networks, tend to be very dense. Thus, the similarity-based matrices can be used

(with a suitable threshold to reduce the number of connections as per Section 7.2.2) in such

scenario to reduce training time.
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Net.
FTvanilla((Kipf and Welling 2017))
Acc (SD)

Max Acc (SD) Max Acc Model Net.
FTvanilla((Kipf and Welling 2017))
Acc (SD)

Max Acc (SD) Max Acc Model

0-0 0.721 (0.011) 0.732 (0.007) FTRPRauto 5-0 0.701 (0.028) 0.741 (0.005) FTkatz0.1-1.0

0-1 0.71 (0.022) 0.762 (0.011) SFTkatzAuto 5-1 0.758 (0.010) 0.783 (0.005) SFTkatz0.1-1.0

0-2 0.699 (0.032) 0.739 (0.012) SFTkatzAuto 5-2 0.756 (0.044) 0.807 (0.004) FTRPRauto

1-0 0.741 (0.013) 0.753 (0.012) SFTkatz0.1-1.0 6-0 0.686 (0.009) 0.709 (0.010) FTkatz0.0-0.5

1-1 0.736 (0.034) 0.767 (0.007) SFTvanilla 6-1 0.701 (0.030) 0.748 (0.018) SFTkatzAuto

1-2 0.754 (0.027) 0.767 (0.033) T 6-2 0.726 (0.035) 0.759 (0.015) T

2-0 0.507 (0.045) 0.559 (0.009) SFTkatz0.0-0.5 7-0 0.757 (0.010) 0.762 (0.008) SFTkatz0.0-0.5

2-1 0.599 (0.044) 0.618 (0.074) T 7-1 0.738 (0.013) 0.764 (0.010) FTkatz0.0-0.5

2-2 0.671 (0.017) 0.675 (0.014) SFTRPRauto 7-2 0.731 (0.015) 0.761 (0.013) FTkatzAuto

3-0 0.554 (0.018) 0.576 (0.009) SFTkatz0.0-0.5 8-0 0.677 (0.016) 0.724 (0.007) FTkatz0.0-0.5

3-1 0.517 (0.027) 0.553 (0.013) SFTGG0.0-1.0 8-1 0.717 (0.028) 0.752 (0.007) SFTkatz0.1-1.0

3-2 0.515 (0.045) 0.555 (0.016) SFTRPRauto 8-2 0.731 (0.016) 0.742 (0.013) SFTkatz0.0-0.5

4-0 0.49 (0.011) 0.508 (0.006) FTRPR0.0-0.5 9-0 0.699 (0.014) 0.747 (0.011) FTkatz0.0-1.0

4-1 0.51 (0.010) 0.532 (0.013) SFTkatz0.0-0.5 9-1 0.68 (0.012) 0.726 (0.019) FTkatz0.0-0.5

4-2 0.506 (0.010) 0.545 (0.009) FTkatz0.0-1.0 9-2 0.627 (0.012) 0.726 (0.006) FTkatz0.1-1.0

TABLE 7.3: Accuracy of correctly predicting node labels (ACC) and standard deviation (SD)
of the best vs original GCN model. Models written as: F - features only, T - topology only, FT -
both features and topology, FTvanilla - the original GCN. S in the right column denotes usage
of an additional feature weight matrix in the first layer (Equation 7.16). The models that use
GNS = L̃sym

NS , where NS is a node-similarity (Katz, RPR, and GG) measure with different
thresholds (Equation 7.9, 7.11 and, 7.13) are represented in the last column with the correspond-
ing node-similarity matrix (e.g. katz for the model FTkatz0.0-0.5). All the similarity-based G
are preprocessed and reconfigured based on Section 7.2.2. The preprocessing threshold auto
implies automatic selection of a threshold based on the mean value of the normalised node-
similarity matrix (as per Section 7.2.2). Networks are represented in terms of snapshots, e.g.

0-0: first network’s first snapshot, 0-1: first network’s second snapshot etc.

7.3.1 Citation Networks

In Table 7.4, we report the average accuracy of the models, each of which are trained with 46

random initialisation of weights on the two real-world citation networks. Similar setup with

100 randomly changed weights was reported by Kipf and Welling (2017). In our analysis

with the two citation networks Citeseer and Cora, we see that all three best performing models

for the Citeseer dataset are the ones with our proposed model FTRPR with different thresh-

olds. Furthermore, when these three models are compared with the original GCN model (i.e.

FTvanilla), it is apparent that for the best two models with FTRPR (i.e. FTRPR0.1 − 1.0

and FTRPR0.0− 0.5) exhibits a lower standard deviation (SD) (FTvanilla has SD of 0.047

whereas the best two models with FTRPR has an SD of 0.006 and 0.007) for the Citeseer

dataset. This lower range of SD indicates higher robustness in modelling of the underlying pat-

terns which defines the labels for the two citation networks. However, as for the models starts

with an S (i.e. with an additional feature weight matrix in the first layer using Equation 7.16,

e.g. SFTRPR0.0 − 0.5, SFTkatz) does not perform well for the Citeseer network. We

have pointed out a few reasons why learning this additional feature weights (Equation 7.16) can

be beneficial from the context of friendship-based social networks in Section 7.1.3. Perhaps,

this type of friendship-type social network scenarios may not apply to the citation networks for
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the reason that the relation between features, class labels and topology may not be similar to

the friendship-type social networks. As for the network Cora, we see that the best performing

model is the FTV vanilla, which is the original GCN, and FTkatz. We see similar situation of

worst performance with the additional feature weights (models with S, Equation 7.16) matrix for

the Cora network as well. Here we also speculate the same reason of not being a friendship-type

social network, for which the model in Equation 7.16) is specifically designed (Section 7.1.3).

In Table 7.5, we split test set and training sets randomly 100 times and train our models and

report their mean accuracy and standard deviation on the test sets. Here, we see similar results as

in Table 7.4, where all three best models for the Citeseer dataset are the ones with our proposed

model FTRPR with different thresholds. Similarly, for Cora dataset, the original GCN model

performs best.

