
Meta-level Learning for the Effective Reduction of

Model Search Space

Abbas Raza Ali

Faculty of Science and Technology

Bournemouth University

A thesis submitted for the degree of

Doctor of Philosophy

July 2019

Statement of Originality

This thesis is solely the work of its author. No part of it has previously been

submitted for any degree, or is currently being submitted for any other degree.

To the best of my knowledge, any help received in preparing this thesis, and all

sources used, have been duly acknowledged.

Abstract

The exponential growth of volume, variety and velocity of the data is raising

the need for investigation of intelligent ways to extract useful patterns from the

data. It requires deep expert knowledge and extensive computational resources

to find the mapping of learning methods that leads to the optimized perfor-

mance on a given task. Moreover, numerous configurations of these learning

algorithms add another level of complexity. Thus, it triggers the need for an

intelligent recommendation engine that can advise the best learning algorithm

and its configurations for a given task. The techniques that are commonly used

by experts are; trial-and-error, use their prior experience on the specific domain,

etc. These techniques sometimes work for less complex tasks that require thou-

sands of parameters to learn. However, the state-of-the-art models, e.g. deep

learning models, require well-tuned hyper-parameters to learn millions of param-

eters which demand specialized skills and numerous computationally expensive

and time-consuming trials. In that scenario, Meta-level learning can be a poten-

tial solution that can recommend the most appropriate options efficiently and

effectively regardless of the complexity of data. On the contrary, Meta-learning

leads to several challenges; the most critical ones being model selection and

hyper-parameter optimization.

The goal of this research is to investigate model selection and hyper-parameter

optimization approaches of automatic machine learning in general and the chal-

lenges associated with them. In machine learning pipeline there are several

phases where Meta-learning can be used to effectively facilitate the best rec-

ommendations including 1) pre-processing steps, 2) learning algorithm or their

combination, 3) adaptivity mechanism parameters, 4) recurring concept extrac-

tion, and 5) concept drift detection. The scope of this research is limited to

feature engineering for problem representation, and learning strategy for algo-

rithm and its hyper-parameters recommendation at Meta-level.

There are three studies conducted around the two different approaches of au-

tomatic machine learning which are model selection using Meta-learning and

hyper-parameter optimization. The first study evaluates the situation in which

the use of additional data from a different domain can improve the perfor-

mance of a meta-learning system for time-series forecasting, with focus on cross-

domain Meta-knowledge transfer. Although the experiments revealed limited

room for improvement over the overall best base-learner, the meta-learning ap-

proach turned out to be a safe choice, minimizing the risk of selecting the least

appropriate base-learner. There are only 2% of cases recommended by meta-

learning that are the worst performing base-learning methods. The second study

vi

proposes another efficient and accurate domain adaption approach but using a

different meta-learning approach. This study empirically confirms the intuition

that there exists a relationship between the similarity of the two different tasks

and the depth of network needed to fine-tune in order to achieve accuracy com-

parable with that of a model trained from scratch. However, the approach is

limited to a single hyper-parameter which is fine-tuning of the network depth

based on task similarity. The final study of this research has expanded the set

of hyper-parameters while implicitly considering task similarity at the intrinsic

dynamics of the training process. The study presents a framework to automati-

cally find a good set of hyper-parameters resulting in reasonably good accuracy,

by framing the hyper-parameter selection and tuning within the reinforcement

learning regime. The effectiveness of a recommended tuple can be tested very

quickly rather than waiting for the network to converge. This approach produces

accuracy close to the state-of-the-art approach and is found to be comparatively

20% less computationally expensive than previous approaches. The proposed

methods in these studies, belonging to different areas of automatic machine

learning, have been thoroughly evaluated on a number of benchmark datasets

which confirmed the great potential of these methods.

Contents

Abstract iv

Terminologies and Mathematical Definitions xiii

Glossary of Terms xvii

Acknowledgements xxiii

1 Introduction 1

1.1 Background and Motivation . 1

1.2 Aims and Objective . 2

1.3 Research Challenges . 3

1.4 Contributions . 3

1.5 Organisation of the Thesis . 4

2 Existing Research 5

2.1 Repository of Datasets . 5

2.1.1 Real-world Datasets . 6

2.1.2 Synthetic Datasets . 9

2.1.3 Datasets from Published Research . 11

2.1.4 Discussion and Summary . 11

2.2 Meta-features Generation and Selection . 12

2.2.1 Descriptive, Statistical and Information-Theoretic Approach 13

2.2.2 Landmarking Approach . 14

2.2.3 Model-based Approach . 16

2.2.4 Discussion and Summary . 17

2.3 Base-level Learning . 20

2.3.1 Discussion and Summary . 23

2.4 Meta-learning . 23

2.4.1 Existing Systems . 24

2.4.1.1 Shift To A Better Bias . 24

2.4.1.2 Machine Learning Toolbox 24

2.4.1.3 Statistical and Logical Learning Project 25

2.4.1.4 Meta-learning Assistant . 25

2.4.1.5 Meta-learning Architecture 25

2.4.1.6 Intelligent Discovery Assistant 26

vii

viii CONTENTS

2.4.1.7 Pattern Recognition Engineering 26

2.4.1.8 e-LICO . 28

2.4.1.9 Auto-WEKA . 30

2.4.2 Regression and Classification . 30

2.4.3 Clustering . 33

2.4.4 Discussion and Summary . 34

2.5 Adaptive Mechanisms . 37

2.5.1 Recurring Concept Extraction . 37

2.5.2 Periodic Algorithm Selection . 38

2.5.3 Meta-level Representation of Non-stationary Problems 41

2.5.4 Discussion and Summary . 42

2.6 Hyper-parameter Optimization . 44

2.6.1 Transfer Learning of Deep Models . 45

2.6.2 Meta-Reinforcement Learning . 47

2.7 Research Challenges . 49

2.8 Problem Formulation . 53

3 Cross-domain Meta-learning for Time-series Forecasting 55

3.1 Methodology . 56

3.2 Experimentation Environment . 57

3.2.1 Examples of Datasets . 57

3.2.2 Base-level Forecasting Methods . 57

3.2.2.1 Simple time-series Algorithms 58

3.2.2.2 Complex time-series Algorithms 58

3.2.3 Meta-feature Generation . 59

3.2.3.1 Descriptive Statistics . 59

3.2.3.2 Frequency Domain and Autocorrelations 60

3.2.4 Meta-knowledge Preparation . 61

3.2.5 Meta-learning . 62

3.2.6 Cluster Analysis . 64

3.3 Results . 64

3.4 Analysis . 65

3.5 Summary . 68

4 Towards Meta-learning of Deep Architectures for Efficient Domain Adap-

tation 71

4.1 Methodology . 71

4.2 Experimentation Environment . 73

4.2.1 Datasets . 74

4.2.2 Pre-trained Image Classification Networks 74

4.2.2.1 Inception-ResNet-v2 . 76

4.2.2.2 VGG-19 . 76

4.2.2.3 Inception-v3 . 76

4.2.3 Transfer Learning . 76

4.3 Results and Analysis . 77

CONTENTS

4.4 Summary . 80

5 A Meta-Reinforcement Learning Approach to Optimize Parameters and

Hyper-parameters Simultaneously 83

5.1 Methodology . 84

5.1.1 Meta-learner . 85

5.1.2 Base-learner . 86

5.1.2.1 Residual Block with Stochastic Depth 87

5.2 Formulation . 87

5.3 Experimentation Environment . 90

5.3.1 Datasets . 90

5.4 Results and Analysis . 90

5.5 Summary . 94

6 Conclusions and Future Work 95

6.1 Research Challenges . 96

6.2 Main Findings and Contributions . 97

6.3 Future Research . 97

A Definitions 99

B Meta-features 105

C Summary of Literature Review 109

References 110

ix

x CONTENTS

List of Tables

1 Terminologies . xv

2.1 Real-world datasets used in various studies 6

2.2 List of publicly available Data Repositories 8

2.3 Base-level learning strategies used in different studies 21

2.4 Different Performance Measures that are used in various literatures 23

2.5 Existing Meta-learning Systems . 26

2.6 Meta-level learning strategy used in various studies 35

2.7 Meta-features used in MetaStream to characterize the data 41

2.8 Adaptive mechanisms used in previous studies 44

2.9 Hyper-parameter search techniques used in previous studies 49

3.1 NN3, NN5 and NN-GC1 datasets which are used to build Meta-modelling

and its evaluation . 58

3.2 Methods and their configurations that are used to compute performance mea-

sures . 59

3.3 Symmetric Mean Absolute Percentage Error (SMAPE) and Standard Devia-

tion (StdDev) of Base-level forecasting methods 59

3.4 List of Meta-features (MFs) and their descriptions 60

3.5 MFs Importance . 61

3.6 Proportion Raw and balanced classes . 62

3.7 SMAPE (and Accuracy) of various Meta-learners 64

3.8 SMAPE (and StdDev) of NN-GC1 series . 65

3.9 SMAPE (and StdDev) of NN-GC1 series . 66

4.1 Open-source image repositories . 74

4.2 Benchmarking of various pre-trained image classification models 74

4.3 Hyper-parameters that are used for transfer learning 77

4.4 Transfer learning accuracies of various datasets, classification architectures,

and their layers . 77

4.5 The state-of-the-art accuracy (training of the network from scratch) versus

best possible accuracy from this work . 80

4.6 The similarity and average entropy of different datasets 80

5.1 Hyper-parameter search space and parameters covering behaviour of the net-

work that is used as states t+1 . 86

5.2 Image datasets used in this work . 91

xi

xii LIST OF TABLES

5.3 Comparison with different architecture search approaches on Cifar-10 dataset 91

5.4 Accuracy of various datasets including optimal parameters and episodes re-

quired to achieve the optimal value . 92

List of Figures

2.1 Scope of existing research review . 5

2.2 Phase-wise collection of Examples of Datasets 13

2.3 The LOF caption . 18

2.4 Combining Significant Meta-features from various approaches 20

2.5 e-LICO project architecture . 29

2.6 Learning under Concept Drifting (Zliobaite, 2010) 40

2.7 A holistic view of Automatic Machine Learning areas and systems 46

2.8 Learning Path Recommendation . 50

3.1 Methodology of Cross-domain Meta-level Learning (MLL) 56

3.2 Histogram showing number of times a particular base and Meta-learner per-

forms best for NN3, NN5 and combined NN3+NN5 data 63

3.3 Histogram showing number of times a particular method performs best for

NN-GC1 . 67

3.4 NN3 clustered together with NGGC-C dataset where the cluster cut over is

at k = 20 . 68

4.1 Schematic diagram of transfer learning . 72

4.2 Transfer learning scenarios . 73

4.3 Schematic view of Inception-v3, Inception-ResNet-v2 and VGG-19 networks

where the blue colour is representing a re-trainable layer/block. 75

4.4 Transfer learning accuracies of pre-trained networks; (a) Inception, (b) Inception-

ResNet and (c) VGG-19 on ImageNet . 78

4.5 Inception-v3 blocks vs dataset size/class ration trend 79

4.6 Datasets similarity with ImageNet for; (a) Inception-v3, (b) Inception-ResNet-

v2 and (c) VGG-19 architectures. The similarity is normalized so that it can

fit in between the scale of 1-10 with entropy. It is multiplied by 10. 81

5.1 A typical setting of Meta-Reinforcement Learning (Meta-RL) framework where

agent contains a policy gradient and network sits in the environment 85

5.2 A schematic view of base-learner with maximum depth 4 and current depth 3 88

5.3 Cifar-10 time taken versus network validation accuracy plot 92

5.4 Statistics of different datasets including policy loss, reward and network ac-

curacy . 93

xiii

xiv LIST OF FIGURES

Terminologies and Mathematical
Definitions

Table 1: Terminologies

Symbol Description
A Set of finite actions, a ∈ A
D Input/class dataset
s Possible experiences of D
Tr Training experience of D at any given moment
DTr Domain-specific dataset
f Function/Predictive model
p Probability function
α Learning rate
L Loss function
ε Cross-validation error on training data
φ Classification errors
πtheta Set of base-level classifiers
θ Parameters of each classifier
Lmu Supervised learning
µ Set of chosen base-algorithms
p Momentum
φ Probability distribution function
ρ Correlation coefficient
ω Training window (adaptability)
ς Step size (adaptability)
τ Tune temperature (adaptability)
λ Set of hyper-parameters
R Reward function
S Set of finite states, s ∈ S
T State transition probability
γ Discount factor
π Policy

xv

xvi LIST OF FIGURES

Glossary of Terms

A

A2C Actor-Critics. 37

AL Average Linkage. 36

ARIMA Auto-regressive Integrated Moving Average. 22, 32, 34, 36, 58, 59, 61, 62, 65–67

ARR Adjusted Ratio of Ratios. 15, 22

Auto-ML Automatic Machine Learning. 1, 4, 28, 30, 44, 45, 50, 68, 83

Auto-WEKA Automatic model selection and hyper-parameter optimization in WEKA.

28, 30

Average Nodes Average Nodes Learner. 107

B

b Number of Binary Features. 105

BLL Base-level Learning. 4, 20, 21, 23, 30, 31, 38, 42, 43, 52, 65, 95

C

C4.5 C4.5 Decision Tree algorithm. 15, 21, 22, 35

C5.0 boost C5.0 Adaptive Boosting. 15, 20–22, 35, 107

C5.0 rules C5.0 Rule Induction. 21, 22, 35, 107

C5.0 tree C5.0 Decision Tree. 15, 21, 22, 35, 107

CANCOR Canonical Correlation. 105

CART Classification and Regression Trees. 21, 22, 41

CASH Combined Algorithm Selection and Hyper-parameter Optimization. 28, 30

CASTLE Causal Structure for Inductive Learning. 21

CBR Case-based Reasoning. 14

xvii

xviii Glossary of Terms

CL Complete Linkage. 36

CN2 CN2 Induction Algorithm. 21, 35

CNN Convolutional Neural Network. 45–48, 74, 80, 86, 87, 89, 98

CORR Mean Absolute Correlation Coefficient. 31, 36, 106

CoV Coefficient of Variation. 33

CV Cross-Validation. 21, 22, 31

D

DBS DB-Scan. 36

DCT Dataset Characterization Tool. 14–17, 19, 30, 34

DDPG Deep Deterministic Policy Gradients. 49

Decision Nodes Decision Nodes Learner. 35, 107

DiscFunc Number of Discriminant Functions. 106

DL Deep Learning. 12, 44, 45, 47, 95

DMA Data Mining Advisor. 25, 27, 29, 34

DNN Deep Neural Networks. 1, 4, 19, 20, 36, 37, 43–45, 47, 50, 69, 82, 83, 94, 95, 97

DP Dynamic Programming. 102

DSIT Descriptive, Statistical, and Information-Theoretic. 2, 13–19, 25–27, 30, 34–37, 40,

43

DT Decision Trees. 16, 17, 19, 32, 36, 37, 62, 64–66

DW Durbin-Watson statistic of regression residual. 106

E

e-LICO e-Laboratory for Interdisciplinary Collaborative Research. 28, 29, 34

ENAS Efficient Neural Architecture Search. 49, 84, 94, 97

e-NN Elite-Nearest Neighbour. 35, 107

EoD Examples of Datasets. 5, 11, 12, 19, 23, 28, 44, 65, 68, 69, 95, 96

ES Exponential Smoothing. 22, 36

F

Glossary of Terms

FC Fully-Connected. 76, 77, 86

FF Farthest First. 36

FFT Fast Fourier Transform. 60

FLD Fisher’s Linear Discriminant. 21

FRACT Relative proportion of largest Eigenvalue. 106

G

GPU Graphics Processing Unit. 47, 49, 73, 90, 91

H

HC Entropy of Classes. 106

HCX Joint Entropy of Classes. 106

HPO Hyper-parameter Optimization. 1, 4, 28, 30, 45, 47, 48, 50, 71, 80, 94, 95, 98

I

IBL Instance-based Learning. 21, 22, 35

ICA Independent Component Analysis. 17

ID3 Iterative Dichotomiser 3. 35

IDA Intelligent Discovery Assistant. 26–28, 34

ILSVRC ImageNet Large-Scale Visual Recognition Challenge. 47, 76

INDCART Inductive CART. 21, 35

K

k Number of Classes. 105

KD Knowledge Discovery. 26

k-M k-Means. 36

k-NN k-Nearest Neighbour. 17, 19–22, 31, 32, 35, 36, 107

KURT Kurtosis. 105, 106

L

LazyDT Lazy Decision Trees. 35

LDA Linear Discriminant Analysis. 15, 17, 21, 22, 35, 107

xix

xx Glossary of Terms

LSTM Long Short-term Memory. 85

Ltree Linear Discriminant Trees. 21, 22, 35, 107

LVQ Learning Vector Quantization. 35

M

M Mixture Models. 36

MA Moving Average. 22, 32, 57–59, 61, 64–67, 69

MAE Mean Absolute Error. 21–23

MAML Model-Agnostic Meta-Learning. 43, 44, 48

MARS Multivariate Adaptive Regression Splines. 22

MCMLPS Multi-component, Multi-level Predictive System. 4

MCX Average Mutual Information between Class and Nominal Features. 106

MDP Markov Decision Process. 47

MDS Multi-dimensional Scaling. 17

ME Meta-example. 35, 41, 51, 52

METAL Meta-learning Assistant. 6, 15, 25, 27, 30, 31

METALA Meta-learning Architecture. 25, 27

Meta-RL Meta-Reinforcement Learning. xiii, 4, 19, 44, 45, 48, 53, 83–85, 89, 97, 98

MF Meta-feature. xi, 1, 2, 5, 9–21, 23–27, 30–35, 38, 40–44, 51, 52, 56, 57, 59–62, 65, 66,

68, 69, 82, 95, 96

MK Meta-knowledge. 1, 5, 11, 12, 20, 23, 28, 30, 31, 33, 35, 37, 51–53, 55–57, 61, 62, 64,

65, 67, 71

ML Machine Learning. 1, 5, 9, 11, 12, 24, 28, 30, 32, 37, 44, 47, 50, 53, 83, 95, 97

MLL Meta-level Learning. xiii, 1–6, 9–12, 15–17, 19–21, 23–35, 37–45, 47, 49–53, 55–57,

61, 64–69, 71, 95–98

MLP Multi-layer Perceptron. 21, 22, 31, 33–36

MLR Multiple Linear Regression. 22

MLT Machine Learning Toolbox. 24, 27

MSE Mean Squared Error. 22, 31, 36

MSHPO Model Selection and Hyper-parameters Optimization. 3, 53, 54, 97

Glossary of Terms

N

N Total Instances. 105

n Number of Numeric features. 105

NAS Neural Architecture Search. 1, 45, 48–50, 84, 94, 95, 97, 98

NB Naive Bayes classifier. 15, 17, 21, 22, 35, 36, 107

NBT Naive Bayes/Decision-Tree. 35

NN Neural Network. 16, 22, 32, 36, 37, 59, 62, 64–67, 83

NoiseRaio Noise to Signal Ratio. 106

O

OC1 Oblique Classifier-1. 35

OneR One Rule Learner. 22, 35, 36

OpenML Open Machine Learning. 8, 9, 11, 12

OPGA On-policy Gradient Algorithms. 49

OPSRL Optimistic Posterior Sampling for Reinforcement Learning. 36

P

p Number of Features. 105

PaREn Pattern Recognition Engineering. 26, 28, 34

PCA Principal Component Analysis. 17, 19, 107

PDF Probability Density Function. 19

PEBLS Parallel Exemplar-Based Learning System. 35

PMF Probability Mass Function. 19, 20, 77, 79

PNAS Progressive Neural Architecture Search. 48, 49

PPO Proximal Policy Optimization. 49

PPR Projection Pursuit Regression. 22

Q

QPC Quality of Projected Clusters. 10, 17

Quadra Quadratic Classifier. 21

xxi

xxii Glossary of Terms

R

r Number of Training instances. 105

Randomly Chosen Nodes Randomly Chosen Nodes Learner. 35, 107

RapidAnalytics open-source data-mining and predictive analysis solution. 29

RBF Radial-basis Function. 21, 22, 32, 35, 36, 62

ReLU Rectified Linear Units. 87

ResNet Residual Networks. 45, 86

RF Random Forests. 22, 36, 41, 61

Ripper Rule Learner. 15, 21, 22, 35, 107

RL Reinforcement Learning. 35–39, 43, 44, 47–49, 84, 94, 97, 98

RMSE Root Mean Squared Error. 22

RNN Recurrent Neural Network. 35, 46, 48, 85–87, 98

RW Random Walk. 22, 36

S

s Number of Nominal features. 105

S/D Ratio Homogeneity of Covariances. 105

SKEW Skewness. 105, 106

SL Single Linkage. 36

SMAPE Symmetric Mean Absolute Percentage Error. xi, 22, 33, 58, 59, 61, 62, 64–66,

106

SMART Smooth Multiple Additive Regression Technique. 21

SMBO Sequential Model-Based Optimization. 11, 28, 48

SMOTE Synthetic Minority Over-sampling TEchnique. 61

SNN Shared Nearest Neighbours. 36

SP Spectral Clustering. 36

SRCC Spearman’s Rank Correlation Coefficient. 22, 33

STABB Shift To A Better Bias. 24, 26

StatLog Statistical and Logical learning. 13, 14, 16, 25, 27, 30

Glossary of Terms

StdDev Standard Deviation. xi, 58–60, 62, 64–66, 105–107

SVM Support Vector Machines. 17, 21, 22, 31–33, 36, 37, 41, 62, 64–66

SVR Support Vector Regression. 33, 34

T

t Number of Test instances. 105

TL Transfer Learning. 45, 47, 72, 76, 79, 80, 82

TPOT Tree-based Pipeline Optimization Tool. 28

TPU Tensor Processing Unit. 47

TRPO Trust Region Policy Optimization. 36, 49

TS Time-series. 4, 7, 8, 10, 20, 23, 31, 32, 34, 36, 55, 97, 106

U

UCI UCI Machine Learning Repository. 6, 7, 9–11, 15, 16, 28, 30

V

VBMS Variable-bias Management System. 13, 17, 24–26

VGG Visual Geometry Group. 76

W

Wlambda Wilks’lambda Distribution. 106

Worst Nodes Worst Nodes Learner. 107

X

XM X-Means. 36

xxiii

xxiv Glossary of Terms

Acknowledgements

First of all, I would like to thank my supervisors Prof. Bogdan Gabrys and Prof.

Marcin Budka for their support, expert advice and invaluable feedback.

I would like to thank my colleagues and friends at Bournemouth University,

specially to Manuel, Rashid, Amir and Bassma. I would also like to thank

Bournemouth University staff for always being nice and helpful to me. Special

thanks to Dr. Emili Balaguer, Dr. Damien Fay and Naomi Bailey.

Not forgetting wife Moona, for her constant support and understanding. Finally,

I would like to express my gratitude to my parents for always encouraging me

in the right direction in both personal and academic sense.

I would like to dedicate this thesis to my parents and wife...

Chapter 1

Introduction

This chapter presents the Doctoral research, its area, and an overview of the contributions

in the space of Meta-level Learning (MLL) and related areas. In order to provide a clear

motivation, this chapter outlines the main challenges and goals which lead to the aims

and objectives of this research. The details of the research challenges that lead to several

research questions can be found in Chapter 2.7.

1.1 Background and Motivation

One of the major challenges in Machine Learning (ML) is to predict when one algorithm is

more adequate than another to solve a learning problem (Prudencio et al., 2011). Tradition-

ally, estimating the performance of algorithms involves an intensive trial-and-error process

which often demands massive execution time and memory together with the support of ex-

pert advice that is not always easy to acquire (Giraud-Carrier et al., 2004). MLL arises as a

potential solution of this problem; it uses examples from various domains to produce an ML

model, known as Meta-learner, which is responsible for associating the characteristics of a

problem with the candidate algorithm giving optimized accuracy. The knowledge which is

used by a Meta-learner is acquired from previously solved problems, where each problem is

characterized by several features, known as Meta-features (MFs). MFs are combined with

performance measures of ML algorithms, e.g., accuracy, to build a Meta-knowledge (MK)

database. Learning at the base-level gathers experience within a specific problem, while

MLL is concerned with accumulating experience over several learning problems (Giraud-

Carrier, 2008).

Along with the MLL, Hyper-parameter Optimization (HPO) and Neural Architecture

Search (NAS) are also key methods of Automatic Machine Learning (Auto-ML) (Yao et al.,

2019). The goal of HPO is to find a set of hyper-parameters of an ML task which gives

optimized performance. It becomes crucial for Deep Neural Networks (DNN) which, in turn,

comes with a wide range of hyper-parameter choices. The success of the DNN is mostly

credited to its ability to automatically extract the task-dependent features. This automation

is now expanding towards architecture engineering to automatically design complex neural

architectures, known as NAS.

MLL started to appear in the ML domain in 1980’s and was referred to by different,

such as, dynamic bias selection (Rendell et al., 1987), algorithm recommender (Brazdil et

1

2 Aims and Objective

al., 2008), etc. Sometimes it is also confused with Ensemble methods (Duch et al., 2011). In

order to get a comprehensive view of exactly what MLL is, a number of definitions have been

proposed in various studies. Vilalta and Drissi (2002a) and Vanschoren (2011) define MLL

as the understanding of how learning itself can become flexible according to the domain

or task and how it tends to adapt its behaviour to perform better. Giraud-Carrier (2008)

describes it as the understanding of the interaction between the mechanism of learning and

concrete context in which that mechanism is applicable. Brazdil et al. (2008) view on MLL

is that it is the study of methods that exploit Meta-knowledge to obtain efficient models and

solutions by adapting the learning algorithms. To some extent, this definition is followed in

this research as well.

Extracting MFs from a dataset plays a vital role in the MLL task. Several MF generation

approaches are available to extract a variety of information from previously solved problems.

The most commonly used approaches are descriptive (or simple), statistical, information

theoretic, landmarking and model-based. The Descriptive, Statistical, and Information-

Theoretic (DSIT) features are easy to extract from the dataset as compared to the other

approaches. Most of them have been proposed in the same period and are often used

together. These approaches are used to estimate the similarity of new data with the already

analyzed datasets (Bensusan et al., 2000). Landmarking is the most recent approach that

tries to relate the performance of candidate algorithms to the performance obtained by

simpler and computationally more efficient learners (Pfahringer et al., 2000). The Model-

based approach captures the characteristics of a problem from the structural shape and size

of a model induced by the dataset (Peng et al., 2002). The decision tree models are mostly

used in this approach, where properties are extracted from the tree, such as tree depth,

shape, nodes per feature, etc. (Giraud-Carrier, 2008).

1.2 Aims and Objective

The research described in this thesis is closely related to INFER1, a European project

which aimed to develop a software platform for predictive modelling applicable in different

industries and to work in the adaptive soft sensors for real-time prediction, monitoring, and

control in the process industry. The goal of this work is to do research on MLL strategies

and approaches for effective reduction of the model search space. There are multiple areas of

a predictive system where MLL can be used to efficiently recommend the most appropriate

methods and techniques. Therefore, three areas of evolving predictive systems are identified

where the applicability of MLL can be an effective and efficient approach. These areas are

thoroughly discussed in Section 2.7.

1. A Learning Path Recommendation: An optimal learning path recommendation of the

three interlinked components including; pre-processing steps, learning algorithms or their

combination, and adaptivity mechanism parameters.

2. Recurring Concepts Extraction: In a non-stationary environment, the underlying dis-

tribution of the incoming data keeps changing which in turn makes the most recent

1http://infer.eu/

http://infer.eu/

INTRODUCTION Research Challenges

historical concept ineffective. A MLL system can extract the relevant concepts of the

data to adapt the out-dated model.

3. Concept Drift Detection: In an adaptive mechanism retraining of model is usually trig-

gered by a change detection process. MLL can help to automatically detect the concept

drift and trigger the algorithm retraining process instantly.

1.3 Research Challenges

There has been a lot of interest in MLL approaches and significant progress has been made.

There are still a number of outstanding issues some of which have been addressed in the

earlier approaches. The main challenge of this work is research on MLL strategies and ap-

proaches in context of; feature engineering for problem representation and learning strategy

for algorithm recommendation. This problem leads to several research questions which are

outlined as follows and discussed in detail in Section 2.7 along with the goals and objectives

of this work.

1. Gathering examples of datasets to build a static Meta-knowledge database

2. Base-level Learning strategy to compute performance measures of Meta-examples

3. Feature generation and selection to represent a problem at Meta-level

4. Representation and storage of dynamically growing complex Meta-Knowledge database

5. Meta-level Learning strategy for algorithm and its hyper-parameter recommendation

From the above five research questions, 3 and 5 are addressed in this research.

1.4 Contributions

A thorough survey of the existing techniques has been performed aiming at giving a compre-

hensive overview of the research directions pursued under the umbrella of MLL. It reconciles

different approaches given in scientific literature while designing the MLL systems. There

are three studies conducted in this thesis around model selection and hyper-parameter search

using MLL. These studies are addressing one or more research challenges which are described

in the above section. The original contributions of this work are:

1. Formulation of Model Selection and Hyper-parameters Optimization (MSHPO) along

with three key areas of an evolving predictive system which leads to several research

challenges (see Section 2.7).

2. An MLL approach for evaluating the hypothesis whether the additional cross-domain

training data can be beneficial to achieve reasonably good performance on a new task

in the context of an MLL system for time-series forecasting. Chapter 3 illustrates it

in detail.

3

4 Organisation of the Thesis

3. An empirical study on the relationship between various characteristics describing the

similarity of two tasks, and based on that, the amount of fine-tuning of a deep neural

network required by a new task to achieve accuracy close to state-of-the-art. Further

details can be found in Chapter 4.

4. An original approach for automatic hyper-parameter optimization of a Multi-component,

Multi-level Predictive System (MCMLPS) which frames an efficient hyper-parameters

selection and tuning as a reinforcement learning problem. Chapter 5 further elaborates

this contribution.

5. A framework to automatically find a good set of hyper-parameters resulting in rea-

sonably good accuracy, which at the same time is less computationally expensive than

the existing approaches (see Chapter 5).

A significant part of the research presented in this thesis has appeared in the following

publications:

1. Abbas Ali, Bogdan Gabrys and Marcin Budka. Cross-domain Meta-learning for Time-

series Forecasting. In Procedia Computer Science, 126(1), 9-18, Elsevier, 2018.

2. Abbas Ali, Marcin Budka and Bogdan Gabrys. Towards Meta-learning of Deep Ar-

chitectures for Efficient Domain Adaptation. In the 16th Pacific RIM International

Conference on Artificial Intelligence (PRICAI), 2019.

3. Abbas Ali, Marcin Budka and Bogdan Gabrys. A Meta-Reinforcement Learning Ap-

proach to Optimize Parameters and Hyper-parameters Simultaneously. In the 16th

Pacific RIM International Conference on Artificial Intelligence (PRICAI), 2019.

1.5 Organisation of the Thesis

The next chapter covers the existing research in Auto-ML area, including some important

components of an MLL system. Those components include sources of existing and automatic

generation of datasets, Meta-feature generation, and selection using various approaches and

Base-level Learning (BLL) algorithms performance measures; such as accuracy, execution

time, etc. This is followed by sections discussing existing MLL systems in the context of their

applicability to supervised and unsupervised algorithms. Furthermore, Chapter 2 illustrates

the adaptive mechanism and HPO areas in detail. Based on the conclusions and recommen-

dations explored from the literature review, the final sections describe the research challenges

and problem formulation of this research. An experimental investigation of cross-domain

MLL for Time-series (TS) Forecasting is elaborated in Chapter 3. Chapter 4 consists of an

empirical study to identify how deep a pre-trained image classifier needs to be fine-tuned

based on the characteristics of the new task. Chapter 5 discusses a Meta-Reinforcement

Learning (Meta-RL) approach to optimize the parameters and hyper-parameters tuning of

DNN simultaneously. This report is concluded in Chapter 6 with future directions for the

next phase.

Chapter 2

Existing Research

Immense research has been concentrating on automating Machine Learning (ML) algorithm

selection for the last three decades (Zöller and Huber, 2019). The focus of those studies

is to explore various components of Meta-level Learning (MLL). The scope of the litera-

ture review is confined to areas that are related to this research. The high-level overview

of the components which are discussed in this chapter is shown in Figure 2.1. The first

section presents ways of gathering real-world datasets and techniques to create synthetic

datasets which are known as Examples of Datasets (EoD). These EoD are used to gen-

erate Meta-features (MFs) and associated performance measures which are discussed in

Sections 2.2 and 2.3 respectively. MF are combined with performance measures to build

Meta-knowledge (MK) dataset which becomes the input of MLL. The last section illustrates

adaptive mechanisms in the context of MLL which are an important aspect of this research.

2.1 Repository of Datasets

A repository of datasets representing various problems is one of the key components of

the MLL system. As Vanschoren (2011) states, ‘there is no lack of experiments being

done, but the datasets and information obtained often remain in the people’s heads and

labs ’. This section explores the sources of real-world datasets that are used in the existing

studies to build MK database. However, real-world datasets are usually hard to obtain but

Repository of Datasets

Meta-knowledgePerformance Measures

Meta-features generation

and Selection

Meta-level

Learning Adaptive Mechanisms

Figure 2.1: Scope of existing research review

5

6 Repository of Datasets

artificially generated datasets would be a possible solution to this problem. The following

subsections sumerize the studies that are dealing with real-world data, those which elaborate

the techniques to generate artificial datasets, and the published resources.

2.1.1 Real-world Datasets

The real-world datasets can be difficult to find and gather in the desired format. An effort

has been made to extract useful sources of data from various studies. Table 2.1 presents

datasets that are used in different researches for MLL purpose. Most of them are gathered

from UCI Machine Learning Repository (UCI) (Bache and Lichman, 2013).

Table 2.1: Real-world datasets used in various studies

Research Work Datasets Sources Dataset Filters

King et al. (1995) 12 Satellite image, Hand-written digits,
Karhunen-Loeve digits, Vehicle silhou-
ettes, Segment data, Credit risk, Bel-
gian data, Shuttle control, Diabetes,
Heart disease, German credit, Head in-
jury (King, 1995)

Lindner and
Studer (1999)

80 UCI and DaimlerChrysler -

Sohn (1999) 19 Satellite image, Hand-written digits,
Karhunen-Loeve digits, Vehicle silhou-
ettes, Segment data, Credit risk, Bel-
gian data, Shuttle control, Diabetes,
Heart disease, German credit, Head in-
jury (King, 1995) and 7 other datasets
used in StatLog project

Three datasets of
StatLog having cost
information involved
in misclassification

Berrer et al.
(2000)

58 Meta-learning Assistant (METAL)
project datasets

38 datasets with no
missing values

Soares et al.
(2001)

45 UCI and DaimlerChrysler Dataset with more
than 1000 instances

Bernstein and
Provost (2001)

15 Balance Scale, Breast Cancer, Heart dis-
ease, Heart disease - compressed glyph
visualization, German Credit Data, Di-
abetes, Vehicle silhouettes, Horse colic,
Ionosphere, Vowel, Sonar, Anneal, Aus-
tralian credit data, Sick, Segment data
(Bache and Lichman, 2013)

-

Todorovski et al.
(2002)

65 UCI and METAL project datasets 38 datasets with no
missing values

Brazdil et al.
(2003)

53 UCI and DaimlerChrysler Datasets with more
than 100 instances

EXISTING RESEARCH Repository of Datasets

Bernstein et al.
(2005)

23 Balance Scale, Heart disease, Heart dis-
ease, Heart disease - compressed glyph
visualization, German Credit Data, Di-
abetes, Vehicle silhouettes, Ionosphere,
Vowel, Anneal, Australian credit data,
Sick, Segment data, Robot Moves, DNA,
Gene, Adult 10, Hypothyroid, Wave-
form, Page blocks, Optical digits, In-
surance, Letter, Adult (Bache and Lich-
man, 2013)

-

Peng et al. (2002) 47 UCI -

Kopf and Igleza-
kis (2002)

78 UCI Dataset with less
than 1066 instances
and the number of
attributes ranged
from 4 to 69

Prudencio and
Ludermir (2004)

I: 99
Time-
series
(TS)
and II:
645

I: Time-series Data Library1 and II: M3
competition2

I: Stationary data
and II: Yearly data

Prudencio and
Ludermir (2008)

50 WEKA project3 On average datasets
contain 4,392 in-
stances and 14
features

Wang et al.
(2009)

46 and 5 Time Series Data-mining Archive4 and
Time Series Data Library5

Kadlec and
Gabrys (2009)

3 Thermal oxidiser, Industry drier, and
Catalyst activation datasets of process
industry

On-line prediction
datasets

Lemke and
Gabrys (2010a)

2 con-
sisting of
111 TS

NN36 - Monthly business with 52-126
observations and NN56- daily cash ma-
chine withdrawals with 735 observations
in each series

NN5 including some
missing values

Abdelmessih et
al. (2010)

90 UCI Datasets with more
than 100 instances

Duch et al. (2011) 5 and 2 Leukemia, Heart, Wisconsin, Spam,
and Ionosphere are real-world datasets
gathered from UCI and two synthetic
datasets parity and monks

1http://datamarket.com/data/list/?q=provider:tsdl
2http://forecasters.org/resources/time-series-data/m3-competition
3Machine Learning Group at University of Waikato http://www.cs.waikato.ac.nz/ml/weka
4http://www.cs.ucr.edu/~eamonn/time_series_data
5http://datamarket.com/data/list/?q=provider:tsdl
6Neural Network forecasting competition

7

http://datamarket.com/data/list/?q=provider:tsdl
http://forecasters.org/resources/time-series-data/m3-competition
http://www.cs.waikato.ac.nz/ml/weka
http://www.cs.ucr.edu/~eamonn/time_series_data
http://datamarket.com/data/list/?q=provider:tsdl

8 Repository of Datasets

Rossi et al. (2014) 2 Travel Time Prediction (TTP) con-
sists of 24,975 instances and Electric-
ity Demand Prediction (EDP) consists
of 27,888 instances

Feurer et al.
(2014)

57 Open Machine Learning (OpenML)
datasets

-

Kuhn et al. (2018) 38 OpenML datasets The datasets have no
missing values and a
binary outcome

Ali et al. (2018) 2 con-
sisting of
111 TS

NN3 and NN5 NN5 including some
missing values

Warden (2011) handbook and Stanford and Iriondo (2018) cover the most useful sources

of publicly available datasets. A lot of new sources of free and public data that have emerged

over the last few years are discussed. Apart from discussing data-sources, methods to get

datasets in bulk from those sources are also discussed in detail. Table 2.2 presents most of

the sources from the author’s book.

Table 2.2: List of publicly available Data Repositories

Source Description Datasets Domain

AnalcatData Datasets that are used by Jeffrey S. Si-
monoff in his book Analyzing Categorical
Data, published in July 2003

83 Cross-domain

Amazon Web Ser-
vices

A centralized repository of public datasets Astronomy, Bi-
ology, Chem-
istry, Climate,
Economics, Ge-
ographic and
Mathematics

Bioassay data Virtual screening of bioassay (ac-
tive/inactive compounds) data by
Amanda Schierz

21 Life Sciences

Canada Open
Data

Canadian government and geospatial data Government &
Geospatial

Datacatalogs List of the most comprehensive open data
catalogs

data.gov.uk Data of UK central government depart-
ments, other public sector bodies and local
authorities

9616 Government and
Public Sector

data.london.gov.uk Data of UK central government depart-
ments, other public sector bodies and local
authorities

563 Government and
Public sector

Data.gov/ Educa-
tion

Educational high-value datasets 70,897 Cross-domain

EXISTING RESEARCH Repository of Datasets

ELENA Non-stationary streaming data of flight ar-
rival and departure details for all the com-
mercial flights within the USA

13 fea-
tures
and 116
million
in-
stances

Aviation

KDD Cup Annual Data Mining and Knowledge Dis-
covery competition datasets

Cross-domain

National Govern-
ment Statistical
Web Sites
Open Data Census
US Census Bureau

Assesses the state of open data around the
world

Government and
Public sector

OpenData from
Socrata

Freely available datasets 10,000 Business, Educa-
tion, Government,
Social and Enter-
tainment

Open Source
Sports

Many sports databases, including Base-
ball, Football, Basketball and Hockey

Entertainment

UCI A collection of databases, domain theo-
ries, and data generators that are used by
the ML community for the empirical anal-
ysis of learning algorithms

199 Physical Sciences,
Computer Science
& Engineering, So-
cial Sciences, Busi-
ness and Game

Yahoo Sandbox
datasets

Language, graph, ratings, advertising and
marketing, competition, computing sys-
tems and image datasets

- Cross-domain

OpenML From 100 OpenML classification datasets,
38 datasets without missing values and
with a binary outcome have been used

38 Cross-domain

2.1.2 Synthetic Datasets

MFs are used as predictors in an MLL system. Typically, many MFs are extracted from a

dataset, thereby leading to a high-dimensional sparsely populated feature space which has

always been a challenge for learning algorithms. Hence, to overcome this problem sufficient

number of datasets is required which may not be possible only from real-world datasets as

they can be hard to obtain. So, artificially generated datasets might help in solving this

issue. Rendell and Cho (1990) work on systematic artificial data generation is considered

as one of the initial efforts in this regard.

