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Decision making in structural engineering problems under
polymorphic uncertainty

-
A benchmark proposal

Y. Petryna, M. Drieschner, P. Kähler

Abstract

The treatment of diverse uncertainties is an important challenge in structural engineering prob-
lems, especially from the viewpoint of realistic analysis. Inaccuracy and variability are always
present and have to be quantified by either probabilistic, possibilistic, polymorphic or other
uncertainty approaches. Regardless to the applied uncertainty quantification method, the nu-
merical predictions have to be useful for structural assessment and decision making. The authors
propose in this contribution a benchmark example of a portal frame structure including vari-
ous uncertainties. The goal of this benchmark study is to compare justifications and decisions
provided by different uncertainty models with respect to clear challenges of decision making
with and without measurements, data assimilation and design. The engineering problem itself
is simple enough to understand and complex enough not to be reduced to a simple formula with
uncertain parameters.

Keywords benchmark; polymorphic uncertainties; portal frame; decision making; data as-
similation; design under uncertainties

1 Introduction and goals
Engineering structures are often objects of high complexity and have to reliably operate in diverse
environment and under extreme loading conditions. Therefore, they are subject of thorough
design, detailing and optimization. Additional challenges arise during service life, mainly due
to damage, aging and deterioration, which require decisions upon safety, operation, repair and
maintenance. At that, numerous aspects are subject of polymorphic uncertainties which can
be generally subdivided into epistemic and aleatory ones. Engineering experience to deal with
aleatory uncertainties by probabilistic methods is already reflected in design codes of practice.
In contrast, creating uncertainty models for epistemic uncertainties is far from standard and
needs systematic studies and benchmarks. The goal of this benchmark study is to compare
justifications and decisions provided by different uncertainty models with respect to challenges
of decision making with and without measurements, data assimilation and design.

Dealing with uncertainties has been subject of research in several fields like weather and
climate predictions [22], geosciences [9] or nuclear energy [5] for several decades. In structural
engineering, uncertainty quantification is mainly related to the design and optimization prob-
lems [7, 10, 24, 25, 12, 21], geotechnics [13] or system and parameter identification [23]. Further-
more, relevant benchmarks are known in nuclear energy [3], geosciences [2], control problems [17]
or structural health monitoring [23]. These benchmark studies on special problems usually help
comparing diverse methods and approaches with respect to their efficiency and accuracy and
developing a standard.

Regarding the simultaneous consideration of aleatory and epistemic uncertainties, some in-
vestigations [6] and open challenge problems [18, 1] also exist. However, benchmarks dealing



Preprint No. 2019-03, FG Statik und Dynamik, TU Berlin 2

with polymorphic uncertainties in structural engineering with focus on decision making and
design are very rare. The recent test bed example [19] originates from a joint activity of the
Priority Programme SPP 1886 of the German Research Foundation (DFG) entitled "Polymor-
phic uncertainty modeling for the numerical design of structures". The goal is an objective
comparison of various descriptions of epistemic uncertainties with respect to decision making in
engineering problems under polymorphic uncertainties.

The present contribution proposes a benchmark of a structural engineering problem that
pursues several typical goals: (i) encourage researchers to develop new methods for polymorphic
uncertainty modeling, (ii) provide a problem description and a measurement data set to test
such new methods under realistic conditions, and (iii) allow an objective comparison of proposed
methods based on a true data set of input and output. At that, the authors realize the need
for a benchmark that would consider interpretable uncertainty for decision making based on the
polymorphic uncertainty.