Model Citeseer Acc (SD) Cora Acc (SD) Model Citeseer Acc (SD) Cora Acc (SD)

FTRPR0.0-0.5 0.712** (0.006) 0.808(0.007) SFTRPR0.0-0.5 0.696 (0.005) 0.809(0.058)

FTRPR0.0-1.0 0.711* (0.007) 0.809(0.006) SFTRPR0.0-1.0 0.694 (0.012) 0.811*(0.041)

FTRPR0.1-1.0 0.713*** (0.046) 0.809(0.006) SFTRPR0.1-1.0 0.698 (0.007) 0.808(0.006)

FTkatz0.0-0.5 0.683 (0.115) 0.815**(0.007) SFTkatz0.0-0.5 0.682 (0.017) 0.810(0.007)

FTkatz0.0-1.0 0.702 (0.049) 0.816***(0.006) SFTkatz0.0-1.0 0.683 (0.007) 0.810(0.008)

FTkatz0.1-1.0 0.682 (0.102) 0.811*(0.006) SFTkatz0.1-1.0 0.684 (0.010) 0.806(0.007)

FTnewton0.0-0.5 0.584 (0.210) 0.810(0.007) SFTnewton0.0-0.5 0.682 (0.017) 0.789(0.116)

FTnewton0.0-1.0 0.613 (0.184) 0.811(0.006) SFTnewton0.0-1.0 0.686 (0.008) 0.795(0.086)

FTnewton0.1-1.0 0.687 (0.093) 0.810(0.006) SFTnewton0.1-1.0 0.682 (0.009) 0.807(0.007)

FTvanilla 0.702 (0.047) 0.816***(0.006) SFTvanilla 0.686 (0.017) 0.810(0.007)

TABLE 7.4: Accuracy (ACC) and standard deviation (SD) of the models with 46 random
weight initialisation on two citation networks, Cora and Citeseer. Models written as: F - fea-
tures only, T - topology only, FT - both features and topology, FTvanilla - the original GCN.
S in the right column denotes usage of an additional feature weight matrix in the first layer
(Equation 7.16). The models that use GNS = L̃sym

NS , where NS is a node-similarity (Katz,
RPR, and GG) measure with different thresholds (Equation 7.9, 7.11 and, 7.13) are repre-
sented in the last column with the corresponding node-similarity matrix (e.g. atz for the model
FTkatz0.0-0.5). All the similarity-based G are preprocessed and reconfigured based on Sec-
tion 7.2.2. Models with S represents if an additional feature weight matrix in the first layer
(Equation 7.16). First best accuracy is marked with ***, second best with** and third best

with *.
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Model Citeseer Acc(SD) Cora Acc(SD) Model Citeser Acc(SD) Cora Acc(SD)

FTRPR0.0-0.5 0.638***(0.100) 0.533(0.229) SFTRPR0.0-0.5 0.637**(0.124) 0.593(0.188)

FTRPR0.0-1.0 0.638***(0.101) 0.536(0.228) SFTRPR0.0-1.0 0.635*(0.126) 0.574(0.179)

FTRPR0.1-1.0 0.635*(0.094) 0.524(0.201) SFTRPR0.1-1.0 0.631(0.105) 0.585(0.188)

FTkatz0.0-0.5 0.629(0.102) 0.471(0.190) SFTkatz0.0-0.5 0.622(0.117) 0.546(0.186)

FTkatz0.0-1.0 0.630(0.097) 0.495(0.190) SFTkatz0.0-1.0 0.625(0.113) 0.553(0.186)

FTkatz0.1-1.0 0.626(0.101) 0.497(0.191) SFTkatz0.1-1.0 0.622(0.113) 0.581(0.202)

FTnewton0.0-0.5 0.597(0.138) 0.420(0.190) SFTnewton0.0-0.5 0.590(0.157) 0.594(0.196)

FTnewton0.0-1.0 0.592(0.143) 0.419(0.193) SFTnewton0.0-1.0 0.591(0.159) 0.599*(0.194)

FTnewton0.1-1.0 0.626(0.094) 0.498(0.191) SFTnewton0.1-1.0 0.621(0.108) 0.609**(0.180)

FTvanilla 0.632(0.098) 0.670***(0.159) SFTvanilla 0.635*(0.106) 0.585(0.188)

TABLE 7.5: Accuracy (ACC) and standard deviation (SD) of the models with 100 random
splits on two citation networks, Cora and Citeseer. Models written as: F - features only, T -
topology only, FT - both features and topology, FTvanilla - the original GCN. S in the right
column denotes usage of an additional feature weight matrix in the first layer (Equation 7.16).
The models that use GNS = L̃sym

NS , where NS is a node-similarity (Katz, RPR, and GG)
measure with different thresholds (Equation 7.9, 7.11 and, 7.13) are represented in the last
column with the corresponding node-similarity matrix (e.g. katz for the model FTkatz0.0-0.5).
All the similarity-based G are preprocessed and reconfigured based on Section 7.2.2. Models
with S represents if an additional feature weight matrix in the first layer (Equation 7.16). First

best accuracy is marked with ***, second best with** and third best with *.

7.4 Chapter Summary

In this chapter, we have evaluated the performance of GCN on simulated friendship-based social

network datasets and on two real-world citation networks. One constraint of the GCN is that

it is limited to a specific order of neighbourhood by the number of layers used in the model.

We argued that using the node-similarity matrix as a graph representative allows us to solve this

dependency between the lth layers and the lth order of the neighbourhood nodes. Additionally,

our approach with the node-similarity measures may perform well enough with only a few layers

compared with the original GCN due to the less dependency between the highest number of

layers used in the model and the highest order of node-neighbourhood considered. The GCN or

any deep learning model is prone to overfitting when a large number of layers are used (Kipf

and Welling 2017), and our approach may get around this problem and achieve higher accuracy

only with a few layers. It has also been empirically shown that most of the models with the

augmented node-similarity measures outperform the original GCN.

In total we have proposed four new variations of the GCN model. Three of them are primarily

based on the Katz, RPR, and GG scores as a form of the graph topology encoding. The fourth

model is where we add learnable parameters for each of the features independent of the nodes for

the entire graph, allowing the model to ignore the input features, if it so chooses. This variation

of the model can be used with the adjacency matrix as well as with the Katz, RPR or GG scores,
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and its primary motivation was the observation that for some datasets using the topology only,

gives superior results. The results show that these new variations outperform the original GCN

model in terms of accuracy.



Chapter 8

Conclusions and Future Work

The primary contributions of this thesis are in the area of prediction of the dynamics of a social

network from the point of view of link appearance ( Chapter 5). For better link predictability, we

have combined two of the major contributing factors when it comes to link formations between

nodes in a social network. These two factors are, (1) popularity of a node and (2) similarity

between nodes. While these two factors are recognised based on the understanding of our social

behaviour, we have also considered graph theory based factors (i.e. global and local measures

on the graph) on top of popularity and similarity for an advanced link prediction approach.

Majority of the link prediction methods operates on one of the two granularity levels of a graph:

(1) on the global (graph level) or (2) local one (node level). An ideal link prediction algorithm

may exploit both the global and local patterns in the graph for better prediction. The journey

to find a technique, which can combine the popularity, similarity, graph level, and node level

characteristics has directed us to a physical law, namely, the Newton’s gravitational law. We have

shown empirically, on a wide variety of the datasets, that this new class of gravity inspired link

prediction methods outperforms most of other methods (Wahid-Ul-Ashraf, Budka and Musial-

Gabrys 2018; Wahid-Ul-Ashraf et al. 2019).