Bensusan and Giraud-Carrier (2000) used 320 artificially generated boolean datasets

with 5 to 12 features in each one. These artificial datasets were benchmarked on 16 UCI

and DaimlerChrysler real-world datasets. Similarly Pfahringer et al. (2000) generated 222

datasets, each containing 20 numeric and nominal features having 1K to 10K instances

classified between 2 to 5 classes. Additionally, 18 real-world UCI problems were used to

evaluate the proposed approach.

9

10 Repository of Datasets

Soares (2009) proposed a method to generate a large number of datasets by transforming

the existing datasets, known as datasetoids. An artificial dataset was generated against each

symbolic attribute of a given dataset, obtained by switching the selected attribute with the

target variable. This method was experimented on 64 datasets gathered from the UCI

repository and it generated a total of 983 datasetoids. At the end, potential anomalies

related to the artificial datasets are also discussed along with their proposed solutions are

presented. Those anomalies could be: 1) the new target variable has missing values, 2) it

is very skewed, and/or 3) the corresponding target variable might be completely unrelated

to remaining features. One very simple solution proposed for these problems was to simply

discard the datasetoids which showed any of the above mentioned properties. This method

produced promising results, therefore enabling the generation of new datasets which could

solve the scarce datasets problems.

Wang et al. (2009) used both synthetic and real-world TS from diverse domains for MLL

based forecasting method selection study. The details of real-world datasets are given in

Table 2.1 while remaining synthetic datasets were generated using statistical simulation to

facilitate the detailed analysis of forecasting association with data characteristics. A total

of 264 artificial datasets posses certain characteristics, i.e., perfect and strong trend, perfect

seasonality, noise. The data is transformed into samples of 1000 instances for each original

TS while it is unchanged for the number of data-points smaller than 1000.

Soares et al. (2009) generated 160 artificial datasets to obtain a wide representative range

of cluster structures. There were two methods used to generate datasets; 1) a standard

cluster model using Gaussian multi-variate normal distributions, and 2) Ellipsoid cluster

generator. There were three parameters selected for both techniques including i) the number

of clusters which were the same for both cases (2, 4, 8, 16), ii) dimensions (2, 20 for Gaussian,

and 50, 100 for Ellipsoid), and iii) the size of each cluster for both techniques were the same

(uniformity in [10, 100] for 2 and 4 clusters case and [5, 50] for 8 and 16 clusters case). For

each of the 8 combinations of cluster number and dimension, 10 different instances were

generated, giving 80 datasets in each method.

Duch et al. (2011) used two artificially generated datasets out of a total of seven whereas

the remaining five are real-world problems. One artificially generated dataset has binary

features, named as Parity, whereas the other one with nominal features is known as Monks.

These optimal support features are computed using Quality of Projected Clusters (QPC)

projection (Grochowski et al., 2008).

Reif et al. (2012a) presents a novel data generator approach for numerical features and

classification datasets that can be used as input dataset for MLL; i.e. an entirely different

approach from the Soares (2009). The proposed system was able to generate datasets

using genetic programming with customized parameters. Also in this setting MLL can be

supported in two different ways: 1) the MFs space can be filled in a more controlled way and

the discovered ”empty areas” can be populated rather than generating random datasets, and

2) thoroughly investigating MFs based on their descriptive power which can be useful for

certain MLL problems and generating datasets with MFs allows more controlled experiments

that might lead to the significant utilization of particular MFs. Since the dataset was

generating multiple MFs therefore this task was treated as a multi-objective optimization

problem. The proposed system was able to incorporate a variable set of arbitrary MFs. The

EXISTING RESEARCH Repository of Datasets

user was able to build a custom set of MFs simply by providing the functions that compute

the MFs.

Feurer et al. (2014) obtained 57 datasets, from the OpenML project (Rijn et al., 2013), to

study the impact of their MLL based initialization of Sequential Model-Based Optimization

(SMBO) variants. Lemke and Gabrys (2010a) and Ali et al. (2018) have used 222 univariate

time-series from two different sources, NN3 (Crone, 2006) and NN5 (Crone, 2008) competi-

tions. Each data-source contains 111 series with monthly and daily occurrences respectively.

Kuhn et al. (2018) chose a subset from the OpenML classification datasets. The authors

used the datasets without missing values and with a binary class.

2.1.3 Datasets from Published Research

Another source of EoD are the published ML studies. As ML is one of the most active

research areas since last few decades where several experimentations have been conducted.

These experiments become a very useful way of gathering EoD representing various domains.

Also, the additional factor that usually comes with most of the datasets used in existing

researches is performance measures. It is used as target variable in the context of an MLL

system. It is very time, memory and processor consuming task to compute performance

measures against a massive amount of datasets and numerous configurations of learning

algorithms.

Due to space limitation on publications, researches usually publish only final results

with minimal details. However, in context of MLL, relying on this minimal information

leads to several problems, for example, in most of the instances researches only report the

best algorithm, usually report limited number and detail of experimentations, mostly skip

detailed configurations of the algorithms, etc. Vanschoren et al. (2014) introduced a novel

platform for ML research known as OpenML. ML researchers can share datasets, algorithms,

their configurations, and experiment setups on this platform which other researchers can

use to compare results. OpenML framework is one of the possible solutions for most of

the mentioned concerns which resolves two key challenges of MLL systems; i) gathering a

massive number of datasets from different domains, and ii) performances of datasets.

2.1.4 Discussion and Summary

An ML system relies on training dataset to build a model. Similarly, at Meta-level, the MK

dataset is used as training-set of MLL, whereas this MK dataset is dependent on sufficient

number of EoD from different domains. These EoD are used to generate MFs which act

as predictors and performance measures of these EoD on various learning algorithms and

are used as target variable in the MK dataset. However, gathering a sufficient number

of real-world datasets is quite difficult. The real-world datasets which are used in various

studies for experimentations are listed in Table 2.1. Most of the studies gathered datasets

from UCI with different filtering options and the remaining few studies gathered datasets

from different data-mining competitions. In most cases, the number of EoD that are used to

build MK is very low. The MLL systems can perform as better as trial-and-error approach

by providing a significant number of EoD representing various domains. Table 2.2 identifies

a number of real-world datasets representing different domains.

11

12 Meta-features Generation and Selection

Some MLL researches resolved this problem by building their MK datasets using arti-

ficially generated EoD. They have adopted two different approaches to generate synthetic

datasets; 1) by transforming real-world datasets; and 2) by utilizing statistical and ge-

netic programming approaches. Bensusan and Giraud-Carrier (2000), Pfahringer et al.

(2000), Soares (2009) and Wang et al. (2009) proposed different feature transformation ap-

proaches to generate different combinations of datasets from the limited number of real-world

datasets. The statistical and genetic programming approaches are proposed by Soares et al.

(2009) and Duch et al. (2011) for MLL systems. In some approaches, statistical functions

with threshold (or cut-off) values are used to generate data while others used optimization

techniques. Reif et al. (2012a) proposed an intelligent technique which does not generate

random data, but fill the MFs in a more controlled way by discovering and populating the

empty areas of real-world datasets.

Combining all the proposed approaches iteratively seems to be a potential solution of

dataset scarcity; i.e., initially gathering the existing available real-world problems, then

transforming those datasets generating several others and finally applying various other

techniques to generate artificial datasets independently (see Figure 2.2). Although this so-

lution seems useful if the purpose is only gathering a massive number of EoD. But in the

context of this research, the purpose of gathering these datasets is twofold; i) to generate

MFs and ii) compute performance measures of these datasets against numerous learning

algorithms and their configurations. Considering all three components of an MLL system,

gathering datasets from published research seems more convincing where the performance

measures are bundled with the EoD. However, there are a lot of challenges coupled with

it for an MLL system which include reporting only the top performing learning algorithm,

publishing limited information of experimentations, availability of datasets used in the re-

search, detailed configurations of learning algorithm, etc. OpenML platform addresses most

of these issues to some extent but it is in the preliminary stage which leads to several issues,

for example, i) problem representation at Meta-level is covering very few domains, ii) most

of the publications are using very few commonly used learning algorithms, etc.

Deep Learning (DL) is one of the recent advancement in ML which brought a paradigm

shift in MLL (Minar and Naher, 2018). This shift has minimized the dependency of the

MLL systems on a large repository of datasets (Hutter et al., 2018; Zöller and Huber, 2019;

Yao et al., 2019).

2.2 Meta-features Generation and Selection

One of the primary applications of MLL is to recommend the best learning algorithm or to

rank various algorithms against a problem that is further described by some new features,

known as MFs. The role of such systems is to estimate the similarity between various

problems which, in turn, requires the ability to estimate the similarity of new data with the

already analysed datasets. There are three most commonly used MF generation approaches

which allow to induce mapping between characteristics of a problem and learning algorithms.

These approaches are discussed in the following sections.

EXISTING RESEARCH Meta-features Generation and Selection

Dataset (DS) N

Dataset (DS) 1

Real-world

Datasets

Transformed Datasets

Transformations of real-
world datasets

Artificial Datasets

Generating Artificial
Datasets

Figure 2.2: Phase-wise collection of Examples of Datasets

2.2.1 Descriptive, Statistical and Information-Theoretic Approach

The Descriptive, Statistical, and Information-Theoretic (DSIT) approach is the simplest and

most commonly used MF generation approach that extracts a number of DSIT measures of

a problem. These measures are used to map the features of the problem to the algorithms

(Giraud-Carrier, 2008). It is also supported by the empirical results that these simple

characteristics, such as the size of the training set and input space play a vital role in

differentiating suitability of various learning algorithms to solve such problems. The research

works that have been performed using DSIT approach are reviewed below.

Rendell et al. (1987) proposed Variable-bias Management System (VBMS) that was one

of the earliest efforts towards data characterization. Only two descriptive MFs, namely:

the number of training instances and the number of features, were used to select the best

among three symbolic learning algorithms. Later Rendell and Cho (1990) enhanced the

existing system by adding useful MFs of complexity based on shape, size, and structure.

Statistical and Logical learning (StatLog) project by King et al. (1995) further extended

VBMS MFs by considering a larger number of dataset characteristics. A problem was

described in the context of its descriptive and statistical properties. Several characteristics

of a problem spanning from simple (descriptive) to more complex (statistical) ones were

generated and later used by various studies. These characteristics were used to investigate

why certain algorithms perform better on a particular problem as well as to produce a

thorough empirical analysis of the learning algorithms.

Sohn (1999) initially used most of the datasets and MFs that were used in StatLog

project which were later on enhanced with information-theoretic MFs. Furthermore, three

new descriptive features were added by transforming the existing measures, for example,

in the form of ratios. These MFs were used to rank several classification algorithms with

considerably better performance as compared to the previous studies. The author has also

13

14 Meta-features Generation and Selection

claimed classification error and execution-time as important response variables to choose an

appropriate classification algorithm for a problem.

In the same year Lindner and Studer (1999) proposed an extensive list of DSIT fea-

tures of a problem under the name of Dataset Characterization Tool (DCT). The au-

thors distinguished three categories of dataset characteristics; namely simple, statistical and

information-theory based measures. The descriptive MFs have been used to extract general

characteristics of the dataset, whereas statistical characteristics were mainly extracted from

numeric attributes, while information-theoretic based measures from nominal attributes. As

in StatLog, rules were generated to choose an algorithm for a given task. Having this in

mind authors were motivated to propose Case-based Reasoning (CBR) approach to select

the most suitable algorithm against a problem.

Reif et al. (2012b) presented a novel approach of generating informative MFs by simply

averaging over all attributes of the source datasets. They proposed a two-fold approach; in

the first fold MFs generate the DSIT features of the datasets using the traditional approach.

The second fold describes differences over datasets that are not accessible using the typically

used mean of Meta-measures that have been computed in the first fold. This approach

preserves more information about such MFs while producing a feature vector with a fixed

size. An additional level of features are extracted to automatically select the most useful

features out of the available ones.

MFs that are used in the above studies are shown in Figure 2.3.

2.2.2 Landmarking Approach

Another technique of MF generation is Landmarking which characterizes a dataset using

the performance of a set of simple learners. Its main goal is to identify areas in the input

space where each of the simple learners can be regarded as an expert (Vilalta and Drissi,

2002a).

The basic idea behind landmarking is outlined as the performance of a learning algorithm

on a task and discovering information about its nature. In this approach, the performance

of a Base-learner on a problem reveals information about the nature of the problem. A

landmark learner or landmarker is defined as the learning mechanism whose performance is

used to describe a problem (Bensusan and Giraud-Carrier, 2000). Landmarkers posses a key

property that their execution time is always shorter than the Base-learner’s time, otherwise,

this approach would bring no benefit. Further, in this section, various studies dealing with

Landmarking approach are discussed in detail.

One of the earliest studies on Landmarking was conducted by Bensusan and Giraud-

Carrier (2000). This approach is claimed to be simpler, more intuitive and effective than

the DSIT measures. A set of 7 landmarkers were trained on 10 different sets of equal

size. Each dataset was then described by a vector of MFs (see Landmarkers branch of

Figure 2.3), which are the error rates of the 7 landmarkers, and labelled by the target

learners (see Landmarking section of Appendix B) which produce the highest accuracy.

Several experimentations have been performed to compare the landmarking approach with

DSIT. In the first experiment Landmarking was compared with 6 information-theoretic DCT

features of Lindner and Studer (1999) (see information-theoretic MFs section of Figure 2.3).

EXISTING RESEARCH Meta-features Generation and Selection

In most of the cases of this experiment landmarking simply outperformed DSIT approach.

In another experiment, the ability of landmarking to describe a problem and discriminate

between two areas of expertise are highlighted. In most of the cases C5.0 Adaptive Boosting

(C5.0 boost) (Quinlan, 1998) landmarker performed best. The last experiment benchmarked

16 real-world datasets from UCI (Bache and Lichman, 2013) and DaimlerChrysler where

again landmarking approach has produced the overall best performance.

Pfahringer et al. (2000) also presented Landmarking while comparing it with the DSIT

MF generation approach - DCT. They performed three types of experiments, namely 1)

Artificial rule list and sets; 2) Selecting learning models, and 3) Comparing landmarking

with information-theoretic approach. These experiments were almost the same as performed

by Bensusan and Giraud-Carrier (2000), and the target learners (see Landmarking section

of Appendix B) were the same as used in METAL project. In the first experiment, the set

of landmarkers consisted of a Linear Discriminant Analysis (LDA), Naive Bayes classifier

(NB), and C5.0 Decision Tree (C5.0 tree) learner. While base-learners performance relative

to each other was predicted using C5.0 boost, LDA, and Rule Learner (Ripper). In addition

to three landmarkers, 5 descriptive MFs (shown in descriptive approach of Figure 2.3) have

also been extracted from 216 datasets. The Ripper was found to be the top performer in

this experimentation. For selecting the best learning model experiment, the authors tried to

investigate the capability of landmarking in deciding whether a learner involving multiple

learning algorithms performs better than the other candidate algorithms. Here only C4.5

Decision Tree algorithm (C4.5) was used as Meta-learner trained with 222 artificial boolean

datasets and tested with 18 UCI problems (Bache and Lichman, 2013). Even though the

Landmarking accuracy was higher but it does not reflect on the overall performance of a

system whose end goal is to accurately select a learning model. In the last experiment, the

landmarking approach has been compared with the DSIT and also the combination of both

approaches. 320 artificially generated binary datasets were produced where the combined

approach performed best for all 10 Meta-learners followed by Landmarking with a significant

difference as compared to DCT measure.

Soares et al. (2001) sample-based landmarkers were estimates of the performance of

algorithms on a small sample of the data that had been used as predictors of the perfor-

mance of those algorithms on the entire dataset. Additionally, relative landmarker addressed

the inability of earlier landmarker to assess the relative performance of algorithms. This

sampling-based relative landmarking approach was later compared with the DSIT DCT

MFs (Lindner and Studer, 1999) as done by most of the landmarking studies. The ten algo-

rithms, mentioned in Appendix B are used on 45 datasets, with more than 1000 instances,

mostly gathered from UCI (Bache and Lichman, 2013) and DaimlerChrysler. These datasets

have been ranked by the Nearest-Neighbour using Adjusted Ratio of Ratios (ARR) measure.

To observe the performance of the ranking method authors vary the value of k from 1 to

25. In comparison with other studies reported in the literature, a sample-based relative

landmarking approach has shown improvements in algorithm ranking as compared with the

traditional DCT measures.

Kopf and Iglezakis (2002) proposed a new approach of task description for model selec-

tion in context of MLL. It evaluates the performance for assessing the quality standards for

case-bases when used for supervised MLL. The case-base properties were used to assess the

15

16 Meta-features Generation and Selection

quality of given case-bases in terms of measures such as redundancy. A brief overview of

necessary requirements for the implementation of the case-based properties has also been

provided in their study. A comprehensive experimentation was performed to compare vari-

ants of DCT DSIT approach, landmarking and their combinations. MFs were constructed

for the experiments from UCI datasets (see Table 2.1) which contained up to 25% missing

values. Error rates for ten different classification algorithms from the METAL project were

determined for different subsets of data characteristics mentioned in Appendix B and re-

stricted to three Base-learners that are shown in Figure 2.3. The empirical results show the

proposed approach in combination with DSIT, and landmarking approaches as a promising

one.

Abdelmessih et al. (2010) presented an overview of the RapidMiner’s Landmarking op-

erator and its evaluation. This landmarking operator was developed in an open-source

data-mining tool RapidMiner. As mentioned repeatedly in the above studies, landmarkers

selection is a critical process and the criteria to select an optimal landmarker consists of

three characteristics: 1) a landmarker has to be simple, 2) it require minimum execution

(processing) time and 3) it has to be simpler than the target learner(s). Following these con-

ditions, RapidMiner provided the landmarkers shown in Figure 2.3 and target algorithms,

for which the accuracy was predicted (see landmarking section of Appendix B). For the

evaluation of these landmarkers, 90 datasets from the UCI (Bache and Lichman, 2013) and

other sources are gathered with at least 100 samples in each. By following the existing

studies, the landmarking operator has been compared with the DSIT MFs of StatLog (King

et al., 1995) and DCT (Lindner and Studer, 1999), where Landmarking has shown 5.1-8.3%

overall boost in all cases.

2.2.3 Model-based Approach

Model-based MF generation is another effort towards task characterization in MLL domain.

In this approach the dataset is represented in a data structure that can incorporate the

complexity and performance of the induced hypothesis. Later the representation can serve

as a basis to explain the reasons behind the performance of the learning algorithm Giraud-

Carrier (2008). Several research works utilizing the Model-based approach are discussed as

follows.

Bensusan et al. (2000) study was an initial effort towards the model-based approach.

The authors proposed to capture the information directly from the induced decision trees

for characterizing the learning complexity. Figure 2.3 lists the 10 descriptors computed from

induced decision trees. Using these MFs, a task representation and algorithm to store and

compare two different tree structures has been explained in detail with examples. Authors

also elaborated the motivation of using the induced decision trees directly rather than the

predefined properties used in decision tree based MFs that, in turn, made explicit properties

implicit in the tree structure. Finally, higher-order MLL approach has been generalized by

proposing data structures to characterize other algorithms. Tree-like structure was used

for Decision Trees (DT) in this work, sets have been proposed for rule sets and graphs for

Neural Networks (NNs).

EXISTING RESEARCH Meta-features Generation and Selection

Peng et al. (2002) effort was towards improving the dataset characterization by capturing

structural shape and size of the decision tree induced from the dataset. For that purpose

15 features were proposed known as DecT, shown in Figure 2.3, which do not overlap with

Bensusan et al. (2000). These measures have been used to rank 10 learning algorithms in

various experiments. In the first experiment DCT (Lindner and Studer, 1999) DSIT MFs

and 5 landmarkers (Worst Nodes Learner, Average Nodes Learner, NB, and LDA) were

compared with DecT. The results proved the performance enhancement of the proposed

approach. In another experiment, DecT measures have been compared with the same DCT

measures and landmarkers to rank the learning algorithms based on accuracy and time

where again DecT performed better. The last experiment was performed to select MFs

by reducing the number of features to 25, 15 and 8 respectively. The k-Nearest Neighbour

algorithm, with various values of k between 1 to 40, was used to select k datasets for ranking

the performance of learning algorithms. The results suggested that feature selection does

not significantly influence the performance of either DecT or even DCT, furthermore, DecT

outperformed other approaches.

The Neuro-cognitive inspired mechanism is proposed by Duch et al. (2011) to analyse

learning based transformations that generate useful hidden features for MLL. The types of

transformations include restricted random projections, optimization using projection pur-

suit methods, similarity and general kernel-based features, conditionally defined features,

and features derived from partial successes of various learning algorithms. The binary fea-

tures were extracted from DT and rule-based algorithms where continuous features were

discovered by projection pursuit, linear Support Vector Machines (SVM) and simple pro-

jections. NB provides posterior probabilities along these lines while k-Nearest Neighbour

(k-NN) and kernel methods find similarity-based features. The proposed approach illustrates

Multi-dimensional Scaling (MDS) mappings and Principal Component Analysis (PCA), In-

dependent Component Analysis (ICA), QPC, SVM projections in the original, one- and

two-dimensional space. Various real-world and synthetic datasets (details can be found in

Table 2.1) were used for visualization and to analyse the kind of structures they create.

The classification accuracies of the datasets are predicted using five classifiers including NB,

k-NN, Separability Split Value Tree (SSV), Linear and Gaussian kernel SVM in the original,

one- and two-dimensional spaces. The results show an significant improvement almost in

all five algorithms as compared to the existing approach of the authors.

2.2.4 Discussion and Summary

There are three common MF generation approaches proposed in the reviewed publications

for MLL: 1) DSIT, 2) Landmarking and 3) Model-based. The DSIT MFs approach was

introduced at the early stage of MLL development where Rendell et al. (1987) proposed two

descriptive features for VBMS. Later on Rendell and Cho (1990) added more descriptive

features to the original list. The statistical MFs were introduced by King et al. (1995), and

Sohn (1999) proposed information-theoretic features combined with some existing descrip-

tives to represent a problem at Meta-level. Finally, Lindner and Studer (1999) proposed an

extensive list of DSIT MFs, known as DCT. The DCT measures became a benchmarked

approach to represent a problem using DSIT approach. These measures were later used in

17

18 Meta-features Generation and Selection

several studies for experimentation, e.g. Berrer et al. (2000), Giraud-Carrier (2005), etc.,

and compared with other MF approaches.

Descr
iptive

Statistical

Information Theoretic

Landmarkers

M
odel-based

R
en

de
ll

et
 a

l (
19

87
)

Re
nd

el
l e

t a
l (

19
90

)

Ki
ng

 e
t a

l (
19

95
)

So
hn

 (1
99

9)
Lin

dn
er

 et
 al

 (1
99

9)

Berr
er

et
al

(20
00

)

Pfah
rin

ge
r e

t a
l (2

00
0)

Brazdil e
t al (2

003)

Prudencio
 et al (2

004)

Giraud-Carrie
r (2

005)

Prudencio et al (2008)

Guerra et al (2008)

Lemke et al (2010)

Feurer et al (2014)

Filchenkov et al (2015)

Ali et al (2018)

King et al (1995)

Sohn (1999)

Lindner et al (1999)
Berrer et al (2000)

Brazdil et al (2003)

Prudencio et al (2004)

Giraud-Carrier (2005)

Prudencio et al (2008)

G
uerra et al (2008)

W
ang et al (2009)Le

m
ke

 e
t a

l (
20

10
)

Ro
ss

i e
t a

l (2
01

2)

Fe
ure

r e
t a

l (2
01

4)

Filch
en

ko
v a

nd
 (2

01
5)

Ali e
t al (2

018)
Rendell et al (1

990)

Sohn (1999)Lindner et al (1999)Berrer et al (2000)
Bensusan et al (2000b)

Brazdil et al (2003)

Giraud-Carrier (2005)

Rossi et al (2012)
Feurer et al (2014)

Filchenkov and (2015)

Kopf et al (2002)

Giraud-Carrier (2005)

Abdelmessih et al (2010)

Feurer et al (2014)

Filchenkov et al (2015)

Bensusan et al (2000a)

Peng et al (2002)
Feurer et al (2014)

Filchenkov et al (2015)
N

um
be

r o
f F

ea
tu

re
s

(p
)

N
um

be
r o

f T
ra

in
in

g
in

st
an

ce
s

(r)
Fr

eq
ue

nc
y

of
 m

os
t c

om
m

on
 c

la
ss

N
um

be
r o

f F
ea

tu
re

s
(p

)
N

um
be

r o
f T

ra
in

in
g

in
st

an
ce

s
(r)

Nu
m

be
r o

f T
es

t i
ns

ta
nc

es
 (t

)
Sa

m
pl

in
g

Di
st

rib
ut

io
n

Nu
m

be
r o

f B
in

ar
y

Fe
at

ur
es

 (b
)

Nu
m

be
r o

f N
um

er
ic

fe
at

ur
es

 (n
)

Nu
m

be
r o

f N
om

in
al

 fe
at

ur
es

 (s
)

Nu
m

be
r o

f C
la

ss
es

 (k
)

Nu
m

be
r o

f F
ea

tu
re

s
(p

)
To

ta
l I

ns
ta

nc
es

 (N
)

Nu
m

be
r o

f T
ra

in
in

g
in

st
an

ce
s

(r)

Nu
m

be
r o

f T
es

t i
ns

ta
nc

es
 (t

)

Sa
m

pl
in

g
Di

st
rib

ut
io

n

Nu
m

be
r o

f B
in

ar
y

Fe
at

ur
es

 (b
)

Nu
m

be
r o

f C
la

ss
es

 (k
)

Nu
m

be
r o

f F
ea

tu
re

s
(p

)

To
ta

l I
ns

ta
nc

es
 (N

)

Nu
m

be
r o

f T
ra

ini
ng

 in
sta

nc
es

 (r
)

Nu
m

be
r o

f T
es

t in
sta

nc
es

 (t
)

Nu
m

be
r o

f B
ina

ry
 F

ea
tu

re
s (

b)

Pr
op

or
tio

n
of

 b
ina

ry
 fe

at
ur

es
 (b

/p
)

Tr
ain

ing
 in

sta
nc

es
 to

 fe
at

ur
es

 ra
tio

 (p
/N

)

Pr
op

or
tio

n
of

 tr
ain

ing
 in

sta
nc

es
 (r

/N
)

Nu
m

be
r o

f C
las

se
s (

k)

To
tal

 In
sta

nc
es

 (N
)

Nu
mbe

r o
f N

um
er

ic
fea

tur
es

 (n
)

Nu
mbe

r o
f N

om
ina

l fe
atu

re
s (

s)

Pr
op

or
tio

n o
f n

om
ina

l fe
atu

re
s (

s/p
)

Sp
an

 of
 no

mina
l v

alu
es

Av
era

ge
 of

 no
mina

l v
alu

es

Num
be

r o
f C

las
se

s (
k)

To
tal

 In
sta

nc
es

 (N
)

Num
be

r o
f N

um
eri

c f
ea

tur
es

 (n
)

Num
be

r o
f N

om
ina

l fe
atu

res
 (s

)

Prop
ort

ion
 of

 no
mina

l fe
atu

res
 (s

/p)

Spa
n o

f n
om

ina
l v

alu
es

Ave
rag

e o
f n

om
ina

l va
lue

s

Num
be

r o
f C

las
se

s (
k)

Freq
ue

nc
y o

f m
os

t co
mmon

 cla
ss

Tot
al I

nst
an

ces
 (N

)

Number o
f N

umeric
features (

n)

Number o
f N

ominal fe
atures (s

)

Total In
sta

nces (N
)

Proportio
n of nominal fe

atures (s
/p)

Time-se
ries L

ength (N
)

Number of Classes (k)

Total Instances (N)

Number of Numeric features (n)

Number of Nominal features (s)

Proportion of nominal features (s/p)

Span of nominal values

Average of nominal values

Log of number of Training instances (r)

Log of training instances to features ratio (p/N)

Log of number of Training instances (r)

Log of training instances to features ratio (p/N)

Time-series Length (N)

Number of Classes (k)

Number of Features (p)

Total Instances (N)

Dataset Dimentionality

Number of Numeric features (n)

Number of Nominal features (s)

Proportion of nominal features (s/p)

Average of nominal values

Number of Classes (k)

Number of Features (p)

Total Instances (N)
Dataset Dimentionality

Total Instances (N)

Mean Skewness
Mean Kurtosis
S/D Ratio
Canonical Correlation (CANCOR)No of Discriminant Func (DiscFunc)Mean Absolute Corr (CORR)Prop of largest Eigen-value (FRACT)Mean SkewnessMean KurtosisS/D RatioCanonical Correlation (CANCOR)

No of Discriminant Functions (DiscFunc)

Mean Absolute Corr (CORR)
Prop of largest Eigen-value (FRACT)

Relative probability of missing values

Instances with missing values

Proportion of features with outliers

Mean Skewness
Mean Kurtosis
StdDev of the class distribution

Homogeneity of Covariances (S/D Ratio)

Canonical Correlation (CANCOR)

Number of Discriminant Functions (DiscFunc)

Relative proportion of largest Eigen-value (FRACT)

Wilks'lambda Distribution (Wlambda)

Default Accuracy
Relative probability of missing values

Instances with missing values

Proportion of features with outliers

Mean Skewness

Mean Kurtosis

Standard Deviation (StdDev) of the class distribution

Homogeneity of Covariances (S/D Ratio)

Canonical Correlation (CANCOR)

Number of Discriminant Functions (DiscFunc)

Relative proportion of largest Eigen-value (FRACT)

Wilks'lambda Distribution (Wlambda)

Default Accuracy

Relative probability of missing values

Proportion of features with outliers

Canonical Correlation (CANCOR)

TS mean absolute values of first 5 Auto-correlations (Mean-CORR)

TS test of significant Auto-correlations (TAC)

TS significance of the 1, 2, and 3 Auto-correlation (TAC-1,2,3)

TS coeficient of variation

TS absolute value of the SKEW and KURT coefficient

TS test of Turning Points for randomness

TS trend

TS ratio of turning point

TS first coefficient of autocorrelation (AC1)

TS type

Relative probability of missing values

Instances with missing values

Proportion of features with outliers

Mean Skewness

Mean Kurtosis

Standard Deviation (StdDev) of the class distribution

Hom
ogeneity of Covariances (S/D Ratio)

Canonical Correlation (CANCOR)

Num
ber of Discrim

inant Functions (DiscFunc)

Relative proportion of largest Eigen-value (FRACT)

W
ilks'lam

bda Distribution (W
lam

bda)

Default Accuracy

M
in of CO

RR between predictors and target

M
ax of CO

RR between predictors and target

M
ean of CO

RR between predictors and target

StdDev of CO
RR between predictors and target

M
in of CO

RR between pairs of predictors

M
ax of CO

RR between pairs of predictors

M
ean of CO

RR between pairs of predictors

StdDev of CO
RR between pairs of predictors

M
in of CO

RR between predictors and target

M
ax of CO

RR between predictors and target

M
ean of CO

RR between predictors and target

StdDev of CO
RR between predictors and target

M
in of CO

RR between pairs of predictors

M
ax of CO

RR between pairs of predictors

M
ean of CO

RR between pairs of predictors

StdDev of CO
RR between pairs of predictors

TS trend
TS seasonality
Skew

ness (of raw
 and seasonally adjusted)

Kurtosis (of raw
 and seasonally adjusted)

TS Box-Pierce statistic

TS
 N

on
-li

ne
ar

 a
ut

or
eg

re
ss

io
n

TS
 L

ya
pu

no
v

Ex
po

ne
nt

TS
 S

el
f-s

im
ila

rit
y

(L
on

g-
ra

ng
e

D
ep

en
de

nc
e)

TS
 P

er
io

di
ci

ty
 (f

re
qu

en
cy

)

Sk
ew

ne
ss

 (o
f s

er
ie

s)
Ku

rto
si

s
(o

f s
er

ie
s)

St
dD

ev
 o

f d
e-

tre
nd

ed
 s

er
ie

s
TS

 tr
en

d
TS

 D
W

TS
 tu

rn
in

g
po

in
t

TS
 s

te
p

ch
an

ge
s

TS
 p

re
di

ct
ab

ilit
y

m
ea

su
re

TS
 n

on
-li

ne
ar

ity
 m

ea
su

re

TS
 la

rg
es

t L
ya

pu
no

v
ex

po
ne

nt

TS
 3

 la
rg

es
t p

ow
er

 s
pe

ct
ru

m
 fr

eq
ue

nc
ie

s

TS
 m

ax
im

um
 v

al
ue

 o
f p

ow
er

 s
pe

ct
ru

m

TS
 n

um
be

r o
f p

ea
ks

 >
 6

0%

TS
 a

ut
oc

or
re

la
tio

ns
 a

t l
ag

s
1

an
d

2

TS
 p

ar
tia

l a
ut

oc
or

re
la

tio
ns

 a
t l

ag
s

1
an

d
2

TS
 s

ea
so

na
lity

 M
ea

su
re

TS
 m

ea
n

SP
AM

E
- m

ea
n

de
-v

ia
te

d
SP

AM
E

TS
 m

ea
n

SP
AM

E
/ m

ea
n

de
via

te
d

SP
AM

E

TS
 m

ea
n

of
 c

or
re

la
tio

n
co

ef
fic

ie
nt

TS
 S

td
De

v o
f c

or
re

lat
ion

 co
ef

fic
ien

t

TS
 m

et
ho

ds
 in

 to
p

pe
rfo

rm
ing

 cl
us

te
r

TS
 d

ist
an

ce
 to

p
pe

rfo
rm

ing
 cl

us
te

r t
o

se
co

nd
 b

es
t

Ou
tlie

rs

Sk
ew

ne
ss

Ku
rto

sis

Av
er

ag
e

Va
rie

nc
e

Mini
mum

Max
im

um

Med
ian

Cor
re

lat
ion

 be
tw

ee
n p

re
dic

tor
 an

d t
ar

ge
t

Rela
tiv

e p
rob

ab
ilit

y o
f m

iss
ing

 va
lue

s

Ins
tan

ce
s w

ith
 m

iss
ing

 va
lue

s

Stan
da

rd
Dev

iat
ion

 (S
tdD

ev
) o

f th
e c

las
s d

ist
rib

uti
on

ab
s v

alu
e o

f th
e S

ke
w an

d K
urt

 co
effi

cie
ntKurtCorr

Coe
f-V

ar

ab
s v

alu
e o

f th
e S

ke
w an

d K
urt

 co
effi

cie
ntSke

wKurt
TS tre

nd

TS turning point

TS ste
p ch

anges

TS non-lin
earity

 measure

TS maxim
um va

lue of power sp
ectru

m

TS number of peaks
> 60%

TS auto-co
rrelations a

t la
gs 1

 and 2

TS se
asonality

Measure

Noise to Signal Ratio (NoiseRaio)

Entropy of Classes (HC)

Entropy of nominal features

Joint Entropy of Classes (HCX)

Average Mutual Information (MCX)

Entropy of Classes (HC)

Entropy of nominal features

Joint Entropy of Classes (HCX)

Average Mutual Information (MCX)

Class Entropy to Mutual information ratio

Noise to Signal Ratio (NoiseRaio)
Entropy of Classes (HC)

Entropy of nominal features

Joint Entropy of Classes (HCX)

Average Mutual Information (MCX)

Class Entropy to Mutual information ratio

Noise to Signal Ratio (NoiseRaio)Entropy of Classes (HC)
Entropy of nominal features

Joint Entropy of Classes (HCX)
Average Mutual Information (MCX)

Class Entropy to Mutual information ratio
Noise to Signal Ratio (NoiseRaio)

Entropy of Classes (HC)Average Mutual Information (MCX)
Entropy of Classes (HC)Entropy of nominal features

Joint Entropy of Classes (HCX)
Average Mutual Information (MCX)

Class Entropy to Mutual information ratio
Noise to Signal Ratio (NoiseRaio)

Dispersion Gain

Class Entropy to Mutual information ratio
HC

Entropy of nominal features
HCX
MCX

Class Entropy to Mutual information ratio

NoiseRatio

Ltree

k-NN

Decision Nodes

Worst Nodes

Randomly Chosen Nodes
NB

k-NN

Average Nodes

Decision Nodes

Randomly Chosen Nodes
NB

k-NN
LDA

c50 tree

k-NN

C50 tree

Nodes per attribute

Nodes per instance

Average leaf corroboration

Average gain-ratio difference

Maximum depth

No of repeated nodes

Shape

Homogeneity

Imbalance

Internal symmetry

No of Nodes in each level - width

No of levels - Height

No of nodes in the tree

No of leaves in the tree

Maximum no of nodes at one level

Mean of the no of nodes

StdDev of the no of nodes

Length of the Shortest branch

Length of the Longest branch

Mean of the branch length

StdDev of the branch length

Minimum occurrence of Features

M
axim

um
 occurrence of Features

M
ean of the no of occur of Features

StdDev of no of occur of Features

Principal Com
ponent Analysis (PCA) 95%

PCA skewness
PCA kurtosis

Average gain-ratio difference

No of repeated nodes

No of Nodes in each level - width

No of levels - Height

No of nodes in the tree

No of leaves in the tree

M
axim

um
 no of nodes at one level

M
ean of the no of nodes

StdDev of the no of nodes

StdDev of the branch length

M
inim

um
 occurrence of Features

M
axim

um
 occurrence of Features

M
ean of the no of occurrences of Features

StdDev of no of occurrences of Features
W

eight sum
 of dataset

M
inim

um
 weight sum

 of dataset
Average weight sum

 of dataset
StdD

ev w
eight sum

 of dataset
N

o neighbours for dataset
M

inim
um

 N
o neighbours for dataset

M
axim

um
 N

o neighbours for dataset
Average N

o neighbours for dataset
StdD

ev of N
o neighbours for dataset

Figure 2.3: Meta-features used in various studies7

Landmarking and Model-based approaches are more recent ones and have been outper-

forming the DSIT in almost all the comparative studies. The earliest study on Landmarking

was conducted by Bensusan and Giraud-Carrier (2000) where the approach was claimed to

be simpler, more intuitive and efficient than DSIT. The proposed approach was compared

7Tabular representation of the visualization can be seen in Appendix B)

EXISTING RESEARCH Meta-features Generation and Selection

with and outperformed information-theoretic measures of DCT with a significant differ-

ence. Though one common deficiency that is observed in several MLL studies is the use of

a smaller number of EoD for experimentations which raised a question on the significance

of the reported results. Pfahringer et al. (2000) used a different set of Landmarkers but the

same target learners as Bensusan and Giraud-Carrier (2000). This work can be considered

to offer improvements to the previous one in two aspects: 1) a large number of synthetic

datasets were used; and 2) some descriptive MFs were combined with the Landmarkers.

This approach was also compared with DCT features where Landmarking showed signifi-

cant improvement in the results. Similarly Soares et al. (2001), Kopf and Iglezakis (2002)

and Abdelmessih et al. (2010) have used different sets of target learners, landmarkers, num-

ber of dataset examples and compared their approach with a different set of DSIT measures.

All of them reported improved results of Landmarking approach over DSIT.

Bensusan et al. (2000) approach to characterizing the learning complexity by directly

inducing from the model is the earliest work towards the model-based approach. In this

work, 10 descriptors were computed from the induced decision trees which can be seen in

Figure 2.3. Peng et al. (2002) effort was towards improving this characterization by focusing

on structural shape and size of the decision tree induced from the datasets. The other di-

mension of this work was to compare the proposed model-based approach with DCT, DSIT

and Landmarking measures. Various experimentations have been performed with variations

of MFs and Landmarkers where the model-based approach consistently performed better.

A problem with these Meta-level problem representations is that they can not facilitate the

non-stationary environment. Most of the effort has been dedicated to the stationary envi-

ronment, even though some recent studies are addressing MFs for a dynamic environment,

i.e. Rossi et al. (2014), but these are not mature enough to represent the entire domain.

Although Rossi et al. (2014) used traditional MF that are used to characterize stationary

data, only those MFs were computed that characterize individual variables. Moreover, there

are separate features computed for training and selecting windows. Their reliability is asso-

ciated with the number of examples, thus the larger the number of examples in a window,

the higher the reliability of problem representation at Meta-level. However, in a rapidly

changing environment, a limited number of examples accumulate between consecutive con-

cept changes. Hence there is an unaddressed need for useful MFs calculated from small

data.