The considered engineering system is a portal frame under vertical and horizontal point loads,
see Section 2. It is a simple mechanical system that helps avoiding false interpretation of results
with respect to system behavior and failure states. Two competing failure modes, material
failure and stability failure, make the limit state function strongly nonlinear and sensitive to
uncertainties. Such a combination of failure modes is typical for many structural systems.
Data for the structural and loading parameters are available more or less sparsely in Section 3.
Using these information, three challenges formulated in Section 4 have to be solved. One of
the crucial issues is an objective comparison of results caused by different underlying models
for the uncertain input parameters. Obviously, this could be done on the basis of the decisions
made. The second challenge of the benchmark deals with the question how data assimilation
can help in the decision making. Finally, a design problem under polymorphic uncertainty is
posed in which more demanding operation requirements have to be fulfilled. Reference solutions
are given for comparison in Section 5 which have been determined by using the "true" structural
and loading parameters which are only known to the authors. Final remarks can be found in
Section 6.

2 Computational model

2.1 Reference structure: portal frame

A portal frame structure consisting of two columns of height H and one girder of length L (Fig. 1)
is considered. Such frames are typical for many technical systems, for example industrial facilities
or portal cranes. The columns are fixed in the foundation and the joints between columns and
girder are rigid. The frame is loaded by a vertical crane force FV which can be located arbitrarily
between two limit positions and is always directed in positive z-direction. The operational field
of this force is marked gray in Fig. 1. In addition, the crane truck can cause a horizontal brake
force FB at the same position as FV. The direction of FB could be either in positive or negative
x-direction. Finally, the left column is loaded horizontally by a force FH acting always in positive
x-direction. The position of FH is fixed.

All loads are considered as static in order to exclude dynamic effects. That assumption is
not far from reality since the crane operation is relatively slow and the frame structure is stiff
enough, so that resonance effects and impulse loading can be neglected. The wind load is also
considered as a static pressure for simplicity. Dynamic effects could be subject of the future
study.

The columns and the girder are made of steel and have rectangular cross-sections of the same
width and different heights, as shown in Fig. 1. Real hollow steel profiles are not considered
here for simplicity, since the cross-sections cannot be varied continuously but taken from an
assortment list at disposal. The material behavior is assumed to be linear elastic until failure.
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Figure 1: Mechanical model of the portal frame

2.2 Potential failure modes

It is assumed that the frame suffers only deformations in the plane, i.e. no out-of-plane defor-
mations are considered. Under given loads, the frame experiences both normal forces N , lateral
forces Q and bending moments M . Typical distributions of these internal forces as well as a
typical deformation state are given exemplarily in Fig. 2 for better understanding of system be-
havior. Two failure modes with respect to ultimate limit states are considered: material failure
and stability failure.

Figure 2: Internal forces N and M as well as deformation state of the portal frame

Material failure (local stress problem) The material failure is always local and occurs due
to the violation of a limit stress, in this case, the yield stress of steel σy. The maximum acting
stress can be calculated from the known normal forces and bending moments in each cross-
section. According to Eurocode 3 [8], the simplified check of the yield stress can be performed
by use of normal forces N and bending moments M as follows:

σmax = N

A
± M

W
, (1)

with the cross-section area A and the resistance moment W of a rectangular cross-section ac-
cording to Fig. 1

A = bh and W = bh2

6 . (2)

The neglecting of the shear force is a conservative simplification that is acceptable for the present
study due to a full rectangular cross-section of the columns and the girder. The influence of the
shear force is expected to be quite small.
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The limit state function for material failure is implicit since it requires each time the calcu-
lation of internal forces and corresponding maximum stresses at critical locations:

g (σmax, σy) = σy
|σmax|

− 1.0 = λmat
λ
− 1.0 = 0. (3)

Here, λmat and λ indicate the critical load factor for material failure and the current load factor
λ = 1.0, respectively.

Stability failure (global buckling) The stability failure occurs due to the loss of the system
equilibrium and is, therefore, always global. Stability failure is typically characterized by the
buckling load λstabP and the buckling mode Φ, i.e. the deformation state appearing after
buckling. At that, the load factor λstab marks the critical value of a given load case P . A typical
buckling mode of the portal frame under consideration is shown in Fig. 3.