It may be possible that the disappearance of links can also be predicted based on the same

methods which are used to predict the appearance of links. The scores which are diminishing

(obtained from the link prediction techniques between pairs of nodes) can be considered as

indications that the links may cease to exist in the future. The prediction of a disappearing link

can be achieved by assuming that the already existing link does not exist between a node pair

and then calculating a score based on the link prediction technique. Afterwards, based on how

weak the score is, one can determine the likelihood of that link being broken in future. However,

the link disappearance predictions based on the link prediction approaches are not empirically

evaluated in this work due to being out of scope for this thesis (as discussed in the beginning of

Chapter 1).

124



125

The proposed new class of link prediction methods, namely Graph Gravity (GG), are not only

useful for predicting links between nodes but also can be applied for classifying nodes in a so-

cial network. In this thesi (Chapter 7), we have shown that the combination of the classical

graph theory based link prediction and the modern deep learning models has superior predictive

power in the area of node classification. The reason is that the combined force of classical graph

theory and modern deep learning approaches may circumvent some limitations that can arise

when these approaches are used independently. In this thesis, state-of-the-art Graph Convolu-

tional Networks (GCNs) is the family of deep learning techniques that are combined with the

traditional graph theory based link prediction techniques (including our own Newton’s gravity

inspired approach). The blending of these two concepts for social network analysis produced

a variety of new, more powerful predictive models for node classification. In our case, the

graph theory based link prediction approach helped to reduce the limitation of the layer-wise

dependency for the GCN models. Additionally, the graph theory provides a generic approach to

augment the graph datasets for deep learning models. This technique of the graph data augmen-

tation may have other potential benefits which we discuss later in this chapter in Section 8.2.

The final contribution is in the domain of social network simulation. While designing and testing

different algorithms for social networks analysis, we have understood that there is a short sup-

ply of useful good quality social network datasets. To address this need, in this thesis, we have

designed, developed, and validated a comprehensive network simulation framework in Chap-

ter 6 and 7. For the simulation framework, we have analysed and compared different network

properties for the three standard network models (random graph, scale-free, and small-world)

in Chapter 4 (Wahid-Ul-Ashraf, Budka and Musial 2018). The analyses showed that although

these three standard network models can represent some aspects of the real social networks,

their properties are very different from each other. This has been seen even for the generated

networks with the same size and density but for different network models. In this thesis, we have

considered the fact that the three main network models have different properties, and proposed a

network simulation framework which can fuse these models together for a more comprehensive

social network modelling.

A potential future application of the GCN combined with the simulation framework is transfer

learning for graphs, i.e. training a GCN on the simulated networks to be used in real-world

networks. The GCN can be trained on a simulated network which may closely resemble (i.e. in

terms of number of nodes, number of features, and other network properties such as clustering

coefficient) a targeted social network and then be used on the real-networks for preference (i.e.

sDNA) classification. On top of that, our graph augmentation technique using node similarity

measures can allow us to have multiple graph representative matrices for a single graph. As a

result, using several graph representative matrices can reduce graph level overfitting and allow
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even better transfer learning. This type of transfer learning for graphs can have a potential appli-

cation on social network marketing and advertisement as a certain type of sDNA or preference

may correlate with a preference towards certain products.

The proposed network simulation framework is capable of simulating high quality synthetic

social networks with all the major required qualities of a real-world social network dataset. This

type of network simulation framework, which is capable of not only generating nodes and links

but also the features, node labels, the dynamic aspects, and even changes in the dynamics (i.e.

dynamics of the dynamics) in one comprehensive formulation, to the best of our knowledge

has not been accomplished to this date. The demand for such a comprehensive social network

generator is further on the rise due to the introduction of user privacy enforcing laws such as

the GDPR. Due to these types of privacy enforcing laws obtaining Facebook-type friendship-

based social network datasets are becoming increasing difficult. We hope that the developed

open-source software as an implementation of our proposed simulation algorithms will help to

accelerate developments in the area of network science by manifolds.

8.1 Evaluation of the Objectives

We have fulfilled all the objectives from Section 3.2. For Objective 1 we have compared and

analysed the three standard network models in Chapter 4. We have developed an approach to

compare these three networks to each other, such that their size, and density stays the same while

their network types are relatively stable (e.g. the scale-free models do not become similar to the

random graph models). In Chapter 5 we have proposed the Newton’s gravity inspired link pre-

diction technique which fulfils Objective 2. Additionally, we have developed a software package

in R (Appendix A, Section A.2) to fulfil Objective 3. In Chapter 7 we have combined the GCN

with link prediction approach to fulfil Objective 4, and proposed four new variants of the GCN

with better classification accuracy. In Chapter 6 we have developed a novel and comprehensive

social network simulation framework, which is to complete Objective 5. Finally, for Objective 6

we have developed an open-source software for our proposed simulation framework. Examples

on how to use the software is given in Section A.6. The GitHub repository for this software is

given in Section 1.4.

8.2 Future Work

For the Newton inspired link prediction methods (in Chapter 5), methods which give better

predictions when combined with centrality measures could be used for force directed graph
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embedding to derive useful insights about the network other than link predictions (Mutton 2004;

Ahn et al. 2014; Dawson et al. 2010).

Furthermore, in our case of social networks, we are currently assuming that any network op-

erates in three-dimensional dissimilarity space for a particular dissimilarity measurement (or

inverse of a similarity measurement); although there might be more dimensions, their impact on

the inverse square law at large is negligible. The quadratic form of inverse squared distance that

we observe for several cases of intensity or quantity in nature is due to three spatial dimensions,

which characterise our physical world (Adelberger et al. 2003). The inverse square relation be-

tween physical quantity (or intensity) and distance is widely found in nature, and is known as

the Inverse-Square law. Some examples include sound transmission (Marten and Marler 1977),

force between two electrostatic charges (de Coulomb 1785), intensity of radiation (Gutiérrez

and Sabra 2014) and more. The quadratic form of inverse distance that we observe for several

cases of intensity or quantity in nature, is due to three spatial dimensions, which characterise

our physical world (Adelberger et al. 2003). In our case of social networks, we are directly

using the same Inverse-Square Law found in nature. For example, in the combination method

of RPR with DC, the inverse of RPR is the path length analogous to the distance in Newton’s

gravitational law in Equation 5.1. The squared distance in Newton’s law is a result of three spa-

tial dimensions. But for our approach in Equation 5.2, other than the quadratic order, it might

be possible to obtain better performance by using an order of one, three, four etc of the RPR.

Optimal order of the dissimilarity measure could be learnt from the ground truth of the data such

that the dimension for which using Equation 5.2 gives the best prediction result.

The optimal dimension could be learnt (i.e. using machine learning) from ground truth of the

data, such that the dimension for which using Equation 5.2 in Chapter 5 gives the best prediction

result. Additionally, all the link prediction approaches can be tested to predict the disappearance

of links that we have discussed earlier in Section 8. Predictive analysis of disappearance of links

is another potential future research direction of this thesis.