Lemke and Gabrys (2010a) and Ali et al. (2018) have used three different groups of MF

extracted from univariate time-series, including descriptive statistics, frequency domain and

auto-correlation features. Feurer et al. (2014) has obtained 46 MF from five different groups

including simple, DSIT, and PCA. Filchenkov and Pendryak (2015) has also gathered a

comprehensive set of DSIT features for classification task. Also model-based MF computed

from DT, k-NN, and perceptron are combined with DSIT.

From the above studies, it can be observed that combining significant MFs from different

feature generation approaches might be useful as shown in Figure 2.4.

The recent paradigm shift of MLL brought a different set of model-based MF (Minar and

Naher, 2018). Ali et al. (2019b) introduces the Probability Mass Function (PMF) of the final

layer of Deep Neural Networks (DNN); another variation is Probability Density Function

(PDF) of the network’s activations. In another study on Meta-Reinforcement Learning

19

20 Base-level Learning

Examples of Datasets)

Descriptive, Statistical and

Information Theoretic Landmarking Model-based

Meta-model

Pre-processing

Meta-feature approaches
Combination

Figure 2.4: Combining Significant Meta-features from various approaches

(Meta-RL) (Ali et al., 2019a), a DNN is used as Base-learner which sits in the environment.

Moreover, the behaviour of the environment (state) is represented as MF which is composed

of the training loss, accuracy, and PMF of the network’s final layer outcome.

2.3 Base-level Learning

In the context of MLL, Base-level Learning (BLL) algorithms are used to build predictive

models on input datasets and for MLL purposes are used to compute a set of performance

measures, i.e, accuracy, execution-time, etc. These performance measures are combined

together with their respective MFs in MK database. A Meta-learner uses these performances

as a target variable. The remaining sections discuss several studies relevant to individual

and combination of BLL algorithm techniques. Moreover, the combination of Base-learners

uses multiple individual models to achieve overall boosted performances which are mapped

with their respective MFs.

Brazdil et al. (2003) proposed an MLL based approach to rank candidate algorithms

where k-NN was used to identify the datasets that were most similar to the query dataset.

The pool of candidate algorithms contained an ensemble method, namely C5.0 boost, which

performed well for 19 out of 53 datasets in the presence of 9 other algorithms. The per-

formance of ensemble methods was ranked with individual learning algorithms. In general,

several researches used C5.0 boost ensemble method with other individual algorithms and

found it as the top performing method in the ranking list.

The applicability of MLL on TS task is demonstrated by Lemke and Gabrys (2010a).

Several individual and combination of forecasting algorithms were used to investigate which

model works best in which situation. In the experiments, five forecasting combination meth-

ods have been used including 1) simple average where all available forecasts are averaged,

2) simple average with trimming which do not take the worst performing 20% models into

account, 3) variance-based method where weights for a linear combination of forecasts are

EXISTING RESEARCH Base-level Learning

determined using past forecasting performance, 4) out-performance method which deter-

mines weights based on the number of times a method performed best in the past, and 5)

variance-based pooling which first groups past forecast performance into 2-3 clusters and

then takes their average to obtain final forecast. The results of these experiments show that

the forecast combination methods perform better than individual model selection which are

listed in Table 2.3. Further discussion of this work can be found in Section 2.4.

Menahem et al. (2011) proposed a new MLL based ensemble scheme for one-class prob-

lems know as TUPSO. The TUPSO combine one-class Base-classifiers via Meta-classifier to

produce a single prediction. The BLL component generates predictions of classifiers which

are used to extract aggregated MFs as well as one-class accuracy and f-score estimates. The

one-class performance evaluator computed each Base-classifier on only positive labelled in-

stance using 4 algorithms including 1) global density estimation, 2) peer group analysis, 3)

SVM, and 4) attribute distribution function approximation (ADIFA) on 53 distinct datasets

(details can be seen in Table 2.1). There are 15 aggregated MFs computed from the pre-

dictions of Base-classifiers that are clustered into four groups: 1) summation-based (votes,

predictions, weighted predictions, power and log of weighted predictions), 2) variance-based

(votes, predictions, and weighted), 3) histogram-based, and 4) representation-length based.

In empirical evaluation, an ensemble combining method, Fixed-rule, produced worse clas-

sification accuracy when compared to MLL based ensembles - TUPSO. Filchenkov and

Pendryak (2015) has used five different classifiers to avoid bias and leave-one-out cross-

validation to estimate the performance. Ali et al. (2018) has used both simple and complex

forecasting methods which are originally introduced by Lemke and Gabrys (2010a).

Table 2.3: Base-level learning strategies used in different studies

Research Work
Sampling
Strategy

Base-learners
Performance
Measure

King et al.
(1995)

9-fold Cross-
Validation
(CV) for
datasets with
less than 2500
instances

k-NN, Radial-basis Function (RBF), Den-
sity Estimation, Classification and Re-
gression Trees (CART), Inductive CART
(INDCART), Back-propagation, NewID,
C4.5, CN2 Induction Algorithm (CN2),
Quadratic Classifier (Quadra), Cal5,
AC2, Smooth Multiple Additive Regres-
sion Technique (SMART), Logistic Re-
gression, Fisher’s Linear Discriminant
(FLD), ITrule, Causal Structure for In-
ductive Learning (CASTLE), NB

Misclassification
error, Run-
time speed

Bensusan and
Giraud-Carrier
(2000)

stratified
10-fold CV

NB, Multi-layer Perceptron (MLP), RBF,
C5.0 tree, C5.0 Rule Induction (C5.0
rules), C5.0 boost, Instance-based Learn-
ing (IBL), LDA, Ripper, Linear Discrim-
inant Trees (Ltree)

Pfahringer et al.
(2000)

10-fold CV NB, MLP, RBF, C5.0 tree, C5.0 rules,
C5.0 boost, IBL, LDA, Ripper, Ltree

Mean Ab-
solute Error
(MAE)

Soares et al.
(2001)

NB, MLP, RBF, C5.0 tree, C5.0 rules,
C5.0 boost, IBL, LDA, Ripper, Ltree

21

22 Base-level Learning

Peng et al.
(2002)

10-fold CV C5.0 tree, C5.0 rules, C5.0 boost, Ltree,
LDA, NB, IBL, MLP, RBF, Ripper

Mean Squared
Error (MSE),
Run-time
speed

Todorovski et al.
(2002)

10-fold CV C5.0 tree, C5.0 rules, C5.0 boost, Ltree,
Ripper, NB, k-NN 8, LDA

MSE and
Spearman’s
Rank Corre-
lation Coeffi-
cient (SRCC)

Kopf and Igleza-
kis (2002)

10-fold CV NB, MLP, RBF, C5.0 tree, C5.0 rules,
C5.0 boost, IBL, LDA, Ripper, Ltree

Brazdil et al.
(2003)

10-fold CV C5.0 tree, C5.0 rules, C5.0 boost, Ltree,
IBL, Ripper, LDA, NB, MLP, RBF

ARR

Prudencio and
Ludermir (2004)

I: Train and
test and II:
train, test and
validate

I: J.48 and II: MLP MAE

Giraud-Carrier
(2005)

10-fold CV NB, MLP, RBF, C5.0 tree, C5.0 rules,
C5.0 boost, IBL, LDA, Ripper, Ltree

Guerra et al.
(2008)

10-fold CV MLP8 Normalized
MSE

Wang et al.
(2009)

80% Training
and 20% test-
ing partition

Exponential Smoothing (ES), Auto-
regressive Integrated Moving Average
(ARIMA), Random Walk (RW), NN

Kadlec and
Gabrys (2009)

Leave-one-out
CV

Multiple Linear Regression (MLR), MLP,
RBF, Lazy-learning

MSE and
SRCC

Lemke and
Gabrys (2010a)

10-fold CV ARIMA, Structural model, Iterated
(single exponential smoothing, Taylor
smoothing, theta, NN, elman NN), Di-
rect (regression, theta Moving Average
(MA), single exponential smoothing, Tay-
lor smoothing, NN)

Symmetric
Mean Ab-
solute Per-
centage Error
(SMAPE)

Abdelmessih et
al. (2010)

10-fold CV NB, k-NN, MLP, C5.0 tree, Random
Forests (RF), One Rule Learner (OneR),
SVM

Root Mean
Squared Error
(RMSE)

Rossi et al.
(2012)

Training and
testing

RF, SVM, CART, Projection Pursuit Re-
gression (PPR)

Normalized
MSE

Rossi et al.
(2014)

Training and
testing

RF, SVM, CART, PPR, Multivariate
Adaptive Regression Splines (MARS)

Normalized
MSE

Filchenkov and
Pendryak (2015)

Leave-one-out
CV

C4.5, PART (Frank and Witten, 1998),
NB, BayesNet, IB3 Aha et al. (1991)

RPR (Filchenkov
and Pendryak,
2015)

Ali et al. (2018) Leave-one-out
CV

MA, ARIMA, Structural model, NN SMAPE

8k=1
8hidden nodes = 1, 2, 3, 8, 16, 32

EXISTING RESEARCH Meta-learning

2.3.1 Discussion and Summary

The MK database usually consists of MFs and performance measures (as target) of different

learning algorithms which are predicted accuracies of EoD. These predictive values are

computed, in the context of MLL, through BLL. Another level of complexity is introduced

by the different parametrizations of the algorithms which were overlooked by several studies

where only default configurations were considered. Furthermore, most of them selected only

the best algorithm from the pool to minimize the complex representation of MK dataset,

therefore very few of them stored ranking. Table 2.3 shows different learning strategies,

Base-learners and performance measures that various MLL studies used at Base-level. It

can be observed that the 10-fold cross validation strategy, MAE accuracy measure and some

learning algorithms have become a norm to use at Base-level. The same Base-level learning

strategies are used in some MLL studies for TS with different ARIMA and Exponential

smoothing algorithms. A common deficiency that can be concluded from various studies is

related to the granularity of information that is being stored in MK database.

Some published literature is segregated into four different performance measure cate-

gories (target variable for an MLL system in Table 2.4.

Table 2.4: Different Performance Measures that are used in various literatures

Performance
Measure(s)

Description Research Work

Best learning algo-
rithm

The performance measure only con-
sists of the classification accuracy of
best learning algorithm for each single
dataset

Utgoff (1984); Graner et al.
(1994); King et al. (1995);
Bensusan et al. (2000)

Ranking of learning
algorithms

To predict a ranked list of learning al-
gorithms in a pool which are sorted
based on a performance measure, e.g.
classification accuracy, run-time, etc.

King et al. (1995); Brazdil
et al. (2003); Vilalta et al.
(2004)

Quantitative Predic-
tion (Reif, 2012)

Directly predict the performance of
the target learning algorithm in an ap-
propriate unit, i.e., by training sepa-
rate regression model for each target
algorithm

Gama and Brazdil (1995);
Sohn (1999); Kopf and
Iglezakis (2002); Bensusan
and Kalousis (2001); Reif
(2012)

Predicting Parame-
ters

The MLL target variable could be one
parameter value or a set of values

Soares et al. (2004); Soares
and Brazdil (2006); Kadlec
and Gabrys (2009); Lemke
and Gabrys (2010a);
Filchenkov and Pendryak
(2015); Ali et al. (2018)

2.4 Meta-learning

The MK induced by MLL provides a means of informed-decisions based on which algorithms

are ranked for a given problem (Giraud-Carrier, 2008). This chapter presents the history of

23

24 Meta-learning

the most promising decision-support systems for algorithm selection, followed by a review

of the applicability of MLL to supervised and unsupervised learning algorithms.

2.4.1 Existing Systems

This section contains a number of MLL systems developed over last couple of decades.

2.4.1.1 Shift To A Better Bias

Based on various studies, a doctoral thesis of Utgoff (1984) is considered as the earliest

effort towards MLL systems where a system named Shift To A Better Bias (STABB) was

proposed. It was a demonstration that a learner’s bias could be adjusted dynamically. Later

this work became an initial point of reference and was enhanced in several studies. One

of them was Variable-bias Management System (VBMS) by Rendell et al. (1987), where a

relatively simple MLL system was proposed. VBMS selected the best among three symbolic

learning algorithms as a function of only two dataset characteristics, namely, the number of

training instances and the number of features. Rendell and Cho (1990) has further worked

on characterizing and investigating the extensive role of data character as a determiner of

system behaviour in empirical concept learning. Two main contributions have been brought

up: 1) a useful set of MFs based on concept (function or surface over instance) complexity,

i.e., shape, size, and structure, that relates a real-world problem to learning algorithm; and

2) an approach of systematic artificial data generation. The results, which focus on measures

of complexity, showed that shape and specifically concentration have significant effects.

2.4.1.2 Machine Learning Toolbox

Machine Learning Toolbox (MLT) project by Graner et al. (1994) was one of the initial

attempts to address the applications of MLL. MLT produced a toolbox consisting of 10

symbolic learning algorithms for classification. The part of MLT project that assists with

the algorithm selection is known as Consultant. The Consultant was based on a stand-alone

expert system which maintained a knowledge-base that considered the experiences acquired

from the evaluation of learning algorithms. Considerable insight into many important ML

issues was gained which had been translated into rules that formed the basis of Consultant-2.

Consultant-2 was also an expert system for algorithm selection which gathered user inputs

through a set of questions about the data, the domain, and user preferences. Based on

the user response relevant rules lead to either additional questions or, eventually, a classi-

fication algorithm recommendation. Although its knowledge base had been built through

an expert-driven knowledge engineering rather than via MLL it still stands out as the first

automatic tool that systematically related application domain and dataset characteristics to

classification algorithms. Additionally, Consultant-3 provides advice and help on the com-

bination of learning algorithms. It is also able to perform self-experimentation to determine

the effectiveness of an algorithm on a learning problem.

EXISTING RESEARCH Meta-learning

2.4.1.3 Statistical and Logical Learning Project

In Statistical and Logical learning (StatLog) project King et al. (1995) presented the results

of comprehensive experiments on classification algorithms. The project was an extension

of VBMS by considering a larger number of MFs, together with a broad class of candidate

models for algorithm selection. It aimed to compare several symbolic learning algorithms

on twelve large real-world classification tasks. Some MLL algorithms were used for model

selection task where statistical measures, e.g., skewness, kurtosis, and covariance, that pro-

duced higher accuracy have been reported. Additionally, a thorough empirical analysis of 16

classifiers on 12 large real-world datasets and learning models using accuracy and execution

time measures of performance were produced. There is no single algorithm that performed

best in the experimentation phase. Symbolic algorithms showed maximum accuracy for

datasets with extreme distribution, i.e., where distribution was far from normal (i.e., specif-

ically with skew > 1 and kurtosis > 7), and worst in the scenarios where the data is equally

distributed. On the contrary, the Nearest Neighbour algorithm was found to be accurate

for datasets containing equally scaled and important features.

2.4.1.4 Meta-learning Assistant

Similarly, the Meta-learning Assistant (METAL) project was developed to facilitate the

selection of the best-suited classification algorithm for a data-mining task (Berrer et al.,

2000). It guides the user in two ways: 1) in discovering new and relevant MFs; and 2)

in the selection or ranking of classifiers using MLL process. The main deliverable of this

project is the Data Mining Advisor (DMA), a Web-based MLL system for the automatic

selection of classification learning algorithms (Giraud-Carrier, 2005). The DMA returned a

list of ten algorithms that were ranked according to how well they met the stated goals in

terms of accuracy and training time. It implemented ranking mechanisms by exploiting the

ratio of accuracy and training time. The choice of algorithm ranking, rather than selecting

best-in-class, is motivated by a desire to give as much information as possible and later any

number of algorithms could be executed on the dataset.

2.4.1.5 Meta-learning Architecture

The Meta-learning Architecture (METALA), developed by Botia et al. (2001), is an agent-

based architecture for distributed Data Mining, supported by MLL. The system supports

an arbitrary number of algorithms and tasks, and automatically selects an algorithm that

appears best from the pool of available algorithms. Like DMA, each task was characterized

by DSIT features relevant to its usage, including the type of input data it required, the type

of model it induced, and how well it handled noise. It had been designed to automatically

carry out experiments with each learner and task, and induce a Meta-model for algorithm

selection. As new tasks and learning algorithms are added to the system, corresponding

experiments are performed and the Meta-model is updated.

25

26 Meta-learning

2.4.1.6 Intelligent Discovery Assistant

The Intelligent Discovery Assistant (IDA) provided a Knowledge Discovery (KD) ontology

that defines the existing techniques and their properties (Bernstein and Provost, 2001). It

has supported three algorithmic steps of the KD process, including preprocessing, data mod-

elling and post-processing. The approach used in this system was the systematic enumer-

ation of valid data-mining processes so that potentially fruitful options are not overlooked

and effective ranking of these valid processes based on user-defined preferences e.g., pre-

diction accuracy, execution speed, etc. IDA systematically searches for an operation whose

pre-conditions have been met and whose indicators are consistent with the user-defined

preferences. Similarly, its post-conditions search for an operation and the process termi-

nates once the goal has been reached. Once all valid KD processes have been generated, a

heuristic ranker is applied to return user-specified goals. Bernstein et al. (2005) research has

focused on extending the IDA approach by leveraging the interaction between ontologies to

extract deep knowledge and case-based reasoning for MLL. The system also uses procedural

information in the form of rules fired by an expert system. The case-base is built around

53 features to describe cases and the ontology comes from human experts.

2.4.1.7 Pattern Recognition Engineering

Mierswa et al. (2006) developed a landmarking operator in RapidMiner as part of Pattern

Recognition Engineering (PaREn) project, which is an open-source system for data mining.

This operator extracts landmarking features from a given dataset by applying seven fast

computable classifiers on it (shown in Figure 2.3).

Table 2.5: Existing Meta-learning Systems

Research
Work

Name Approach Contributions Limitations

Utgoff (1984) STABB Statistical Initial effort towards
MLL

Limited to altering only
one kind of learner’s
bias with fixed order of
choices

Rendell et al.
(1987)

VBMS Descriptive Biases are dynamically
located and adjusted
according to problem
characteristics and prior
experience

VBMS is a relatively
simple MLL system
that learns to select
the best among three
symbolic learning al-
gorithms as a function
of only two dataset
characteristics

Rendell and
Cho (1990)

Empirical
Learning as
a Function
of Concept
Character

DSIT Complex MFs based on
shape, size and con-
centration, and artificial
data generation is used

These complex MFs are
expensive to compute

EXISTING RESEARCH Meta-learning

Graner et al.
(1994)

MLT Rule-based An expert system for
algorithm selection by
gathering user input
through questions and
trigger relevant rules
while the knowledge-
base was built through
expert-driven knowl-
edge engineering

Its knowledge base was
built through expert-
driven knowledge en-
gineering rather than
MLL

King et al.
(1995)

StatLog Statistical A thorough empirical
analysis of learning al-
gorithms and models
is produced by com-
paring several symbolic
learning algorithms on
twelve real-world classi-
fication tasks

For a given dataset, al-
gorithms were charac-
terized only as appli-
cable or non-applicable,
i.e., they do not pro-
vide a way to rank
the algorithms; further-
more, that character-
ization was based on
a simple comparison of
accuracies regardless of
any statistical signifi-
cance test

Berrer et
al. (2000)
and Giraud-
Carrier
(2005)

METAL -
DMA

DSIT and
landmark-
ing

Discovers new and rel-
evant MFs and algo-
rithm ranking in terms
of accuracy and execu-
tion time

The outcome of the pre-
diction model is only
the best classifier for the
new dataset. It does not
support multi-operator
workflows

Botia et al.
(2001)

METALA Model-
based

Agent-based architec-
ture for distributed
data-mining, auto-
matically carry out
experiments and in-
duce a Meta-model for
algorithm selection, it
provides architectural
mechanisms necessary
to scale the DMA

DMA’s MFs are used
to represent a problem,
no contribution to in-
troduce new features

Bernstein
and Provost
(2001)

IDA Model-
based

Its goal is to rank pre-
processing, modelling
and post-processing
steps that are both
valid and consistent
with the user-defined
preferences

The data should be
already pre-processed
considerably by the
user for IDA to model
it and evaluate the
resulting models

27

28 Meta-learning

Bernstein et
al. (2005)

IDA - An
Ontology-
based Ap-
proach

Model-
based

Extending IDA ap-
proach by leveraging
the interaction be-
tween ontology for
deep knowledge and
Case-Based Reasoning
for MLL

The case-based is built
on fixed 53 features and
the system is still in the
early stages of imple-
mentation

Mierswa et al.
(2006)

PaREn Landmarking A landmarking operator
for MLL developed in
RapidMiner

Very limited EoD (from
UCI) are used to build
MK

eLICO (2012) e-Laboratory
for Inter-
disciplinary
Collab-
orative
Research
(e-LICO)

Model-
based

An e-Laboratory for
interdisciplinary col-
laborative research
in data-mining and
data-intensive science

Meta-learning compo-
nent is using Rapid-
Miner’s landmarking
system which is built on
only 90 UCI datasets

Thornton
et al. (2013)
and Kotthoff
et al. (2017)

Automatic
model se-
lection
and hyper-
parameter
optimization
in WEKA
(Auto-
WEKA)

Bayesian
Optimisa-
tion

Tackle Combined Al-
gorithm Selection and
Hyper-parameter Opti-
mization (CASH) prob-
lem

Some algorithm require
Hyper-parameter Opti-
mization (HPO) which
is not supported

Komer et al.
(2014)

Hyperopt-
sklearn

Random
search and
SMBO

Provides automatic
algorithm configuration
of the Scikit-learn ML
library

-

Feurer et al.
(2015)

Auto-sklearn Bayesian
Optimisa-
tion

Provides ensemble im-
provements for Auto-
matic Machine Learn-
ing (Auto-ML)

Limited to HPO of shal-
low learning algorithm

Olson et al.
(2018)

Tree-based
Pipeline
Optimiza-
tion Tool
(TPOT)

Genetic
Program-
ming

Optimizes feature pre-
processing and section
of ML models

Ensemble methods are
not supported

2.4.1.8 e-LICO

e-LICO is a project for data-mining and data-intensive science (eLICO, 2012). This project

comprises of three layers: 1) e-Science, 2) Application, and 3) Data-mining. The e-Science

and data-mining layers form a generic environment that is adapted to different scientific

domains by customizing the application layer. The architecture of e-LICO project is shown

in Figure 2.5.

EXISTING RESEARCH Meta-learning

The e-LICO Architecture

Workflow repository & community platformUser assistance

Intelligent Discovery
Assistant (IDA)

RapidMiner Data-mining
Assistant (DMA)

Community

Workflow execution

myExperiment

Taverna
Intelligent Discovery

Assistant (IDA)

Workflow execution

RapidAnalytics

Application specific services

Video Recommender

R Extension
RMOnto

Subgroup Discorvery

Image Mining Web Services

Text Mining Web Services

Data-mining Ontologies and Knowledge-base

Data Miner Data-mining Ontologies
Ontology editor

eProPlan

R
a
n
k

 w
o
rk

fl
o
w

s

Rank workflow

User ontology Edit

extensions

Calls

Calls

Calls

Training on cases

Share processes

Share processes

M
e
ta

-d
a
ta

 c
a
se

s

A
p
p
li

c
a
ti

o
n

D
at

a
-m

in
in

g
e-

S
ci

en
ce

Figure 2.5: e-LICO project architecture

The e-Science layer is built on an open-source e-science infrastructure that supports

content creation through collaboration at multiple scales in dynamic virtual communities.

The Taverna9, open-source data-mining and predictive analysis solution (RapidAnalytics)

and RapidMiner (Mierswa et al., 2006) components have been used to design and en-

act data-analysis workflows. The system also provides a variety of general-purpose and

application-specific services and a broad tool-kit in designing and sharing such workflows

with data-miners all over the word using myExperiment portal. The IDA (Bernstein and

Provost, 2001) exposed MLL capabilities by automatically creating processes tailored for

the specification of input data and a modelling task. The RapidMiner’s DMA component

helps to design processes by recommending operators that fit well with the existing opera-

tors in a process. The data-mining layer provides comprehensive multimedia data-mining

tools that are augmented with preprocessing and learning algorithms developed specifically

to meet challenges of data-intensive, knowledge-rich sciences. The knowledge-driven data-

mining assistant relies on a data-mining ontology and knowledge-base to propose ranked

workflows for a given task. The application layer initially comes as an empty shell that has

to be built by the domain user from different components of the system. At the application

layer, e-LICO is showcased in two application domains: 1) a systems biology, and 2) a video

recommendation task.

9A suite of tools used to design and execute scientific workflows and experimentation.
http://www.taverna.org.uk

29

30 Meta-learning

2.4.1.9 Auto-WEKA

Auto-WEKA is a Bayesian optimization based tool that tackled the CASH problem (Thorn-

ton et al., 2013; Kotthoff et al., 2017). The CASH problem selects an algorithm and opti-

mizes its hyper-parameters simultaneously (Thornton et al., 2013). Auto-WEKA provides

a number of BLL and MLL algorithms. The key discrepancies of the tool include; no single

base-learner performs well on all the tasks and few ML algorithms require HPO. Auto-

sklearn is another Auto-ML toolkit which is an alternative of scikit-learn estimator (Feurer

et al., 2015). It uses Bayesian optimization for hyper-parameter tuning of shallow ML

algorithms that are implemented within Scikit-learn (Pedregosa et al., 2011).

2.4.2 Regression and Classification

This section covers MLL that is used for regression and classification tasks in different

systems.

Todorovski et al. (2002) addressed a novel approach of predictive clustering trees to

rank classification algorithms using dataset properties. The approach was to illustrate ML

algorithms ranking where the relative performance of the algorithms has to be predicted

from a given dataset’s MFs. For that purpose the performance of eight Base-level algorithms,

mentioned in Table 2.3, has been measured on 65 classification tasks gathered from UCI and

METAL project. Furthermore, DSIT dataset characteristics from StatLog and DCT were

combined to create an MK dataset consisting of 33 MFs. These properties of individual

attributes are aggregated using average, minimum or maximum functions. Landmarking

approach has been used in this study with 7 simple and fast learners, shown in Figure 2.3,

to investigate the performance of ranking. The proposed dataset characterization approach

with clustering tree outperformed DCT and histogram approach which found a grained

aggregation of DCT properties with a significant margin.

Vilalta and Drissi (2002a) presented four approaches to MLL consisting of learning from

Base-learners, namely, 1) Stacked generalization, 2) Boosting, 3) Landmarking and 4) Meta-

decision trees. The information collected from the performance of BLL algorithms is incor-

porated into the MLL process. Stacked generalization is considered a form of MLL where

each set of Base-learners is trained on a dataset and the original feature representation is

then extended with the predictions of Base-learners. These predictions are received by suc-

cessive layers as input and the output is passed on to the next layer. On the contrary, a

single Meta-learner at the topmost layer computes the final prediction. Boosting is another

approach that is considered as a form of MLL. It generates a set of Base-learners by generat-

ing variants of the training set using sampling with replacement technique under a weighted

distribution. This distribution is modified for every new variant by assigning more weights

to the incorrectly classified examples using the most recent hypothesis. Boosting takes the

predictions of each hypothesis over the original training set to progressively improve the

classification of those examples for which the last hypothesis failed.

In the last proposed approach, the Base-learners consisted of a combination of several

inductive models induced from Meta-decision trees. A decision tree is built where each

internal node represented an MF that predicts the class probability for a given example

by a set of models whereas the leaf nodes correspond to a predictive model. Given a new

EXISTING RESEARCH Meta-learning

example, Meta-decision tree selects a model that obtains optimized accuracy at predicting

the target value.

An instance-based learning algorithm, k-NN, is used to identify the datasets that are

most similar to the one at hand by Brazdil et al. (2003). On the contrary, candidate

Base-learning algorithms are not ranked but selected based on a multi-criteria aggregated

measure that takes accuracy and time into account. The proposed methodology has been

evaluated using various experiments and analysis at Base- and Meta-level learning. The

Meta-data used in this study was obtained from METAL project which contains estimates

of accuracy and time for 10 algorithms (listed in Table 2.3) on 53 datasets, using 10-fold

CV. The k-NN algorithm was used at Meta-level to select a candidate algorithm giving the

best performance on the given task. Two values of the number of neighbours, 1 and 5,

where the k-NN showed significant improvement in the results, particularly with k=1, as

compared to the trial-and-error approach.

Two MLL approaches were investigated to select models for TS forecasting by Prudencio

and Ludermir (2004) in different case-studies. In the first case-study, single BLL algorithm

was used to select models to forecast stationary TS. The base-level and meta-level learning

algorithms and configurations are given in Table 2.3 and Table 2.6 for both case studies

while details of datasets and MFs are listed in Table 2.1 and Figure 2.3 respectively. In

another case study, a more recent and sophisticated approach - NOEMON (Kadlec and

Gabrys, 2009) was used to rank three models of the M3-Competition. In both case studies,

the experiments revealed significant results by taking into account the quality of algorithm

selection and forecasting algorithm performance aspects of the selected models.

Active MLL method, in combination with Uncertainty Sampling and outlier detection,

has been proposed by Prudencio and Ludermir (2008) to support the selection of informative

and anomaly-free Meta-examples for MLL. Some experiments were performed in a case

study where MLP was used to predict the accuracies of 50 regression problems at Base-level

learning (detail can be seen in Table 2.1) and k-NN10 at Meta-level. The MFs used in the

case study consisted of 10 simple and statistical measures which can be seen in Figure 2.3.

The results of the experiments revealed that the proposed approach was significantly better

than the previous work on Active MLL. Also, the Uncertainty Sampling method increased

the performance when the outliers were eliminated from the MK which were only 5% of the

data.

Guerra et al. (2008) used SVM, with different kernel functions, as a Meta-regressor to

predict the performance of the candidate algorithm, MLP, based on descriptive and statisti-

cal features of the learning tasks. For experimentation purposes, the input datasets and MFs

used in this study were the same as of Prudencio and Ludermir (2008) work. The MLP was

used as a base-learner to compute the normalized MSE which was averaged over 10 training

runs. Table 2.3 contains details of the learning strategy which were used at the base-level.

At the meta-level, SVM with different kernel functions (listed in Table 2.6) were applied

to predict normalized MSE and Mean Absolute Correlation Coefficient (CORR) between

predicted and actual target values of the MLP. Later the performance of the Meta-regressor

(SVM) was compared with three different benchmarked regression algorithms which were

10k = 1, 3, 5, 7, 9 and 11 nearest neighbours

31

32 Meta-learning

used in the previous work including Linear Regression, k-NN11 and M5 algorithm (DT Quin-

lan (1992)). The experiments revealed that the SVM with RBF kernel (particularly with

γ=0.1) obtained better performance as Meta-regressor when compared to the mentioned

benchmark algorithms.

Kadlec and Gabrys (2009) proposed a generic architecture for the development of on-

line evolving predictive systems. The architecture defined an environment that links four

techniques of ML: 1) ensemble methods, 2) local learning, 3) meta-level learning and 4)

adaptability and also the interaction between them. The Meta-level learning is discussed in

this section whereas adaptability aspects of this paper are discussed in Section 2.5 respec-

tively.

The Meta-level Learning module of Kadlec and Gabrys (2009) architecture was responsi-

ble for high-level learning, control, and decision making. Meta-level is the most complex but

least diverse top layer of the architecture. In this study, a Meta-learner is defined as building

a high-level global knowledge of the model which is incrementally grown by applying the

model to various tasks. The main goal of Meta-level layer was to optimize the predictions

in terms of the global performance function which can be achieved by; 1) controlling the

population at lower levels to cover unexplored parts of the input space, 2) looking for re-

lations between algorithm configurations of the paths and the achieved performance, and

3) adapting the combinations in order to reflect the current state of the data. In general,

this layer was used to learn the dependency between the pool of learning algorithms and

the performance at various levels. Several experiments have been performed using three

real-world datasets from the process industry where adaptive and static techniques were

compared. The automated data pre-processing and model selection takes a lot of the model

development effort away from the user.

An empirical study on rule induction based forecasting method selection for univariate

TS was conducted by Wang et al. (2009). The study aimed to identify characteristics of

univariate TS and evaluated the performance of four popular forecasting methods (listed in

Table 2.3) using a large collection of datasets listed in Table 2.1. These two components are

integrated into a MLL framework which automatically discovers the relations between fore-

casting methods and data characteristics (shown in Figure 2.3). Furthermore, C4.5 decision

tree learning technique was used to generate quantitative rules of MFs and categorical rules

are constructed using unsupervised clustering analysis.

Lemke and Gabrys (2010a) investigated applicability of MLL for TS prediction and iden-

tified an extensive set of MFs that were used to describe the nature of TS. The feature pool

consisted of the general statistical, frequency spectrum, autocorrelation and behaviour of

forecasting methods (diversity) measures (see Figure 2.4). These measures are extracted

for two datasets, see Table 2.1 for details, and the target was to predict the next 18 ob-

servations for NN312 and 56 for NN512. Using these datasets empirical experiments have

been performed that have provided the basis for further MLL analysis. An extensive list

of simple (seasonal), complex (ARIMA), structural and computational intelligence (Feed-

forward NN), and forecast combination methods are used for experimentation which can

be seen in Table 2.3. From the pool of individual algorithms, NN and MA performed quite

11k=1
12Neural Network forecasting competition, http://www.neural-forecasting-competition.com

EXISTING RESEARCH Meta-learning

well for NN3 series while for NN5 the SMAPE, in general, was quite high where a com-

bination method variance-based pooling out-performed all the individual and combination

algorithms. At the end three experiments were performed to explore MFs using decision

trees, comparing various MLL approaches (details are given in Table 2.6), and simulating

NN5 on zoomed ranking method and on its combination. This study concludes that the

ranking-based combination of forecasting methods outperformed the individual methods in

all experiments.

2.4.3 Clustering

This section discusses the use of MLL in the context of unsupervised learning. De-Souto

et al. (2008) presented a novel framework that applies an MLL approach to clustering algo-

rithms, which was one of the initial efforts towards unsupervised algorithms. The proposed

architecture was very similar to the MLL approach used to rank regression and classification

algorithms. It extracted features of input examples of datasets and associated them with

performance of the candidate algorithms in clustering that data to construct MK database.

The MK database was used as an input dataset for Meta-level learning and generated a

Meta-model that was used in the selecting or ranking of the candidate algorithms at test

mode. Some implementation issues were also addressed which include: 1) the selection of

datasets; 2) the selection of candidate clustering algorithms; and 3) the selection of the

set of MFs that can better represent the problem at Meta-level. In order to evaluate the

framework, a case study in the context of cancer gene expression microarray datasets was

conducted. Seven candidate algorithms, listed in Table 2.6, and eight descriptive and sta-

tistical MFs were extracted, namely, log10 of the number of examples and ratio of total

examples by total features, multi-variant normality, percentage of outliers, percentage of

missing values, skewness of Hotelling T 2-test, Chip - type of microarray and percentage of

features that were kept after applying selection filter. Also, regression SVM algorithm was

used as the Meta-learner. The results were compared with the default ranking, where the

average performance was suggested for all datasets. The mean and standard deviation of

the SRCC for both rankings generated by the proposed approach was found to be more

correlated and significantly higher than the default one.

Soares et al. (2009) employed the De-Souto et al. (2008) framework in the ranking

task of candidate clustering algorithms in a range of artificial clustering problems with two

different sets of MFs. The first set had five MFs that were calculated using univariate

statistics: quartiles, skewness, and kurtosis, in order to summarize the multivariate nature

of the datasets. This set included Coefficient of Variation (CoV), CoV of second and third

quartiles, CoV of skewness and kurtosis while the other set had the same first four MFs as

presented in De-Souto et al. (2008). In this paper, three new candidate clustering algorithms

were applied on each learning task that are listed in Table 2.6 and two Meta-learners were

used, i.e., Support Vector Regression (SVR) and MLP. The methodology was evaluated

using 160 artificially generated datasets (see Section 2.1). Both Meta-learners were applied

to the two sets of MFs separately and then compared with the default ranking method. The

rankings predicted by the SVR and MLP methods were found to be more correlated and

significantly higher than the default ranking. However, there was no significant difference

33

34 Meta-learning

between the correlation values of MLP and SVR methods for both Meta-datasets. Finally,

the authors had also highlighted the selection of MFs in the context of unsupervised MLL

as an important issue that could be subjected to further analysis.

2.4.4 Discussion and Summary

There have been several MLL systems developed since the inception of this area. Almost all

the systems are developed for algorithm recommendations of classification and regression

tasks. Three main MF generation approaches were used in these systems which are listed

in Table 2.5, where DSIT approach is found to be the most widely used. A landmarking

based algorithm recommendation system is available as a part of RapidMiner, a commonly

used open-source data-mining software. It was part of PaREn project where landmarking

functionality is available as an operator in the software. One of the most recent and large-

scale projects related to MLL is e-LICO, the purpose of which was to solve data-mining

and data-intensive problems. This project used MLL for algorithm recommendation by

leveraging the existing systems, i.e., IDA and RapidMiner’s DMA component proposed by

(Bernstein and Provost, 2001). Limitations of those systems are discussed in Table 2.5.

Apart from the existing system, there are several researches where MLL is being used

for Regression including forecasting, classification and clustering tasks. Several MF based

problem representations are proposed for these regression and classification tasks. Most of

the comparisons in those studies are between different MF approaches, selection of candidate

algorithms and a different set of Meta-Learners. The problem representation using MFs is

the most important aspect where landmarking and Model-based approaches are compared

with DCT DSIT features, and outperformed DSIT approach with a significant difference.

Not much effort has been put on Model-based approach in the last few years as landmarking

with additional DSIT features has been considered as an overall better approach. The land-

marking has also been proposed to solve problems other than algorithm recommendations,

e.g., Kadlec and Gabrys (2009) used landmarking approach for recurrent concept extrac-

tion. Various researches investigated the applicability of MLL for TS problems including

Prudencio and Ludermir (2004), Wang et al. (2009), and Lemke and Gabrys (2010a). Pru-

dencio and Ludermir (2004) proposed descriptive and statistical features to represent TS

task to rank various seasonal and ARIMA models. Later on Lemke and Gabrys (2010a)

used an extensive list of MF covering statistical, frequency spectrum, autocorrelation and

diversity measures for a TS prediction task. The pool of TS algorithms contained seasonal,

ARIMA, structure and computational intelligence, and forecasting combination methods.

The features used in this study to represent TS task at Meta-level were better as compared

to the previous studies.

There are a few studies that apply MLL to clustering algorithms. De-Souto et al. (2008)

effort was the initial step in investigating knowledge representation for unsupervised prob-

lems. Landmarking was used to rank several unsupervised candidate algorithms, as listed in

Table 2.6, combined with eight descriptive and statistical MFs which were used to represent

unsupervised problems at Meta-level. Most of them were the same as used by several re-

gression and classification problem representations. Soares et al. (2009) employed De-Souto

et al. (2008) framework by enhancing the list of Landmarkers and proposed two different

EXISTING RESEARCH Meta-learning

MF representations of unsupervised task. One of the MFs list consisted of features proposed

by De-Souto et al. (2008). The results show improvement of the proposed approach over

default base-line, but no significant difference is observed in two different representations

of unsupervised problems. Finally, the authors have also highlighted the selection of MFs

in the context of unsupervised MLL as an important issue that could be subjected to fur-

ther analysis. All the existing MLL studies discussed in this section are only facilitating

the stationary environment. Additionally, these systems have the same issue which was

discussed in previous sections that the MK dataset does not have a sufficient number of

Meta-examples (MEs).

The idea of using Reinforcement Learning (RL) for algorithm recommendation which

introduces an optimal strategy for the tasks sharing a similar structure was proposed by

Duan et al. (2016) and Wang et al. (2017a). Wang et al. (2017a) presented a general

approach that uses Recurrent Neural Network (RNN) as Meta-learner whose weights are

trained ‘slowly’ over several trials of multiple episodes. The authors show that the strategy

based MLL agent outperforms the hand-designed strategies proposed by Auer et al. (2002)

and Gittins (1979). In recent years, there have been incredible advances in MLL which are

covered in Section 2.6.