Figure 3: Buckling mode of the portal frame

The corresponding limit state function is also implicit since it requires a step of the system
stability analysis and can be written in terms of the buckling load λstabP and a given load λP
as follows:

g (λ, λstab) = λstab
λ
− 1.0 = 0 . (4)

System failure (material or stability failure) It is assumed that any local exceedance of
yield stress and any buckling of the frame are unacceptable limit states for the crane operation
and, thus, correspond to the system failure. The load, structural and material parameters in
this benchmark are chosen in such a way that both material and stability failure occur at similar
load levels. Therefore, the real failure mode is sensitive to uncertainties.

2.3 Structural analysis

Structural analysis of the frame is carried out by the displacement method [16] similarly to the
finite element method. All necessary explanations are given below and provided in the appendix
to the benchmark [20], so that all participants can use the same computational model. Thus,
the model uncertainty can be excluded from this test aiming at the role of polymorphic data
uncertainties.
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The stiffness relation of the Bernoulli beam elements

Ke · ve =
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with the stiffness matrix Ke, the internal forces se and the nodal displacement vector ve is well
known [4]. It provides exact solution with respect to displacements:

ve = K−1
e · se. (6)

Figure 4: Discretized mechanical model with five beam elements and 12 nodal degrees-of-freedom

The portal frame is discretized by five classical Bernoulli beam elements and 12 active
degrees-of-freedom (nodal displacements and rotations), as shown in Fig. 4. Its linear response
to static loads can be calculated by use of the system stiffness relation, i.e. system of algebraic
equations:

K · V = λP with λ = 1. (7)

The elastic system stiffness matrix Kij , i, j = 1, . . . , 12 and the system load vector Pi, i =
1, . . . , 12 are derived analytically according to the system discretization in Fig. 4 and stay ex-
plicitly for all participants at disposal. A MATLAB® file executing an exemplary deterministic
calculation is available in [20] in order to minimize mistakes and misunderstanding with respect
to the structural analysis.

At that, the following input parameters are defined: material properties E, σy; geometry L,
H; element cross-sections b = b1 = . . . = b5, hc = h1 = h2 = h5, hg = h3 = h4; load magnitudes
FV, FB, FH and load positions LV, HH.
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Material failure (local stress problem) The analysis steps for evaluating the limit state
function according to Eq. (3) are shortly described in the following:

1. calculate the system nodal displacements: V = K−1 · P

2. transform the system displacements V to the local element ones ve,i

3. calculate the internal forces of each element: se,i according to Eq. (5)

4. calculate the maximum stress in Eq. (1) of each element: σmax,i

5. calculate the maximum stress in portal frame: σmax = max(σmax,i)

6. calculate the critical load factor λmat = σy

|σmax|

7. calculate the limit state function value according to Eq. (3): g (σmax, σy)

Stability failure (global buckling) If the frame losses its stability and buckles, it takes
a new deformed state called buckling mode. The critical load at which it happens is called
buckling load. The buckling load factor λ and the buckling mode Φ can be calculated according
to the classical stability theory from the generalized eigenvalue problem for the elastic (K) and
the geometric (Kg) system stiffness matrices as follows:

(K − λKg)Φ = 0. (8)

The geometric system stiffness matrix Kg of the frame accounts for the deformed state and
depends on the acting normal forces Ni and, thus, on the load level λP . The linearized geo-
metric stiffness matrix Kg,e for classical beam elements is well known [4]. The geometric system
stiffness matrix Kg of the frame with respect to 12 active nodal degrees-of-freedom (Fig. 4) is
derived analytically by the authors from the element matrices Kg,e and stays at disposal for all
participants. This kind of stability analysis provides only a linearized prediction of the buck-
ling load and does not account for imperfections. However, it is considered as sufficient for the
purpose of the present benchmark.