In this thesis, we have considered the likelihood of two different nodes connecting in future by

using Newton’s gravitational law. The measurement of mass based on some of the centralities

(e.g. betweenness centrality) and the distance based on node some of the node similarities (e.g.

Katz) considers not only the two nodes in question but also their surroundings. However, a more

accurate application of the gravitational force requires considering a more precises effects of

other surrounding nodes’ effect. This can be achieved by mapping the topology and properties

of the network in a gravitational field similar to the Metric Tensor in the theory of General

Relativity. A gravitational field mapping may not only result in better link predictability but

also it may reveal some interesting patterns within the gravitational field by defining special

characteristics of a social network.
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As discussed earlier, the equation of universal gravitation by Newton is not the only area where

we observe this kind of relationship between particles or bodies. Coulomb’s law for attraction

or repulsion between particles with static charges (de Coulomb 1785) works based on similar

principle. If we have two charged particles with q1 and q2 and r is the distance between them

then the attraction or repulsion force is defined as:

F = ke
q1q2

r2
(8.1)

In Equation 8.1, ke is the Coulomb’s constant. This force between two nodes could be attraction

or repulsion force depending on the sign of the charges (different attraction and same repulsion).

Similar to the Newton’s gravitational law, the Coulomb’s law can be applied not only to predict

appearance of links but also to predict disappearance of links. The repulsion of links can be

measured by using filters on the similarity measures. For example, a similarity score more than

some threshold t can be defined as repulsion.

As for our work in the area of node classification, so far we have used Katz, RPR, and GG

node-similarity measures (in Chapter 7). Other node similarity measures such as SimRank,

Triad Transition Matrix (TTM), AdamicAdar can also be used as graph representatives for the

GCN (Jeh and Widom 2002; Juszczyszyn, Budka and Musial 2011; Adamic and Adar 2003).

Additionally, we have used a few empirically selected thresholds for the augmented node-

similarity matrix (Chapter 7). A more effective way to select optimal thresholds is another

future direction to explore.

In Chapter 7, for the node-similarity-based matrices, we have proposed a reconfiguration tech-

nique. This reconfiguration results in augmentation of the graph represented by the node-

similarity matrix. This is particularly important as for node classification task with GCN-like

models, we only have one graph sample to train the model. The augmentation technique can

be used to better train the model on the same graphs with several different augmented node-

similarity matrices (with different thresholds and similarity measurements). Several representa-

tions of the same graph topology can also work as a regularisation technique to prevent overfit-

ting of the model. Furthermore, the augmentation technique on the node-similarity matrix with

thresholds can reduce the number of connections without losing important information about

the graph structure. This reduction can come in handy when we have a large and dense graph. A

dense graph requiring more arithmetic operations to train the model can become computation-

ally expensive. The reduction of the connections in the augmented node-similarity matrix will

then speed up the process significantly.

Also, for the node classification approaches in Chapter 7, the three cases where topology only

model performs better could be due to significantly more learnable parameters the model has

compared with the feature and topology model that we have discussed. To solve this problem
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of an unequal number of learnable parameters, we have introduced another variation for the

topology only model, where the number of learnable parameters is reduced by using a low-rank

approximation of the weight matrix. The reduced parameter model for the topology only model

also performs well compared with the model with more parameters. A further inspection of

those datasets may reveal the underlying reason why the topology only models perform well

for them. However, it could be possible that for those three datasets, the features are reflected

within the topology so well that the topology only model becomes more powerful and adding

features simply results in redundancy.

In Chapter 6, we have introduced a comprehensive social network simulation guideline and in-

troduced an open-source software. The software is highly optimised and uses GPU computation,

however there is room for further optimisation. Additionally, integrating more features such as

graph analytic with the software can be another future direction towards upgrading the software

package.

In this thesis, we have developed and tested a set of nature-inspired link prediction approaches,

reinforcing the value of guidance provided by well-established physical models. Furthermore,

we have designed deep learning models for networks with the combined power of graph the-

ory based link prediction and state-of-the-art GCNs for node classification, demonstrating how

inspirations coming from different branches of science can complement each other, leading to

development of a new breed of techniques.
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Appendix A

Appendix

A.1 Enlarged plots for the Network Models - Simulation Study,
Chapter 4

A.1.1 Closeness Centrality
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A.1.2 Betweeness Centrality
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A.1.3 Avg Geodesic Path Length
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A.1.4 Global Clustering Coefficient
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FIGURE A.13: S & Nei=2
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FIGURE A.14: S & Nei=4
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FIGURE A.15: S & Nei=8
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FIGURE A.16: S & Nei=16

A.2 Link Prediction Library

A Link prediction Library in R is developed to benchmark with most popular 12 different link

prediction methods including our approach described in Chapter 5. It is a comprehensive library

with the freedom to predict the unlimited number of parameters for each of the methods. The

library contains 26 functions. This library supports multithreading and user can define the num-

ber of threads to be used during the experiment. The usage of multithreading radically reduces

processing time. Although R is comparatively slow, this library utilises other highly optimised

R libraries such as Matrix, igraph etc. Most of the time costly operations are done using differ-

ent libraries/dependencies which are originally written in faster programming languages such as

C/C++. Two main functions of the library are described below:



147

Function Name: calcPredictions()

Description: This function is a pipeline, and it calculates all the predictions from training

datasets and also checks the prediction by comparing against the ground truth from the test

set. The processed information in each steps is stored in HDD as serialised objects to reduce

memory usage and enhance re-usability.

Arguements

FolderPath: This is the path of the folder where datasets are. For example if the root folder is

E://experiment// , than inside the folder experiment there are subfulders such as:

E://experiment//dataset1, E://experiment//dataset2 etc. Each of the subfolders, such as dataset1

should contain two text files named train.txt and test.txt for training and test set. For network

input format, currently the library supports edge lists seperated by a comma.

KatzBeta: Katz parameter β. Any number of parameters could be selected. If auto is selected

than the parameters are selected autometically.

rootedPageRankAlpha: α Parameter(s) for rooted PageRank method.

LocalPathsIndexEps: ε Parameter(s) for Local Path Index.

LeichtHolmeNewmanTheta: θ Parameter(s) for Leicht-Holme-Newman Global Index.

threads: Number of threads should be utilised.

Usage

calcPredictions(FolderPath=”E://experiment//”,KatzBeta =c(”auto”,3),

rootedPageRankAlpha =c(0.15,0.25),LocalPathsIndexEps =c(0.01,0.05),

LeichtHolmeNewmanTheta =c(0.5,0.7),threads=8)

Output: All the output files will be generated under each folder of the datasets. Results will also

be evaluated using Precision-Recall (PR) and Receiver-Operating-characteristic (ROC) curves.