Table 2.6: Meta-level learning strategy used in various studies

Research Work Learning Strategy Meta-learners Performance

Sohn (1999) DSIT approach Disc, QDisc, LoGID, k-NN,
Back-propagation, Learning
Vector Quantization (LVQ),
Kohonen, RBF, INDCART,
C4.5, Bayesian Trees

Disc algorithm
ranked as top per-
forming algorithm

Lindner and
Studer (1999)

Numeric, Symbolic
and Mixed features
characterization

NB, MLP, RBF, CN2, Iter-
ative Dichotomiser 3 (ID3),
MC4, T2, Winnow, Oblique
Classifier-1 (OC1), OneR, Rip-
per, IBL13, C5.0 tree, Naive
Bayes/Decision-Tree (NBT),
Lazy Decision Trees (LazyDT),
Parallel Exemplar-Based Learn-
ing System (PEBLS)

Numeric and
mixed features
characterization
performed better

Bensusan and
Giraud-Carrier
(2000)

Landmarking ap-
proach compared
with Information-
Theoretic charac-
terization

NB, k-NN14, Elite-Nearest
Neighbour (e-NN), Decision
Nodes Learner (Decision
Nodes), Worst Nodes Learner,
Randomly Chosen Nodes
Learner (Randomly Chosen
Nodes), LDA

Landmarking
(C5.0 rules)
approach out-
performed
Information-
Theoretic

Pfahringer et al.
(2000)

Landmarking ap-
proach compared
with DSIT charac-
terization

C5.0 tree, Ripper, Ltree Landmarking
(C5.0 boost) per-
formed better than
others

130-4
14k=1

35

36 Meta-learning

Peng et al.
(2002)

Model-based ap-
proach compared
with landmark-
ing and DSIT
characterization

k-NN Model-based
approach out-
performed the
remaining two

Prudencio and
Ludermir (2004)

Descriptive and
Statistical ap-
proach

I: Simple ES and Time-delay
NN and II: RW, Holt’s linear
ES (HL), Auto-regressive (AR),
NOEMON

I: Simple ES and
II: NOEMON per-
formed better

De-Souto et al.
(2008)

Landmarking ap-
proach to rank
unsupervised learn-
ing algorithms

Single Linkage (SL), Complete
Linkage (CL), Average Linkage
(AL), k-Means (k-M), Mixture
Models (M), Spectral Cluster-
ing (SP), Shared Nearest Neigh-
bours (SNN)

The proposed
approach outper-
formed the default
ranking

Guerra et al.
(2008)

Descriptive and
Statistical ap-
proach

SVM with linear, quadratic, and
RBF (γ=0.1, 0.05, 0.01) func-
tions

Normalized MSE
and CORR be-
tween predicted
and target values

Soares et al.
(2009)

Landmarking ap-
proach to rank
unsupervised learn-
ing algorithms

SL, CL, AL, k-M, M, SNN,
Farthest First (FF), DB-Scan
(DBS), X-Means (XM)

The proposed
approach outper-
formed the default
ranking

Wang et al.
(2009)

Statistical ap-
proach on TS

ES, ARIMA, RW, NN

Lemke and
Gabrys (2010a)

Statistical ap-
proach on TS

NN, DT, SVM, Zoomed ranking
(best method and combination)

The proposed ap-
proach showed su-
periority over sim-
ple model selection
approaches

Abdelmessih et
al. (2010)

Landmarking ap-
proach compared
with Descriptive,
DSIT characteriza-
tion

NB, k-NN, MLP, OneR, RF Landmarking ap-
proach (k-NN)
outperformed
others

Rossi et al.
(2012)

DSIT RF MetaStream out-
performed default
and ensemble
approaches

Rossi et al.
(2014)

DSIT RF, NB, k-NN MetaStream out-
performed default
and ensemble
approaches

Duan et al.
(2016)

RL - Trust Re-
gion Policy Opti-
mization (TRPO)

DNN RL2 outperformed
Optimistic Pos-
terior Sampling
for Reinforcement
Learning (OPSRL)
(Osband and Van
Roy, 2016)

EXISTING RESEARCH Adaptive Mechanisms

Wang et al.
(2017b)

RL - Actor-Critics
(A2C)

DNN The proposed
approach outper-
formed Auer et al.
(2002) and Gittins
(1979)

Ali et al. (2018) DSIT NN, DT, SVM Performed well on
cross-domain tasks

2.5 Adaptive Mechanisms

The ML and heuristic search algorithms require tuning of their parameters to achieve opti-

mal performance. It can be achieved through off-line sensitivity analysis by testing different

parameters to determine their best value in stationary environment (Sikora, 2008). However,

the optimal set of values for the parameters keep changing over time in a non-stationary

environment because of the change in the underlying distribution of data where off-line

sensitivity analysis becomes ineffective. The dynamic problem domain MLL mechanism is

considered to be one of the most effective techniques to learn the optimal set of parame-

ters (Sikora, 2008). The rest of this section discusses various techniques of acquiring and

exploiting MK in non-stationary environments, that have been proposed in the context of

the existing predictive systems.

2.5.1 Recurring Concept Extraction

One of the earliest efforts employing an MLL based approach to achieve adaptivity in a

non-stationary environment was presented by Widmer (1997). MLL is applied in time-

varying environments for the purpose of selecting the most appropriate learning algorithm.

For a traditional two-level learning model different types of attributes are defined at Base-

and Meta-level. The predictive attributes are used to induce models at Base-level on raw

examples from datasets if there exists a significant correlation between the predictors and

the observed class distribution. On the other hand, contextual attributes are employed to

identify the current concept associated with the data and systematic changes in their val-

ues which indicate a concept drift. These attributes are identified using an MLL approach

which is proposed in Widmer (1997). This allows a learning algorithm to select the examples

that have the same context as training data and newly arrived examples. These conceptual

clues help in adapting the systems faster by filtering the historical instances for training that

have the same context as newly arrived instances. The proposed technique was evaluated by

comparing two operational systems at the Meta-level that differ in the underlying learning

algorithm as well as their way of processing contextual information including METAL(B)

that uses Bayesian classifier and METAL(IB) that was based on instance-based learning.

The instance-based learner was used in four variants which include: 1) context relevant

instance selection; 2) instance weighting; 3) feature weighting; and 4) combination of in-

stance and feature weighting. The general conclusion of numerous experiments that were

37

38 Adaptive Mechanisms

performed using real-world and synthetic datasets was that MLL produced a quite signif-

icant improvement over the existing approaches for changing environments. Additionally,

from the results, it can be observed that the METAL(B) approach proved to be effective in

domains (datasets) with high noise rates and several irrelevant attributes whereas instance-

based approach showed higher accuracy for the remaining domains.

Klinkenberg (2005) proposed an MLL framework for automatically selecting the most

promising algorithm and its parametrization at each step in time where the data was arriving

in batches. For each batch a set of MFs (as listed in Table 2.8) are extracted directly from the

raw data which is used in the BLL to create a Meta-example. A number of Meta-examples

are used to induce a Meta-learner whenever a new batch becomes available, which in turn,

helps in predicting the best learning algorithm and the best set of instances at a given

time point. The MFs used in this work are more relevant to the problem under analysis.

Furthermore, this work also investigates the aspects used to speed-up the algorithm selection

process using the proposed MLL approach without losing the gained reduction in error rate.

The proposed drifting concept approaches, i.e., adaptive time window and batch selection

strategy, were evaluated by comparing them with three non-adaptive mechanisms: 1) full

memory, 2) no memory, and 3) fixed size window. The experiments were performed using

two real-world problems: 1) information filtering of unstructured business news data; and 2)

predicting business cycle from economics domain. For business news dataset both adaptive

techniques outperformed trivial non-adaptive approaches. Two evaluations were performed

for business cycle dataset where the data was split into 5 and 15 equal sized batches where

the fixed size window approach performed slightly better than the adaptive techniques.

2.5.2 Periodic Algorithm Selection

Sikora (2008) proposed MLL mechanism to learn the optimal parameters while the learning

algorithm is trying to learn its target concept in a non-stationary environment. MLL is used

to tune temperature (τ) parameter of Softmax RL algorithm using Boltzmann distribution.

Moreover, the time-weighted method has been used where the action value estimates are the

sample average of prior rewards. The Softmax algorithm becomes a random search in case

of higher τ value, whereas for the low value it approaches a greedy search. The effectiveness

of the proposed MLL algorithm is evaluated by dynamically learning the optimal value of τ

using two case-studies: 1) k-Armed bandit - the classic RL problem, and 2) bidding strategy

- stylized e-procurement problem. In k-Armed bandit problem the variable k is defined as

actions available to an agent and each action returns a reward from a different distribution.

In this work (k=) 10 actions (1,...,10) were available to an agent where each action returns

a reward using Normal distribution. The effectiveness of MLL in the non-stationary envi-

ronment is tested by rotating the reward distributions among the 10 actions. The algorithm

is tested with three different temperature parameter values of 5, 50 and 500 for stationary

and dynamic environments. For the stationary environment, the performance of τ=5 ap-

proaches the best action with the maximum average reward. As the environment becomes

more and more dynamic these awards keep falling. On the contrary, the performance of the

MLL algorithm returns a better reward in both environments as well as responds faster to

the changes in the environment. The bidding problem was analysed as a 2 player symmetric

EXISTING RESEARCH Adaptive Mechanisms

game (2 homogeneous sellers) with n actions, where n is the variable cost (price) range

split into equally sized bands. One of the sellers was modelled using softmax RL algorithm

while the other one was supposed to be using different learning algorithms, i.e., ε-greedy -

a genetic algorithm proposed by Goldberg (1989). The same three values of τ were used

for both stationary and dynamic environments, where the stationary environment produced

the best result for the lowest value of temperature. However, no single value of temperature

did best in the dynamic environment, while MLL algorithm approached the best reward for

both environments. Furthermore, it was observed from the experiments that the best value

of τ was achieved from MLL approach in all the scenarios.

Kadlec and Gabrys (2009) architecture supports life-long learning by providing several

adaptation mechanisms across computational path level (preprocessing methods followed

by individual base-level algorithms), path combination level (combination of base-level al-

gorithms) and Meta-level hierarchical structure. There are four adaptation loops defined

across various levels of hierarchy including self-adaptation capability of the computational

and combination layer, whereas the remaining two loops connect Meta-level layer to the

lower layers. These loops help the proposed architecture to keep the validity of the models

in the changing environment. It can be achieved by switching particular modules to the

incremental mode. The computational path level adaptation loop consists of the predictions

feedback which are compared to the actual (target) values. Whereas at path combination

level the combinations are represented in the same way as in the computational path, which

is a benefit of this representation that similar adaptation mechanisms can be applied at dif-

ferent levels. In case of weighted combinations, the contribution of particular computation

paths is dynamically changed to the final prediction by modifying the weights. Meta-level

adaptation has an influence on the dynamic behaviour of the entire architecture. At this

level, the performance measures are gathered from all levels of the architecture together with

global performance. It allows to analyze the performance achieved across various levels and

also to estimate the influence of the changes at different states of the model. Several exper-

iments demonstrate that the variety of adaptation mechanisms applied at different levels

may have a significant effect on the performance of the models. One of the key contribution

of the proposed architecture, which in turn, has opened space for future research that will

focus on the interaction between different techniques, dynamic behaviour, implementation

of novel adaptation techniques and application of more sophisticated approaches for the

meta-level methods.

A comprehensive framework, design problems, taxonomy of adaptive learning and dif-

ferent areas of learning under concept drift is presented by Zliobaite (2010). The proposed

framework is used to analyze the problem of training set formation where two areas, i.e., 1)

incremental learning; and 2) causes of concept drift are discussed. The incremental learning

explains the difference between concept drift and periodic seasonality with examples while

the causes of concept drift are elaborated on using Bayesian decision theory, where three

causes are highlighted that might change over time. There are four design sub-problems and

techniques addressed within the framework that need to be solved: 1) future assumptions

about source and target instances; 2) structural change types or configuration patterns of

data over time; 3) identified four key learner adaptivity areas and 4) model selection which

is further categorized into two different groups. The taxonomy of concept drift learners

39

40 Adaptive Mechanisms

is categorized as evolving learner where four methods are proposed and the methods that

determined how the models or instances are changed at a given time are grouped separately

under triggering concept. At the end three major research areas are outlined: 1) time con-

text; 2) transfer learning by gaining knowledge from a similar type of past problems; and

3) models which have properties of adaptation incorporated into learners. Also, several

dimensions which are relevant to the applications implementing concept drift are defined.

Figure 2.6 presents all the key areas and available solutions of ‘learning under concept drift’.

Concept Drifting

Framework and Terminology

Design Problems

Taxonomy of Adaptive Learning

Research Areas

Dimensions relevant to the applications facing Concept Drift

Incremental Learning with Concept Drifting

Causes of Concept Drifting

Future Assumptions about source and target instances

Structural Change Types or Configuration Patterns of data

Learner Adaptivity areas

Model Selection groups

Evolving Learners

Learners with Triggers

Time context

Knowledge Transfer

Model Adaptivity

Speed of learning and output
Classification or prediction accuracy
Costs of mistakes
True labels
Adversary activities

Concept Drifting
Periodic Seasonality

Class priors change over time
Posteriors of class memberships change
Distributions of classes change

Assuming no change found in source instances
Estimating source based on future targets
Predicting the change

Sudden Drift
Gradual Drift
Reoccurrence Drift

Base-learners
Parameterization of Learners
Adaptive training-set formation
Fusion rules of the Ensembles

Adaptivity by trigger or active change detector
Adaptivity by evolution

Adaptive (classifier) Ensemble
Instance Weighting
Feature Space
Base model specific

Change detectors (sudden drift technique)
Training windows
Adaptive Sampling (instance selection)

Incremental learning
Data stream mining
Spatio - temporal data mining
Dynamic Bayesian Networks
Time-Series ARIMA model

Case-based Reasoning (Lazy learning)
Transfer or Inductive learning
Learning from multiple sources
Active learning

Artificial immune system
Adaptive reasoning theory
Evolutionary computing
Ubiquitous knowledge discovery

Figure 2.6: Learning under Concept Drifting (Zliobaite, 2010)

An MLL approach for periodic and automatic algorithm selection for time-changing

data, named Meta-Stream, is presented by Rossi et al. (2012). A Meta-classifier is peri-

odically applied to predict a learning algorithm optimized for the best performance on a

new unlabelled chunk of data. General DSIT MFs of Travel Time Prediction (TTP) prob-

lem are extracted from the historical and new data (as shown in Figure 2.3) and mapped

EXISTING RESEARCH Adaptive Mechanisms

together with their predictive performance computed from different models to induce the

Meta-classifier. Experiments are performed to compare the performance of the MetaStream

to the default trial-and-error approach for both static and dynamic updating strategies at

Meta- and Base-levels. Moreover, the Base-level MetaStream and Default results are com-

pared with the dynamic Ensemble approach. The learning strategy adopted at Base-level

can be seen in Table 2.3, also the training window (ω) of 1000 instances with a step size (ς)

of 1 was used at this level. The Meta-level learning strategy is presented in Table 2.6. The

MEs labelled as tie are investigated separately by keeping and discarding them from the

training and test sets. The empirical results show that MetaStream outperformed baseline

and ensemble approaches with a significant margin in most of the cases for both stationary

and dynamic environments. In general, the two pairs of algorithms, e.g., RF-CART and

SVM-CART were found to be the best algorithms for TTP problem. Finally, the authors

also realized that the MFs should be related to the non-stationary data problem rather than

characteristics which are extracted for traditional MLL problems.

2.5.3 Meta-level Representation of Non-stationary Problems

Rossi et al. (2014) extended the original work (Rossi et al., 2012) in two main directions:

1) instead of selecting only a single algorithm, combination of multiple regressors can be

selected, when the average of the predictions perform better than the individual; and 2) more

comprehensive experimental evaluation is performed by adding another real-world problem -

Electricity Demand Prediction (EDP) (see Table 2.1). Furthermore the list of MFs extracted

from the data is also enhanced in this work, as listed in Table 2.7. The characteristics are

extracted separately from training and evaluation windows because the training window

has target information available from where supervised characteristics can be extracted,

i.e., the information about the relationship between predictive and target variables. The

pool of Base- and Meta-level algorithms with their configurations are listed in Table 2.3

and Table 2.6 respectively. The experimental results show that for TTP dataset the pair

of regressors, regardless of the presence of tie resolution strategy, outperformed Default

and Ensemble approaches. However, in case of EDP, MetaStream clearly outperformed

default but was worse than Ensemble which can lead to a conclusion that the observations

made for pairs of regressors are also valid for multi-regressors. Moreover, the slightly higher

error rate is recorded for RF Meta-learner of the MetaStream than the Default but was

lower than Ensemble approach for the TTP dataset, whereas for EDP dataset MetaStream

outperformed Default but was worse than Ensemble. These results show that MetaStream is

able to select the best algorithm more accurately than baseline trial-and-error and ensemble-

based approaches in a time-changing environment.

Table 2.7: Meta-features used in MetaStream to characterize the data

Meta-features Training window Selection window

Average, Variance, Minimum, Maximum and
Median of continuous features

4 4

Average, Variance, Minimum, Maximum and
Median of the target

4

41

42 Adaptive Mechanisms

Correlation between numeric features 4

Correlation of numeric attributes to the target 4

Possibility of existence of outliers in numeric fea-
tures

4

Possibility of existence of outliers in the target 4

Dispersion gain 4

Skewness of numeric features 4

Kurtosis of numeric features 4

2.5.4 Discussion and Summary

This section covers the adaptability mechanisms of the system which lead to the thorough

study of several existing studies. In these studies, the main focus was put on the appli-

cability of MLL particularly in the context of non-stationary environments. MLL can be

very beneficial for this environment in minimizing the processing-time that is consumed to

periodically train the model, extracting recurring concepts, automatically detecting concept

drift and estimating dynamic adaptive window size, which in-turn generate accurate predic-

tions in dynamic environments. However, applying MLL to support adaptive mechanism is

a quite recent and emerging area. As a result most of the research take into account the

same MFs for time-varying environment which have been used to represent the algorithm

recommendation problem in the context of stationary environments. Whereas if MLL is

introduced in any system then the overall performance becomes dependent on appropriate

representation of the problem at Meta-level in the form of MFs. The drawback of using a

set of MFs which are usually used in stationary environment is that the entire target dataset

should be available at-once when MLL is applied to find the learning algorithm that obtain

optimal performance for that dataset; which is not the case when instances or batches of

data keep coming because there are some useful MFs which cannot be computed in the

absence of target variable of the incoming data.

Widmer (1997) work on applying MLL for non-stationary environment is considered

to be the earliest effort. The author addressed two key areas in context of dynamic en-

vironment: 1) dynamic tracking of changes and 2) extraction of recurring concepts. The

problem representation of Widmer (1997) was quite general, in that, very few predictive

and contextual MFs were extracted, therefore neither of the two proposed MLL approaches

performed better then the Default for several domains. On the other hand, the adaptive

parameters, such as, window size, were fixed in this work. Klinkenberg (2005) used different

BLL algorithms and their parametrization which are automatically selected at Meta-level.

Additionally, Meta-level approach for adaptive time window and recurring concept extrac-

tion for the target concept were part of the research. The research is one of the initial efforts

to represent adaptivity problem with the relevant MFs rather than using general features

which are usually productive for stationary environment. Although these features (as listed

in Table 2.8) are not enough to represent non-stationary environment at Meta-level, but

they are still better than general features (used to represent stationary problems) supported

by the experiments, which showed a significant improvement.

EXISTING RESEARCH Adaptive Mechanisms

Sikora (2008) proposed reinforcement learning approach to address the automatic algo-

rithm recommendation problem using MLL in a non-stationary environment. The focus of

the research was to find the optimal value of the Softmax algorithm’s parameter τ where

it would recommend the best algorithm for target concept at Meta-level. The same de-

ficiency is observed in this work that the non-stationary problem representation was not

addressed in detail and focus was only on algorithm recommendation using MFs which were

proposed for static data. Kadlec and Gabrys (2009) proposed life-long learning architecture

that provided several adaptation mechanisms across a pool of candidate learning algorithms

and their combinations. The dynamic behaviour of the entire architecture is analyzed at

Meta-level where the global performances and information from both pools can be analyzed

to estimate the influence of the changes at different levels of the model. The decrease in

prediction ability of local model below a certain level is considered as a new concept which

leads to building a new receptive field. The landmarking approach is quite simple and effec-

tive to detect concept drift, and based on that, periodically train new local predictor. The

effectiveness of MLL for the two mentioned areas is supported by improved results recorded

from two case-studies.

Rossi et al. (2012) approach was quite similar to Klinkenberg (2005) where periodic al-

gorithm selection for time-changing data was proposed. Likewise in various other studies,

the authors computed the DSIT MFs. Although the Meta-level approach performed better

than the Base-level, but there is no comparison shown with the other MLL system from

where it could be concluded that even the general representation of the problem can work

for the non-stationary environment. Problem representation using general MFs is the dis-

crepancy of this effort which is being tried to overcome in Rossi et al. (2014). The authors

computed separate MFs for historical and incoming data. As target variable has been ab-

sent from the incoming data so unsupervised features were computed for the data available

in the evaluation window. The performance of the proposed approach was better than BLL

and worse than Ensemble but still it was considered to be a good effort towards repre-

senting time-varying problem at Meta-level. In almost all the researches that are discussed

in this section MLL outperformed the BLL methods. However, a common discrepancy is

observed in problem representation at Meta-level for time-varying data. Most of the work

used general MFs whereas some tried to focus on this area by proposing some features for

non-stationary data.

Model-Agnostic Meta-Learning (MAML) is an optimal fast adaptation method which

learns a model initialization in few shots such that it can be adapted to solve a new task (Finn

et al., 2017). MAML first learns task-specific parameters by performing one gradient step

at a time and then learns model parameters in a way to minimize the expected loss across

multiple tasks. The objective is to learn a model initialization that can be generalized well

to a new task in a few gradient updates. Nagabandi et al. (2018) proposed a method to learn

incoming stream of data using DNN along with MLL and applied it to the model-based RL.

The authors used MAML to learn the initial weights whereas Chinese restaurant process is

used to learn task distribution.

43

44 Hyper-parameter Optimization

Table 2.8: Adaptive mechanisms used in previous studies

Research Work Adaptivity mech-
anisms addressed

Meta-features/Parameters

Widmer (1997) Recurring concept
extraction

ω=100 and significance level=0.01

Klinkenberg
(2005)

Recurring concept
extraction, adap-
tive time window,
periodic algorithm
selection

No. of batches used for training at previous batch
No. of non-interrupted most recent training batches
Most successful learner on the previous batch
Most successful learner overall on all batches have
seen so far

Kadlec and
Gabrys (2009)

Concept drift detec-
tion and Periodic al-
gorithm selection

Landmarking

Rossi et al.
(2012)

Periodic algorithm
selection

ML: ω=1000, ς=1, η=0
MLL: ω=300, γ=25, ς=1, η= 0

Rossi et al.
(2014)

Periodic algorithm
selection (with
more relevant rep-
resentation of the
non-stationary
problem)

TTP dataset:
ML: ω=1000, ς=1, η=2
MLL: ω=300, γ=24, ς=1, η=0

EDP dataset:
ML: ω=672, ς=336, η=0
MLL: ω=300, γ=25, ς=1, η=0

Finn et al. (2017) Gradient based few
shot learning adap-
tation method

Ti is time horizon (e.g., Ti = 1 for classification tasks)
qi is the transition distribution (qi(x1) is prior over
initial observations)
LT i is loss function (cross entropy for classification
tasks)
p(Ti) is distribution to draw a task

Nagabandi et al.
(2018)

Adaptation of DNN
using MLL and ap-
plied it to multi-task
RL

MAML

2.6 Hyper-parameter Optimization

The previous sections provide a thorough understanding of various phases of MLL. This

method of Auto-ML learns from prior experience in a systematic way. This section explores

two new methods of Auto-ML. DL is one of the recent advancement in ML which triggered

a paradigm shift in MLL (Minar and Naher, 2018). This shift minimizes the impact of the

some phases of the ‘traditional meta-learning’ pipeline. Arguably, the gathering of related

EoD, and MF generation and selection tasks of MLL are intrinsically taken-over by DNN

automatic feature extraction and RL mechanisms. The MLL applied on RL is known as

Meta-RL. In Meta-RL a task is specified through a reward function and the agent needs to

improve its performance by acting in the environment. The agent receives a reward from the

EXISTING RESEARCH Hyper-parameter Optimization

environment and adjusts its strategy accordingly. Hutter et al. (2018) presents an overview

of the different methods of Auto-ML which are further categorized into three key approaches

including MLL, HPO, and Neural Architecture Search (NAS) as shown in the Figure 2.7.

In this research, the model selection is dealt with ‘learning from task properties’ technique

of MLL, however, the hyper-parameters optimization is targeted with ‘learning from prior

models’ technique and ‘reinforcement learning in the context of NAS’. An overview of the

existing work on Transfer Learning (TL) and Meta-RL in context of Auto-ML is discussed

in the following sections:

2.6.1 Transfer Learning of Deep Models

TL mainly focuses on learning the common features that can get benefit for multiple tasks.

In Auto-ML, its applications are mostly in network architecture search, however, the knowl-

edge transfer process from one task to the other is not addressed in an automated manner.

The DNN have attained tremendous success by consistently outperforming the shallow

learning techniques. However, solving complex tasks need deeper and wider networks which

are considered hard to design. Transfer learning, often, works well on simple and more

general tasks whereas complex tasks require effort to design a customized network. The

network designing process requires specialized skills and numerous trials which is a time

consuming and computationally expensive task. The state-of-the-art networks require well-

tuned hyper-parameters which often demand numerous computationally intensive trials.

Among the key developments in the field of DL, Convolutional Neural Networks (CNNs)

stands out as the workhorse of Computer Vision. Training a large CNN with millions of

parameters is a computationally intensive task which also requires a significant amount of

training data. However, several state-of-the-art image classification architectures trained on

large image datasets are publicly available, including Visual Geometry Group Network (VG-

GNet) Simonyan and Zisserman (2014), Inception (Szegedy et al., 2015), Residual Networks

(ResNet) (He et al., 2016) and Inception-ResNet (Szegedy et al., 2017). These networks are

trained on the ImageNet (Russakovsky et al., 2015) dataset which consists of 1.2 million

images and 1000 classes.

Training of these types of deep networks from scratch on a huge dataset is a computa-

tionally demanding task. As a result, TL, i.e. reusing parts of the pre-trained models either

as-is or as a starting point within the training process, quickly became a de-facto standard

in Computer Vision tasks. The general consensus seems to be that the more data one has,

the more ‘aggressive’ the re-training process can be (e.g. re-training more final layers). Con-

versely, the more similar the new dataset is to the one used to train the original model, the

fewer layers need to be fine-tuned. Despite the wide adoption of TL in the context of CNNs,

to the best of our knowledge, there is still no principled way of approaching this process.

The number of layers to re-train or even the network architectures themselves are chosen

in an ad-hoc manner and tested one after the other, which is a computationally inefficient

procedure.

Recently, MLL has become a crucial component of DL for the selection of hyper-

parameters of a specific architecture. Miikkulainen et al. (2017) proposed a comprehensive

set of global and node level hyper-parameters which are critical in optimizing deep learning

45

46 Hyper-parameter Optimization

Auto-ML

Meta-level Learning

Hyper-parameter Optimization

Neural Architecture Search

Systems

Learning from model evaluation

Learning from task properties

Learning from prior models

Blackbox Hyper-parameter Optimization

Multi-fidelity Optimization

Evolutionary Method

Reinforcement Learning

Auto-WEKA

hyperopt-sklearn

auto-sklearn

TPOT

Relative Landmarks

Surogate Models

Warm-started multi-task learning

Meta-features

Meta-model

Evolutionary Algorithms

Few shot Learning

Transfer Learning

Random Search

Guided Search

Population-based Search

Baysian Optimization

Learning Curve-Early Stopping Prediction

Bandit-based Algorithm Selection

Real et al (2017)

Zoph et al (2017)

Liu et al (2018)

Baker et al (2017)

Thornton et al (2013)

Kotthoff et al (2017)

Komer et al (2014)

Feurer et al (2015)

Olson et al (2016)

Pfahringer et al (2000)

Soares et al (2001)

Abdelmessih et al (2010)

Wistuba et al (2015)

Perrone et al (2017)

Rivolli et al (2018)

Kalousis et al (2001)

Brazdil at al (2003)

Olson et al (2016)

Ravi et al (2017)

Tan et al (2018)

Hutter et al (2011)

Bergstra et al (2011)

Rivolli et al 2018

Zeng et al (2017)

Rijn et al (2015)

Auer et al (2002)

Figure 2.7: A holistic view of Automatic Machine Learning areas and systems

architectures through evolution. The use of Reinforcement learning to generate CNN and

RNN architectures have been proposed by Baker et al. (2016) and Zoph and Le (2016). They

have used Q-learning to produce new CNN architectures. Finn et al. (2017) introduced a

simple but powerful approach, model-agnostic meta-learning, which provides an optimal

initialization of model parameters that lead to fast learning on new tasks.

EXISTING RESEARCH Hyper-parameter Optimization

TL has been positioned to effectively adapt pre-trained networks to a new domain by

fine-tuning their final layers. Some studies, such as Wang et al. (2017b) and Shin et al.

(2016), propose re-training of only final fully-connected (FC) layers of the network which

does not guarantee state-of-the-art accuracy, particularly on relatively dissimilar tasks. On

the contrary, domain adaptation becomes beneficial by fine-tuning an increasing number

of layers based on the complexity and relevance of the new task (Yosinski et al., 2014).

Therefore, a question arises as to how many blocks need fine-tuning to adapt to a new

domain based on the complexity, size and domain relevance.

The significant breakthrough in the field of ML and computer vision began when AlexNet

achieved state-of-the-art image classification accuracy against all the traditional approaches

in 2012 Krizhevsky et al. (2012). Since then CNN based architectures have been con-

sistently outperforming other approaches in the end-to-end image and video recognition

tasks Krizhevsky et al. (2012). The key reasons of this success are large public image

datasets, such as ImageNet (Deng et al., 2009) and CIFAR (“CIFAR-10 and CIFAR-100”),

high-performance computing – Graphics Processing Units (GPUs) and Tensor Processing

Units (TPUs), and ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) (Rus-

sakovsky et al., 2014). Indeed, ILSVRC served as a platform for several state-of-the-art DL

architectures which are trained on ImageNet.

Regardless of the proven success of CNNs, some limitations are still tagged with this area.

They require large amounts of labeled data and massive processing to optimize millions of

parameters. This limitation has been overcome by leveraging TL which acquires knowledge

on a specific problem and reduces it to a different but related task (Yosinski et al., 2014).

2.6.2 Meta-Reinforcement Learning

The previous section discusses TL of DNN for related tasks, an area of MLL which learns

from prior models (Tan et al., 2018). This section gives an overview of HPO of DNN using

RL. A typical setting of RL consisting of an agent which performs actions on the environ-

ment (Sutton and Barto, 2015). The agent observes different states of the environment in

different time-steps. The environment can have several states. Mostly, the agent observes

a specific state at a time-step to choose a set of actions. The agent uses a policy to choose

which actions to take. The selected actions generate a reward which can be used with the

behaviour of the environment. The behaviour of the environment can help the RL to un-

derstand the effectiveness of the recommended actions. In fact, an effective agent is the one

which maximizes the expected reward.

An RL problem is defined as a Markov Decision Process (MDP) which is characterised

as the tuple of < S,A,R, T , γ >:

• s ∈ S set of finite states

• a ∈ A set of finite Actions

• R is a reward where its function is defined as Ra
s = E[Rt+1|St = s, At = a]

• T is a state transition probability which is defined as T ass′ = P[St+1 = s′|St = s, At = a]

• γ is a discount factor defined as γ ∈ [0, 1]

47

48 Hyper-parameter Optimization

• π is a policy which is defined as π(a|s)← P[At = a|St = s]

• The expected reward is defined as Rt ←
∑∞

i=0 γ
iRt+i

There are a number of recent studies around HPO using RL. The earliest effort of Meta-

RL was made by Duan et al. (2016) where an RNN based agent is used to learn the behaviour

of the environment. The goal of the agent is to learn a policy for learning new policies. The

Meta-RL is defined in this work in a way that the agent gets trained once on a problem and

transfer learned on similar kind of tasks. Moreover, the idea is a learning policy to learn

another policy in a family of similar Markov Decision Processes (MDPs). A Meta-agent

adjusts its policy after training for a few episodes and validates on an unseen environment.

This approach worked well on both small- and large-scale problems. Another simple, yet

powerful Meta-RL approach is MAML (Finn et al., 2017). MAML does not initialize model

parameters randomly but rather it provides a good initialization to achieve optimal and

efficient learning on a new task. The fine-tuning requires a small number of gradient steps.

The key aspect of the MAML is that the model can be trained using a gradient descent

including CNNs with a variety of potential loss functions. Additionally, it is equally effective

for regression, classification and reinforcement learning, where it outperformed a number of

previous approaches.

Ravi and Larochelle (2017) proposed a long short-term memory (LSTM) (Hochreiter

and Schmidhuber, 1997) based approach to train a meta-classifier. The few-shot learning

method finds the optimal set of parameters. However, Finn and Levine (2018) claims

that the MAML initialization of the model parameters is more resilient to over-fitting,

particularly, for smaller datasets. Also, it is more effective when the model is dealing with

new unseen tasks. Similarly, Ali et al. (2019b) proposed an effective and efficient domain

adaption approach by fine-tuning the final layers of a CNN for both small- and large-scale

problems.

An agent trained using Q-learning with an epsilon-greedy exploration strategy that can

generate high-performing CNNs on a given task has been proposed in Baker et al. (2017).

The agent designs new architectures without human involvement. The proposed approach

was tested on a number of image classification tasks where it outperformed existing meta-

modeling approaches applied for network design tasks. The agent makes sequential decisions

to generate a network configuration. However, the HPO of a task requires intense compu-

tation for several days.

NAS is another effort towards Meta-RL based network search (Zoph and Le, 2017). NAS

uses an RNN based controller that samples a candidate architecture known as child network.

The child network is trained till convergence to obtain accuracy on a hold-out validation-set.

The accuracy is used as an immediate reward which further updates the controller. The

controller generates better architectures over time where the weights are updated by policy

gradient. The approach seems quite simple and powerful but it is tested on very small size

tasks. Another observation is that the search space of the child network was limited. The

reason behind limiting the experiment to small tasks is the inefficiency of the approach.

Progressive Neural Architecture Search (PNAS) proposes a different approach to archi-

tecture search known as SMBO strategy (Liu et al., 2018). In SMBO, instead of randomly

recommending and testing out the blocks, they are tested and structures are searched in

EXISTING RESEARCH Research Challenges

order of increasing complexity. Instead of traversing the entire search space, this approach

starts off simple and only gets complex when required. PNAS claims to be significantly

less computationally expensive than NAS. Another effort to make architecture search more

efficient is known as, Efficient Neural Architecture Search (ENAS), proposed by Pham et al.

(2018). ENAS allows sharing of weights across all the models instead of training every model

from scratch. The idea is to reuse the weights of a block which are already trained. Thus,

the system uses transfer learning to train a new model which makes convergence very fast.

It is a very effective method and comparatively less computationally expensive than PNAS.

The only observation about this approach is that it keeps a large number of architectures

in the memory.

Xu et al. (2018) proposed a different approach of learning to do exploration in off-

policy RL which is Deep Deterministic Policy Gradients (DDPG). The authors compared

two different policy gradient RL approaches: a) On-policy Gradient Algorithms (OPGA)

which includes algorithms like Proximal Policy Optimization (PPO) and b) TRPO where

a stochastic policy is used for exploration of RL environment. A separate policy has been

used instead of a simple heuristic one for the exploration. This policy is trained using

OPGA methods where the reward for training is a relative improvement in the performance

of the exploitation policy network. Experimental results show faster convergence of DDPG

with higher rewards. Zoph et al. (2018) further extended NAS where they also replaced

REINFORCE with PPO.

Table 2.9 is showing the comparison of various systems with neural architecture search

systems. The comparison includes the number of GPUs used in the experiments, exploration

time and the accuracy of the best performing architecture.

Table 2.9: Hyper-parameter search techniques used in previous studies

Research Work GPUs Exploration
time (days)

Error
rate (%)

DenseNet (DeVries and Taylor, 2017) - - 3.46

NAS with Q-Learning (Baker et al., 2017) 10 8-10 6.92

NAS (Zoph and Le, 2017) 450 3-4 3.41

PNAS (Liu et al., 2018) 100 1.5 3.63

ENAS (Pham et al., 2018) 1 0.45 2.89

2.7 Research Challenges

The goal of MLL is to recommend a learning algorithm that gives the optimized performance

on new tasks based on the previously solved problems and with minimal or no intervention

of human experts (Duch et al., 2011). The existing approach of analysing the problem and

selecting an optimal learning algorithm is to apply a wide range of algorithms, with many

possible parametrizations, on a problem simultaneously and then select an algorithm from a

ranked list based on performance estimates like accuracy, execution-time, etc. Also choosing

an algorithm optimized for the best performance in an ever increasing number of models and

49

50 Research Challenges

their numerous configurations is a challenging task. Even with sophisticated and parallel

learning algorithms, the computational power in terms of execution-time, memory and the

overall human effort is still one of the biggest limitations. Every task leads to new challenges

and demands dedicated effort for detailed analysis and modelling.

In recent years, Auto-ML is getting traction and has become a key area of ML. The

ML pipeline consists of several task dependent phases, such as feature engineering, model

selection and HPO (Yao et al., 2019). These phases require human intervention to be

carefully tuned based on the complexity of a given task. Thus, with the emergence of DNN,

the NAS approach of Auto-ML is becoming critical.

The main theme of this work is research on MLL strategies and approaches for effective

reduction of the model search space. There are multiple areas of a predictive system where

MLL can be used to efficiently recommend the most appropriate methods and techniques.

Therefore, three areas of evolving predictive systems are identified where the applicability

of MLL can be an effective and efficient approach. These are listed below:

1. Learning Path Recommendation:

A learning path includes pre-processing steps, learning algorithms or their combination

and adaptivity mechanism parameters. These three components are interlinked with each

other where MLL recommends the learning algorithm or their combinations preceded by

optimized pre-processing steps from a pool of available methods. The adaptivity mech-

anism parameters are the additional parameters which are linked with the algorithm’s

configuration. Figure 2.8 shows the complex learning path recommender.

Meta-
Knowledge

P
re

-p
ro

c
e
s
s
in

g

Pre-processing Step-1

Tech-N...Tech-2Tech-1

Pre-processing Step-2

Tech-N...Tech-2Tech-1

Pre-processing Step-N

Tech-N...Tech-2Tech-1
...

L
ea

rn
in

g

A
lg

o
ri

th
m

s

...

Algorithm Combination

Algorithm Combination-1 Algorithm Combination-N

 Performance
Measures

...

...

Instance/
Batches of data

Meta-feature
Generator

Meta-features

Learning Algorithm-1

Param-N...Param-2Param-1

Learning Algorithm-2

Param-N...Param-2Param-1

Learning Algorithm-N

Param-N...Param-2Param-1

Adaptive Mechanism Parameters

Param-N...Param-1

Algorithm Combination-2 ...Algorithm Combination-3

Adaptive Mechanism Parameters

Param-N...Param-1

...

 Performance
Measures

Meta-level
Learning

A
 C

o
m

p
le

te
 L

e
ar

n
in

g
 P

a
th

(s

ta
rt

in
g
 f
ro

m
 P

re
-p

ro
c
e
ss

in
g
 t
ill

 A
d
a
pt

iv
e
 M

e
ch

a
n
is

m
 P

a
ra

m
e
te

rs
)

Figure 2.8: Learning Path Recommendation

i. Pre-processing Steps Recommendation:

MLL can be applied to find the most appropriate combination of pre-processing

steps. Since in time-varying environment trying various pre-processing methods and

techniques to find the best combination for a concept will make the entire system

ineffective. Instead of spending time on testing various methods on every concept

EXISTING RESEARCH Research Challenges

drift detection MLL can help to instantly recommend the best pre-processing steps

from the methods under observations.

ii. Algorithm or Combination Recommendation:

Finding an optimal algorithm for a dataset is a traditional application of MLL

(Giraud-Carrier, 2008). Automatic discovery of optimal algorithm can be benefi-

cial for both stationary and particularly non-stationary environments where it can

help in minimizing the processing time which is usually spent on the rigorous test-

ing of various learning algorithms with their different parametrizations. MLL can

recommend the best learning algorithm, its parametrization and their combination

instantly from the pool of available learners.

iii. Adaptivity Mechanism Parameters:

The adaptive mechanism with static parameters, i.e., training and evaluation window

size, step size and delay, would be ineffective for the dynamic environments where

the underlying distribution of incoming data keeps changing. These parameters

can be bound with learning algorithm configuration. The most appropriate set of

adaptivity parameters can be extracted at Meta-level based on the best learning

algorithm selected for the current concept.

2. Recurring Concepts Extraction:

In a non-stationary environment, the underlying distribution of the incoming data keeps

changing which in turn makes the most recent historical concept ineffective to retrain

the model for current concept. Using MLL the historical batches (concepts) of data

could be extracted from MK, which in turn, can be used as a training-set for the current

data. This process can be named as Reverse Knowledge Extraction where MFs of the

current concept can be used to extract the MEs of relevant concepts from MK datasets.

These MEs will ultimately lead to extracting the model whose underlying distribution

follows the concept which is currently under observation. This model can be retrained

to incorporate the new concept in the existing model.