The analysis steps for evaluating the stability limit state function according to Eq. (4) are
shortly described in the following:

1. calculate normal forces from the linear elastic analysis at λ = 1.0: Ni

2. calculate the geometric system stiffness matrix: Kg

3. solve the eigenvalue problem in Eq. (8) and determine the minimum eigenvalue, i.e. load
factor: λstab = min(λi)

4. calculate the limit state function g (λ, λstab) according to Eq. (4).

2.4 Result interpretation

Material failure occurs if g(σmax, σy) ≤ 0, stability failure takes place if g (λ, λstab) ≤ 0. The
failure mode with the smallest load factor λstab or λmat occurs first.

3 Available data
The material, geometry, cross-section and loading parameters are generally considered with un-
certainties. Some of them are assumed to be deterministic for simplicity. The model parameters
are summarized in Table 1 and described below.
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Table 1: Model parameters (d=deterministic, u=uncertain)

Material E: u σy: u
Geometry L: d H: d

Cross-sections b: u hc: u hg: u
Loads FV: u LV: u FB: u FH: u HH: d

3.1 Material

It is known that the frame is built of steel S 355 [8] with the characteristic value of the yield
strength of 275 N/mm2, that is the 5%-quantile value of the statistical distribution. The mean
value of the Young’s modulus E can be taken as 210000 N/mm2. According to the Probabilistic
Model Code [14], log-normal distributions are recommended to be applied with a coefficient of
variation of 7% for the yield strength σy and with a coefficient of variation of 3% for the Young’s
modulus E.

3.2 Geometry and cross-sections

The lengths of the columns and the girder are explicitly measured and considered as determin-
istic: L = 10 m and H = 8 m (see Fig. 1). The quality management of the manufacturer gives
a usual fabrication tolerance of ±2 mm for the cross-sections of the frame. According to the
original design, the cross-sections of the members should be as follows:

• width: b = 0.20 m

• heights: hc = h1 = h2 = h5 = 0.14 m, hg = h3 = h4 = 0.85 m.

3.3 Loads

The operational field of the vertical load FV is defined deterministically within two limit positions
from the left edge LV ∈ [2.0 m, 8.0 m] (Fig. 1). The position LV of the vertical load within this
interval can be arbitrary. It is known that usual live loads of the crane vary between 1000 kN
and 2000 kN. A special sensor prevents the crane operation if the vertical load is larger than
3000 kN.

The crane also causes brake loads when moving freight. Depending on the movement velocity
and type of braking, the brake force can be determined with regard to the vertical force as follows:

|FB| = αFV with α ∈ [0.0001, 0.001] . (9)

The brake force FB can be directed both in positive and negative x-direction, while the vertical
load FV is directed always in positive z-direction.

The horizontal load FH results from the wind and attacks the frame always at the fixed
position HH = 4.0 m in positive x-direction. During two separate measurement campaigns, each
of five months duration, extreme values of the wind load FH per month have been measured,
see Table 2. The dead load of the portal frame is ignored for simplicity.

Table 2: Measured extreme loads FH

Measurement 1 7.0 kN 2.8 kN 5.8 kN 8.3 kN 10.3 kN
Measurement 2 10.1 kN 4.6 kN 12.4 kN 8.2 kN 15.7 kN
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4 Challenges
The present benchmark proposes 3 challenges to deal with. Challenge 1 concerns the decision
making about the permission for the crane operation under polymorphic uncertainties. Challenge
2 deals with the same decision but in the situation, if measurements on structural response
without failure are available in addition. Application of data assimilation approaches is expected
to correct the decision. Challenge 3 considers the structural optimization under polymorphic
uncertainty in order to fulfill a low failure rate and to minimize material volume.

4.1 Challenge 1: Decision making

The engineering decision to be taken sounds: Is the operation of the frame under conditions
described above allowed or not? The participants are expected to give the answer "yes" or "no".
The answer "yes" is correct, if the failure rate remains smaller than 10−3, i.e. 1 failure per 103

load operations, that is the requirement of the operator. The answer "no" is correct, if the failure
rate is larger than 10−3. Besides the answer "yes" or "no", participants are expected to explain
their classification of uncertainties, suitable approaches to handle them and the background of
the decision.