Function Name plotPredictions()

Description: This function plots heat maps, bar charts for all the predictors for every dataset.

There are individual and also combined plots. This function also calculates statistics for all the

networks. Performance of a random predictor is also evaluated and compared against all the

predictors. This function only can be called once the calcPredictions function has been called.

Arguements

FolderPath: E://experiment//

Usage
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plotPredictions(FolderPath=”E://experiment//”)

Output: Upon successful completion of the function, there will be three additional folders under

the FolderPath. PR: which contains results for PR, ROC: which contains results for ROC, stats:

which contains statistics of all the networks. Under PR and ROC folders there are two CSV files

with the values of Area Under the Curve (AUC) of PR and ROC.

heatMapMatrix.csv: is the file with heatmap data. heatMapMatrixRanked.csv: each of the

predictors are ranked for each of the datasets.

The library also generates interactive heat map, and bar plots for all the datasets for PR and

ROC. Also, many other individual plots are available for better understanding the performance

for the predictors.

There is also an progress bar while the calcPredictions() is called and running in R. Example of

the output while this function runs an experiment is given below.

FIGURE A.17: calcPredictions() running an experiment
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FIGURE A.18: plotPredictions() auto-generating plots and statistics from experiment outputs
that had been auto-generated by calcPredictions() function

All the heatmaps and bar charts and statistics in the Appendix A is generated using this library1.
1the library could be shared for usage in academic purpose upon request via email
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A.3 AUC of Precision-Recall for 7 Datasets

A.3.1 Individual Barplots
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FIGURE A.19: PR AUC of collegeMsg dataset
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FIGURE A.20: PR AUC of contact dataset
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FIGURE A.21: PR AUC of hep-th dataset
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FIGURE A.22: PR AUC of hep-ph dataset
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FIGURE A.23: PR AUC of hypertext dataset
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FIGURE A.24: PR AUC of infectiousContact dataset
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FIGURE A.25: PR AUC of MITContact dataset

A.3.2 Heatmap and Barplots
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A.4 AUC of Receiver-Operating-Characteristic for 7 Datasets

A.4.1 Individual Barplots
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FIGURE A.28: PR AUC of collegeMsg dataset
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FIGURE A.29: ROC AUC of contact dataset
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FIGURE A.30: ROC AUC of hep-th dataset
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FIGURE A.31: ROC AUC of hep-ph dataset
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FIGURE A.32: ROC AUC of hypertext dataset
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FIGURE A.33: ROC AUC of infectiousContact dataset
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FIGURE A.34: ROC AUC of MITContact dataset

A.4.2 Heatmap and Barplots
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A.4.3 ROC AUC Ranked

Predictors collegeMsg rank(collegeMsg) contact rank(contact) hep rank(hep) hepph rank(hepph) hypertext rank(hypertext) infectiousContact rank(infectiousContact) MITContact rank(MITContact)

Katz1 0.791423633 39 0.881250389 19 0.900694574 6 0.845179608 13 0.621591957 55 0.705491306 21 0.493229451 69

Katz2 0.78621584 45 0.880277458 20 0.900767495 4 0.846400116 11 0.623603028 47 0.585679217 36 0.505505695 66

Katz3 0.776491836 48 0.878706814 25 0.900825839 2 0.847028363 8 0.622850093 51 0.582770727 37 0.50530841 67

AA 0.662028215 63 0.878683701 26 0.864703115 39 0.769634072 39 0.626170568 42 0.547150033 47 0.570602723 31

CN 0.660842181 64 0.877938882 27 0.863831123 41 0.768838409 40 0.622531068 52 0.540751792 51 0.570356912 32

JC 0.6348254 69 0.810494734 49 0.852334028 45 0.767654427 41 0.606032539 60 0.562523702 41 0.593859332 21

ACT 0.794570247 30 0.837778054 43 0.830614571 52 0.72010683 54 0.638887766 22 0.797229838 9 0.508280419 65

ACTN 0.636716884 68 0.682126631 66 0.828576186 54 0.703880941 58 0.579914812 66 0.545202686 48 0.553706977 47

RPR0.15 0.791491805 38 0.797822009 51 0.896641641 19 0.861768809 4 0.633624703 32 0.449738153 73 0.666255125 7

RPR0.25 0.790762269 40 0.796660713 52 0.897256248 17 0.865851037 2 0.6332894 33 0.448252684 74 0.670186514 5

scorePsInLap 0.783366944 46 0.826922013 46 0.860563744 43 0.843169604 16 0.623571593 48 0.484131201 70 0.544903911 52

LPIeps0.01 0.807325474 14 0.881449771 18 0.898583216 13 0.842980361 17 0.621582227 56 0.547904365 46 0.558063166 41

LPIeps0.02 0.810331766 12 0.881465108 17 0.897991403 15 0.841841209 22 0.620236336 57 0.555575831 43 0.558012254 42

LGI0.5 0.64393342 67 0.573809024 72 0.875043133 33 0.842311044 19 0.507332887 73 0.525025896 58 0.639497495 13

LGI0.7 0.620414916 71 0.54285086 73 0.876561355 31 0.838059898 25 0.522021864 69 0.535140974 53 0.64018163 12

MFI 0.789726197 42 0.829858087 44 0.869950839 38 0.852396475 7 0.623925233 46 0.489156462 67 0.544967551 51

DC1 0.739507171 57 0.770973743 56 0.77118249 63 0.671685478 65 0.593635301 63 0.691054288 24 0.539364805 56

DC2 0.754045609 54 0.728253356 60 0.736938474 69 0.659795743 68 0.603938765 61 0.789890729 10 0.475549336 74

BC1 0.741083646 56 0.771903687 55 0.693282977 70 0.634993479 70 0.622256015 53 0.517617364 61 0.539765739 55

BC2 0.736834546 58 0.632999245 68 0.650948027 71 0.602327892 73 0.611787892 59 0.48567401 68 0.492768058 70

CC1 0.729762916 59 0.758282224 57 0.784245521 60 0.681738308 63 0.629878363 38 0.757359627 12 0.625957192 15

CC2 0.712437893 60 0.75209664 58 0.74957383 68 0.673775111 64 0.584762676 65 0.836763149 3 0.531327015 58

DC1*DC2*Katz1ˆ2 0.80297894 20 0.886061471 8 0.898990168 11 0.838535465 24 0.632007314 35 0.74558325 13 0.559754411 38

DC1*DC2*Katz2ˆ2 0.799515639 24 0.88569295 9 0.899210922 10 0.840586953 23 0.634278844 31 0.6188726 30 0.554225647 46

DC1*DC2*Katz3ˆ2 0.789132682 43 0.885075363 11 0.899325874 9 0.842012993 21 0.634480924 30 0.606101747 31 0.53397048 57