3. Concept Drift Detection:

In an adaptive mechanism retraining of model is usually triggered by a change detection

process. MLL can help in automatically identifying a drift to maximize the efficiency

of the system. MLL can help to automatically detect the concept drift and trigger the

algorithm retraining process instantly. For instance, the MFs of incoming data can be

computed as well as cumulated on arrival of every batch and simultaneously compared

with the set of MEs, from MK dataset, whose learning algorithm (used as target variable

in MK) is used to score the current batches of data. The concept drift is detected at

Meta-level if the ME of the current concept does not match with the cluster of MEs

whose learning algorithm is currently selected.

The scope of this research is limited to the feature engineering and learning strategy for

algorithm recommendation which falls under Algorithm or Combination Recommendation.

The applicability of MLL on this area leads to several research questions which are listed

below:

51

52 Research Challenges

1. Gathering examples of datasets to build a static Meta-knowledge database:

i. The time-changing environments require dynamic MK databases which must be

updated with the MFs of different batches of data having a different distribution.

A dynamic MK database keeps on growing with the ME of new concepts. Apart

from the dynamically growing database which will gradually build-up, a static

MK database may be required at least for the initial phase of the system. When

do the benefits of a static database outweigh the costs of maintaining it? Further-

more, what are the alternative techniques of utilizing MLL without having prior

knowledge particularly for the initial phase of the system?

ii. Building-up a static MK database would raise another research challenge of what

strategy should be adapted to generate synthetic MEs, i.e., either by directly

transforming the existing MEs which are generated by limited real-world datasets

or by generating artificial examples of datasets?

2. Base-level Learning strategy to compute performance measures of Meta-examples:

i. BLL is used to build predictive models using examples of datasets to compute

a set of performance measures which are mapped with their respective MEs.

What strategy would be adopted to select the best learning algorithm and its

parametrization for an ME at Base-level, i.e., level of granularity of algorithm

parametrization, algorithm ranking or combination, model validation, and perfor-

mance measures?

3. Feature generation and selection to represent a problem at Meta-level:

i. The traditional MF generation approaches which are usually specialized for algo-

rithm recommendation task would be adequate to represent three new proposed

areas of the system at Meta-level or based on the complexity of the new problems

a different representation would be required?

ii. In a non-stationary environment, the target variable would not be available at the

time of algorithm selection at Meta-level. It will restrict the computing of some

important MFs, e.g., the correlation between target and predictors. What would

be the impact of the absence of these significant features on the performance of

MLL and in later stage how MK database will be updated when the target variable

will be known?

4. Representation and storage of dynamically growing complex Meta-Knowledge database:

i. What level of granularity would be required for the appropriate representation of

a problem? For instance, the target variable of the MEs would be only the best

learning algorithm, ranking, algorithm parametrization or combination?

ii. What type of performance measures will be stored in MK database for three

different areas, e.g., accuracy, run-time speed? For instance, the run-time speed

measure might be useful particularly for a non-stationary environment which helps

to identify accurate as well as an efficient learning algorithm.

EXISTING RESEARCH Problem Formulation

5. Meta-level Learning strategy for algorithm and its hyper-parameter recommendation:

i. What strategies and algorithms would be used at Meta-level to efficiently search

the target objectives of the mentioned three areas from MK database?

ii. If MLL process recommends a different learning algorithm and its parametrization

for the target concept then what would be the strategy of replacing the current

algorithm and how this change would impact the overall performance of the sys-

tem?

From the above five research questions, 3 and 5 are addressed in this research.

2.8 Problem Formulation

This section formulates the problem of selecting an appropriate algorithm for a given task

and finding its configuration leads to the best results. It is considered as a crucial step

towards the automation of ML pipeline (Feurer et al., 2015). Although Model Selection and

Hyper-parameters Optimization (MSHPO) are conceptually different areas, however, they

are linked with each other. Since the selection of an appropriate algorithm with a poor

choice of configuration, for a given task, leads to low accuracy. The following formulation

is applicable to classification problems, however, it can be extended to the regression tasks

as well.

An example of a classification task is represented as a pair (x, y), x is a vector of feature

values whereas y is its corresponding class. A dataset D, expended in Equation 2.1, is a

set of examples which is consumed by a classification algorithm. A classification algorithm

C is a function that learns patterns from D and apply it on hold-out instances from their

feature values x̄ to predict the class ȳ as shown in Equation 2.2. Moreover the equivalent

Meta-RL representation is shown in Equation 2.3 where s is a set of states and a is set of

finite actions.

D = {(x1, y1), (x2, y2), ..., (xN , yN)} (2.1)

Supervised Meta-learning C : {D, x̄} → {ȳ} (2.2)

Meta-Reinforcement Learning C : {D, s} → {a} (2.3)

A set of all the possible classification algorithms is represented as C = {C1, C2, ..., Ck}.
A classification algorithm C requires a set of hyper-parameters Pc where λc is a configuration

of the hyper-parameter, λc ∈ Pc. The set of hyper-parameters for the ith algorithm in C
denoted by λi = (λia, λ

i
b, λ

i
c, ...). This set of all the possible values is represented by Λi that

λi can take. A realization of classification algorithm C for a specific configuration λ is

known as a classification model (Cλ). The error function E of the classification model Cλ
on held-out instances is computed as shown in Equation 2.4.

E : Ci ∈ C,λi ∈ Λi (2.4)

53

54 Problem Formulation

The feature values of the instances x is used to train an algorithm which is applied on

the feature values of x̄ to predict its class ȳ. Based on the underlying distribution of the

trained model the instances with similar feature values tend to belong to the same class. It

formulates the MSHPO problem as:

C∗λ∗ = argmin
Ci∈C,λi∈Λi

E(Ci
λi ,D) (2.5)

Equation 2.5 chose an algorithm and associated configuration that obtain optimized

performance at predicting labels on the given task. This equation only defines the structure

and general behaviour of the different components of the optimization process and not

the scoring function and other details. Furthermore, the assumption that a single model

and its configuration C∗λ∗ is significantly better than the rest of the candidates can not be

guaranteed.

Chapter 3

Cross-domain Meta-learning for
Time-series Forecasting

In accordance with the research challenges identified in the previous chapter, a thorough

study has been conducted to evaluate whether the Meta-knowledge (MK) of a specific

domain can be applied on the problems of other domains to find the best learning algorithm.

The previous work on Meta-level Learning (MLL) for Time-series (TS) forecasting resulted

in Lemke and Gabrys (2010a) and Lemke and Gabrys (2010b). The use of proposed MLL

approaches and data from NN3 and NN5 competitions in Lemke and Gabrys (2010a) and

supplementing the available NN-GC1 data has led to our research group’s1 winning of the

NN-GC1 forecasting competition. In Lemke and Gabrys (2010b) it was stipulated (though

not verified by any further analysis) that a particularly good predictive performance resulting

from deploying the MLL approach and a Meta-ranking algorithm on the NNGC-C dataset

(monthly interval) and NNGC-E (daily interval) might have been due to additional use of

the NN3 and NN5 (111 daily series each) datasets for generating MK and training Meta-

learners. In this chapter the concentration is on attempting to understand if indeed the use

of additional time-series from NN3 and NN5 competitions have been the main reason for the

best performance of the MLL on series NNGC-C and NNGC-E of the NN-GC1 competition.

Through an extended analysis of the results describing for which NN-GC1 time-series the

MLL performs best or worst. Also an attempt has been made to answer a more general

question of when and under what circumstances the use of datasets from other domains

(NN3 and NN5 competitions in current context) could be beneficial for recommending well-

performing forecasting methods for a problem at hand (using MLL approaches on 6 different

NN-GC1 datasets in this work).

The key focus would be on finding evidence that revolves around the following questions:

1. Whether the use of additional training data has been the main reason for the best

performance of the MLL?

2. Whether the use of data from different domain could be beneficial for recommending

well-performing forecasting methods for a problem at hand?

More investigations have been required to find the evidence whether NNGC-C and

NNGC-E performed well on NN3 and NN5 Meta-model because of the similar frequency

1Smart Technology Research Centre

55

56 Methodology

Examples of Datasets

NN3, NN5

Time-series

Meta-knowledge

NN3, NN5, NN3+NN5

Base-level Forecasting

Methods

Meta-features generation

and Selection

Meta-

model

Clustering

NN3, NN5,

NN-GC1

Examples of Datasets

NN-GC1

Time-series

Meta-knowledge

NN-GC1

Base-level Forecasting

Methods

Meta-features

generation and Selection

Evaluation

NN GC1 Meta-model vs

Clusters

Results

NN-GC1 best possible

vs MLL method

Figure 3.1: Methodology of Cross-domain MLL

of observation recording or the Meta-level problem representation is tilted more towards

time-series sample-rate characteristics than the others? This could be a reason that MLL

performed well for only time-series datasets with similar frequency. On the other hand, in-

vestigation is required to analyze whether increasing the size of training dataset by adding

data from different domains could enhance overall MLL algorithm prediction accuracy?

Additionally, it leads to another problem of not finding the significant amount of patterns

from the cross-domain data, for example, NN3 and NN5 contain 222 instances which is a

relatively small number with a lot of variations in the data. It raises the question of whether

adding data from only the same domain can enhance Meta-level accuracy?

3.1 Methodology

To examine the questions stated in the above section an experimentation environment has

been established containing key components required by an MLL system. Figure 3.1 provides

a high-level overview of the MLL system setup for this work. Apart from MLL system a

cluster analysis has been performed on MK. The results of both the systems are correlated

to find evidence that could lead to the answers of the questions raised in the above section.

The MLL system is divided into two phases; i) Meta-modelling, ii) Meta-ranking. For

Meta-modelling two datasets, NN3 and NN5, are used from different domains, empirical

business observations and cash machine transactions. Several Meta-features (MFs) and

performance measures are computed from these datasets. These performance measures

CROSS-DOMAIN META-LEARNING FOR TIME-SERIES FORECASTINGExperimentation Environment

are mapped with features of each time-series to build an MK for the both datasets and

a combined NN3+NN5 MK has been built. There are three different Meta-models built

against these MK.

These Meta-models have been evaluated in Meta-ranking phase against six datasets of

NN-GC1 which are from a different domain (i.e., transportation) than NN3 and NN5. Fur-

thermore, NN-GC1 has different observation sampling rates. The same MFs which are

used in Meta-modelling phase, have been extracted from NN-GC1 for Meta-ranking. The

Meta-models, that are trained on NN3 and NN5, are used to estimate the most appropri-

ate forecasting method on the Meta-examples of NN-GC1. These estimates are evaluated

against the best possible forecasting method which is computed by evaluating base-learners

as NN-GC1. Figure 3.1 provides an overview of the cross-domain MLL system.

Apart from Meta-modelling, Cluster Analysis has been performed on three different com-

binations of MK including NN3 versus NN-GC1, NN5 versus NN-GC1 and NN3+NN5 versus

NN-GC1. A hierarchical approach is applied with different link methods and distance sim-

ilarity measures to extract most appropriate clusters on the mentioned three combinations

of MK.

3.2 Experimentation Environment

An experimentation environment comprises of all the key components of an MLL system and

it has been designed to perform an extensive set of experiments. The MFs, and Base-level

forecasting and MLL methods are taken from Lemke and Gabrys (2010a). Additionally,

a cluster analysis component is added in the environment to perform unsupervised MLL.

The base-level forecasting algorithms and MFs used in this work are taken from Lemke and

Gabrys (2010a).

3.2.1 Examples of Datasets

The Examples of Datasets (EoD) is a repository of usually large number of datasets from

various domains. In this chapter, the EoD consists of 222 univariate time-series from two

different sources, NN3 (Crone, 2006) and NN5 (Crone, 2008) competitions. Each data-source

contains 111 series whereas NN3 dataset has monthly empirical business observations while

NN5 has daily cash machine withdrawals observations. These two data-sources have been

used to train the Meta-model.

The Meta-models have been tested on six NN-GC1 (Crone, 2010) competition data-

sources consisting of 66 univariate time-series. Each data-source consists of 11 series with

different frequency of observations and prediction horizon. Table 3.1 shows the number of

time-series, their frequency and horizon of all the above mentioned datasets.

3.2.2 Base-level Forecasting Methods

Performance of four Base-level forecasting methods has been estimated against each of the

time-series. Those algorithms vary from simple, such as Moving Average (MA), to more

complex algorithms, including Automatic Box-Jenkins, structural and Neural Networks.

57

58 Experimentation Environment

Table 3.1: NN3, NN5 and NN-GC1 datasets which are used to build Meta-modelling and
its evaluation

Datasets Series Observations Frequency Horizon
NN datasets used for Meta-Modelling
NN3 111 52-126 Monthly 18
NN5 111 735 Daily 56
NN-GC1 datasets used for model evaluation
NNGC-A 11 23-37 Yearly 0
NNGC-B 11 31-148 Quarterly 4
NNGC-C 11 48-228 Monthly 12
NNGC-D 11 527-1181 Weekly 52
NNGC-E 11 377-747 Daily 7
NNGC-F 11 902-1742 Hourly 24

The algorithms are evaluated using Symmetric Mean Absolute Percentage Error (SMAPE)

and Standard Deviation (StdDev) measures. The evaluation protocol consisted of training

the models on 75% of the series and testing on the remaining 25% of instances. Table 3.3

shows SMAPES and StdDev of NN3 and NN5 datasets. Several R libraries have been

used to compute the performance measures (R Development Core Team, 2008), where the

configuration of the algorithms is given in the following subsections.

3.2.2.1 Simple time-series Algorithms

MA is a simple time-series method where the arithmetic mean of the last k observations

has been computed iteratively, see Equations 3.1. The optimal value of k is selected using

grid-search from 3 to 24 where the step size is 3. At each value of k, mean squared error

(MSE) has been calculated on the validation-set and the k is selected where the error value

is lowest.

ŷt+1 =
1

k

t∑
i=t−k+1

yi (3.1)

3.2.2.2 Complex time-series Algorithms

Additionally, three complex time-series algorithms are used as Base-learner:

1. Auto-regressive Integrated Moving Average (ARIMA) fall under the complex time-

series forecasting techniques (Box and Jenkins, 1970). The configuration of ARIMA used in

this work was obtained by performing a grid-search over possible models within the first and

second differences with starting stepwise value of 1 (Hyndman and Kh, 2008). The lag value

that produced the lowest MSE on the validation-set has been automatically selected. The

reason for selecting maximum second-order difference as described in Lemke and Gabrys

(2010a) is that the data usually only involves non-stationarity at maximum second-level.

2. Structural technique is a linear state-space model for univariate time-series based

on various components of the series such as trends, etc. (Petris and Petrone, 2011). The

maximum likelihood estimates of the local level model is used to get the time-varying slope

CROSS-DOMAIN META-LEARNING FOR TIME-SERIES FORECASTINGExperimentation Environment

dynamics. The structural technique produces fitted Kalman filter and smoother (Tusell,

2011).

3. An iterative version of feed-forward Neural Network (NN) has been used. The network

is configured with a single hidden layer, 12 neurons and up to a lag of 12 observations to

reflect weekly or yearly seasonality for NN5 and NN3 respectively. The predictions have

been averaged over ten trained networks to obtain the final forecasts.

Table 3.2 depicts various parameters that are used by the base-learning forecasting meth-

ods.

Table 3.2: Methods and their configurations that are used to compute performance measures

Methods Parameter Description Value
MA k Number of observations 3-24
ARIMA maxQ Maximum number of order difference 2
Structural type Maximum likelihood estimates level
NN neurons and seasonality number of neurons in hidden layer and lag 12 and 12

The SMAPE and StdDev of base learners are reported in Table 3.3. The MA and

ARIMA consistently performed well for NN3 and NN5 respectively where MA comes out

as the best algorithm for 41% of time-series in NN3 and ARIMA outperformed the other

candidates in 72% of time-series. There is not much difference in overall SMAPES and

StdDev of remaining three candidate algorithms where StdDev of NN3 is almost double

that of NN5 dataset. The reason for high-StdDev of NN3 dataset is the high variations in

comparatively short time-series, which make the dataset less stable than the NN5 dataset.

Table 3.3: SMAPE and StdDev of Base-level forecasting methods

Method NN3 SMAPE NN3 σ NN5 SMAPE NN5 σ
MA 15.68 14.74 35.17 7.73
ARIMA 18.83 15.88 28.02 8.17
Structural 17.57 15.35 36.09 9.05
NN 17.05 13.56 34.89 7.37

3.2.3 Meta-feature Generation

There are three different groups of MFs extracted from univariate time-series which include

descriptive statistics, frequency domain and auto-correlation (Lemke and Gabrys, 2010a).

These features have been computed using grid searched parameters of the methods that are

available in R (R Development Core Team, 2008). Table 3.4 contains the list of features

and their descriptions that have been extracted from time-series.

3.2.3.1 Descriptive Statistics

The descriptive statistics have been computed on detrended time-series using polynomial

regression as mentioned in Lemke and Gabrys (2010a). Statistics that are computed using

detrended series include StdDev, skewness and kurtosis. Another feature, trend, has been

59

60 Experimentation Environment

Table 3.4: List of MFs and their descriptions

Features Description Formalisation

Descriptive Statistics

std StdDev of de-trended series
detrend = detrend(polyfit(series, 3))
std(detrend series)

skew Skewness of series skew(detrend series)

kurt Kurtosis of series kurt(detrend series)

length Length of series length(series)

trend trended series std(series)/std(detrend series)

turn Turning points count(yi−k > ... > yi, yi < ... < yi+m)

step Step changes
count(|yi−µ(y1..yi−1)| > 2σ(y1...yi−1))
where yi is an observation of a series

non-lin Non-linearity measure
lin = lm(detrend series)
nonLin = lm(poly(detrend series, 2))
isSignificant(anova(lin, nonLin))

Frequency Domain

maxSpec Power spectrum: maximal value
spect = ffta(detrend series)
maxSpec = max(spect.spectrum)

ff No. of peaks not lower than 60% of the max length(spect[spect >= maxSpec ∗ 0.6])

Auto-correlation

acf[1, 2] Auto-correlations at lags one and two
acf = acf(series)
acf [1], acf [2]

pacf[1, 2] Partial auto-correlations at lags one and two
pacf = pacf(series)
pacf [1], pacf [2]

season Seasonality measure pacf [12] for NN3, pacf [7] for NN5

calculated to add the variability of time-series in the feature set. The turning points and

step changes of time-series have been computed as described by Shah (1997). The turning

points provide information of local minima or maxima within a series while a step change is

detected when the mean of the series is greater than twice the StdDev at each observation

of the series. The number of turning points and step changes have been cumulated within

a series and normalized by the number of observations in a time-series. Furthermore, the

Durbin-Watson test and non-linearity measure has been calculated on polynomial regression

of order three (Lemke and Gabrys, 2010a).

3.2.3.2 Frequency Domain and Autocorrelations

In frequency domain, two features of the Fast Fourier Transform (FFT) have been extracted

from the detrended time-series which include the maximum value of power spectrum and

number of peaks greater than 60%. The maximum value of the power spectrum provides

the strength of the strongest seasonal or cyclic component. While the top 40% of peaks in

the power spectrum identifies the number of times strong recurring components are found

in a time-series (Lemke and Gabrys, 2010a).

There are five autocorrelation and partial autocorrelation features which are part of MFs

to capture information of stationarity and seasonality of a time-series. These correlations are

computed for lags 1 and 2. Additionally, the seasonality introduced partial autocorrelation

of lag 12 for the NN3 dataset which has the monthly frequency of occurrence and partial

autocorrelation of lag 7 for the NN5 consisting data of weekly frequency.

CROSS-DOMAIN META-LEARNING FOR TIME-SERIES FORECASTINGExperimentation Environment

3.2.4 Meta-knowledge Preparation

MLL requires an extensive and diverse set of data to build a reliable knowledge-base on

a given problem domain. The MK is composed of MFs mapped with the performance

measures of respective EoD. The performance measures used to evaluate four base-models

is SMAPE whereas only lowest SMAPE against every EoD is selected as the target variable

of the MK. The size of the MK is varied for different experiments ranging from 111 to

288 instances with 15 MFs which are too many for small datasets. In order to reduce the

dimensionality, a Random Forests (RF) based feature extraction method is applied to the

MK. This method computes the importance of each feature which is listed in Table 3.5. The

features are further divided into three sets including the top three most important features,

features with importance greater than the mean importance and full dataset. The RF based

scoring method is used as described in Genuer et al. (2010). This method builds a tree and

computes the amount of impurity that each feature decreases. The more a feature decreases

the impurity, the more important the feature is ranked. In general, the impurity decrease

from each feature is averaged across trees to determine the final importance of the variable.

Table 3.5: MFs Importance

NN3 NN5 NN3-NN5
Features Imp. Features Imp. Features Imp.
season 1.00 kurt 1.00 season 1.00
turn 0.85 season 0.96 turn 0.76
acf2 0.79 trend 0.90 trend 0.76
trend 0.72 step 0.89 pacf2 0.73
pacf2 0.72 pacf2 0.83 acf2 0.72
kurt 0.70 nonlin 0.81 pacf1 0.71
skew 0.70 turn 0.79 acf1 0.70
pacf1 0.70 maxSpec 0.79 kurt 0.68
acf1 0.67 std 0.79 nonlin 0.68
step 0.66 ff 0.76 skew 0.67
std 0.65 skew 0.76 std 0.66
maxSpec 0.65 acf1 0.74 step 0.62
nonlin 0.64 pacf1 0.74 maxSpec 0.62
ff 0.46 acf2 0.74 ff 0.51
length 0.41 length 0.00 length 0.40

The MK for both NN3 and NN5 are biased towards MA and ARIMA respectively which

leads to imbalanced dataset problem. In the current scenario the imbalanced MK is pro-

ducing biased classifiers that have a higher estimation accuracy for the majority classes, i.e.,

MA and ARIMA, but lower accuracy for the minority classes. This problem has been solved

using Synthetic Minority Over-sampling TEchnique (SMOTE) which balances the dataset

by over-sampling the minority classes. SMOTE synthetically generates more instances of the

minority class by broadening their decision regions (Chawla et al., 2002). The proportion

of class instances of raw and datasets balanced using SMOTE are shown in Table 3.6

61

62 Experimentation Environment

Table 3.6: Proportion Raw and balanced classes

Target NN3 NN5
Method Raw Balanced Raw Balanced
MA 42.34(%) 25.82(%) 5.41(%) 25.00(%)
ARIMA 9.91(%) 24.73(%) 72.97(%) 25.31(%)
Structural 24.32(%) 25.27(%) 8.11(%) 25.31(%)
NN 23.42(%) 24.18(%) 13.51(%) 24.38(%)

3.2.5 Meta-learning

The MK dataset contains predictors (MFs) and class labels (most promising forecasting

algorithm) which makes it a classification task. Three supervised learning algorithms have

been used as Meta-learners: Neural Network (NN), Decision Trees (DT) and Support Vec-

tor Machines (SVM). These Meta-learners are using leave-one-out cross validation training

strategy. The methods have been evaluated and compared using SMAPE and classification

accuracy. Following is the configuration used for Meta-learners:

1. Feed-forward NN is used with six different number of neurons in the hidden layer =

10, 15, 20, 25, 30, 35, 40 and weight decay = 0.01.

2. DT C5.0 with trials, number of boosting iterations, from 1 to 100.

3. SVM Radial-basis Function (RBF) kernel with sigma = 0.05, 0.01, 0.1 and cost = 30,

35, 40, 45, 50, 55, 60, 65, 70.

The overall accuracies and StdDev of the above Meta-learners are recorded in Table 3.7.

Figure 3.2 shows the number of times a particular base and Meta-learner performs best

for NN3, NN5 and combined NN3+NN5 data respectively. These accuracy estimates have

been computed using the predicted method recommended by Meta-learner and the best

algorithm out of four candidate time-series forecasting methods for each time-series. There

were three different experiments performed at Meta-level where the number of predictors

were varied:

1. In the first experiment three most important features have been used. The SVM

Meta-learner performed slightly better than the others on NN3 and NN5. Whereas

DT outperformed the remaining two Meta-learners on combined NN3+NN5 dataset.

2. In another experiment, the features with above average importance have been selected.

DT and SVM are found to be consistently dominating Meta-learners for all three

datasets.

3. All the features are used in the last experiment where NN performed well for sim-

pler time-series, NN3, while SVM outperformed the remaining for complex datasets

including NN5 and combined NN3+NN5.

From the above experiments the Meta-learner that outperformed all others have been

chosen to predict the best forecasting method for datasets from different domains.

CROSS-DOMAIN META-LEARNING FOR TIME-SERIES FORECASTINGExperimentation Environment

MA SES Arima Structural NN

NN3

Method Number

T
im

e−
se

rie
s

0
20

40
60 Best

Worst
MLL

MA SES Arima Structural NN

NN5

Method Number

T
im

e−
se

rie
s

0
20

40
60

80

Best
Worst
MLL

MA SES Arima Structural NN

NN3 and NN5 Combined

Method Number

T
im

e−
se

rie
s

0
20

40
60

80 Best
Worst
MLL

Figure 3.2: Histogram showing number of times a particular base and Meta-learner performs
best for NN3, NN5 and combined NN3+NN5 data

63

64 Results

Table 3.7: SMAPE (and Accuracy) of various Meta-learners

Method NN3 NN5 NN3+NN5
Top three important features
NN 49.54 (20.98) 72.83 (8.63) 61.26 (14.06)
DT 52.25 (20.97) 72.97 (7.84) 63.06 (13.18)
SVM 54.05 (21.52) 74.77 (7.74) 56.76 (16.05)
Above average important features
NN 52.25 (20.06) 60.36 (12.46) 57.20 (16.61)
DT 53.15 (20.79) 74.77 (7.48) 62.61 (13.96)
SVM 49.02 (21.85) 76.58 (7.38) 59.00 (16.90)
All features
NN 56.76 (17.47) 71.17 (9.40) 62.16 (15.74)
DT 51.35 (21.87) 71.87 (9.13) 59.46 (15.87)
SVM 52.25 (22.43) 75.68 (7.82) 62.16 (14.70)

3.2.6 Cluster Analysis

The hierarchical cluster analysis has been performed on MK to further analyze whether there

is any correlation between high MLL accuracy and homogeneous clusters. This analysis can

validate whether MLL works on the new domain. Atleast for the high-performing series of

NN-GC1 at Meta-level which are also clustered with NN, it can be considered that MLL

does effectively works. There have been different combinations of clustering methods and

distance measures experimented to find the most appropriate one on different sets of MK.

Four link methods of hierarchical clustering were part of the experiment including ward

(Murtagh and Legendre, 2014), and single, complete and average link. These methods have

been used in combination with two distance measures: Euclidean and Manhattan. The

analysis has been performed for 10 and 20 clusters.

3.3 Results

The Meta-Models have been applied on 66 time-series provided by the NN-GC1 competition

Crone (2010) as shown in Table 3.1. These Meta-models have been tested on NN-GC1

dataset where the accuracies are summarized in Table 3.8. The best forecasting method is

MA with average SMAPE 16.0 whereas Meta-learner could achieve a small improvement

over it. Also by analyzing the results of 6 NN-GC1 series it can be concluded that there is

no significant difference in SMAPE and StdDev of Base- versus Meta-learner.

The detailed results of NN-GC1 datasets on various combination of Meta-models as well

as three different sets of predictors (based on feature importance) are recorded in Table 3.9.

The first part of the table consists of NN-GC Meta-model results whereas the rest of the table

represents NN-GC results trained on NN. The top-performing models against each series of

NN-GC are represented in bold. Moreover, each column has two bold values, top performing

base-learner, and b) top-performing Meta-model trained on NN. The average SMAPE of the

best possible base-level forecasting algorithm has been compared with different combinations

of Meta-models’ average SMAPE that came out from various experimentations. In six

CROSS-DOMAIN META-LEARNING FOR TIME-SERIES FORECASTING Analysis

Table 3.8: SMAPE (and StdDev) of NN-GC1 series

Dataset Base-learning MLL
NN-GC1 Method SMAPE (StD.) Method SMAPE (StD.)
NNGC-A Structural 7.8 (4.7) SVM MLL(NN5)→GC [All features] 7.8 (4.7)
NNGC-B MA 7.2 (3.6) DT MLL(NN5)→GC [Top 3 features] 7.2 (4.8)
NNGC-C NN 13.4 (9.5) NN MLL(NN3)→GC [Above Average features] 12.5 (9.8)
NNGC-D MA 9.5 (9.1) SVM MLL(NN3)→GC [All features] 10.0 (9.0)
NNGC-E MA 26.9 (20.8) NN MLL(NN3)→GC [All features] 26.6 (20.7)
NNGC-F MA 60.1 (5.8) NN MLL(NN3)→GC [All features] 59.8 (5.6)
Average MA 16.0 NN MLL(NN3)→GC [Above Average features] 15.9

out of nine cases MLL(NN3)→GC (NN3 Meta-model on NN-GC1) came out as the best

Meta-model whereas in remaining four cases combination of both NN3 and NN5 datasets

MLL(NN3+NN5)→GC outperformed the rest. Whereas by analyzing the average SMAPE

of different experiments, it is found that NN Meta-learner performed reasonably well on

the set of features whose importance is above average followed by SVM and DT. At the

deeper level the six NN-GC1 are analyzed, apart from a few cases, there was no significant

difference between the best possible base-learning and MLL SMAPE.

The individual NN-GC1 time-series were further diagnosed for those series which are

unable to show the minimum error at Meta-level. The analysis showed that 44% of the

series recommended by the MLL were ranked as second best followed by 24% series ranked

as third best, whereas only 2% series were ranked as the worst. Overall 70% time-series are

reported better than the average SMAPE. Overall, the difference between MA base-learner

(which performed the best among others) and best possible Base-level Learning (BLL)

score gives very little room for improvement which is a problem to show MLL significance.

However MLL fall between these two and can be used for recommendation of the predictive

algorithm with a minimum probability that a bad predictor will be recommended.

Figure 3.3 shows the histograms with the number of times a particular method performed

best at Base and Meta-level for NN-GC1 time-series. The NNGC-A, NNGC-B, NNGC-

C and NNGC-F are showing the mixed base-level class distribution where NNGC-D and

NNGC-E are biased towards MA and NN respectively. However, for NNGC-D and NNGC-E

datasets MLL recommends ARIMA for most of the time-series.

3.4 Analysis

Various experiments have been performed to investigate the reported MLL results in detail.

The reliability of MK is further analyzed for the three sets of MFs which were formed based

on the importance of the features. There was not much accuracy variation found among

these three sets which indicate that not all the MFs are contributing in Meta-modelling.

The knowledge representation can be improved by increasing Examples of Datasets (EoD)

which are the source of computing MFs because one of the challenges in this work is scarce

input data with large variations within different time-series of a dataset. In particular,

NN5 dataset is containing only 111 time-series even within this small number few subsets

were representing different trends and patterns which made it difficult to build a stable

Meta-model.

65

66 Analysis

Table 3.9: SMAPE (and StdDev) of NN-GC1 series

Method NNGC-A NNGC-B NNGC-C NNGC-D NNGC-E NNGC-F Average

MA 12.8 (9.4) 7.2 (3.6) 14.6 (11.9) 9.5 (9.1) 26.9 (20.8) 60.1 (5.8) 16.0
ARIMA 10.1 (6.9) 8.6 (4.7) 16.2 (19.1) 14.0 (9.7) 42.4 (52.0) 62.2 (6.5) 21.0
Structural 7.8 (4.7) 7.6 (4.7) 24.1 (25.8) 14.1 (9.5) 30.4 (23.3) 84.3 (16.1) 21.0
NN 13.1 (6.7) 14.9 (6.9) 13.4 (9.5) 15.8 (12.6) 39.2 (30.1) 61.4 (5.7) 19.1
Base Learning (Best
Possible)

6.5 (4.6) 6.0 (3.6) 11.9 (9.8) 9.4 (8.9) 25.5 (20.0) 59.1 (5.8) 14.3

MLL on top 3 MFs
NN Meta-Model
MLL(NN3)→GC 11.3 (8.0) 8.1 (3.9) 14.3 (11.6) 12.4 (9.9) 28.6 (23.0) 61.8 (6.5) 16.6
MLL(NN5)→GC 9.9 (6.7) 8.3 (5.4) 15.3 (12.3) 13.3 (8.9) 43.6 (51.2) 75.1 (12.4) 21.9
MLL(NN3+NN5)→GC 11.3 (8.3) 7.8 (4.5) 14.8 (12.2) 12.6 (9.9) 40.5 (47.9) 63.7 (9.6) 20.3
DT Meta-Model
MLL(NN3)→GC 12.6 (8.1) 7.4 (3.8) 18.4 (21.4) 10.4 (9.3) 28.0 (22.2) 63.5 (9.3) 17.9
MLL(NN5)→GC 10.1 (7.2) 7.2 (4.8) 15.2 (12.4) 10.2 (9.0) 36.8 (47.3) 61.8 (6.6) 19.0
MLL(NN3+NN5)→GC 11.5 (7.5) 7.9 (4.4) 17.5 (19.1) 10.8 (9.5) 28.4 (23.0) 63.9 (9.5) 17.8
SVM Meta-Model
MLL(NN3)→GC 12.6 (8.1) 8.3 (5.7) 14.4 (11.6) 10.0 (9.0) 27.8 (21.5) 60.4 (5.9) 16.3
MLL(NN5)→GC 12.0 (8.2) 8.1 (4.7) 16.8 (19.2) 11.6 (9.3) 41.6 (51.8) 61.9 (6.9) 21.0
MLL(NN3+NN5)→GC 11.1 (8.3) 7.9 (4.4) 14.0 (11.7) 10.3 (9.2) 27.3 (22.4) 60.5 (6.2) 16.1
MLL on MFs whose importance is greater than mean
NN Meta-Model
MLL(NN3)→GC 10.0 (6.1) 7.7 (4.6) 12.5 (9.8) 12.2 (9.4) 28.9 (22.8) 60.9 (5.8) 15.9
MLL(NN5)→GC 9.0 (7.6) 8.4 (5.4) 23.6 (26.1) 14.3 (10.3) 30.2 (23.4) 81.5 (16.8) 21.4
MLL(NN3+NN5)→GC 12.5 (8.1) 9.1 (7.3) 13.0 (10.0) 12.0 (12.1) 42.1 (47.9) 64.1 (8.3) 20.5
DT Meta-Model
MLL(NN3)→GC 12.1 (7.8) 8.5 (5.8) 13.4 (10.4) 10.4 (9.3) 27.5 (21.8) 61.2 (6.0) 16.2
MLL(NN5)→GC 10.1 (7.2) 7.4 (4.7) 15.2 (12.4) 10.2 (9.0) 36.8 (47.3) 61.8 (6.6) 19.1
MLL(NN3+NN5)→GC 11.8 (8.3) 8.0 (4.5) 13.2 (10.1) 12.1 (12.9) 32.8 (25.0) 61.1 (6.3) 17.2
SVM Meta-Model
MLL(NN3)→GC 12.9 (7.8) 8.3 (5.7) 13.4 (10.4) 10.0 (9.0) 27.7 (22.2) 60.4 (5.9) 16.1
MLL(NN5)→GC 10.6 (7.0) 7.7 (4.7) 16.4 (19.0) 14.0 (9.7) 42.4 (52.0) 62.2 (6.5) 21.0
MLL(NN3+NN5)→GC 12.8 (9.4) 7.9 (4.4) 16.1 (18.5) 10.7 (9.1) 36.6 (47.6) 61.0 (6.3) 20.0
MLL on all the MFs
NN Meta-Model
MLL(NN3)→GC 10.5 (7.3) 7.6 (3.9) 17.0 (19.2) 12.1 (10.7) 26.6 (20.7) 60.3 (5.8) 16.8
MLL(NN5)→GC 8.4 (5.3) 9.2 (5.1) 23.7 (26.0) 14.4 (10.3) 30.6 (23.2) 84.3 (16.1) 21.4
MLL(NN3+NN5)→GC 10.6 (7.9) 7.4 (4.4) 17.1 (19.0) 11.6 (10.7) 31.8 (25.0) 61.6 (6.7) 17.8
DT Meta-Model
MLL(NN3)→GC 12.7 (8.0) 8.4 (5.7) 13.7 (11.3) 11.2 (10.6) 36.7 (47.4) 61.2 (6.0) 19.4
MLL(NN5)→GC 10.3 (7.8) 8.3 (4.4) 15.0 (12.6) 10.2 (8.5) 36.8 (47.3) 61.2 (6.5) 19.1
MLL(NN3+NN5)→GC 11.3 (8.0) 8.5 (4.5) 14.0 (11.3) 10.3 (9.3) 36.9 (47.4) 61.0 (6.3) 19.1
SVM Meta-Model
MLL(NN3)→GC 12.5 (8.3) 8.1 (5.0) 14.8 (11.8) 10.0 (9.0) 26.9 (20.8) 59.8 (5.6) 16.0
MLL(NN5)→GC 7.8 (4.7) 7.6 (4.7) 24.1 (25.8) 14.1 (9.5) 30.4 (23.3) 84.3 (16.1) 21.0
MLL(NN3+NN5)→GC 11.0 (7.3) 7.6 (4.4) 16.3 (19.1) 10.5 (9.5) 36.3 (47.4) 61.3 (5.9) 19.7

CROSS-DOMAIN META-LEARNING FOR TIME-SERIES FORECASTING Analysis

MA SES Arima Structural NN

NN GC − A

Method Number

T
im

e−
se

rie
s

0
2

4
6

8

Best
Worst
MLL

MA SES Arima Structural NN

NN GC − B

Method Number

T
im

e−
se

rie
s

0
2

4
6

8

Best
Worst
MLL

MA SES Arima Structural NN

NN GC − C

Method Number

T
im

e−
se

rie
s

0
1

2
3

4
5

6
7

Best
Worst
MLL

MA SES Arima Structural NN

NN GC − D

Method Number

T
im

e−
se

rie
s

0
2

4
6

8 Best
Worst
MLL

MA SES Arima Structural NN

NN GC − E

Method Number

T
im

e−
se

rie
s

0
2

4
6

8 Best
Worst
MLL

MA SES Arima Structural NN

NN GC − F

Method Number

T
im

e−
se

rie
s

0
2

4
6

8
10

Best
Worst
MLL

Figure 3.3: Histogram showing number of times a particular method performs best for
NN-GC1

In another experiment, the Meta-learner was built using both NN3 and NN5 datasets

to analyze whether increasing the MK instances would have any impact on Meta-learner.

The combined results are not promising either. The reason is found in their cluster analysis

where very few time-series are clustered together based on the similarity of features. Hence

the Meta-model was unable to learn significant patterns from cross-domain time-series.

MLL performed reasonably well even in presence of biased class distribution (for NN5

single base-level forecasting method was performing best for 72% of time-series) while apply-

ing Meta-model on NN-GC1. Even though NN3 dataset is found to be simpler time-series

than NN5 but the overall Meta-level accuracy of NN5 is significantly higher than NN3. The

reason is that ARIMA came out as the best base-learning algorithm for 72% of the time-

series which is the cause of biased class distribution. However, for NN3 dataset MA is the

best algorithm for 41% of the time-series followed by the contribution of NN and Structural

methods with more than 20% each. So these evidences suggest that Meta-learner worked

well for biased class distribution as compared to mixed class. In this work the MLL se-

67

68 Summary

lected majority class while predicting the most appropriate algorithm for the cross-domain

time-series.

The final experiment was performed to analyze whether any correlation exists between

high MLL accuracies versus homogeneous clusters of MFs. There were three different com-

binations of Meta-examples clustered with the Meta-examples of NN-GC1 which included

NN3, NN5 and combined NN3+NN5 data. The clusters of NN3 and NN5 are found to be

heterogeneous since there were very few time-series clustered together. In this work, the

focus is to find the reasons for the best performance of the MLL on NNGC-C and NNGC-E

datasets, however, all the Meta-examples of NN3 are clustered with NNGC-C. In Figure 3.4

it can be observed that the Base- and Meta-learner are same in most of the clusters for NN3

and NNGC-C series. On contrary to this NN5 is not clustered with NNGC-E in most of

the cases. It is further analysed by observing combined NN3+NN5 and NN-GC1 clusters.

It is noted that except one all the NNGC-E series are clustered with NN3 and NNGC-C.

Figure 3.4: NN3 clustered together with NGGC-C dataset where the cluster cut over is at
k = 20

3.5 Summary

The MLL is applied to various univariate time-series belonging to different domains. The key

focus of this work is to investigate whether the use of additional training data from a different

domain is beneficial in order to achieve better MLL performance? This work belongs to the

‘learning from the task properties’ method of the Automatic Machine Learning (Auto-ML).

It addresses model selection and, to some extent, MF generation and selection research

challenges, which are defined in Section 2.7, in the context of MLL.

Several experimentations were conducted to find the evidence around those questions

which has lead to various challenges including:

1. Very few EoD were available from each domain for Meta-modelling.

CROSS-DOMAIN META-LEARNING FOR TIME-SERIES FORECASTING Summary

2. There are several MFs computed on the time-series which resulted in sparse feature

space problem due to very few EoD.

3. The above two problems cause difficulties with training Meta-classifier.

4. Again the test EoD - NN-GC1 contain very few instances with huge variations in the

trends and distribution of its six different sub-datasets.

In consideration of the above challenges, the performance of MLL on the cross-domain

problem was satisfactory. It is also validated from the clustering of MFs where the Meta-

examples grouped together are ranked as best or second best at Meta-level. There were

only 2% of cases recommended by MLL that were the worst performing base methods for

the respective time-series.

There are a few key observations that can be made from experimentation results and

analysis that helped in answering the questions raised in the problem statement:

1. The additional data was not the reason for better MLL performance. In several exper-

imentations, only NN3 Meta-model performed better than the combined NN3+NN5

Meta-model. One of the reasons found from cluster analysis is that both NN3 and NN5

have very few Meta-examples that are similar to each other. Additionally, NN-GC1

has more similarity with only NN3 than the combined NN3+NN5 dataset.

2. Both NNGC-C and NNGC-E are clustered with NN3, unexpectedly there were very

few instances of NNGC-E clustered with NN5. It is also verified by MLL where

MLL(NN3) consistently performed well for NNGC-E. Here it is hard to say that

whether the similar frequency of observation recording was the reason for better MLL

accuracy.

In considering several data related challenges the performance of MLL on the cross-

domain problem was quite satisfactory. Even though there wasn’t much room of improve-

ment for Meta-learner but it made its place between the best possible Base-learning and

MA (the best performing base-learner among three others). This study addresses mainly

the model selection problem of MLL, particularly, for shallow learning algorithms. It can be

enhanced to Deep Neural Networks (DNN) for the same cross-domain knowledge transfer

problem.

69

70 Summary

Chapter 4

Towards Meta-learning of Deep
Architectures for Efficient Domain
Adaptation

An investigation of the situations in which the use of additional cross-domain data can

improve the performance of a Meta-level Learning (MLL) system has been carried out in

Chapter 3 with focus on the cross-domain transfer of Meta-knowledge (MK). In this chapter

a Hyper-parameter Optimization (HPO) approach to tackle the cross-domain knowledge

transfer problem has been proposed. The objective is to identify how many blocks (i.e.

groups of consecutive layers) of a pre-trained image classification network need to be fine-

tuned based on the characteristics of the new task. In order to investigate it, a number of

experiments have been conducted using different pre-trained networks and image datasets.

The networks were fine-tuned, starting from the blocks containing the output layers and

progressively moving towards the input layer, on various tasks with characteristics different

from the original task. The amount of fine-tuning of a pre-trained network (i.e. the number

of top layers requiring adaptation) is usually dependent on the complexity, size and domain

similarity of the original and new tasks. Considering these characteristics, a question arises

of how many blocks of the network need to be fine-tuned to get maximum possible accuracy?

Which from the number of available pre-trained networks require fine-tuning of the minimum

number of blocks to achieve this accuracy? The experiments, that involve three network

architectures each divided into 10 blocks on average and five datasets, empirically confirm

the intuition that there exists a relationship between the similarity of the original and new

tasks and the depth of network needed to fine-tune in order to achieve accuracy comparable

with that of a model trained from scratch.

4.1 Methodology

In order to carry out the investigations, a platform has been implemented to conduct ex-

periments with different combinations of pre-trained networks, their hyper-parameters and

image datasets. The experiments have been designed to investigate the relationships among

these three key components while fine-tuning the pre-trained networks on new tasks. There

71

72 Methodology

are several characteristics which can be considered but the two most important features se-

lected for this study are the size and similarity of the new task. The four Transfer Learning

(TL) scenarios are based on these two features. A schematic view of transfer learning is

shown in Figure 4.1 where Task-A is representing the original problem and Task-B the new

problem datasets.

Task-A Task-B
(new task)

Large image
repository, i.e.,

ImageNet

Relatively small
image repositories

knowledge to
distinguish

various objects

Image
Classification
models, i.e.,

Inception

New network
trained on

task-B

Figure 4.1: Schematic diagram of transfer learning

Despite the popularity of TL in computer vision, there is no principled way of finding

the relation between characteristics of a dataset and depth of the network that needs to be

re-trained. In this work, an effort has been made to find this relationship by identifying a

pre-trained network where the minimum number of blocks need to be re-trained to achieve

state-of-the-art accuracy. Moreover, instead of learning the general characteristics of the

dataset which is usually practiced in shallow learning, e.g. feature statistics Ali et al. (2018),

a higher level characteristics have been pursued, such as layer activations. The focus of the

experiments was to investigate the following key scenarios:

1. If Task-B is small in size and similar to Task-A (e.g. both tasks are concerned with

natural images), re-training of the entire network might lead to over-fitting. The

higher-level features of the pre-trained network, Task-A, are usually relevant for Task-

B. Hence, the re-training of a single or a few final layer(s) becomes very effective.

2. If Task-B is large and similar to Task-A, there is less possibility of over-fitting while

fine-tuning more layers of the network.

3. If Task-B is small but less similar to Task-A, there is a possibility that Task-A does

not contain relevant features for Task-B. In this case TL might not be very useful,

however, re-training of final layers might give reasonable results.

4. If Task-B is large and very different from Task-A, both the training of the network

from scratch and initialization of the network with the weights of the pre-trained model

would be beneficial.

TOWARDS META-LEARNING OF DEEP ARCHITECTURES FOR EFFICIENT
DOMAIN ADAPTATION Experimentation Environment

Train the model
from scratch

Fine­tune the pre­
trained model

Fine­tune the final
layers (high­level

features)

Fine­tune the final
layer

Ta
sk
 si
ze

Task similarity

Figure 4.2: Transfer learning scenarios

Figure 4.2 is summarising the above four scenarios.

Datasets with appropriate characteristics have been gathered for the experiments to

cover the above four scenarios. The network architectures used in this study vary greatly,

hence the groups of layers are fine-tuned rather than individual layers. Please refer to

Figure 4.3 for more details on how the layers of each architecture have been grouped into

what is referred to as ‘blocks’. Moreover, the source of the Inception-v3, Inception-ResNet-

v2 and VGG-19 baseline architectures, without block definition, are Szegedy et al. (2015),

Szegedy et al. (2017) and Simonyan and Zisserman (2014) respectively.

The pre-trained networks have been fine-tuned on each of the new tasks. The experi-

mental approach was to fine-tune an iteratively increasing number of blocks of each network,

starting from the final block, while the lower blocks of the network act as a fixed feature

extractor for Task-B. The train and test accuracies have been recorded on every iteration.

In some cases, where Task-B is similar, the re-training of only the final layer produces close

to the state-of-the-art accuracy. On the contrary, it is hardly applicable when both tasks are

very different. In that case, more final layers need to be re-trained. In general, a network

learns the hierarchy of features starting from generic ones, e.g., colors, edges, curves, etc.,

which can be reused for most of the tasks. Conversely, the later layers respond to more

specific features of the original task which can only be reusable in case the new task is

similar.

4.2 Experimentation Environment

To further investigate the questions raised in the previous section, a comprehensive experi-

mentation environment has been setup. It comprises of five datasets of different characteris-

tics and three state-of-the-art pre-trained image classification networks. The complexity of

the experiments has been calculated as the number of datasets times the number of train-

able blocks of all the networks. Therefore, computational power becomes a critical factor

to perform these experiments in a reasonable time. There were 5 Nvidia 1080Ti Graphics

Processing Units (GPUs) used to train around 200 models.

73

74 Experimentation Environment

Table 4.1: Open-source image repositories

Dataset Training-set Testing-set Classes Size
ImageNet (Russakovsky et al., 2015) 1.2 million 50,000 1000 very large
Food (Bossard et al., 2014) 75,750 25,250 101 large
Caltech-101 (Fei-Fei et al., 2007) 6,144 2,096 101 large
ChestXray (Demner-Fushman et al., 2016) 5,943 1,487 2 small
Flowers (Nilsback and Zisserman, 2008) 2,753 917 5 small
Coco-Animals (Lin et al., 2014) 800 200 8 small

4.2.1 Datasets

In this work, five publicly available datasets have been used with different domain and

characteristics. They can be divided into two categories based on their size and number of

classes; large and small as shown in Table 4.1. The pre-trained networks which are selected

for this work are trained on ImageNet. The Food dataset, introduced by Bossard et al.

(2014), is a challenging collection of 101 food categories and 101,000 instances. Likewise,

Caltech dataset also has 101 categories with 82 images per category on average (Fei-Fei

et al., 2007). The images are not specific to any particular domain. Chest-Xray (Demner-

Fushman et al., 2016) is a relatively smaller dataset, originally published with 14 classes.

The images were mostly tagged with multiple labels which are converted to the two-class

problem where every image can be classified as either normal or nodule. This dataset is

composed of frontal-view X-ray images of the screening and diagnosis of many lung-related

diseases. Similarly, Flowers is another small dataset consisting of five different categories

of flower species (Nilsback and Zisserman, 2008). Microsoft has gathered a large dataset

consisting of 91 categories, known as Common Objects in Context (Coco) (Lin et al., 2014).

Coco-Animals (Animals) is a subset of the original Coco dataset which is composed of 8

animal categories.

4.2.2 Pre-trained Image Classification Networks

Three pre-trained image classification and detection Convolutional Neural Network (CNN)

have been used in this work. These networks are trained on ImageNet dataset which consists

of 1000 classes (Russakovsky et al., 2015), however, their internal architecture, depth and

other aspects differ considerably. The first few layers of the networks capture low-level

features of the image like edges, curves, etc. The subsequent layers learned shapes and

more abstract features related to the problem domain. The final layers have learned more

specific features corresponding to a particular category which is eventually used to classify

the images. The pre-trained networks are listed in Table 4.2 along with the number of layers

and accuracy in the ImageNet dataset.

Table 4.2: Benchmarking of various pre-trained image classification models

Network Layers Top-1 Accuracy Top-5 Accuracy
Inception-v3 (Szegedy et al., 2016) 22 78.0 93.9
Inception-ResNet-v2 152 80.4 95.3
VGG-19 (Simonyan and Zisserman, 2014) 19 71.1 89.8

TOWARDS META-LEARNING OF DEEP ARCHITECTURES FOR EFFICIENT
DOMAIN ADAPTATION Experimentation Environment

Figure 4.3: Schematic view of Inception-v3, Inception-ResNet-v2 and VGG-19 networks
where the blue colour is representing a re-trainable layer/block.

75

76 Experimentation Environment

4.2.2.1 Inception-ResNet-v2

Google released Inception-ResNet in 2016 and it became a state-of-the-art image classi-

fication network of ImageNet Large-Scale Visual Recognition Challenge (ILSVRC)-2016.

Inception-ResNet-v2 is a deeper but simplified version of Inception-v3. The residual con-

nections allow the model to be even deeper, leading to better performance. ResNet relies

on micro-architecture modules which consist of building blocks.

A schematic view of different pre-trained architectures can be seen in Figure 4.3. The

architectures are also labelled with the block numbers, in blue, that can be subject to

fine-tuning.

4.2.2.2 VGG-19

Visual Geometry Group (VGG) network was developed by Visual Geometry Group of Ox-

ford University which secured first place in the ImageNet ILSVRC-2014. It has two versions

which consist of 16 and 19 layers. The 19 layer version has been used in our experiments.

The VGG network uses 3x3 convolutions stacked on top of each other in increasing depth

which makes it relatively simpler than AlexNet. The convolutional layers are followed by two

Fully-Connected (FC) layers, each one consisting of 4,096 neurons and a Softmax classifier.

4.2.2.3 Inception-v3

Inception, or GoogLeNet, was developed by Google and was state-of-the-art for image clas-

sification and detection in the ILSVRC-2015. Inception-v3 is a 22 layers deep network but

computationally inexpensive (Szegedy et al., 2015).

4.2.3 Transfer Learning

In TL three pre-trained networks are re-trained/fine-tuned sequentially on the same task.

The training process fine-tunes a range of blocks per training iteration, starting from the

final block. This process has been repeated for all the pre-trained networks and datasets.

The hyper-parameters have also been updated layer-wise one by one where the learning

rate initializes from a comparatively large number to iteratively smaller. Conversely, the

number of training epochs parameter has been initialized from a smaller number which gets

bigger as more layers need to re-train. The rmsprop optimizer (Hinton et al., 2014) and

layer dropout of 20-30% have been used while re-training the network. The learning rate

and the number of training epochs are dependent on the nature of the tasks and depth of

the network. The training begins with the higher value of learning rate and lower number of

epochs which gradually decreases and increases, respectively, as more layers of the network

require fine-tuning. Their values are changed with a small factor upon the addition of a

new layer for fine-tuning. The idea is to use the lower value of learning rate and a higher

number of epochs for larger datasets. Table 4.3 shows hyper-parameters that are used in

our experiments.

TOWARDS META-LEARNING OF DEEP ARCHITECTURES FOR EFFICIENT
DOMAIN ADAPTATION Results and Analysis

Table 4.3: Hyper-parameters that are used for transfer learning

Datasets Learning rate Training epochs Dropout
Food 10−3 − 10−7 180-1000 20%
Caltech 10−4 − 10−7 180-1000 20%
ChestXray 10−3 − 10−6 120-800 20-30%
Flowers 10−3 − 10−6 120-800 20%
Animals 10−3 − 10−6 120-800 20%

Table 4.4: Transfer learning accuracies of various datasets, classification architectures, and
their layers

Network re-training accuracy (train %–test %) upon fine-tuning a range of blocks, one block per iteration
Dataset FC 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Inception-v3 network
Food 85–53 84–48 84–49 72–55 70–57 73–66 73–66 76–68 79–62 84–75 82–79 85–80 86–82 79–69 80–70
Caltech 95–84 95–87 96–86 96–89 96–87 95–86 93–84 88–78 82–76 69–61 48–45 37–31 24–18 15–16 12–14
Chest-Xray 96–50 96–52 96–52 96–59 96–61 96–67 96–68 96–69 96–71 96–70 96–71 95–71 92–71 78–72 87–75
Flowers 84–25 84–27 87–19 88–27 91–34 95–86 96–86 96–89 96–88 95–89 92–82 86–83 78–70 56–58 41–38
Animals 54–14 47–17 58–48 81–59 88–61 90–64 92–69 91–62 90–69 88–56 81–52 69–46 58–51 47–44 38–41
Inception-ResNet-v2 network
Food 86–56 86–64 86–74 86–74 87–78 89–85 86–84 80–76 71–73 78–75 – – – – –
Caltech 96–83 96–84 95–83 94–84 94–79 93–79 91–78 88–64 79–64 67–59 – – – – –
Chest-Xray 91–61 89–43 88–44 91–79 91–79 91–44 91–44 91–79 91–80 91–79 – – – – –
Flowers 89–22 89–28 91–35 92–26 93–81 94–87 95–83 96–85 96–84 94–81 – – – – –
Animals 65–49 71–60 77–70 77–56 82–77 85–74 86–68 88–68 88–68 85–66 – – – – –
VGG-19 network
Food 85–69 85–67 85–67 90–77 81–80 77–73 77–73 – – – – – – – –
Caltech 79–78 72–70 80–77 74–70 68–66 66–53 71–66 – – – – – – – –
Chest-Xray 89–43 87–43 89–61 88–78 89–74 89–78 89–78 – – – – – – – –
Flowers 83–59 81–80 83–81 86–84 79–72 79–63 90–39 – – – – – – – –
Animals 78–71 79–76 70–57 74–49 72–38 73–37 79–34 – – – – – – – –

4.3 Results and Analysis

An extensive set of experiments has been performed to analyze the relationship of size and

similarity of a task with the depth of pre-trained network that needs to be fine-tuned. The

depth of the pre-trained networks, which is fine-tuned, is varied from 7 to 18 blocks. The

layer-wise training and validation accuracies have been reported in Table 4.4. The table

shows accuracies of five datasets against three different architectures and the number of

fine-tuned blocks. The top-performing numbers of blocks are in bold. The relationship

between the validation accuracy and the number of blocks has been depicted in Figure 4.4.

The layer-wise training and validation accuracies have been reported in Table 4.4.

The accuracy of a pre-trained network after fine-tuning every block, also known as a

block-wise result, is validated with dataset similarity analysis. The networks that are used

in this work were originally trained on the ImageNet dataset. Therefore, the validation set of

all the datasets have been inferred by the pre-trained networks to compute their similarity

with ImageNet. As a result, the maximum of the Probability Mass Function (PMF) of

an image over the 1000 classes, which is referred to as image similarity to ImageNet, and

entropy have been calculated and averaged over the number of images N in the dataset.

The number of classes of datasets other than ImageNet is denoted by M . The similarity

and entropy are calculated using Equations 4.1 and 4.2, respectively.

77

78 Results and Analysis

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Te
st

 A
cc

ur
ac

y

Network Blocks

Food Caltech Chest-Xray Flowers Animals

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10

Te
st

 A
cc

ur
ac

y

Network Blocks

Food Caltech Chest-Xray Flowers Animals

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7

Te
st

 A
cc

ur
ac

y

Network Blocks

Food Caltech Chest-Xray Flowers Animals

Figure 4.4: Transfer learning accuracies of pre-trained networks; (a) Inception, (b)
Inception-ResNet and (c) VGG-19 on ImageNet

TOWARDS META-LEARNING OF DEEP ARCHITECTURES FOR EFFICIENT
DOMAIN ADAPTATION Results and Analysis

similarity =
1

N

N∑
i=1

max(f(xi)) (4.1)

where f(xi) is the PMF over classes conditioned on the input image xi, typically the output

of the softmax layer.

average entropy =
1

N

N∑
i=1

(−
M∑
j=1

(fj(xi) ∗ log2(fj(xi)))) (4.2)

The similarity of an image from the new domain with the original domain is computed by

feeding the image to the original pre-trained network and examining the output probability

distribution over the classes. The dataset similarity scores have been recorded in Table 4.6.

The similarity results are correlated with the number of blocks that are needed to fine-tune

networks on new tasks. Figure 4.6 shows that for tasks where similarity is higher (and the

entropy is lower), fewer blocks need to be fine-tuned. On the contrary, more blocks need to

be fine-tuned where the datasets are less similar (having low similarity and higher entropy

values). This supports our claim that TL is effective for related tasks regardless of their size.

However, TL is also useful for dissimilar tasks, i.e., Chest-Xray and Food, but more blocks

need to be re-trained to get good results. Moreover, similar tasks require fine-tuning of

either only fully-connected layer(s) or high-level features block in some cases. Accordingly,

less similar tasks require fine-tuning of more deeper layers, i.e., blocks representing shapes

and edges blocks.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

0.8 1.2 7.3 9.9 36.8

Ne
tw

or
k

Bl
oc

ks

Dataset size/class ratio

Caltech

Chest-Xray

AnimalsFlowers

Food

Figure 4.5: Inception-v3 blocks vs dataset size/class ration trend

Figure 4.5 shows that the size meta-feature has a good correlation with the depth of the

network that is fine-tuned. The contribution of the similarity of a dataset dominates over

its size when both datasets are similar. However, size becomes critical when both datasets

have less similarity between them. It only supports the network to generalize while fine-

tuning more deeper blocks of the network, e.g., Food and Chest-Xray dataset. The Food

79

80 Summary

Table 4.5: The state-of-the-art accuracy (training of the network from scratch) versus best
possible accuracy from this work

Dataset Accuracy of
the network
from scratch

Architecture Reference Accuracy
from this
work

Food 88.28% InceptionV3 Hassannejad et al. (2016) 84.93%
Caltech 91.44% SPP-Net Hem et al. (2014) 89.00%
ChestXray 84.11% CheXNet Rajpurkar et al. (2017) 79.52%
Flowers 91.52% CNN-SVM Lin et al. (2015) 89.06%
Animals - - - 76.70%

datasets consist of over 100,000 examples with over 100 classes whereas Chest-Xray has

around 8,000 instances with only 2 classes. Based on the number of classes both datasets

have a reasonable size to class ratio which allow them to fine-tune more deeper networks.

The Food and Chest-Xray datasets’ domains are different from ImageNet. Consequently,

more deeper blocks have been fine-tuned. TL is more effective than training the model from

scratch for these tasks. The maximum validation accuracy of fine-tuned Food and Chest-

Xray is closer to the model which is trained from scratch. These accuracies as compared

to the training of the network from scratch, thus reported by various studies, are presented

in Table 4.5. However, TL requires much less effort and resources, in terms of parameter

tuning and computation.

Table 4.6: The similarity and average entropy of different datasets

Dataset Inception-v3 Inception-ResNet-v2 VGG-19
ImageNet 76.61% – 2.11 78.77% – 1.84 72.7% – 2.23
Food 53.40% – 3.52 59.23% – 3.47 51.24% – 3.83
Caltech 60.41% – 3.27 64.30% – 2.62 57.58% – 2.40
Chest-Xray 40.88% – 4.88 43.25% – 4.40 34.72% – 4.74
Flowers 52.25% – 4.01 60.19% – 3.15 49.72% – 3.12
Animals 54.88% – 3.68 64.87% – 2.68 53.08% – 2.79

4.4 Summary

This work presents an empirical study of the relationship between various characteristics

describing the similarity of two datasets, and based on that, the amount of fine-tuning

required to achieve accuracy close to state-of-the-art. It addresses model’s hyper-parameter

optimization research challenge, which is defined in Section 2.7, in the context of HPO. Even

though the experiments were limited to only two characteristics, size and similarity with

the original task, still as per some studies these are most important in this context. The

datasets with both similar and different domains as well as different sizes have been used.

Also, three state-of-the-art image classification networks trained on ImageNet were used in

the experiments. Extensive experiments have been conducted on different combinations of

pre-trained networks (and their blocks), datasets and hyper-parameters. The block-wise

TOWARDS META-LEARNING OF DEEP ARCHITECTURES FOR EFFICIENT
DOMAIN ADAPTATION Summary

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50 7.00

Ne
tw

or
k

Bl
oc

ks

Normalized Similarity Average Entropy

1

2

3

4

5

6

7

8

9

10

1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50 7.00

Ne
tw

or
k

Bl
oc

ks

Normalized Similarity Average Entropy

Caltech

Chest-Xray

Animals

Flowers
Food

1

2

3

4

5

6

7

1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50 7.00

Ne
tw

or
k

Bl
oc

ks

Normalized Similarity Average Entropy

Animals

Chest-Xray

Caltech

Flowers

Food

Chest-Xray

Food

Flowers
Animals

Caltech

Figure 4.6: Datasets similarity with ImageNet for; (a) Inception-v3, (b) Inception-ResNet-
v2 and (c) VGG-19 architectures. The similarity is normalized so that it can fit in between
the scale of 1-10 with entropy. It is multiplied by 10.

81

82 Summary

results are validated with dataset similarity analysis where the probability of match and

entropy of the datasets are correlated with the fine-tuning of the number of blocks. The

proposed approach first computes the similarity of the new task with the original one and

combines it with the size of the new task to identify which section of the architecture needs

fine-tuning.

The experiments were designed around two Meta-feature (MF) where only the datasets

having different characteristics were considered. In general, TL is found to be effective for

tasks similar to the original one, regardless of the size, where mostly fine-tuning of the

final blocks produces close to state-of-the-art accuracy. On the other hand, this work is

handy for the tasks having less or no similarity with the original task with very few training

examples, i.e., problems related to Medical Imaging (Rajpurkar et al., 2017). It allows to

find the minimum number of blocks a pre-trained network require fine-tuning to achieve

the best possible accuracy based on the characteristics of two tasks. It also identifies the

portion of the pre-trained network which can be reusable based on the similarity and size

among the two tasks. The key characteristic of TL is that it saves significant computation

and training time while achieving similar accuracy to the networks trained from scratch.

This study preserves the key characteristics of TL atleast for less similar tasks which verify

the intuition that one can more effectively reuse pre-trained network. This study is limited

only to network depth hyper-parameter which is not sufficient for Deep Neural Networks

(DNN). The DNN deals with a wide range of hyper-parameter choices which arise the need

to extend the search to more than one hyper-parameter.

Chapter 5

A Meta-Reinforcement Learning
Approach to Optimize Parameters
and Hyper-parameters
Simultaneously

This chapter presents a framework to automatically find a good set of hyper-parameters

resulting in a reasonably good accuracy, which at the same time is less computationally

expensive. In continuity with the study conducted in Chapter 4, which is limited to a single

hyper-parameter, fine-tuning of the network depth based on task similarity. This study

has expanded the set of hyper-parameters while implicitly considering the task similarity

at the intrinsic dynamics of the training process. The idea pursued here is to frame the

hyper-parameter selection and tune within the reinforcement learning regime.

Every phase of the Machine Learning (ML) pipeline involves choices of algorithms and

their hyper-parameters. These choices have a direct impact on the performance of the model.

The recent advances in Neural Network (NN), Deep Neural Networks (DNN), is crucially

dependent on tuning of a number of hyper-parameters. Thus, the optimal selection of

architecture and its hyper-parameters is considered as a key area of Automatic Machine

Learning (Auto-ML) (Feurer et al., 2015). Auto-ML is primarily dealing with the end-to-

end automation of the ML pipeline consisting of data pre-processing, algorithm selection

and hyper-parameters tuning.

In recent years, Meta-Reinforcement Learning (Meta-RL) has become a de-facto stan-

dard to automatically search for optimal hyper-parameters. The proposed framework uses

Meta-RL to efficiently explore the optimal hyper-parameters of a deep network from the

given search space. The exploration happens simultaneously for both the policy network

and the DNN. Given a tuple of hyper-parameters that is generated by a policy network,

a network is built and trained for a number of steps. The network computes accuracy on

hold-out validation-set whose delta is used as a reward. Furthermore, this reward along with

the state of the network comprising statistics of the probability distribution over the number

of classes and training loss, are back-propagated to the policy network which generates a

tuned tuple for the next time-step. The network is initialized once where different tuples of

hyper-parameters are tested on the go without resetting the network. Therefore, a tuple of

83

84 Methodology

hyper-parameters is not required to train until convergence of the network, which saves a

significant amount of computation.

The proposed approach is an efficient form of Neural Architecture Search (NAS) and

Efficient Neural Architecture Search (ENAS) to find optimal neural architecture. The short-

comings of NAS is its limitation to small tasks because it is computationally very expensive.

On the other hand, ENAS keeps numerous architectures in the memory so that the new

architectures can share the weights of the pre-trained blocks. This work further simplifies

architecture search problem which is equally effective for large datasets. The approach tunes

the hyper-parameters of the network during training rather than waiting until convergence

which saves significant computation time. The effectiveness of a tuple of hyper-parameters

is tested by training for a few steps. Further, the feedback of the tuple is used to tune the

policy gradient at the same time-step.

This method significantly reduces the computational complexity of the optimal hyper-

parameter search problem. Along with minimal computation, the approach requires a sub-

stantially smaller amount of memory by optimizing a single instance of the network rather

than creating and keeping numerous architectures in the memory. The simplicity of the

approach does not affect the accuracy of the network and makes it equally effective for more

complex and bigger tasks. This is the key contribution of this study.

5.1 Methodology

The primary goal of this study is to efficiently explore the optimal set of hyper-parameters

for a given task. This is achieved by optimizing the meta-learner parameters and network

hyper-parameters at the same time. Typically, the policy network needs to train for several

episodes so that it can start producing an effective outcome. In case of hyper-parameter

tuning using Meta-RL, the child network needs to be sequentially trained on a task at

hand using all the tuples, recommended by the meta-learner, until convergence in order to

conclude their effectiveness. It becomes a time and computationally intensive task. Hence,

this challenge has been tackled and addressed in this study.

In order to evaluate the proposed approach, a framework is designed using a typical

Reinforcement Learning (RL) setting which consists of two key components: an agent and

an environment (Sutton et al., 1999). The environment can be in different states (S) which

are observed by the agent at different time-steps (t). Given its knowledge of the state and

a set of available actions, the agent chooses an action (A). These actions affect the state of

the environment and in return, generate a reward (R). To find the optimal set of hyper-

parameters the agent needs to find the actions that lead to maximizing expected reward, see

Equation 5.1. The γ is a discount factor, which allows the agent to maximize its expected

reward on either short- or long-term transitions based on its value. However, the reward

is non-differentiable and hence needs a policy gradient method to iteratively update θ as

formulated in Equation 5.2. The stochastic policy π(a|s) describes a probability distribution

over the set of actions.

Rt ←
∞∑
i=0

γiRt+i, γ ∈ [0, 1] (5.1)

A META-REINFORCEMENT LEARNING APPROACH TO OPTIMIZE
PARAMETERS AND HYPER-PARAMETERS SIMULTANEOUSLY Methodology

Agent
Parent network that generates

different network structures and
configurations. (a|s)

Environment
Base-learner is trained for few

steps on At
and computes delta of accuracy

which is used as reward R

Action A
t

D
epth, Learning R

ate,
D

ropout, M
om

entum

Rt+1
validation
accuracy

St+1
training loss
and class-

wise statistics

St
at

e
S t

R
ew

ar
d

R
t

us
e

R
 to

 u
pd

at
e

pa
re

nt
 n

et
w

or
k

Figure 5.1: A typical setting of Meta-RL framework where agent contains a policy gradient
and network sits in the environment

θ ← θ + α∇θlogπθ(st, at)rt (5.2)

The agent generates a tuple of hyper-parameters using a Recurrent Neural Network

(RNN) which is known as meta-learner. This tuple specifies a neural network, architecture

known as base-learner, in the framework. The base-learner is trained on a task and evaluated

on the held-out validation-set. The base-learner provides feedback to the meta-learner to

get a well-tuned tuple in the next time-step. Figure 5.1 shows the setting of the proposed

Meta-RL framework.

5.1.1 Meta-learner

The Meta-learner consists of a stochastic policy gradient which makes weight adjustments in

a direction that lies along the gradient of expected reinforcement. It is a statistical gradient-

based approach known as REINFORCE as described by Williams (1992). It makes weights

adjustment without explicitly computing gradient estimates with back-propagation. The

Meta-learner initializes a base-learner once with the initial values of hyper-parameters from

search space except for depth. However, the depth is initialized with the maximum value

which is defined for a task. For instance, if the maximum depth is 34 in the search space, the

network is initialized once with the maximum depth. The meta-learner is a two-layer RNN

Long Short-term Memory (LSTM) with 35 neurons per layer. The network is trained with

Adam optimizer (Kingma and Ba, 2015). An initial learning rate of 0.0006 has been used.

The weights are initialized with Xavier-initialization (Glorot and Bengio, 2010). A discount

factor of 0.97 is used to prevent the total reward from reaching infinity. The meta-learner

is updated via a policy gradient method which is computed using an immediate reward.

85

86 Methodology

Algorithm 1 Computing immediate reward of an episode

1: beta = 0.8
2: Time-step = t
3: episode = e
4:

5: rewardt = (accuracy −moving accuracyt−1)
6: rewardt = clip(reward,−0.1, 0.1)
7:

8: moving accuracyt = (1− beta) ∗ accuracye
9: moving accuracyt += beta ∗moving accuracyt−1

5.1.2 Base-learner

The base-learner used in this work is a modified form of Residual Networks (ResNet) (He

et al., 2016). It is constructed by stacking a set of residual blocks on top of the input

layer and followed by a Fully-Connected (FC) layer. A block consists of a sequence of two

convolutional layers with filter sizes 1x1 and 3x3, respectively, where a stride of 2 is used by

the first convolutional layer to reduce feature map size. Also, there is a bottleneck setting

of the block which consists of three convolutional layers with filter sizes of 1x1, 3x3 and

1x1, respectively. The bottleneck block is used for the networks with a depth of 50 or more.

The benefit of using ResNet architecture is two-fold: a) residual blocks have repeated units

of convolutions with fixed hyper-parameters, namely, kernels and strides, and b) it has a

skip-connection feature that provides flexibility to change the depth of the network during

training. The base-leaner has been initiated once and its hyper-parameters are modified

during the training cycles.

Table 5.1: Hyper-parameter search space and parameters covering behaviour of the network
that is used as states t+1

Parameters Values (range)
A. Hyper-parameter search space
Number of layers (D) 2-50
Dropout Rate (DR) 0.5-1.0
Learning Rate (LR) 0.0001-0.9
Momentum (M) 0.6-0.99
B. Representation of the environment (states)
Network training loss 0-1.0
Mean entropy of class probabilities 0-1.0
Standard deviation entropy of class probabilities 0-1.0

The meta-learner (RNN) suggests a tuple of hyper-parameters from the search space

which are listed in Table 5.1 (A). The table shows the search space range of all the hyper-

parameters. Based on the suggested hyper-parameters, the existing Convolutional Neural

Network (CNN) architecture is trained for 50 steps with a batch size of 32. Furthermore,

the delta of validation accuracy has been computed which becomes the immediate reward.

The reward that is used to update the meta-learner is the delta of validation accuracy and

A META-REINFORCEMENT LEARNING APPROACH TO OPTIMIZE
PARAMETERS AND HYPER-PARAMETERS SIMULTANEOUSLY Formulation

moving accuracy of the recent two episodes. The procedure to compute the immediate

reward is formulated in Algorithm 1. Apart from the reward few other parameters of the

environment are computed at time-step t comprising of network training loss and entropy

of probability distribution over the number of classes. The entropy is averaged over an

episode, see Equation 5.3, where x is the output of the softmax layer and N is the size of the

episode. Further, the mean and standard deviation of the entropy have been computed over

the number of images, N , processed in an episode, see Table 5.1 (B). These parameters are

utilized by meta-learner as the state information to generate a tuned tuple for time-step t+1.

The network is trained with Momentum optimizer with Nesterov momentum (Sutskever et

al., 2013).

entropy = −
N∑
j=1

(fj(xi) ∗ log2(fj(xi))) (5.3)

xl+1 = ReLU(xl + f(xl,Wl)) (5.4)

5.1.2.1 Residual Block with Stochastic Depth

A residual block is composed of convolution layers, batch normalization (BatchNorm) (Ioffe

and Szegedy, 2015) and Rectified Linear Units (ReLU) (Nair and Hinton, 2010) which is

represented as function f in Equation 5.4. xl represents skip-connection path and f(xl,Wl)

is a residual block. A configuration of the base-learner with maximum depth 4 is shown

in Figure 5.2. The meta-learner has recommended a depth size 3 so the last residual block

has been disabled for the current episode. Hence, the gradient update of the last block is

stopped for the current episode.

The depth of the network is controlled by stochastic depth approach presented by Huang

et al. (2016). It leverages the skip-connection path of the residual block xl to control network

depth even during the training of the network. The idea of original stochastic depth work,

Huang et al. (2016), is to randomly skip the residual blocks by letting through only the

identity of the raw feature in order to skip a path. In this work rather than randomly

skipping the blocks, meta-learner suggests which blocks to skip. Therefore, when a block is

skipped, the identity path has been chosen which stops updating the block’s gradients.

5.2 Formulation

The approach to optimize parameters and hyper-parameters simultaneously is outlined in

Algorithm 2. It has two components: a) meta-learner and b) base-learner. A meta-learner

is an RNN which suggests a tuple of hyper-parameters in the form of actions. These actions

are applied to the environment which is a base-learner. The base-learner is a CNN which

trains the task at hand on the actions of current time-step for a few steps. Furthermore,

the network computes accuracy on a hold-out validation-set which is used as an immediate

reward at the time-step t. This reward and the state of the network is observed and used to

update the weights of the meta-learner that generates new actions for time-step t+ 1 which

are dependent on how well the base-learner performs.

87

88 Formulation

Residual Block-1
3 x 3 conv, 64 filters

3 x 3 conv, 64 filters

image

7 x 7 conv, 64 filters

relu

+
relu

Residual Block-2
3 x 3 conv, 128 filters

3 x 3 conv, 128 filters
relu

+
relu

x
identity

f(x) + x

x
identity

f(x) + x

Residual Block-3
3 x 3 conv, 256 filters

3 x 3 conv, 256 filters
relu

+
relu

Residual Block-4
3 x 3 conv, 512 filters

3 x 3 conv, 512 filters
relu

+
relu

x
identity

f(x) + x

x
identity

f(x) + x

average pooling

fully connected

X

X
Figure 5.2: A schematic view of base-learner with maximum depth 4 and current depth 3

A META-REINFORCEMENT LEARNING APPROACH TO OPTIMIZE
PARAMETERS AND HYPER-PARAMETERS SIMULTANEOUSLY Formulation

Algorithm 2 Meta-RL algorithm to optimize parameters and hyper-parameters simulta-
neously

1: . META-LEARNER
2: Network depth = D
3: Dropout rate = DR
4: Base-learner’s Learning rate = αb
5: Momentum = p
6: Actions (a) = < D,DR, αb, p >
7: Time-step = t
8: Meta-learner’s Learning rate = αm
9: Reward at time t = rt

10: Differential policy at time t which maps actions to probabilities = πθ(st, at)
11: Initialize the policy parameter: θ = Xavier-initialization
12: Initialize base-learner CNN: model← ResNet(a)
13:

14: for episode← 1 to πθ : s1, a1, r2, ..., sT−1, aT−1, rT do
15: . policy network
16: for t← 1 to T − 1 do
17: θ ← θ + αm∇θlogπθ(st, at)rt . gradient update
18:

19: . BASE-LEARNER
20: . Tune the hyper-parameters of network with θ
21: for s← 1 to Steps← 50 do
22: features← next batch(train, labels)
23: if training = True then
24: fit model← model.fit(a, features)
25: end if
26: end for
27: if testing = True then
28: test accuracy ← fitted model(testset)
29: end if
30:

31: rt = test accuracyt −moving accuracyt−1

32: s1
t = train loss . states of t

33: s2
t = final layer statistics

34: end for
35: end for

89

90 Experimentation Environment

Algorithm 3 shows how stochastic depth approach is modified for this work. The base-

learner only updates the gradients of the residual blocks which are less than the suggested

depth (D). For the rest of the layers, a skip-connection path has opted. The base-learner is

initialized with a maximum value of the depth once and modifies, often, on every episode.

Algorithm 3 Stochastic Depth routine

1: Depth suggested by meta-learner = D
2: Maximum depth of a network = maxD
3:

4: for block no← 1 to maxD do
5: if block no >= D then x← ReLU(x+ f(x,W)) . residual block
6: end if
7: if block no < D then x← Identity(x) . shortcut
8: end if
9: end for

5.3 Experimentation Environment

In order to evaluate the proposed approach, a number of experiments have been performed.

These experiments use different image classification tasks listed in Table 5.2. A tuple of

hyper-parameters is tested for only a few steps rather than till convergence. Hence, the

number of steps the base-learner trains on a tuple of hyper-parameters is a critical parameter.

Thus, different values of step-size and batch size have been tested to obtain the optimal

values which can evaluate a recommended tuple in the shortest time. The experiments

suggest a step-size 50 with a batch size 32 which is sufficient to test a tuple of hyper-

parameters efficiently. Likewise, capturing the appropriate parameters which can better

represent the state of the network after a training episode is key. The accuracy or loss can

be sufficient if for each of the generated tuples the network is trained until convergence.

Hence, the behaviour of the environment, at every episode, has been captured to evaluate

the effectiveness of the recommended tuple. The effectiveness of a tuple is measured using

the validation accuracy.

5.3.1 Datasets

In this work, five publicly available datasets have been used with different characteristics

and complexity levels. The proposed approach is equally effective for both small and large

datasets unlike most of the neural architecture search approaches which are only tested

on small datasets. The datasets size, number of classes and image resolution is listed in

Table 5.2. The datasets are divided into training- and validation-set with 80-20 split.

5.4 Results and Analysis

A comprehensive set of experiments is conducted to evaluate the effectiveness of the pro-

posed approach. The experiments were performed on 5 Nvidia 1080Ti Graphics Processing

A META-REINFORCEMENT LEARNING APPROACH TO OPTIMIZE
PARAMETERS AND HYPER-PARAMETERS SIMULTANEOUSLYResults and Analysis

Table 5.2: Image datasets used in this work

Dataset Training-set Testing-set Classes Dimensions
Mnist (LeCun et al., 1999) 50,000 10,000 10 28x28x1
Fashion-mnist (Xiao et al., 2017) 60,000 10,000 10 28x28x1
Cifar-10 (“CIFAR-10 and CIFAR-100”) 50,000 10,000 10 32x32x3
Cifar-100 (“CIFAR-10 and CIFAR-100”) 50,00 10,000 100 32x32x3
Tiny-imagenet (Le and Yang, 2015) 100,000 20,000 200 64x64x3

Units (GPUs), one dataset per GPU. A comparison of the proposed approach with other

architecture search approaches is shown in Table 5.3. This comparison is only available

for Cifar-10 dataset as most of the previous studies used it in their experiments. A plot

of validation accuracy against the time taken can be seen in Figure 5.3. The vertical red

dotted line is pointing to the top accuracy whose hyper-parameters settings are mentioned

in Table 5.4.