DC1*DC2*AAˆ2 0.797648969 27 0.884027043 12 0.817652877 56 0.692492727 60 0.637278236 25 0.743619358 14 0.556877863 45

DC1*DC2*CNˆ2 0.798292754 26 0.88519806 10 0.873244964 34 0.772930497 38 0.634488034 29 0.72556907 18 0.556885818 44

DC1*DC2*JCˆ2 0.567855959 73 0.807491048 50 0.643759321 72 0.645321354 69 0.632838649 34 0.728735547 16 0.547376343 50

DC1*DC2*ACTˆ2 0.807195456 15 0.873188068 29 0.837630777 49 0.722201883 51 0.640496174 20 0.814727981 5 0.499821011 68

DC1*DC2*ACTNˆ2 0.812583826 5 0.889845619 4 0.851896522 46 0.733970457 49 0.635893239 28 0.806450195 7 0.51715349 61

DC1*DC2*RPR0.15ˆ2 0.811833042 8 0.880010248 21 0.900042059 8 0.844469183 15 0.642155476 18 0.518247691 60 0.557740191 43

DC1*DC2*RPR0.25ˆ2 0.812684355 4 0.879584699 24 0.903769756 1 0.853917529 5 0.64500705 17 0.506631572 64 0.573445065 27

DC1*DC2*scorePsInLapˆ2 0.74394484 55 0.829690891 45 0.794270134 59 0.76586516 43 0.521911468 70 0.891786836 2 0.5649427 34

DC1*DC2*LPIeps0.01ˆ2 0.807186206 16 0.886082424 7 0.872241047 35 0.760576261 45 0.630669843 37 0.620916297 28 0.542173735 53

DC1*DC2*LPIeps0.02ˆ2 0.812031818 6 0.886113963 6 0.877478233 29 0.774595062 37 0.629420689 40 0.644720468 27 0.542148279 54

DC1*DC2*LGI0.5ˆ2 0.76515432 53 0.859183827 36 0.898749617 12 0.84679619 10 0.585378084 64 0.561446664 42 0.597198865 19

DC1*DC2*LGI0.7ˆ2 0.769110143 51 0.862001092 31 0.898062101 14 0.842471342 18 0.577898876 67 0.57643161 39 0.593916609 20

DC1*DC2*MFIˆ2 0.815668178 1 0.886740189 5 0.885882992 24 0.820489626 32 0.639570348 21 0.620043069 29 0.489702179 73

DC1*DC2*1/spˆ2 0.81116952 10 0.891730132 2 0.864370868 40 0.766485859 42 0.638329426 24 0.783453073 11 0.490834979 71

BC1*BC2*Katz1ˆ2 0.807608742 13 0.859255328 35 0.888025843 22 0.823078816 31 0.649629071 12 0.697059588 23 0.524467369 59

BC1*BC2*Katz2ˆ2 0.805088961 19 0.859263752 34 0.889641356 21 0.827237785 29 0.650749493 10 0.589694591 35 0.522766578 60

BC1*BC2*Katz3ˆ2 0.796252731 28 0.859093101 38 0.891477673 20 0.833029118 27 0.649669487 11 0.582410795 38 0.51002894 64

BC1*BC2*AAˆ2 0.793793627 31 0.854425668 40 0.778684867 62 0.668470962 66 0.651594112 9 0.484590078 69 0.573669397 26

BC1*BC2*CNˆ2 0.793214907 33 0.859120319 37 0.826901638 55 0.720201072 53 0.649461419 14 0.51354465 62 0.573822134 25

BC1*BC2*JCˆ2 0.705174291 62 0.710788774 62 0.58958455 73 0.501227524 74 0.652261351 8 0.502319688 65 0.550450177 48

BC1*BC2*ACTˆ2 0.80586703 17 0.857158472 39 0.796170339 58 0.688342959 61 0.65804159 3 0.687038751 25 0.512727296 63

BC1*BC2*ACTNˆ2 0.799936747 23 0.707346362 64 0.770936983 64 0.667657458 67 0.653731671 6 0.537102351 52 0.598729418 18

BC1*BC2*RPR0.15ˆ2 0.812000822 7 0.781513106 53 0.850140792 48 0.783107275 36 0.658907166 2 0.553020622 45 0.628836127 14

BC1*BC2*RPR0.25ˆ2 0.813295809 3 0.781031177 54 0.862096144 42 0.799545143 34 0.660332205 1 0.554190117 44 0.643412974 11

BC1*BC2*scorePsInLapˆ2 0.771175021 50 0.650737734 67 0.760835024 66 0.700259215 59 0.564493857 68 0.832866022 4 0.65157009 8

BC1*BC2*LPIeps0.01ˆ2 0.810969302 11 0.859282762 33 0.851104428 47 0.742730044 48 0.649532147 13 0.526057193 57 0.559533261 40

BC1*BC2*LPIeps0.02ˆ2 0.81435901 2 0.85934411 32 0.855882307 44 0.752896301 46 0.648812892 15 0.508299927 63 0.559538034 39

BC1*BC2*LGI0.5ˆ2 0.789918178 41 0.709705243 63 0.883215071 25 0.829133765 28 0.631639453 36 0.532952834 55 0.685355217 3

BC1*BC2*LGI0.7ˆ2 0.791841636 35 0.703344903 65 0.880682809 26 0.823481956 30 0.629587218 39 0.544615019 50 0.685606597 2

BC1*BC2*MFIˆ2 0.805534761 18 0.746839919 59 0.807982855 57 0.726999747 50 0.657000877 4 0.518648823 59 0.559981926 37

BC1*BC2*1/spˆ2 0.800129557 22 0.718769657 61 0.780291941 61 0.686910265 62 0.655919375 5 0.526168789 56 0.571788822 30

CC1*CC2*Katz1ˆ2 0.791719549 37 0.882504787 15 0.900686509 7 0.845112776 14 0.623487393 49 0.719201811 19 0.576891196 24

CC1*CC2*Katz2ˆ2 0.786586922 44 0.881566635 16 0.900765045 5 0.846335556 12 0.625451686 43 0.595033717 33 0.568571797 33

CC1*CC2*Katz3ˆ2 0.776639666 47 0.87998735 22 0.900813851 3 0.84688539 9 0.624830477 44 0.590536595 34 0.54803343 49

CC1*CC2*AAˆ2 0.707704314 61 0.875851746 28 0.761296576 65 0.628621673 71 0.628220745 41 0.703528225 22 0.573117316 28

CC1*CC2*CNˆ2 0.768911008 52 0.879904184 23 0.887125909 23 0.79502564 35 0.624691641 45 0.717774816 20 0.572865937 29

CC1*CC2*JCˆ2 0.558703236 74 0.501825541 74 0.754676066 67 0.704663358 57 0.600151074 62 0.732898852 15 0.588212037 22

CC1*CC2*ACTˆ2 0.795056478 29 0.845042633 42 0.830688734 51 0.720356668 52 0.64191036 19 0.812519404 6 0.516184564 62

CC1*CC2*ACTNˆ2 0.649013945 66 0.847363712 41 0.829940714 53 0.711569674 56 0.50921298 72 0.655780468 26 0.604671846 17

CC1*CC2*RPR0.15ˆ2 0.793400636 32 0.814666845 47 0.896689227 18 0.861778341 3 0.637045844 26 0.461673166 71 0.670033777 6

CC1*CC2*RPR0.25ˆ2 0.79259886 34 0.81332172 48 0.897305078 16 0.865855814 1 0.636811206 27 0.45905486 72 0.674350191 4

CC1*CC2*scorePsInLapˆ2 0.583609585 72 0.586459068 71 0.587709356 74 0.625842576 72 0.6122712 58 0.901816594 1 0.701465799 1

CC1*CC2*LPIeps0.01ˆ2 0.791783574 36 0.882693152 14 0.870248805 36 0.748137162 47 0.623485896 50 0.572874544 40 0.561103589 35

CC1*CC2*LPIeps0.02ˆ2 0.800592224 21 0.882705249 13 0.877521639 28 0.765814141 44 0.622126721 54 0.597025509 32 0.561081315 36

CC1*CC2*LGI0.5ˆ2 0.651667267 65 0.630674493 70 0.875102683 32 0.842308293 20 0.49804394 74 0.533668318 54 0.645513905 10

CC1*CC2*LGI0.7ˆ2 0.630210727 70 0.631064832 69 0.876627328 30 0.838054053 26 0.511963515 71 0.545099848 49 0.647637905 9

CC1*CC2*MFIˆ2 0.798634388 25 0.863971579 30 0.870146681 37 0.852672156 6 0.653349964 7 0.496991916 66 0.582625201 23

CC1*CC2*1/spˆ2 0.772911413 49 0.898138643 1 0.879473979 27 0.817410474 33 0.647560182 16 0.726247329 17 0.617368913 16

DC1*DC2 0.811538855 9 0.891498564 3 0.833976232 50 0.714749357 55 0.638588014 23 0.803304886 8 0.490494502 72

TABLE A.1: ROC AUC Ranked
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A.5 More Detail Properties of the 7 Datasets

dataset Vertices Edges GlobalClusteringCoefficent ClusteringCoefficentSD AvgGeodesicPath MeanDegreeCentrality SDDegreeCentrality MeanClosenessCentrality SDClosenessCentrality MeanBetweenessCentrality SDBetweenessCentrality

collegeMsg-Training 1260 29918 0.0557 0.1363 3.0564 47.4889 95.5567 0.000158 0.000014 1290.3714 4870.9555

collegeMsg-Full 1899 59835 0.0568 0.1255 3.0552 63.0174 131.768 0.000058 0.000004 1938.0453 7689.691

contact-Training 131 14122 0.6798 0.3708 2.0957 215.6031 317.8374 0.003812 0.000769 71.2214 156.4402

contact-full 274 28244 0.5664 0.4063 2.424 206.1606 461.7712 0.00155 0.000271 194.3796 689.7984

hep-Training 2293 50943 0.4671 0.2988 3.4859 44.4335 74.8863 0.000002 0 2293.3314 10927.3927

hep-full 6776 290484 0.3327 0.3237 3.2238 85.7391 186.0342 0 0 6859.9293 54183.6514

hepph-Training 2157 43627 0.4092 0.3536 3.6496 40.4516 72.7137 0.000008 0.000001 2709.898 9172.3323

hepph-full 10324 955423 0.3509 0.3374 2.9455 185.0878 336.9404 0.000003 0 9989.4466 53544.1013

hypertext-Training 110 10409 0.3961 0.0829 1.7766 189.2545 184.5619 0.005209 0.000515 42.3273 93.1187

hypertext-full 113 20818 0.4952 0.0425 1.6563 368.4602 324.4265 0.005451 0.000606 36.7522 72.9689

infectiousContact-Training 241 8649 0.4164 0.0598 3.3572 71.7759 52.3614 0.001293 0.000229 282.8631 665.9181

infectiousContact-full 410 17298 0.4357 0.0965 3.6309 84.3805 58.9714 0.000688 0.000098 538.0098 1786.4198

MITContact-Training 96 543202 0.6892 0.1083 1.5169 11316.7083 8550.6648 0.007068 0.000942 24.5521 52.1285

MITContact-full 96 1086405 0.7254 0.1083 1.4447 22633.4375 21929.0061 0.007426 0.001005 21.125 44.2452

TABLE A.2: Properties of the 7 datasets

A.6 VirtualSoc

FIGURE A.37: VirtualSoc, Simulation of a single network
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A.7 Parameters for the Simulated Networks

exploration probability p popularity Preference Intensity r node-pair fraction connection t Path 2 Preference Intensity c1 Path 3 Preference Intensity c2 Path 4 Preference Intensity c3

2.977539062499999778e-01 1.057128906250000000e+00 4.196582031250000000e+01 8.353515624999999778e-01 3.840820312499999556e-01 1.907226562500000111e-01

1.413085937500000167e-01 1.057128906250000000e+00 4.196582031250000000e+01 8.353515624999999778e-01 3.840820312499999556e-01 1.907226562500000111e-01

2.977539062499999778e-01 9.004199218749999289e+00 4.196582031250000000e+01 8.353515624999999778e-01 3.840820312499999556e-01 1.907226562500000111e-01

2.977539062499999778e-01 1.057128906250000000e+00 4.057714843750000000e+01 8.353515624999999778e-01 3.840820312499999556e-01 1.907226562500000111e-01

2.977539062499999778e-01 1.057128906250000000e+00 4.196582031250000000e+01 7.138671875000000000e-01 3.840820312499999556e-01 1.907226562500000111e-01

2.977539062499999778e-01 1.057128906250000000e+00 4.196582031250000000e+01 8.353515624999999778e-01 3.254882812500000111e-01 1.907226562500000111e-01

2.977539062499999778e-01 1.057128906250000000e+00 4.196582031250000000e+01 8.353515624999999778e-01 3.840820312499999556e-01 1.254882812500000000e-01

2.977539062499999778e-01 9.004199218749999289e+00 4.057714843750000000e+01 7.138671875000000000e-01 3.254882812500000111e-01 1.254882812500000000e-01

1.413085937500000167e-01 1.057128906250000000e+00 4.057714843750000000e+01 7.138671875000000000e-01 3.254882812500000111e-01 1.254882812500000000e-01

1.413085937500000167e-01 9.004199218749999289e+00 4.196582031250000000e+01 7.138671875000000000e-01 3.254882812500000111e-01 1.254882812500000000e-01