Table 5.3: Comparison with different architecture search approaches on Cifar-10 dataset

Method GPUs Exploration
time (days)

Parameters
(millions)

Error
rate (%)

DenseNet (DeVries and Taylor, 2017) - - 26.20 3.46
NASNet-A (Zoph et al., 2018) 450 3-4 3.30 3.41
PNAS (Liu et al., 2018) 100 1.5 3.20 3.63
ENAS (Pham et al., 2018) 1 0.60 4.60 2.89
This work (Cifar-10) 1 0.40 4.58 3.11

There are 5 datasets used for experiments with different complexity-levels. The ex-

ploration of hyper-parameters for the datasets posses different behaviours in terms of the

number of episodes and time. The Mnist, Fasion-mnist and Cifar-10 datasets were compara-

tively easier to learn. On the other hand, the exploration of Cifar-100 and tiny-imagenet was

hard. The complex datasets took many more episodes to explore the optimal parameters

from the search space. Moreover, the maximum depth of the architectures was bigger for

complex datasets. So a large increase of depth size from one episode to other, particularly in

the initial phase, makes the training quite unstable. Figure 5.3 shows a consistent accuracy

after 100 minutes of training till 630 followed by a spike on a tuple. This tuple produced

the maximum accuracy which is reported in Table 5.4. At the beginning of the training,

a much bigger improvement in accuracy has been observed with a tuple which is different

than the highest performing hyper-parameter tuple. A network is trained separately from

scratch using the highest performing tuple until convergence which produces an error rate

of 3.19 which is close to the one mentioned in Table 5.3. This approach is repeated for the

rest of the datasets which produces the accuracy close to the one reported in Table 5.4 with

a marginal difference range of ±0.15. It depicts the effectiveness of the reported highest

performing hyper-parameters tuple in the shortest time.

Figure 5.4 shows the policy loss, reward and network validation accuracy of the 5

datasets. The plots show a vertical line along y-axis representing maximum accuracy. The

best hyper-parameters found against each dataset are reported in Table 5.4 along with the

91

92 Results and Analysis

0 100 200 300 400 500 600 700
Time (minutes)

0

20

40

60

80

100

Ne
tw

or
k

va
lid

at
io

n
ac

cu
ra

cy
 (%

)

1 Nvidia 1080ti GPU
(631,96.9)

Figure 5.3: Cifar-10 time taken versus network validation accuracy plot

exploration and network accuracy information. The mnist and fashion-mnist tasks took very

few episodes to find the top performing hyper-parameters. On the contrary, the complex

tasks, cifar-100 and tiny-imagenet, took many more episodes to try different permutations

of the hyper-parameters.

Table 5.4: Accuracy of various datasets including optimal parameters and episodes required
to achieve the optimal value

Dataset Network Hyper-
parameters
[D,DR,α, p]

Episodes Duration (hours) Network
Error (%)

Mnist [4, 0.06, 0.02, 0.95] 720 0.72 1.71
Fashion-mnist [4, 0.06, 0.02, 0.95] 466 0.36 4.63
Cifar-10 [4, 0.3, 0.006, 0.95] 7,203 10.53 3.11
Cifar-100 [11, 0.2, 0.0007, 0.93] 9,810 19.39 23.06
Tiny-imagenet [16, 0.25, 0.0004, 0.89] 13,770 36.83 35.61

The network hyper-parameters are initialized once and tuned after every 50 steps. The

policy gradient took more episodes to learn the hyper-parameters for more complex tasks.

To evaluate a recommended tuple, 50 steps are very limited, hence the behaviour of the

network was captured and provided to the meta-learner to more fully observe the impact of

the tuple.

A META-REINFORCEMENT LEARNING APPROACH TO OPTIMIZE
PARAMETERS AND HYPER-PARAMETERS SIMULTANEOUSLYResults and Analysis

0 200 400 600 800 1000
Episodes

0

20

40

60

80

100

m
ni

st

Policy Loss (%)
Reward (%)
Network Accuracy (%)
(720,98.3)

0 200 400 600 800 1000
Episodes

0

20

40

60

80

100

fa
sh

io
n

m
st

Policy Loss (%)
Reward (%)
Network Accuracy (%)
(466,95.4)

0 2000 4000 6000 8000 10000
Episodes

0

20

40

60

80

100

ci
fa

r1
0

Policy Loss (%)
Reward (%)
Network Accuracy (%)
(7199,96.9)

0 2000 4000 6000 8000 10000
Episodes

0

20

40

60

80

100

ci
fa

r1
00

Policy Loss (%)
Reward (%)
Network Accuracy (%)
(9015,76.9)

0 2000 4000 6000 8000 10000 12000 14000
Episodes

0

20

40

60

80

100

ti
ny

 im
ag

en
et

Policy Loss (%)
Reward (%)
Network Accuracy (%)
(13770,64.4)

Figure 5.4: Statistics of different datasets including policy loss, reward and network accuracy

93

94 Summary

5.5 Summary

This study has presented an efficient approach to hyper-parameters search of deep models.

It uses RL search strategy to explore the space of deep neural architectures. It addresses

the Hyper-parameter Optimization (HPO) of DNN research challenges, which is defined

in Section 2.7, in the context of NAS. A Policy-based RL method is used to generate a

tuple of hyper-parameters. The tuple is used by the target network, base-learner, which is

initialized once with random hyper-parameters and, often, tunes on every episode. In each

episode, a validation accuracy has been computed after training for 50 steps with a batch

size of 32. The delta of the accuracy, which is referred to as reward, is fed back to the

policy network along with the behaviour of the environment. The attributes that represent

behaviour are training loss and statistics of the target network’s final layer outcome. A

more refined tuple of hyper-parameters, in turn, is generated for the next episode. This

cycle tunes the parameters of the policy network and hyper-parameters of the network at

the same time which makes the overall process more computationally efficient than the

existing approaches.

In conclusion, the proposed approach demonstrates a quick and effective hyper-parameter

search approach. Unlike previous studies, it is equally effective for both small and large

datasets. Although the exploration takes more time if the range of the network depth

parameter gets bigger, still using one GPU the exploration takes less than a day for a

complex task. This approach is 20% less computation expensive than ENAS with marginally

higher error-rate. The depth hyper-parameter is found to be the most effective one where

the change of the depth causes a significant jump in the accuracy. There are many possible

directions for future work. Currently, only four hyper-parameters are part of the search

space which can be enhanced. Accordingly, to evaluate the effectiveness of a tuple of hyper-

parameters, state of the intermediary layers of the network can be observed rather than

only the statistics of final layer outputs.

Chapter 6

Conclusions and Future Work

The main theme of this thesis was to investigate and explore Meta-level Learning (MLL)

strategies and approaches for effective reduction of the predictive model search space. In

particular, the two areas of focus are Meta-level feature engineering for problem represen-

tation and learning strategy for algorithm and its hyper-parameters recommendation.

The initial chapters of the thesis present the key challenges of an MLL system in gen-

eral. A thorough study of existing MLL systems has been conducted which leads to several

research questions. It thus resulted in narrowing down the scope of this research. The

literature review covers a detailed study of five key components of an MLL system. These

components include Examples of Datasets (EoD), Meta-features (MFs) generation and selec-

tion, Base-level Learning (BLL), MLL and adaptive mechanism. Moreover, various methods

to gather EoD are discussed where all of them have some limitations. Considering those

limitations, gathering datasets, MFs and performance measures of Base-models from the

published research appeared as most appealing for the current research. Similarly, a com-

prehensive review of feature generation and selection techniques revealed that most of them

are suitable for a stationary MLL system. Hence a lot of effort is required to evaluate the

features that are proposed by stationary systems along with finding new features to rep-

resent a non-stationary problem at Meta-level. An MLL system also expects performance

measures of Base-models on EoD. It comes out as the most time and processor intensive

task to compute performance measures of a large number of EoD against learning algo-

rithms and their numerous configurations. Thus extracting MFs and performance measures

from existing Machine Learning (ML) publications minimize the complexity of this problem,

which requires most of the effort and resources. A number of MLL systems are discussed in

detail which include the application of MLL to both supervised and unsupervised learning

problems. The evolution of MLL field since the last three decades has been discussed and

various systems are compared with the previous ones.

In the last few years, the emergence of Deep Learning (DL) naturally shifted the MLL

domain from models selection towards hyper-parameters and (neural) architecture search.

The Hyper-parameter Optimization (HPO) finds a set of hyper-parameters of an ML task

which gives optimal performance. The success of the Deep Neural Networks (DNN) is mostly

credited to its ability to automatically extract the task-dependent features. This automation

is now expanding towards architecture engineering to automatically design complex neural

architectures; this approach is known as Neural Architecture Search (NAS). NAS hides

95

96 Research Challenges

most of the steps of the ‘traditional meta-learning’ pipeline including EoD and manual MF

extraction and generation.

A thorough literature review that leads to several research questions is outlined as follows:

6.1 Research Challenges

The goal of this work is research on MLL strategies and approaches for effective reduction

of the model search space. Three areas of evolving predictive systems were identified where

the applicability of MLL can be an effective and efficient approach.

1. A Learning Path Recommendation: An optimal learning path recommendation of the

three interlinked components includes pre-processing steps, learning algorithms or their

combination, and adaptivity mechanism parameters.

2. Recurring Concepts Extraction: In a non-stationary environment, the underlying dis-

tribution of the incoming data keeps changing which in turn makes the most recent

historical concept ineffective. A MLL system can extract the relevant concepts of data

to adapt the out-date model.

3. Concept Drift Detection: In an adaptive mechanism retraining of model is usually trig-

gered by a change detection process. MLL can help to automatically detect the concept

drift and trigger the algorithm retraining process instantly.

These areas lead to several research questions which are outlined as follows:

1. Gathering examples of datasets to build a static Meta-knowledge database

2. Base-level Learning strategy to compute performance measures of Meta-examples

3. Feature generation and selection to represent a problem at Meta-level

4. Representation and storage of dynamically growing complex Meta-Knowledge database

5. Meta-level Learning strategy for algorithm and its hyper-parameter recommendation

From the above five research questions, 3 and 5 were addressed in this research.

The rest of the chapters cover experimental evaluation of the three studies conducted

around model selection and hyper-parameter search using MLL. These studies address one

or more research challenges.

CONCLUSIONS AND FUTURE WORK Main Findings and Contributions

6.2 Main Findings and Contributions

The original contributions of this work are:

1. Formulation of Model Selection and Hyper-parameters Optimization (MSHPO):

The formulation of MSHPO along with three key areas of an evolving predictive system

which leads to several research challenges.

2. Cross-domain MLL for Time-series (TS) forecasting:

This work covers an effort towards the experimental evaluation of cross-domain MLL

which started building an understanding of the complexity of an MLL system. The key

focus of the study was to investigate whether the use of additional training data from

a different domain is beneficial for improving the performance of the Meta-learner.

The MLL was not always giving the highest possible performance, however, it helps

to alleviate the risk of selecting the worst model and hence, tends to be a robust

approach.

3. Towards MLL of deep architectures for domain adaptation:

An empirical study to investigate the relationship between various characteristics de-

scribing the similarity of two datasets, and based on that, the number of layers of a

deep model pre-trained on a dataset need to be fine-tuned to achieve close to state-of-

the-art accuracy. Although the experiments were limited to only two characteristics of

the new task, size and similarity with the original task, still these are the most impor-

tant features in this context. This study preserves the key characteristics of transfer

learning, particularly, for less similar tasks towards experimentally verified intuition

that one can more effectively reuse pre-trained network. The proposed approach was

limited to only one hyper-parameter, network depth, which was insufficient for DNN

considering the wide range of hyper-parameter choices.

4. A Meta-Reinforcement Learning (Meta-RL) approach to optimize parameters and

hyper-parameters simultaneously:

The final study presents an efficient approach to NAS, by optimizing parameters and

hyper-parameters of a network simultaneously. A Policy-based Reinforcement Learn-

ing (RL) method was used to generate a tuple of hyper-parameters. The tuple was

used by the target network, base-learner, which was initialized once with random

hyper-parameters and, often, tunes on every episode. The ‘network depth’ hyper-

parameter was the most effective one among others where the change of the depth

causes a significant jump in the accuracy. The proposed approach was found to be

20% less computationally expensive than Efficient Neural Architecture Search (ENAS),

an existing system, with marginally higher error-rate.

6.3 Future Research

The ML algorithm and its underlying model structure are well studied using MLL techniques

so that this process can be automated. This research direction has already achieved re-

markable success based on the use of different optimization techniques (Brazdil and Giraud-

97

98 Future Research

Carrier, 2018). Thus, the feature research direction will revolve around two areas of MLL

investigated in this thesis.

RL, particularly policy gradient, provides an intrinsic mechanism of meta-exploration

algorithm (Gupta et al., 2018). The MLL that is applied to RL algorithms is known as

Meta-RL. The objective of Meta-RL is to learn a policy along with an RL agent. The

success of Meta-RL based approaches to automatically design Convolutional Neural Network

(CNN) architectures has been proven particularly for image classification tasks. However,

it is achieved at a very high cost because the learner network needs to come up with its

learning strategy from scratch. Based on these facts there are some potential future research

directions, given as follows:

• Addressing the discrepancy of the learning strategy of Meta-RL by making the meta-

exploration process efficient using extensions of approaches like weights sharing (Ben-

der et al., 2018) and the one addressed in this thesis. The combination of these

approaches may lead to a potential solution to the limitations raised in Chapter 5.

• The study discussed in Chapter 4 finds the amount of fine-tuning a pre-trained network

requires based on the characteristics of the original and new tasks. This work can

be extended by computing the domain similarity of two tasks from the behaviour

of network activations while transferring knowledge rather than relying only on the

probability distribution of the final layer outcome over the classes.

• The study discussed in Chapter 5 evaluates the effectiveness of a tuple of hyper-

parameters by training it for very few steps rather than till convergence of the network

which saves a significant amount of computation. Therefore, the impact of the training

of a tuple needs to be analyzed very closely which, in-turn, evaluates the effectiveness

of the tuple and suggests a tuned tuple for next training iteration. Incorporating

the behaviour of the network activations while computing the reward may boost the

effectiveness of the proposed approach.

• Going beyond image classification task by exploring domains like language model-

ing (Zoph and Le, 2017), speech processing (Wang and Zheng, 2015), network com-

pression (Ashok et al., 2018). Most of the HPO and NAS methods gain tremendous

success in the computer vision domain, particularly in the image classification task.

These methods could be extended for speech and language processing domain.

• Recurrent Neural Network (RNN) is difficult to train as compared to CNN, so extend-

ing the Meta-RL based HPO approach for RNN could be another potential future

direction (Hutter et al., 2018). This future direction is in-line with the previous one

as RNN is mostly targeted for speech and language processing domain.

Appendix A

Definitions

Definitions of the Statistical concepts used in the literature are stated below (Duda and

Hart, 1973; Bishop and Hart, 1995; Cressie, 1993; Li, 1995; Sutton et al., 1999; Sutton and

Barto, 2015):

• Statistical Learning

An approach to machine intelligence which is based on statistical modeling of data.

With a statistical model in hand, one applies probability theory and decision theory

to get an algorithm.

• Classification

Assigning a class to a measurement, or equivalently, identifying the probabilistic source

of a measurement. The only statistical model that is needed is the conditional model

of the class variable given the measurement. This conditional model can be obtained

from a joint model or it can be learned directly.

• Regression

Predicting the value of random variable y from measurement x.

• Nonparametric regression/density estimation

An approach to regression/density estimation that doesn’t require much prior knowl-

edge but only a large amount of data. For regression, it includes nearest-neighbor,

weighted average and locally weighted regression. For density estimation, it includes

histograms, kernel smoothing and nearest-neighbor.

• Parameter Estimation

Density estimation when the density is assumed to be in a specific parametric family.

• Principal Component Analysis

Constructing new features which are the principal components of a data set. The

principal components are random variables of maximal variance constructed from

linear combinations of the input features. Equivalently, they are the projections onto

the principal component axes, which are lines that minimize the average squared

distance to each point in the data set. To ensure uniqueness, all of the principal

component axes must be orthogonal. PCA is a maximum-likelihood technique for

linear regression in the presence of Gaussian noise on both inputs and outputs.

99

100

• Clustering

Grouping similar objects in a multidimensional space. Some algorithms, like k-means,

simply partition the feature space. Other algorithms, like single-link agglomeration,

create nested partitionings which form a taxonomy.

• K-means

A parametric algorithm for clustering data into exactly k clusters.

• Feature Selection

Not extracting new features but rather removing features which seem irrelevant for

modeling. This is a combinatorial optimization problem.

• Linear Regression

A conditional statistical model of random vector y given measurement vector x, where

y is a linear transformation of x followed by additive noise.

• Radial Basis Function regression

Basis function regression where each new feature is based on the distance to a pro-

totype, hence the basis is radial. The basis functions are adapted by moving the

prototypes or reshaping the bumps.

• Time-series

A time series is a sequence of observations which are ordered in time (or space).

– Continuous

Continuous time-series is the one where an observation at every instant of time,

e.g., lie detectors, electrocardiograms. We denote this using observation X at

time t, X t.

– Discrete

Where we have an observation at (usually regularly) spaced intervals. We denote

this as X t.

• Feed-forward Neural Network Regression

Basis function regression with adaptive basis functions. Given a measurement vector,

each layer of the network makes a linear transformation and then applies a non-

linearity to each vector component.

• Back-propagation

A method for maximum likelihood estimation of a feed-forward neural network. It is

equivalent to steepest-descent optimization.

• Support Vector Machine

A generalized linear classifier with a maximum-margin fitting criterion. This fitting

criterion provides regularization which helps the classifier generalize better. The clas-

sifier tends to ignore many of the features.

DEFINITIONS

• Autoregression

A Markov chain model for a sequence of variables, where the next variable is predicted

from the previous variable via regression, typically linear.

• Maximum likelihood

A parameter estimation heuristic that seeks parameter values that maximize the like-

lihood function for the parameter.

• Maximum A Posteriori

A parameter estimation heuristic that seeks parameter values that maximize the pos-

terior density of the parameter.

• Bootstrapping

A technique for simulating new data sets, to assess the robustness of a model or to

produce a set of likely models. The new data sets are created by re-sampling with

replacement from the original training set, so each datum may occur more than once.

• Bagging

Generate a bunch of models via bootstrapping and then average their predictions.

• Boosting

A technique for combining models based on adaptive resampling: different data is

given to different models. The idea is to successively omit the ‘easy’ data points,

which are well modeled, so that the later models focus on the ‘hard’ data.

• Cross-validation

A method for evaluating a statistical model or algorithm that has free parameters.

Divide the training data into several parts, and in turn use one part to test the

procedure fitted to the remaining parts. It can be used for model selection or for

parameter estimation when there are many parameters.

• Neural Networks

Neural networks are a class of models that are built with layers. Commonly used types

of neural networks include convolutional and recurrent neural networks.

• Activation function

Activation functions are used at the end of a hidden unit to introduce non-linear

complexities to the model. Here are the most common ones:

– Sigmoid: g(z) = 1
1+e−z

– Tanh: g(z) = ez−e−z

ez+e−z

– Rectified Linear Units (ReLU): g(z) = max(0, z)

• Cross-entropy loss

In Neural Networks, the cross-entropy loss L(z, y) is commonly used as:

L(z, y) = −[y log(z) + (1− y) log(1− z)]

101

102

• Learning rate

The learning rate, often represented as , indicates at which pace the weights get

updated.

• Back-propagation

Backpropagation is a method to update the weights in the neural network by taking

into account the actual output and the desired output. The derivative with respect

to weight w is computed using chain rule:
∂L(z,y)
∂w

= ∂L(z,y)
∂a
∗ ∂a
∂z
∗ ∂z
∂w

• Dropout

Dropout is a technique meant at preventing over-fitting the training data by dropping

out units in a neural network with probability p or kept with probability (1− p).

• Batch normalization

It is a step of hyper-parameter γ, β that normalizes the batch xi, the mean and

variance of that we want to correct to the batch.

• Long Short-term Memory

A long short-term memory (LSTM) network is a type of RNN model that avoids the

vanishing gradient problem by adding ‘forget’ gates.

• Reinforcement Learning

An algorithm, or agent, learns by interacting with its environment. The agent receives

rewards by performing correctly and penalties for performing incorrectly. The agent

tries to maximize total reward.

• Meta-Reinforcement Learning

Meta-learning applied on reinforcement learning is known as Meta-Reinforcement

Learning.

• Agent

A system that is embedded in an environment and takes actions to change the state

of the environment.

• Discount factor

A scalar value between 0 and 1 which determines the present value of future rewards.

If the discount factor is 0, the agent is concerned with maximizing immediate rewards.

As the discount factor approaches 1, the agent takes more future rewards into account.

• Dynamic programming

Dynamic Programming (DP) is a class of solution methods for solving sequential

decision problems with a compositional cost structure. Richard Bellman was one of

the principal founders of this approach.

• Environment

The external system that an agent is ‘embedded’ in, and can perceive and act on.

DEFINITIONS

• Markov decision process

A probabilistic model of a sequential decision problem, where states can be perceived

exactly, and the current state and action selected determine a probability distribution

on future states. Essentially, the outcome of applying an action to a state depends

only on the current action and state.

• Model

The agent’s view of the environment, which maps state-action pairs to probability

distributions over states. Note that not every reinforcement learning agent uses a

model of its environment.

• Monte Carlo methods

A class of methods for learning of value functions, which estimates the value of a state

by running many trials starting at that state, then averages the total rewards received

on those trials.

• Policy

The decision-making function (control strategy) of the agent, which represents a map-

ping from situations to actions. It is a function π : S −→ A that maps states to

actions.

• Reward

A scalar value which represents the degree to which a state or action is desirable.

Reward functions can be used to specify a wide range of planning goals, for example,

an agent can be guided towards learning the fastest route to the final state.

• State

State can be viewed as a summary of the past history of the system that determines

its future evolution.

• Value function

Value function is a mapping from states to real numbers, where the value of a state

represents the long-term reward achieved starting from that state and executing a

particular policy.

103

104

Appendix B

Meta-features

Table B.1: Meta-features used in various studies

Meta-Features R
e
n
d
e
ll

e
t

a
l.

(
1
9
8
7
)

R
e
n
d
e
ll

a
n
d

C
h
o

(
1
9
9
0
)

K
in

g
e
t

a
l.

(
1
9
9
5
)

S
o
h
n

(
1
9
9
9
)

L
in

d
n
e
r

a
n
d

S
t
u
d
e
r

(
1
9
9
9
)

B
e
r
r
e
r

e
t

a
l.

(
2
0
0
0
)

G
ir
a
u
d
-C

a
r
r
ie

r
(
2
0
0
5
)

B
e
n
s
u
s
a
n

e
t

a
l.

(
2
0
0
0
)

B
e
n
s
u
s
a
n

a
n
d

G
ir
a
u
d
-C

a
r
r
ie

r
(
2
0
0
0
)

P
fa

h
r
in

g
e
r

e
t

a
l.

(
2
0
0
0
)

T
o
d
o
r
o
v
s
k
i
e
t

a
l.

(
2
0
0
2
)

P
e
n
g

e
t

a
l.

(
2
0
0
2
)

K
o
p
f
a
n
d

I
g
le

z
a
k
is

(
2
0
0
2
)

B
r
a
z
d
il

e
t

a
l.

(
2
0
0
3
)

P
r
u
d
e
n
c
io

a
n
d

L
u
d
e
r
m

ir
(
2
0
0
4
)

P
r
u
d
e
n
c
io

a
n
d

L
u
d
e
r
m

ir
(
2
0
0
8
)

G
u
e
r
r
a

e
t

a
l.

(
2
0
0
8
)

W
a
n
g

e
t

a
l.

(
2
0
0
9
)

L
e
m

k
e

a
n
d

G
a
b
r
y
s

(
2
0
1
0
a
)

A
b
d
e
lm

e
s
s
ih

e
t

a
l.

(
2
0
1
0
)

R
o
s
s
i
e
t

a
l.

(
2
0
1
2
)

F
e
u
r
e
r

e
t

a
l.

(
2
0
1
4
)

F
il
c
h
e
n
k
o
v

a
n
d

P
e
n
d
r
y
a
k

(
2
0
1
5
)

A
li

e
t

a
l.

(
2
0
1
8
)

Descriptive Meta-features
Number of Classes (k) 4 4 4 4 4 4

Frequency of most common class 4 4

Number of Features (p) 41 4 4 4 4

Total Instances (N) 4 4 4 4 4 4 4 4 4 4

Dataset Dimentionality 4 4

Number of Training instances (r) 41 4 4 42

Number of Test instances (t) 4 4 4

Sampling Distribution 4 4

Number of Binary Features (b) 4 4 4

Number of Numeric features (n) 4 4 4 4

Number of Nominal features (s) 4 4 4 4

Proportion of binary features (b/p) 4

Proportion of nominal features
(s/p)

4 4 4

Span of nominal values 4

Average of nominal values 4 4

Training instances to features ratio
(N/p)

4 42

Proportion of training instances
(r/N)

4

Statistical Meta-features
Relative probability of missing val-
ues

4 4 4

Instances with missing values 4 4

Proportion of features with outliers 4 4 4

Mean Skewness (SKEW) 4 4 4 4 43 4 43

Mean Kurtosis (KURT) 4 4 4 4 44 4 4 4

Average 4

Variance 4

Minimum 4

Maximum 4

Median 4

Correlation between predictor and
target

4

Standard Deviation (StdDev) of the
class distribution

4 45 4 4 46

Homogeneity of Covariances (S/D
Ratio)

4 4 4

Canonical Correlation (CANCOR) 4 4 4 4

1only these two features are used in Rendell et al. (1987), they are also part of Rendell and Cho (1990)
2Log
3of series
5of de-trended series

105

106

Number of Discriminant Functions
(DiscFunc)

4

Mean Absolute Correlation Coeffi-
cient (CORR)

4 4 4

Relative proportion of largest
Eigenvalue (FRACT)

4 4 4

Wilks’lambda Distribution
(Wlambda)

4

Default Accuracy 4

coefficient of variation (COEF-
VAR)

4 4

absolute value of the SKEW and
KURT coefficient

4 4 4

Time-series (TS) mean absolute
values of first 5 auto-correlations
(Mean-CORR)

4

TS test of significant auto-
correlations (TAC)

4

TS significance of the 1, 2, and 3
Auto-correlation (TAC-1,2,3)

4

TS test of Turning Points for ran-
domness

4

TS first coefficient of auto-
correlation (AC1)

4

TS type 4

TS trend 4 4 47 48

TS turning point 49 4 4

TS Durbin-Watson statistic of re-
gression residual (DW)

4

TS step changes 4 4

TS predictability measure 4

TS non-linearity measure 4 4

TS largest Lyapunov exponent 4 4

TS 3 largest power spectrum fre-
quencies

4

TS maximum value of power spec-
trum

4 4

TS number of peaks > 60% 4 4

TS auto-correlations at lags 1 and 2 4 4

TS partial auto-correlations at lags
1 and 2

4 4

TS seasonality Measure 4 4 4

TS mean Symmetric Mean Absolute
Percentage Error (SMAPE) - mean
deviated SMAPE

4

TS mean SMAPE / mean deviated
SMAPE

4

TS mean of correlation coefficient 4

TS StdDev of correlation coefficient 4

TS methods in top performing clus-
ter

4

TS distance top performing cluster
to second best

4

TS Serial CORR Box-Pierce statis-
tic

410

TS Non-linear autoregressive struc-
ture

411

TS Self-similarity (Long-range De-
pendence

4

TS Periodicity (frequency) 4

Min. of CORR between predictors
and target

4

Max. of CORR between predictors
and target

4

Mean of CORR between predictors
and target

4

StdDev of absolute value of CORR
between predictors and target

4

Min. of CORR between pairs of
predictors

4

Max. of CORR between pairs of
predictors

4

Mean of CORR between pairs of
predictor

4

StdDev of absolute value of CORR
between pairs of predictors

4

Information Theoretic Meta-features
Entropy of Classes (HC) 4 4 4 4 4

Entropy of nominal features 4 4 4 4

Joint Entropy of Classes (HCX) 4 4 4 4

Average Mutual Information be-
tween Class and Nominal Features
(MCX)

4 4 4 4 4

Class Entropy to Mutual informa-
tion ratio

4 4 4 4

Noise to Signal Ratio (NoiseRaio) 4 4 4 4

Dispersion Gain 4

7StdDev of series / StdDev of de-trended series
9ratio

10of raw and trend/seasonally adjusted
11of raw and trend/seasonally adjusted

META-FEATURES

Landmarkers
Decision Nodes Learner (Decision
Nodes)

4 4 4 4

Worst Nodes Learner (Worst
Nodes)

4 4

Randomly Chosen Nodes Learner
(Randomly Chosen Nodes)

4 4 4

Naive Bayes classifier (NB) 4 4 4 4

k-Nearest Neighbour (k-NN) 412 413 4 413 4 413 4 4

Elite-Nearest Neighbour (e-NN) 4

Linear Discriminant Analysis
(LDA)

4 4 4 4

C5.0 Decision Tree (C5.0 tree) 4 4 4

C5.0 Adaptive Boosting (C5.0
boost)

4 4

C5.0 Rule Induction (C5.0 rules) 4 4 4

Rule Learner (Ripper) 4

Linear Discriminant Trees (Ltree) 4 4

Average Nodes Learner (Average
Nodes)

4

Model-based Meta-features
Nodes per attribute 4

Nodes per instance 4

Average leaf corroboration 4

Average gain-ratio difference 4

Maximum depth 4 4

No. of repeated nodes 4

Shape 4 4

Homogeneity 4

Imbalance 4

Internal symmetry 4

No. of Nodes in each level - width 4 4

No. of levels - Height 4 4

No. of nodes in the tree 4 4

No. of leaves in the tree 4 4

Maximum no. of nodes at one level 4 4

Mean of the no. of nodes 4 4

StdDev of the no. of nodes 4 4

Length of the Shortest branch 4

Length of the Longest branch 4

Mean of the branch length 4

StdDev of the branch length 4 4

Minimum occurrence of Features 4 4

Maximum occurrence of Features 4 4

Mean of the no. of occurrences of
Features

4 4

StdDev of no. of occurrences of Fea-
tures

4 4

Weight sum of dataset 4

Minimum weight sum of dataset 4

Average weight sum of dataset 4

StdDev weight sum of dataset 4

No. neighbours for dataset 4

Minimum No. neighbours for
dataset

4

Maximum No. neighbours for
dataset

4

Average No. neighbours for dataset 4

StdDev of No. neighbours for
dataset

4

Principal Component Analysis
(PCA) 95%

4

PCA skewness 4

PCA kurtosis 4

Total Meta-features 9 13 19 25 10 14 8 7 15 3 7 11 10 9 23 7 10 22 40 13

12k = 3 used only in Giraud-Carrier (2005)
13k = 1

107

108

Appendix C

Summary of Literature Review

Meta-features

O
ve

rv
ie

w
of

 M
et

a-
Le

ar
ni

ng

Meta
-D

ata
se

t

Meta-Features

Base-level Learning

M
eta-level Learning

Ad
ap

ta
bi

lity

Arch
ite

ctu
re

Hyper-parameter Optimization

W
ol

pe
rt

(2
00

1)
Vi

la
lta

 e
t a

l (
20

02
)

G
ira

ud
-C

ar
rie

r e
t a

l (
20

04
)

Br
az

di
l e

t a
l (

20
08

)
Sm

ith
-M

ile
s

(2
00

9)
Vi

la
lta

 e
t a

l (
20

10
)

Ko
va

rik
 e

t a
l (

20
12

)
Le

m
ke

 e
t a

l (
20

15
)

So
ar

es
 (2

00
9)

So
ar

es
 e

t a
l (

20
09

)

Re
if (

20
12

)
Re

if e
t a

l (2
01

2a
)

Fe
ure

r e
t a

l (2
01

4)

Kuh
n e

t a
l (2

01
8)

Ali e
t a

l (2
01

8)

Feurer e
t a

l (2
014)

Ali e
t al (2

018)

Sohn (1999)

Lindner et al (1
999)

Bensusan et al (2000a)

Bensusan et al (2000b)

Pfahringer et al (2000)

Soares et al (2001)

Peng et al (2002)

Kopf et al (2002)

Abdelmessih et al (2010)

Duch et al (2011)

Reif et al (2012b)

Feurer et al (2014)

Filchenkov et al (2015)

Rivolli et al (2018)

Ali et al (2018)
Filchenkov et al (2015)
Ali et al (2018)

Vilalta et al (2002)Todorovski et al (2003)
Morik et al (2003)Kadlec et al (2009)

Alpaydin (2010)
Menahem et al (2011)

Existing Systems

Regression & Classification

C
lustering

W
id

m
er

 (1
99

7)

Kl
in

ke
nb

er
g

(2
00

5)

Ri
ed

el
 e

t a
l (

20
07

)

Si
ko

ra
 (2

00
8)

Ka
dl

ec
 e

t a
l (

20
09

)

Ri
ed

el
 e

t a
l (

20
09

)

Zl
io

ba
ite

 (2
01

0)

Ro
ss

i e
t a

l (
20

12
)

Ro
ss

i e
t a

l (
20

13
)

Ga
m

a
et

 a
l (

20
14

)

Fin
n e

t a
l (2

01
8)

Na
ga

ba
nd

i e
t a

l (2
01

8)

Boti
a e

t a
l (2

00
1)

Ja
nk

ow
sk

i e
t a

l (2
01

1)

Van
sch

ore
n (

20
11

)

Hochreiter e
t al (1

997)

Vilalta and Driss
i (2

002)

Deng et al (2
009)

Hutter et al (2
011)

Bergstra et al (2011)

Krizhevsky et al (2012)
Yosinski et al 2014)

Russakovsky et al (2014)
Yosinski et al (2014)Zisserman (2014)Lemke et al (2015)Szegedy et al (2015)Wang and Zheng (2015)

Wistuba et al (2015)
Russakovsky et al (2015)

He et al (2016)

Zhang et al (2016)

Shin et al (2016)

Baker et al (2016)

Zoph and Le (2016)

Baker et al (2016)

Loshchilov et al (2016)

Duan et al (2017)

Finn et al (2017)

Ravi and Larochelle (2017)

Baker et al (2017)

Zoph and Le (2017)

DeVries and Taylor (2017)

Baker et al (2017)

Zhong et al (2017)

Finn et al (2017)

Perrone et al (2017)

Wang et al (2017)

Szegedy and Sergey et al (2017)

Zeng et al (2017)

Miikkulainen et al (2017)

Alom et al (2018)
Yao et al (2018)

Finn and Levine (2018)
Liu et al (2018)

Pham
 et al (2018)

Xu et al (2018)
Zoph et al (2018)
Liu et al (2018)

Pham
 et al (2018)

Hutter et al (2018)
Zoller and H

uber (2019)
Ali et al (2019)

Gittins (1979)
Utgoff (1984)

Rendell et al (1987)

Rendell et al (1990)

Graner et al (1994)

King et al (1995)

Berrer et al (2000)

Bernstein et al (2001)

Botia et al (2001)

Auer et al (2002)

Giraud-Carrier (2005)

Bernstein et al (2005)

Mierswa et al (2006)

Giraud-Carrier (2008)

Martin et al (2016a)

Martin et al (2016b)

Martin et al (2016c)

Feurer et al (2015)

Kotthoff et al (2017)

Olsan et al (2018)

Kotthoff et al (2017)

Todorovski et al (2002)

Brazdil et al (2003)

Prudencio et al (2004)

Prudencio et al (2008)

G
uerra et al (2008)

Kadlec et al (2009)

W
ang et al (2009)

Lem
ke et al (2010)

Thornton et al (2013)

deSouto et al (2008)
Soares et al (2009)

Figure C.1: Area-wise distribution of Publications

109

110

References

Abdelmessih, Sarah D., Faisal Shafait, Matthias Reif, and Markus Goldstein (2010). “Land-
marking for Meta-Learning using RapidMiner”. In: RapidMiner Community Meeting and
Conference. Online.

Aha, David W., Dennis Kibler, and Marc K. Albert (1991). “Instance-based Learning Al-
gorithms”. In: Machine Learning, pp. 37–66.

Ali, Abbas Raza, Bogdan Gabrys, and Marcin Budka (2018). “Cross-domain Meta-learning
for Time-series Forecasting”. In: Procedia Computer Science, Elsevier 126, pp. 9–18.

Ali, Abbas Raza, Marcin Budka, and Bogdan Gabrys (2019a). “A Meta-Reinforcement
Learning Approach to Optimize Parameters and Hyper-parameters Simultaneously”. In:
Proceedings of the 16th Pacific RIM International Conference on Artificial Intelligence
(PRICAI).

Ali, Abbas Raza, Marcin Budka, and Bogdan Gabrys (2019b). “Towards Meta-level Learning
of Deep Neural Networks for Fast Adaptation”. In: Proceedings of the 16th Pacific RIM
International Conference on Artificial Intelligence (PRICAI).

Alom, Zahangir, Tarek M. Taha, Christopher Yakopcic, Stefan Westberg, and et al. (2018).
“The History Began from AlexNet: A Comprehensive Survey on Deep Learning Ap-
proaches”. In: Computing Research Repository (CoRR) abs/1803.01164.

Alpaydin, Ethem (2010). Introduction to Machine Learning. 2nd. The MIT Press.

Ashok, A., N. Rhinehart, F. Beainy, and K. M. Kitani (2018). “N2N learning: Network
to network compression via policy gradient reinforcement learning”. In: International
Conference on Learning Representations (ICLR).

Auer, Peter, Nicolo Cesa-Bianchi, and Paul Fischer (2002). “Finite-time analysis of the
multiarmed bandit problem”. In: Machine learning 47 (2).

Bache, Kevin and Moshe Lichman (2013). UCI Machine Learning Repository. url: http:
//archive.ics.uci.edu/ml.

Baker, Bowen, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar (2016). “Designing Neural
Network Architectures using Reinforcement Learning”. In: Computing Research Reposi-
tory (CoRR) abs/1611.02167.

Baker, Bowen, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar (2017). “Designing Neural
Network Architectures using Reinforcement Learning”. In: Computing Research Reposi-
tory (CoRR) abs/1611.02167.

Bakirov, Rashid, Bogdan Gabrys, and Damien Fay (2018). “Generic adaptation strategies for
automated machine learning”. In: Computing Research Repository (CoRR) abs/1812.10793.

111

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

112 REFERENCES

Bender, Gabriel, Pieter-Jan Kindermans, Barret Zoph, Vijay Vasudevan, and Quoc Le
(2018). “Understanding and simplifying one-shot architecture search”. In:

Bensusan, Hilan and Christophe G. Giraud-Carrier (2000). “Discovering Task Neighbour-
hoods Through Landmark Learning Performances”. In: Proceedings of the 4th European
Conference on Principles of Data Mining and Knowledge Discovery (PKDD). London,
UK, UK: Springer-Verlag, pp. 325–330.

Bensusan, Hilan and Alexandros Kalousis (2001). “Estimating the Predictive Accuracy of
a Classifier”. In: Proceedings of the 12th European Conference on Machine Learning
(EMCL). London, UK: Springer-Verlag, pp. 25–36.

Bensusan, Hilan, Christophe G. Giraud-Carrier, and Claire J. Kennedy (2000). “A Higher-
order Approach to Meta-learning”. In: Proceedings of the ECML workshop on Meta-
Learning: Building Automatic Advice Strategies for Model Selection and Method Combi-
nation, 109–117.

Bergstra, J., R. Bardenet, Y. Bengio, and B. Keegl (2011). “Practical Network Blocks Design
with Q-Learning”. In: Proceedings of the 25th International Conference on Advances in
Neural Information Processing Systems.

Bernstein, Abraham and Foster Provost (2001). “An Intelligent Assistant for the Knowledge
Discovery Process”. In: Proceedings of the International Joint Conferences on Artificial
Intelligence (IJCAI) Workshop on Wrappers for Performance Enhancement in KDD.
Seattle, Washington, USA.

Bernstein, Abraham, Foster Provost, and Shawndra Hill (2005). “Toward Intelligent Assis-
tance for a Data Mining Process: An Ontology-Based Approach for Cost-Sensitive Clas-
sification”. In: IEEE Transactions on Knowledge and Data Engineering 17.4, pp. 503–
518.

Berrer, Helmut, Iain Paterson, and Jorg Keller (2000). “Evaluation of Machine-Learning Al-
gorithm Ranking Advisors”. In: Proceedings of the PKDD-2000 Workshop on DataMin-
ing, Decision Support, Meta-Learning and ILP: Forum for Practical Problem Presenta-
tion and Prospective Solutions.