TABLE A.3: Input parameters for the simulated networks in Chapter 7, Figure 7.5 and Ta-
ble 7.3. 1400 networks are simulated using this sampling method and the first ten networks
with the above first ten parameters are used in 7. Each of the networks is consists of three

snapshots, thus 30 networks in total
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A.8 Properties for the Simulated Networks

Network Edges
Global Clustering

Coefficient

Clustering Coefficient

(SD)

Centrality Degree

Mean

Centrality

Closeness

(Mean)

Centrality

Betweeness

(Mean)

Centrality Degree

(SD)

Centrality Closeness

(SD)

Centrality

Betweeness

SD

Avg Geodesic

Path

9-2 83698 0.219124075 0.071425715 167.396 0.000548037 415.802 101.1033683 3.21E-05 601.8456563 1.832436436

9-1 57486 0.152901691 0.052800973 114.972 0.000531865 442.023 72.04887408 2.12E-05 648.8455707 1.884930931

9-0 29621 0.082840954 0.030642846 59.242 0.000508835 484.069 37.65037831 1.56E-05 703.5184044 1.969107107

8-2 81091 0.222944217 0.054173577 162.182 0.000545928 418.409 85.38837187 2.61E-05 506.8817393 1.837655656

8-1 55640 0.157881191 0.040593909 111.28 0.000530371 444.271 61.02983074 1.77E-05 547.9090429 1.889431431

8-0 28641 0.084102147 0.025682035 57.282 0.000498833 504.957 32.81510791 2.25E-05 616.6126177 2.010924925

7-2 160056 0.549580434 0.054636218 320.112 0.000598187 348.572 183.261038 6.85E-05 391.864325 1.697841842

7-1 113408 0.397361212 0.054629529 226.816 0.000562905 396.091 135.3515134 4.95E-05 443.3466403 1.792974975

7-0 60350 0.207346288 0.040059126 120.7 0.000525569 455.297 71.93003496 3.08E-05 493.5133176 1.911505506

6-2 164823 0.466574488 0.054261799 329.646 0.000604125 334.699 151.7404885 5.24E-05 316.9432457 1.670068068

6-1 117031 0.358238793 0.039804195 234.062 0.000568386 384.403 118.376878 3.84E-05 382.2600459 1.769575576

6-0 62415 0.207176101 0.040172281 124.83 0.000340653 471.052 68.88622803 2.06E-05 483.6098929 1.944936921

5-2 164823 0.505990506 0.062575234 329.646 0.000605197 335.005 170.6617183 5.89E-05 412.9360756 1.670680681

5-1 117031 0.380975226 0.050934659 234.062 0.000567227 387.767 129.5004035 4.46E-05 500.8345596 1.77631031

5-0 62415 0.212415381 0.062794896 124.83 0.000339141 478.502 72.64691786 2.19E-05 620.5696644 1.959881725

4-2 164823 0.433290951 0.05869506 329.646 0.000603651 334.677 140.2080775 5.08E-05 296.5044142 1.670024024

4-1 117031 0.318333188 0.044090972 234.062 0.000568943 382.472 105.2961226 3.41E-05 347.261219 1.76570971

4-0 62415 0.173959255 0.025864001 124.83 0.000533961 437.885 58.63585305 1.74E-05 408.683651 1.876646647

3-2 160056 0.38632966 0.040308863 320.112 0.000598738 339.444 111.8447706 4.14E-05 283.2581963 1.679567568

3-1 113408 0.280341641 0.030453832 226.816 0.000565885 386.094 83.69893461 2.74E-05 328.5046171 1.772960961

3-0 60350 0.153332385 0.017879546 120.7 0.000532688 439.777 46.9460321 1.40E-05 376.9181835 1.880434434

2-2 164823 0.408590055 0.061389134 329.646 0.000603355 334.677 133.1836047 4.98E-05 321.2547438 1.670024024

2-1 117031 0.297291235 0.044219401 234.062 0.000568705 382.469 98.17840473 3.23E-05 369.4063686 1.765703704

2-0 62415 0.166012792 0.021268557 124.83 0.00053398 437.692 53.85526427 1.59E-05 394.484531 1.87626026

1-2 83698 0.241401105 0.031849318 167.396 0.000546733 417 81.9318498 2.52E-05 432.7960615 1.834834835

1-1 57486 0.165305367 0.027296065 114.972 0.000528786 447.464 57.12449934 2.01E-05 472.288996 1.895823824

1-0 29621 0.084831963 0.021858391 59.242 0.000492388 519.966 30.34409663 2.94E-05 551.4941557 2.040972973

0-2 164823 0.47262035 0.047635739 329.646 0.000604325 334.748 155.2453407 5.37E-05 338.9488688 1.670166166

0-1 117031 0.341618112 0.041529809 234.062 0.000569068 382.914 115.4338301 3.69E-05 401.9915505 1.766594595

0-0 62415 0.184678735 0.028370755 124.83 0.000531694 442.613 64.34217136 2.24E-05 478.6616234 1.886112112

TABLE A.4: Properties for the simulated networks used in Figure 7.5 and Table 7.3. Each of
the networks contains 1000 nodes

A.9 Citation Networks

A.9.1 Random Weight Initialisation

For the two citation networks in Chapter 7, Table 7.4, following randomly selected seeds are

used to initialise the weights:
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seeds = {222, 479, 534, 569, 264, 649, 382, 871, 239, 654, 287, 928, 833, 474, 963, 378, 298,

411 , 292, 893, 240, 226, 644, 831, 780, 527, 326, 809, 343, 564, 708, 750, 906, 467, 422, 333 ,

555, 99, 204, 271, 231, 705, 276, 685, 267, 375 }
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Isella, L., Stehlé, J., Barrat, A., Cattuto, C., Pinton, J.-F. and Van den Broeck, W. (2011), ‘What’s

in a crowd? analysis of face-to-face behavioral networks’, Journal of theoretical biology

271(1), 166–180.

Jeh, G. and Widom, J. (2002), Simrank: a measure of structural-context similarity, in ‘Proceed-

ings of the eighth ACM SIGKDD international conference on Knowledge discovery and data

mining’, ACM, pp. 538–543.

Jeong, H., Mason, S. P., Barabási, A.-L. and Oltvai, Z. N. (2001), ‘Lethality and centrality in

protein networks’, Nature 411(6833), 41–42.

Johnson, D. B. (1977), ‘Efficient algorithms for shortest paths in sparse networks’, Journal of

the ACM (JACM) 24(1), 1–13.

Jost, J. and Joy, M. P. (2002), ‘Evolving networks with distance preferences’, Physical Review

E 66(3), 036126.

Juszczyszyn, K., Budka, M. and Musial, K. (2011), The dynamic structural patterns of social

networks based on triad transitions, in ‘2011 International Conference on Advances in Social

Networks Analysis and Mining’, IEEE, pp. 581–586.

Juszczyszyn, K., Musial, A., Musial, K. and Bródka, P. (2009), Molecular dynamics modelling
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