Bishop, C. and P. E. Hart (1995). “Neural Networks for Pattern Recognition”. In:

Bossard, Lukas, Matthieu Guillaumin, and Luc J. Van Gool (2014). “Food-101 - Mining
Discriminative Components with Random Forests.” In: ECCV (6). Vol. 8694. Lecture
Notes in Computer Science. Springer, pp. 446–461.

Botia, Juan A., Antonio F. Gomez-Skarmeta, Mercedes Valdes, and Antonio Padilla (2001).
“METALA: A Meta-learning Architecture”. In: Proceedings of the International Confer-
ence, 7th Fuzzy Days on Computational Intelligence, Theory and Applications. London,
UK: Springer-Verlag, pp. 688–698.

Box, George and Gwilym Jenkins (1970). “Time Series Analysis”. In:

Brazdil, Pavel and Christophe Giraud-Carrier (2018). “Metalearning and Algorithm Selec-
tion: Progress, State of the Art and Introduction to the 2018 Special Issue”. In: Machine
Learning 107.1, pp. 1–14.

Brazdil, Pavel, Christophe Giraud-Carrier, Carlos Soares, and Ricardo Vilalta (2008). Met-
alearning: Applications to Data Mining. 1st ed. Springer Publishing Company, Incorpo-
rated.

REFERENCES

Brazdil, Pavel B., Carlos Soares, and Joaquim Pinto Da Costa (2003). “Ranking Learning
Algorithms: Using IBL and Meta-Learning on Accuracy and Time Results”. In: Journal
of Machine Learning 50.3, pp. 251–277.

Chawla, Nitesh V., Kevin Bowyer, Lawrence Hall, and Philip Kegelmeyer (2002). “SMOTE:
Synthetic Minority Over-sampling Technique”. In: Journal of Artificial Intelligence Re-
search 16, pp. 321–357.

Cressie, N. A. C. (1993). “Statistics for spatial data”. In:

Crone, Sven (2006). NN3 Forecasting Competition [Online]. url: http://www.neural-
forecasting-competition.com/NN3.

Crone, Sven (2008). NN5 Forecasting Competition [Online]. url: http://www.neural-
forecasting-competition.com/NN5.

Crone, Sven (2010). NN-GC1 Forecasting Competition [Online]. url: http://www.neural-
forecasting-competition.com.

De-Souto, Marcilio, Ricardo Bastos Cavalcante Prudencio, Rodrigo Soares, and et al. (2008).
“Ranking and selecting clustering algorithms using a meta-learning approach”. In: IEEE
International Joint Conference on Neural Networks, pp. 3729–3735.

Demner-Fushman, Dina, M. D. Kohli, M. B. Rosenman, S. E. Shooshan, and et al. (2016).
“Preparing a collection of radiology examinations for distribution and retrieval”. In:
Journal of the American Medical Informatics Association 23.2.

Deng, Jia, Wei Dong, Richard Socher, Li-jia Li, and et al. (2009). “Imagenet: A large-scale
hierarchical image database”. In: In CVPR.

DeVries, Terrance and Graham W. Taylor (2017). “Improved regularization of convolutional
neural networks with cutout”. In: Computing Research Repository (CoRR) abs/1708.04552.

Duan, Yan, John Schulman, Xi Chen, Peter L. Bartlett, Ilya Sutskever, and Pieter Abbeel
(2016). “RL2: Fast Reinforcement Learning via Slow Reinforcement Learning”. In: Com-
puting Research Repository (CoRR) abs/1611.02779.

Duch, Wlodzislaw, Tomasz Maszczyk, and Marek Grochowski (2011). “Optimal Support
Features for Meta-Learning”. In: Meta-Learning in Computational Intelligence. Vol. 358.
Studies in Computational Intelligence. Springer, pp. 317–358.

Duda, R. O. and P. E. Hart (1973). “Pattern Classification and Scene Analysis”. In:

eLICO (2012). An e-Laboratory for Interdisciplinary Collaborative Research in Data Mining
and Data-Intensive Sciences. url: http://www.e-lico.eu.

Fei-Fei, Li, Rob Fergus, and Pietro Perona (2007). “Learning Generative Visual Models
from Few Training Examples: An Incremental Bayesian Approach Tested on 101 Object
Categories”. In: Comput. Vis. Image Underst. 106.1, pp. 59–70. issn: 1077-3142.

Feurer, Matthias, Jost Tobias, and Frank Hutter (2014). “Using meta-learning to initialize
bayesian optimization of hyperparameters”. In: Proceedings of the International Confer-
ence on Meta-learning and Algorithm Selection (MLAS), pp. 3–10.

Feurer, Matthias, Aaron Klein, Katharina Eggensperger, Jost Springenberg, and et al.
(2015). “Efficient and Robust Automated Machine Learning”. In: Advances in Neural
Information Processing Systems 28. Ed. by C. Cortes, N. D. Lawrence, D. D. Lee, M.
Sugiyama, and R. Garnett, pp. 2962–2970.

113

http://www.neural-forecasting-competition.com/NN3
http://www.neural-forecasting-competition.com/NN3
http://www.neural-forecasting-competition.com/NN5
http://www.neural-forecasting-competition.com/NN5
http://www.neural-forecasting-competition.com
http://www.neural-forecasting-competition.com
http://www.e-lico.eu

114 REFERENCES

Filchenkov, Andray and Arseniy Pendryak (2015). “Dataset metafeature description for
recommending feature selection”. In: ISMW FRUCT, pages 11–18.

Finn, Chelsea and Sergey Levine (2018). “Meta-learning and universality: Deep represen-
tations and gradient descent can approximate any learning algorithm”. In: Computing
Research Repository (CoRR) abs/1710.11622.

Finn, Chelsea, Pieter Abbeel, and Sergey Levine (2017). “Model-Agnostic Meta-Learning
for Fast Adaptation of Deep Networks”. In: Proceedings of the 34th International Confer-
ence on Machine Learning. Vol. 70. International Convention Centre, Sydney, Australia:
PMLR, pp. 1126–1135.

Frank, Eibe and Ian H. Witten (1998). “Generating Accurate Rule Sets Without Global
Optimization”. In: Fifteenth International Conference on Machine Learning, pp. 144–
151.

Gama, J. and P. Brazdil (1995). “Characterization of Classification Algorithms”. In:

Gama, João, Indrė Žliobaitė, Albert Bifet, Mykola Pechenizkiy, and Abdelhamid Bouchachia
(2014). “A Survey on Concept Drift Adaptation”. In: ACM Comput. Surv. 46.4.

Gama, Joao, Pedro Medas, Gladys Castillo, and Pedro Rodrigues (2004). “Learning with
Drift Detection”. In: Advances in Artificial Intelligence 3171.10, pp. 286–295.

Genuer, Robin, Jean-Michel Poggi, and Christine Tuleau-Malot (2010). “Variable Selection
Using Random Forests”. In: Pattern Recogn. Lett. 31.14, pp. 2225–2236.

Giraud-Carrier, Christophe (2005). “The Data Mining Advisor: Meta-learning at the Service
of Practitioners”. In: Proceedings of the Fourth International Conference on Machine
Learning and Applications (ICMLA). Washington, DC, USA: IEEE Computer Society,
pp. 113–119.

Giraud-Carrier, Christophe (2008). “Meta-learning - A Tutorial”. In: Proceedings of the
Seventh International Conference on Machine Learning and Applications (ICMLA). San
Diego, CA, USA.

Giraud-Carrier, Christophe, Ricardo Vilalta, and Pavel Brazdil (2004). “Introduction to the
Special Issue on Meta-Learning”. In: Journal of Machine Learning 54.3, pp. 187–193.

Gittins, John (1979). “Bandit processes and dynamic allocation indices”. In: Series B
(Methodological) abs/1607.00215.

Glorot, Xavier and Yoshua Bengio (2010). “Understanding the difficulty of training deep
feed-forward neural networks”. In: Proceedings of the Thirteenth International Confer-
ence on Artificial Intelligence and Statistics, PMLR.

Goldberg, David E. (1989). Genetic Algorithms in Search, Optimization and Machine Learn-
ing. 1st. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc. isbn: 0201157675.

Grabczewski, Krzysztof and Norbert Jankowski (2007). “Versatile and Efficient Meta-Learning
Architecture: Knowledge Representation and Management in Computational Intelli-
gence”. In: IEEE Symposium on Computational Intelligence and Data Mining, pp. 51–
58.

Graner, Nicolas, Sunil Sharma, Derek H. Sleeman, and et al. (1994). “The Machine Learn-
ing Toolbox Consultant”. In: International Journal on Artificial Intelligence Tools 2.3,
pp. 307–328.

REFERENCES

Grochowski, M, W Duch, and et al. (2008). “Projection Pursuit Constructive Neural Networks-
Based on Quality of Projected Clusters”. In: Lecture Notes in Computer Science, pp. 754–
762.

Guerra, Silvio B., Ricardo B. Prudencio, and Teresa Ludermir (2008). “Predicting the Per-
formance of Learning Algorithms Using Support Vector Machines as Meta-regressors”.
In: Proceedings of the 18th international conference on Artificial Neural Networks (ICANN).
Berlin, Heidelberg: Springer-Verlag, pp. 523–532.

Gupta, Abhishek, Russell Mendonca, Yuxuan Liu, Pieter Abbeel, and Sergey Levine (2018).
“Meta-Reinforcement Learning of Structured Exploration Strategies”. In:

Hassannejad, Hamid, Guido Matrella, Paolo Ciampolini, Ilaria De Munari, and et al. (2016).
“Food Image Recognition Using Very Deep Convolutional Networks”. In: Proceedings of
the 2Nd International Workshop on Multimedia Assisted Dietary Management (MADiMa).
New York, NY, USA: ACM, pp. 41–49.

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun (2016). “Deep Residual Learning
for Image Recognition”. In: 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 770–778.

Hem, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun (2014). “Spatial Pyramid Pool-
ing in Deep Convolutional Networks for Visual Recognition”. In: Computing Research
Repository (CoRR) abs/1406.4729.

Hinton, Geff, N. Srivastava, and Swersky K. (2014). Overview of mini-batch gradient descent
lecture of Neural Networks for Machine Learning course. url: http://www.cs.toronto.
edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf.

Hochreiter, Sepp and Jurgen Schmidhuber (1997). “Long short-term memory”. In: Neural
Computation, pp. 1735–1780.

Huang, Gao, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Weinberger (2016). “Deep Net-
works with Stochastic Depth”. In: Computing Research Repository (CoRR abs/1603.09382.

Hutter, F., H. Hoos, and K Leyton-Brown (2011). “Sequential model-based optimization for
general algorithm configuration”. In: Proceedings of the Fifth International Conference
on Learning and Intelligent Optimization (LION).

Hutter, Frank, Lars Kotthoff, and Joaquin Vanschoren, eds. (2018). Automated Machine
Learning: Methods, Systems, Challenges. Springer.

Hyndman, Rob J. and Yeasmin Kh (2008). “Automatic time series forecasting: The forecast
package for R”. In: Journal of Statistical Software.

Ioffe, Sergey and Christian Szegedy (2015). “Batch normalization: Accelerating deep network
training by reducing internal covariate shift”. In: International Conference of Machine
Learning (ICML).

Jankowski, Norbert and Krzysztof Grabczewski (2011). “Universal Meta-Learning Architec-
ture and Algorithms”. In: Meta-Learning in Computational Intelligence. Ed. by Norbert
Jankowski, Wlodzislaw Duch, and Krzysztof Grabczewski. Vol. 358. Studies in Compu-
tational Intelligence. Springer, pp. 1–76.

Kadlec, Petr and Bogdan Gabrys (2009). “Architecture for development of adaptive on-line
prediction models”. In: Memetic Computing 1.4, pp. 241–269.

115

http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

116 REFERENCES

Kalousis A., Hilario M. (2001). “Model selection via meta-learning: a comparative study”.
In: Internation Journal on Artificial Intelligence Tools 10.4, pp. 525–554.

King, Ross (1995). Statlog Project Data Set. url: http : / / mlr . cs . umass . edu / ml /

datasets/Statlog+Project.

King, Ross, C Feng, and Alistair Sutherland (1995). “StatLog: Comparison of Classification
Algorithms on Large Real-World Problems”. In: Journal of Applied Artificial Intelligence
9.3, pp. 289–334.

Kingma, Diederik P. and Jimmy Ba (2015). “Adam: A method for stochastic optimization”.
In: International Conference on Learning Representations (ICLR).

Klinkenberg, Ralf (2005). “Meta-Learning, Model Selection, and Example Selection in Ma-
chine Learning Domains with Concept Drift”. In: Annual workshop of the special interest
group on machine learning, knowledge discovery, and data mining of the German Com-
puter Science Society (GI). Saarbrucken, Germany.

Komer, Brent, James Bergstra, and Chris Eliasmith (2014). “Hyperopt-sklearn: automatic
hyper-parameter configuration for scikit-learn”. In: ICML workshop on AutoML.

Kopf, Christian and Ioannis Iglezakis (2002). “Combination of Task Description Strategies
and Case Base Properties for Meta-learning”. In: Proceedings of the 2nd International
Workshop on Integration and Collaboration Aspects of Data Mining, Decision Support
and Meta-learning (IDDM). Helsinki, Finland, pp. 65–76.

Kordik, Pavel and Jan Cerny (2014). “Building predictive models in two stages with meta-
learning templates optimized by genetic programming”. In: 2014 IEEE Symposium on
Computational Intelligence in Ensemble Learning, CIEL, pp. 27–34.

Kotthoff, Lars, Chris Thornton, Holger H. Hoos, Frank Hutter, and Kevin Leyton-Brown
(2017). “Auto-WEKA 2.0: Automatic Model Selection and Hyper-parameter Optimiza-
tion in WEKA”. In: Journal of Machine Learning Reseasrch 18.1, pp. 826–830.

Kovarik, Oleg and Richard Malek (2012). Meta-learning and Meta-optimization. Tech. rep.
Prague, Czech Republic: Technical Report, Czech Technical University.

Krizhevsky, Alex, Vinod Nair, and Geoffrey Hinton. “CIFAR-10 and CIFAR-100”. In: Cana-
dian Institute for Advanced Research.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton (2012). “ImageNet Classification
with Deep Convolutional Neural Networks”. In: Proceedings of the 25th International
Conference on Neural Information Processing Systems (NIPS). Vol. 1. USA: Curran
Associates Inc., pp. 1097–1105.

Kuhn, Daniel, Philipp Probst, Thomas Janek, and Bernd Bischl (2018). “Automatic Explo-
ration of Machine Learning Experiments on OpenML”. In: Computing Research Repos-
itory (CoRR) 1806.10961.

Le, Ya and Xuan Yang (2015). “Tiny ImageNet Visual Recognition Challenge”. In: Stanford
CS 231N.

LeCun, Yann, Corinna Cortes, and Christopher J. C. Burges (1999). “The MNIST Dataset
Of Handwritten Digits”. In:

Lemke, Christiane and Bogdan Gabrys (2010a). “Meta-learning for time series forecasting
and forecast combination”. In: Journal of Neurocomputing 73.10-12, pp. 2006–2016.

http://mlr.cs.umass.edu/ml/datasets/Statlog+Project
http://mlr.cs.umass.edu/ml/datasets/Statlog+Project

REFERENCES

Lemke, Christiane and Bogdan Gabrys (2010b). “Meta-learning for time series forecasting
in the NN GC1 competition”. In: Fuzzy Systems (FUZZ), pp. 1–5.

Lemke, Christiane, Marcin Budka, and Bogdan Gabrys (2015). “Metalearning: a survey of
trends and technologies”. In: Artificial Intelligence Review 44 (1).

Li, S. Z. (1995). “Markov Random Field Modeling in Computer Vision”. In:

Lin, Kevin, Huei-Fang Yang, and Chu-Song Chen (2015). “Flower classification with few
training examples via recalling visual patterns from deep CNN”. In: CVGIP, pp. 41–49.

Lin, Tsung-Yi, Michael Maire, Serge J. Belongie, Lubomir D. Bourdev, and et al. (2014).
“Microsoft COCO: Common Objects in Context”. In: Computing Research Repository
(CoRR) abs/1405.0312.

Lindner, Guido and Rudi Studer (1999). “AST: Support for Algorithm Selection with a
CBR Approach”. In: Proceedings of the Third European Conference on Principles of
Data Mining and Knowledge Discovery (PKDD). London, UK, UK: Springer-Verlag,
pp. 418–423.

Liu, Chenxi, Barret Zoph, Maxim Neumann, Jonathon Shlens, and et al. (2018). “Progressive
Neural Architecture Search”. In: Computing Research Repository (CoRR) abs/1712.00559.

Loshchilov, I. and F. Hutter (2016). “Practical Network Blocks Design with Q-Learning”.
In: In: International Conference on Learning Representations (ICLR) Workshop track.

Martin S., Manuel, Marcin Budka, and Bogdan Gabrys (2016a). “Adapting Multi-component
Predictive Systems using Hybrid Adaptation Strategies with Auto-WEKA in Process In-
dustry”. In: Proceedings of the Workshop on Automatic Machine Learning. Vol. 64. New
York, New York, USA: PMLR, pp. 48–57.

Martin S., Manuel, Marcin Budka, and Bogdan Gabrys (2016b). “Automatic composi-
tion and optimisation of multi-component predictive systems”. In: Computing Research
Repository (CoRR) abs/1612.08789.

Martin S., Manuel, Marcin Budka, and Bogdan Gabrys (2016c). “Towards Automatic Com-
position of Multi-component Predictive Systems”. In: HAIS. Vol. 9648. Lecture Notes in
Computer Science. Springer, pp. 27–39.

Maszczyk, Tomasz, Marek Grochowski, and Wlodzislaw Duch, eds. (2010). Advances in
Machine Learning II. Vol. 263. Studies in Computational Intelligence. Springer.

Menahem, Eitan, Lior Rokach, and Yuval Elovici (2011). “Combining One-Class Classifiers
via Meta-Learning”. In: Computing Research Repository (CoRR) abs/1112.5246.

Mierswa, Ingo, Michael Wurst, Ralf Klinkenberg, Martin Scholz, and Timm Euler (2006).
“YALE: Rapid Prototyping for Complex Data Mining Tasks”. In: In Proceedings of the
12th ACM SIGKDD international conference on Knowledge discovery and data mining
(KDD). Ed. by Lyle Ungar, Mark Craven, Dimitrios Gunopulos, and Tina Eliassi-Rad.
New York, NY, USA: ACM, pp. 935–940.

Miikkulainen, Risto, Jason Zhi Liang, Elliot Meyerson, Aditya Rawal, and et al. (2017).
“Evolving Deep Neural Networks”. In: Computing Research Repository (CoRR) abs/1703.00548.

Minar, Matiur R. and Jibon Naher (2018). “Recent Advances in Deep Learning: An Overview”.
In: Computing Research Repository (CoRR) abs/1807.08169.

117

118 REFERENCES

Morik, Katharina and Martin Scholz (2003). “The MiningMart Approach to Knowledge Dis-
covery in Databases”. In: In Ning Zhong and Jiming Liu, editors, Intelligent Technologies
for Information Analysis. Springer, pp. 47–65.

Movielens (1998). MovieLens Data Sets. url: http://grouplens.org/node/12.

Murtagh, Fionn and Pierre Legendre (2014). “Ward’s hierarchical agglomerative clustering
method: which algorithms implement Ward’s criterion?” In: Journal of Classification
31.3, pp. 274–295.

Nagabandi, Anusha, Chelsea Finn, and Sergey Levine (2018). “Deep Online Learning via
Meta-Learning: Continual Adaptation for Model-Based RL”. In: Computing Research
Repository (CoRR) abs/1812.07671.

Nair, Vinod and Geoffrey E. Hinton (2010). “Rectified linear units improve restricted Boltz-
mann machines”. In: International Conference of Machine Learning (ICML).

Nilsback, Maria-Elena and Andrew Zisserman (2008). “Automated Flower Classification
over a Large Number of Classes”. In: 2008 Sixth Indian Conference on Computer Vision,
Graphics Image Processing, pp. 722–729.

Olson, R.S., N. Bartley, R.J. Urbanowicz, and J.H. Moore (2018). “Evaluation of a tree-
based pipeline optimization tool for automating data science”. In: In: Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO) abs/1808.01974, pp. 485–
492.

Osband, Ian and Benjamin Van Roy (2016). “Why is posterior sampling better than opti-
mism for reinforcement learning”. In: Computing Research Repository (CoRR) abs/1607.00215.

Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M.
Brucher, M. Perrot, and E. Duchesnay (2011). “Scikit-learn: Machine Learning in Python
”. In: Journal of Machine Learning Research 12, pp. 2825–2830.

Peng, Yonghong, Peter A. Flach, Carlos Soares, and Pavel Brazdil (2002). “Improved Dataset
Characterisation for Meta-learning”. In: Proceedings of the 5th International Conference
on Discovery Science (DS). London, UK: Springer-Verlag, pp. 141–152.

Perrone, V., R. Jenatton, M. Seeger, and C. Archambeau (2017). “Multiple adaptive Bayesian
linear regression for scalable Bayesian optimization with warm start”. In: Computing Re-
search Repository (CoRR) abs/1712.02902.

Petris, Giovanni and Sonia Petrone (2011). “State Space Models in R”. In: Journal of
Statistical Software 41 (4).

Pfahringer, Bernhard, Hilan Bensusan, and Christophe Giraud-Carrier (2000). Meta-learning
by landmarking various learning algorithms. Tech. rep. Bristol, UK: University of Bristol.

Pham, Hieu, Melody Y. Guan, Barret Zoph, Quoc V. Le, and Jeff Dean (2018). “Efficient
Neural Architecture Search via Parameter Sharing”. In: Computing Research Repository
(CoRR) abs/1802.03268.

Prudencio, Ricardo, Marcilio deSouto, and Teresa Ludermir (2011). Selecting Machine Learn-
ing Algorithms Using the Ranking Meta-Learning Approach. Meta-Learning in Compu-
tational Intelligence, Studies in Computational Intelligence. Springer Berlin Heidelberg.

http://grouplens.org/node/12

REFERENCES

Prudencio, Ricardo B. C. and Teresa B. Ludermir (2004). “Meta-learning approaches to
selecting time series models”. In: Journal of Neurocomputing 61, pp. 121–137.

Prudencio, Ricardo B. C. and Teresa B. Ludermir (2008). “Active Meta-Learning with
Uncertainty Sampling and Outlier Detection”. In: IEEE International Joint Conference
on Neural Networks, pp. 346–351.

Quinlan, John R. (1992). “Learning With Continuous Classes”. In: AI’92 (Adams and Ster-
ling, Eds). Singapore: World Scientific, pp. 343–348.

Quinlan, John R. (1998). C5.0: An Informal Tutorial. url: http://www.rulequest.com/
see5-unix.html.

R, Core Development Team (2010). R: A Language and Environment for Statistical Com-
puting. Vienna, Austria. url: http://www.r-project.org/.

R Development Core Team (2008). R: A Language and Environment for Statistical Com-
puting. Vienna, Austria. url: http://www.R-project.org/.

Rajpurkar, Pranav, Jeremy Irvin, Kaylie Zhu, Brandon Yang, and et al. (2017). “CheXNet:
Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep Learning”. In: Com-
puting Research Repository (CoRR) abs/1711.05225.

Ravi, Sachin and Hugo Larochelle (2017). “Optimization as a model for few-shot learning”.
In: International Conference on Learning Representations (ICLR).

Real, E., S. Moore, A. Selle, S. Saxena, Y.L. Suematsu, Q.V. Le, and A. Kurakin (2017).
“Large-scale evolution of image classifier”. In: In International Conference on Machine
Learning.

Reif, Matthias (2012). “A Comprehensive Dataset for Evaluating Approaches of various
Meta-Learning Tasks”. In: First International Conference on Pattern Recognition Ap-
plications and Methods. Vilamura, Algarce, Portugal.

Reif, Matthias, Faisal Shafait, and Andreas Dengel (2012a). “Dataset Generation for Meta-
Learning”. In: KI-2012: Poster and Demo Track. Saarbrucken, pp. 69–73.

Reif, Matthias, Faisal Shafait, and Andreas Dengel (2012b). “Meta2-Features: Providing
Meta-Learners More Information”. In: KI-2012: Poster and Demo Track. Saarbrucken,
pp. 74–77.

Rendell, Larry and Howard Cho (1990). “Empirical Learning as a Function of Concept
Character”. In: Journal of Machine Learning 5.3, pp. 267–298. issn: 0885-6125.

Rendell, Larry, Raj Sheshu, and David Tcheng (1987). “Layered concept-learning and dy-
namically variable bias management”. In: Proceedings of the 10th international joint
conference on Artificial intelligence (IJCAI). Vol. 1. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., pp. 308–314.

Riedel, Silvia and Bogdan Gabrys (2007). “Dynamic Pooling for the Combination of Fore-
casts Generated Using Multi Level Learning”. In: IJCNN, pp. 454–459.

Riedel, Silvia and Bogdan Gabrys (2009). “Pooling for Combination of Multilevel Forecasts”.
In: IEEE Transactions on Knowledge and Data Engineering 21.12, pp. 1753–1766.

Rijn, J. N. van, B. Bischl, L. Torgo, B. Gao, V. Umaashankar, and et al. (2013). “OpenML:
a collaborative science platform”. In: in Proceedings of ECML/PKDD13.

119

http://www.rulequest.com/see5-unix.html
http://www.rulequest.com/see5-unix.html
http://www.r-project.org/
http://www.R-project.org/

120 REFERENCES

Rijn, Jan N. van, Salisu Abdulrahman, Pavel Brazdil, and Joaquin Vanschoren (2015).
“Fast Algorithm Selection Using Learning Curves”. In: In International Symposium on
Intelligent Data Analysis.

Rivolli, A., L. Garcia, C. Soares, J. Vanschoren, and A. de Carvalho (2018). “Towards
reproducible empirical research in meta-learning”. In: Computing Research Repository
(CoRR) abs/1808.10406.

Rossi, Andre Luis Debiaso, Andre Carlos Ponce de Leon Ferreira de Carvalho, and Car-
los Soares (2012). “Meta-Learning for Periodic Algorithm Selection in Time-Changing
Data”. In: Brazilian Symposium on Neural Networks, pp. 7–12.

Rossi, Andre Luis Debiaso, Andre Carlos Ponce de Leon Ferreira de Carvalho, and et al.
(2014). “MetaStream: A meta-learning based method for periodic algorithm selection in
time-changing data”. In: Journal of Neurocomputing 127, 5264.

Russakovsky, Olga, Jia Deng, Hao Su, Jonathan Krause, and et al. (2014). ImageNet Large
Scale Visual Recognition Challenge. url: http://arxiv.org/abs/1409.0575.

Russakovsky, Olga, Jia Deng, Hao Su, Jonathan Krause, and et al. (2015). “ImageNet Large
Scale Visual Recognition Challenge”. In: International Journal Computer Vision 115.3,
pp. 211–252. issn: 0920-5691.

Shah, Chandra (1997). “Model selection in univariate time series forecasting using discrim-
inant analysis”. In: International Journal of Forecasting 13.4, pp. 489–500.

Shin, Hoo-Chang, Kirk Roberts, Le Lu, Dina Demner-Fushman, Jianhua Yao, and Ronald
M. Summers (2016). “Learning to Read Chest X-Rays: Recurrent Neural Cascade Model
for Automated Image Annotation”. In: Computing Research Repository (CoRR) abs/1603.08486.

Sikora, Riyaz T. (2008). “Meta-learning optimal parameter values in non-stationary envi-
ronments”. In: Journal of Knowledge-Based Systems 21.8, pp. 800–806.

Simonyan, Karen and Andrew Zisserman (2014). “Very Deep Convolutional Networks for
Large-Scale Image Recognition”. In: Computing Research Repository (CoRR) abs/1409.1556.

Smith-Miles, Kate (2009). “Cross-disciplinary perspectives on meta-learning for algorithm
selection”. In: ACM Computing Surveys 41.1, pp. 1–25.

Soares, Carlos (2009). “UCI++: Improved Support for Algorithm Selection Using Datase-
toids”. In: Proceedings of the 13th Pacific-Asia Conference on Advances in Knowledge
Discovery and Data Mining (PAKDD). Berlin, Heidelberg: Springer-Verlag, pp. 499–506.

Soares, Carlos and Pavel B. Brazdil (2006). “Selecting Parameters of SVM Using Meta-
learning and Kernel Matrix-based Meta-features”. In: Proceedings of the 2006 ACM
Symposium on Applied Computing (SAC). New York, NY, USA: ACM, pp. 564–568.

Soares, Carlos, Johann Petrak, and Pavel Brazdil (2001). “Sampling-Based Relative Land-
marks: Systematically Test-Driving Algorithms Before Choosing”. In: Proceedings of the
10th Portuguese Conference on Artificial Intelligence on Progress in Artificial Intelli-
gence, Knowledge Extraction, Multi-agent Systems, Logic Programming and Constraint
Solving. London, UK: Springer-Verlag, pp. 88–95.

Soares, Carlos, Petr Kuba, and Peter Flach (2004). “A meta-learning method to select the
kernel width in support vector regression”. In: Mach. Learning, pp. 195–209.

http://arxiv.org/abs/1409.0575

REFERENCES

Soares, Rodrigo G., Teresa B. Ludermir, and Francisco A. Carvalho (2009). “An Analysis
of Meta-learning Techniques for Ranking Clustering Algorithms Applied to Artificial
Data”. In: Proceedings of the 19th International Conference on Artificial Neural Networks
(ICANN). Berlin, Heidelberg: Springer-Verlag, pp. 131–140.

Sohn, So Y. (1999). “Meta analysis of classification algorithms for pattern recognition”. In:
IEEE Transactions on Pattern Analysis and Machine Intelligence 21.11, pp. 1137–1144.

Stanford, Stacy and Roberto Iriondo (2018). The Best Public Datasets for Machine Learning
and Data Science. url: https://towardsai.net/datasets.

Sutskever, Ilya, James Martens, George Dahl, and Geoffrey E. Hinton (2013). “Practical Net-
work Blocks Design with Q-Learning”. In: International Conference of Machine Learning
(ICML).

Sutton, Richard S. and Andrew G. Barto (2015). “Introduction to Reinforcement Learning”.
In: MIT Press (2).

Sutton, Richard S., David McAllester, Satinder Singh, and Yishay Mansour (1999). “Policy
gradient methods for reinforcement learning with function approximation”. In: NIPS.

Szegedy, Christian, Wei Liu, Yangqing Jia, Pierre Sermanet, and et al. (2015). “Going
Deeper with Convolutions”. In: Computer Vision and Pattern Recognition (CVPR).
Vol. abs/1409.4842.

Szegedy, Christian, Vincent Vanhoucke, Sergey Ioffe, and et al. (2016). “Rethinking the
Inception Architecture for Computer Vision”. In: 2016 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016,
pp. 2818–2826.

Szegedy, Christian, Sergey Ioffe, Vincent Vanhoucke, and Alexander Alemi (2017). “Inception-
v4, Inception-ResNet and the Impact of Residual Connections on Learning”. In: Pro-
ceedings of the Thirty-First AAAI Conference on Artificial Intelligence, February 4-9,
2017, San Francisco, California, USA. Pp. 4278–4284.

Tan, Chuanqi, Fuchun Sun, Tao Kong, Wenchang Zhang, Chao Yang, and Chunfang Liu
(2018). “A Survey on Deep Transfer Learning”. In: Computing Research Repository
(CoRR) abs/1808.01974.

Thornton, Chris, Frank Hutter, Holger Hoos, and Kevin Leyton-Brown (2013). “Auto-
WEKA: Combined Selection and Hyperparameter Optimization of Classi
cation Algorithms”. In: ACM International Conference on Knowledge Discovery and
Data Mining, pp. 847–855.

Todorovski, Ljupco, Hendrik Blockeel, and Saso Dzeroski (2002). “Ranking with Predictive
Clustering Trees”. In: Proceedings of the 13th European Conference on Machine Learning
(ECML). London, UK: Springer-Verlag, pp. 444–455.

Todorovski, Ljupvco and Savso Dvzeroski (2003). “Combining Classifiers with Meta Decision
Trees”. In: Journal of Machine Learning 50.3, pp. 223–249.

Tusell, Fernando (2011). “Kalman Filtering in R”. In: Journal of Statistical Software 39 (2).

Utgoff, Paul Everett (1984). “Shift of bias for inductive concept learning”. PhD thesis. New
Brunswick, NJ, USA: Rutgers University.

121

https://towardsai.net/datasets

122 REFERENCES

Vanschoren, Joaquin (2011). “Meta-Learning Architectures: Collecting, Organizing and Ex-
ploiting Meta-Knowledge”. In: Meta-Learning in Computational Intelligence. Ed. by Nor-
bert Jankowski, WlMeta-learningodzislaw Duch, and Krzysztof Grabczewski. Vol. 358.
Studies in Computational Intelligence. Springer, pp. 117–155.

Vanschoren, Joaquin, Jan N. Rijn, Bernd Bischl, and Luis Torgo (2014). “OpenML: Net-
worked Science in Machine Learning”. In: SIGKDD Explor. Newsl. 15.2, pp. 49–60.

Vilalta, Ricardo and Youssef Drissi (2002a). “A perspective view and survey of meta-
learning”. In: Artificial Intelligence Review 18.2, pp. 77–95.

Vilalta, Ricardo and Youssef Drissi (2002b). “A Perspective View and Survey of Meta-
learning”. In: Artif. Intell. Rev. 18.2, pp. 77–95. issn: 0269-2821.

Vilalta, Ricardo, Christophe Giraud-carrier, Pavel Brazdil, and Carlos Soares (2004). “Using
Meta-Learning to Support Data Mining”. In:

Vilalta, Ricardo, Christophe Giraud-Carrier, and Pavel Brazdil (2010). Meta-Learning -
Concepts and Techniques. Data Mining and Knowledge Discovery Handbook. US: Springer.

Wang, Dong and Thomas Fang Zheng (2015). “Transfer learning for speech and language
processing”. In: 2015 Asia-Pacific Signal and Information Processing Association Annual
Summit and Conference (APSIPA), pp. 1225–1237.

Wang, Jane X., Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z. Leibo, and
et al. (2017a). “Learning to Reinforcement Learn”. In: Computing Research Repository
(CoRR) abs/1611.05763.

Wang, Xiaosong, Yifan Peng, Le Lu, Zhiyong Lu, and et al. (2017b). “ChestX-ray8: Hospital-
scale Chest X-ray Database and Benchmarks on Weakly-Supervised Classification and
Localization of Common Thorax Diseases”. In: Computing Research Repository (CoRR)
abs/1705.02315.

Wang, Xiaozhe, Kate Smith-Miles, and Rob Hyndman (2009). “Rule induction for forecast-
ing method selection: Meta-learning the characteristics of univariate time series”. In:
Journal of Neurocomputing 72.10-12, pp. 2581–2594.

Warden, Pete (2011). Data Source Handbook - A Guide to Public Data. OŔeilly Media.

Widmer, Gerhard (1997). “Tracking Context Changes through Meta-Learning”. In: Journal
of Machine Learning 27.3, pp. 259–286.

Williams, Ronald J. (1992). “Simple statistical gradient-following algorithms for connec-
tionist reinforcement learning”. In: Machine Learning (9), pp. 41–49.

Wistuba, M., N. Schilling, and L. Schmidt-Thieme (2015). “Learning hyper-parameter op-
timization initializations”. In: In: IEEE International Conference on Data Science and
Advanced Analytics (DSAA).

Wolpert, David (2001). “The supervised learning no-free-lunch Theorems”. In: Proceed-
ings of the 6th Online World Conference on Soft Computing in Industrial Applications,
pp. 25–42.

Xiao, Han, Kashif Rasul, and Roland Vollgraf (2017). “Fashion-MNIST: a Novel Image
Dataset for Benchmarking Machine Learning Algorithms”. In: Computing Research Repos-
itory (CoRR) abs/1708.07747.

REFERENCES

Xu, Tianbing, Qiang Liu, Liang Zhao, and Jian Peng (2018). “Learning to Explore with
Meta-Policy Gradient”. In: Computing Research Repository (CoRR) abs/1803.05044.

Yao, Quanming, Mengshuo Wang, Hugo Escalante, Isabelle Guyon, Yi-Qi Hu Hu, and et al.
(2019). “Taking Human out of Learning Applications: A Survey on Automated Machine
Learning”. In: Computing Research Repository (CoRR) abs/1810.13306.

Yosinski, Jason, Jeff Clune, Yoshua Bengio, and Hod Lipson (2014). “How Transferable Are
Features in Deep Neural Networks?” In: Proceedings of the 27th International Conference
on Neural Information Processing Systems (NIPS). Vol. 2. Cambridge, MA, USA: MIT
Press, pp. 3320–3328.

Zeng, X. and G. Luo (2017). “Progressive sampling-based Bayesian optimization for efficient
and automatic machine learning model selection”. In: Health Information Science and
Systems 5 (1).

Zhang, Zewang, Zheng Sun, Jiaqi Liu, Jingwen Chen, and et al. (2016). “An Experimental
Comparison of Deep Neural Networks for End-to-end Speech Recognition”. In: Comput-
ing Research Repository (CoRR) abs/1611.07174.

Zhong, Zhao, Junjie Yan, and Cheng-Lin Liu (2017). “Practical Network Blocks Design with
Q-Learning”. In: Computing Research Repository (CoRR) abs/1708.05552.

Zhong, Zhao, Junjie Yan, Wei Wu, Jing Shao, Liu, and Cheng-Lin (2018). “Practical Net-
work Blocks Design with Q-Learning”. In: Computing Research Repository (CoRR)
abs/1708.05552.

Zliobaite, Indre (2010). “Learning under Concept Drift: An Overview”. In: Computing Re-
search Repository (CoRR) abs/1010.4784.

Zöller, Marc-André and Marco F. Huber (2019). “Survey on Automated Machine Learning”.
In: Computing Research Repository (CoRR) abs/1904.12054.

Zoph, Barret and Quoc V. Le (2016). “Neural Architecture Search with Reinforcement
Learning”. In: Computing Research Repository (CoRR) abs/1611.01578.

Zoph, Barret and Quoc V. Le (2017). “Neural Architecture Search with Reinforcement
Learning”. In: International Conference on Learning Representations (ICLR).

Zoph, Barret, Vijay Vasudevan, Jonathon Shlens, and Quoc V. Le (2018). “Learning trans-
ferable architectures for salable image recognition”. In: Computer Vision and Pattern
Recognition (CVPR).

123

	Abstract
	Terminologies and Mathematical Definitions
	Glossary of Terms
	Acknowledgements
	Introduction
	Background and Motivation
	Aims and Objective
	Research Challenges
	Contributions
	Organisation of the Thesis

	Existing Research
	Repository of Datasets
	Real-world Datasets
	Synthetic Datasets
	Datasets from Published Research
	Discussion and Summary

	Meta-features Generation and Selection
	Descriptive, Statistical and Information-Theoretic Approach
	Landmarking Approach
	Model-based Approach
	Discussion and Summary

	Base-level Learning
	Discussion and Summary

	Meta-learning
	Existing Systems
	Shift To A Better Bias
	Machine Learning Toolbox
	Statistical and Logical Learning Project
	Meta-learning Assistant
	Meta-learning Architecture
	Intelligent Discovery Assistant
	Pattern Recognition Engineering
	e-LICO
	Auto-WEKA

	Regression and Classification
	Clustering
	Discussion and Summary

	Adaptive Mechanisms
	Recurring Concept Extraction
	Periodic Algorithm Selection
	Meta-level Representation of Non-stationary Problems
	Discussion and Summary

	Hyper-parameter Optimization
	Transfer Learning of Deep Models
	Meta-Reinforcement Learning

	Research Challenges
	Problem Formulation

	Cross-domain Meta-learning for Time-series Forecasting
	Methodology
	Experimentation Environment
	Examples of Datasets
	Base-level Forecasting Methods
	Simple time-series Algorithms
	Complex time-series Algorithms

	Meta-feature Generation
	Descriptive Statistics
	Frequency Domain and Autocorrelations

	Meta-knowledge Preparation
	Meta-learning
	Cluster Analysis

	Results
	Analysis
	Summary

	Towards Meta-learning of Deep Architectures for Efficient Domain Adaptation
	Methodology
	Experimentation Environment
	Datasets
	Pre-trained Image Classification Networks
	Inception-ResNet-v2
	VGG-19
	Inception-v3

	Transfer Learning

	Results and Analysis
	Summary

	A Meta-Reinforcement Learning Approach to Optimize Parameters and Hyper-parameters Simultaneously
	Methodology
	Meta-learner
	Base-learner
	Residual Block with Stochastic Depth

	Formulation
	Experimentation Environment
	Datasets

	Results and Analysis
	Summary

	Conclusions and Future Work
	Research Challenges
	Main Findings and Contributions
	Future Research

	Definitions
	Meta-features
	Summary of Literature Review
	References