In a second step, the decision can be improved by using N = 5000 data sets for the loading
parameters FH, FB and FV. These are given in a text file in [20].

A reference probabilistic solution calculated by the authors with "true" distributions of the
structural and loading parameters is given in Section 5.1 and can be used for an independent
check of the decision by every participant.

4.2 Challenge 2: Decision making by data assimilation

The engineering decision to be taken sounds: Is the operation of the frame under conditions
described above allowed, if the measurement data available from the operation is taken into
account? The participants are expected to give the answer "yes" or "no". The answer "yes"
is correct, if the failure rate remains smaller than 10−3, i.e. 1 failure per 103 load operation.
The answer "no" is correct, if the failure rate is larger than 10−3. The focus of this challenge
is directed towards the data assimilation and its contribution to the uncertainty quantification.
The "true" material and cross-sectional parameters are expected to be identified and specified.
Again, a reference probabilistic solution is given for an independent check in Section 5.2.

Operation measurement data During operation, that means without occurrence of failure,
the response parameters given in Table 3 have been measured in addition to the associated
loading parameters FH, FB and FV, see the text file in [20]. These data sets have been gen-
erated numerically, by calculating the frame with the "true" structural parameters. Several
measurement errors and measurement noise are already incorporated into the data sets.

Table 3: Measurements during operation

Measured value Designation
horizontal displacement [m] V4
vertical displacement [m] V8

position of the vertical load [m] LV

Remarks to the measurement data Due to the stiffness relations in the frame, it can
be assumed that the whole girder experiences the same horizontal displacement. The vertical
displacement V8 is measured at the measured load position LV, so both values belong together
in each measurement. All measurements have been performed by a laser distance meter, which
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provides a nominal accuracy of ±1mm. It is also known that some measurements could be
disturbed by foreign objects breaking the laser rays during measurements. In this case, mea-
surements contain wrong values.

4.3 Challenge 3: Design under uncertainties

The final challenge is to design the frame in such a way that the failure rate becomes smaller
than 10−4. The only design parameters are the cross-section heights of the two columns hc and
that of the girder hg. All other parameters are the same as in challenge 1. The best design is that
one with the minimum weight of the frame and the target failure rate fulfilled. In Section 5.3,
the authors have calculated the optimal design values hc,opt and hg,opt by use of probabilistic
methods with "true" distributions of the structural and loading parameters.

5 Reference solution
In the following, the authors of this benchmark offer reference solutions for each of the presented
challenges. Participants are able to check their individual results and possibly improve their
approaches. The reference solutions have been determined by stochastic simulations of the
frame with "true" structural and loading parameters, which are known to the authors. This
means that all uncertainties have been reduced as far as possible and epistemic uncertainties are
not present anymore [15]. The uncertainties could be characterized as aleatory, so the reference
solutions are based on classical probability theory.

5.1 Challenge 1: Decision making

According to the description of the input parameters in Section 3, the "true" probabilistic dis-
tributions have been prescribed by the authors and summarized in Table 4, see also Fig. 5.

Table 4: "True" distributions of the structural and loading parameters

Input Distribution
E [N/m2] log-normal: E ∼ LN (µ, σ) = LN (210 · 109, 6.3 · 109)
σy [N/m2] log-normal: σy ∼ LN (µ, σ) = LN (309.27 · 106, 21.65 · 106)
b [m] normal, truncated on [l, u]:

b ∼ T N (µ, σ, l, u) = T N (0.200, 0.001, 0.198, 0.202)
hc [m] normal, truncated on [l, u]:

hc ∼ T N (µ, σ, l, u) = T N (0.140, 0.001, 0.138, 0.142)
hg [m] normal, truncated on [l, u]:

hg ∼ T N (µ, σ, l, u) = T N (0.850, 0.001, 0.848, 0.852)
LV [m] uniform: LV ∼ U(l, u) = U(2, 8)
FV [N] empirical: see Fig. 5

pdf(0 · 106 ≤ FV ≤ 1 · 106) = 0.5 · 10−30F 4
V

pdf(1 · 106 ≤ FV ≤ 2 · 106) = 0.6 · 10−6

pdf(2 · 106 ≤ FV ≤ 3 · 106) = −0.6 · 10−12FV + 1.8 · 10−6

α [/] uniform: α ∼ U(l, u) = U(0.0001, 0.001)
FB [N] empirical: FB = ±αFV
FH [N] Weibull: FH ∼ W(a, b) =W(10.6 · 103, 2.5)

Performing a plain Monte-Carlo simulation with N = 106 samples leads to the failure prob-
ability of:

pF ≈ 3.7 · 10−3 . (10)
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(a) Material (b) Cross-section

(c) Load

Figure 5: Reference input parameters

Since pF is greater than the given threshold value of 1 · 10−3, the operation of the frame is
not allowed.

In case of system failure, that means min{g(σmax, σy), g (λ, λstab)} ≤ 0, the material failure
is to 49% and the stability failure to 51% the responsible failure mode.

5.2 Challenge 2: Decision making by data assimilation

"True" structural parameters Within the bounds of the given "true" distributions of the
structural parameters, the following "true" parameters have been defined by the authors, see
also Fig. 5:

• Young’s modulus: E = 220 · 109 N/m2

• yield strength: σy = 301 · 106 N/m2

• cross-section width: b = 0.1993 m

• cross-section height of the columns: hc = 0.1415 m

• cross-section height of the girder: hg = 0.8491 m

Again, a Monte-Carlo simulation with N = 106 samples has been performed, leading to the
failure probability of:

pF ≈ 4.7 · 10−4 . (11)
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If the "true" structural parameters could be perfectly identified by using available measurement
data, than the operation of the frame could be allowed, that follows from the comparison of pF
to the given limit value of 1 ·10−3. If system failure has been occurred, then it has been initiated
completely by material failure. The limit state function value for stability failure g (λ, λstab)
remains in this case always positive.

Identification of the "true" structural parameters For the data assimilation process
a text file with 5000 measurements of V4 [m], V8 [m], LV [m], FH [N], FB [N] and FV [N] is
given [20]. The displacement measurement data of V4 [m], V8 [m] and the crane load location
LV [m] are noisy. The noise r is normally distributed and truncated on [l, u]: r ∼ T N (µ, σ, l, u) =
T N (0 m, 0.001 m,−0.001 m, 0.001 m). Additionally, 500 measurements in the data set have been
further manipulated. All of those measurements could be gained from the sensors, thus, no sys-
tem failure has occurred during measurements.

Before the data assimilation is initiated some preprocessing of the measurement data is
necessary to delete corrupted ones. Most of them can be identified visually as shown in Fig. 6a.
Note, that not all of the manipulated data in LV can be identified that will lead to small errors
in the prediction of V8.

(a) Identification of corrupted data (b) Adaption of displacements

(c) Adaption of structural parameters (d) Determination of σy

Figure 6: Parameter identification by data assimilation

An augmented Ensemble Kalman Filter (EnKF) [11] has been used for the data assimilation
process. This algorithm predicts the measured state variables V4 and V8 and the unknown
structural parameters E, b, hc and hg at the same time for the measured loads and the crane
load location LV. The EnKF provides a very good prediction of the displacements V4 and V8,
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see Fig. 6b. Due to an infinite number of combinations between E, b, hc and hg leading to the
same entries in the stiffness matrix K, the prediction of the unknown structural parameters is
acceptable but not optimal, see Fig. 6c. The results have been obtained with an ensemble size
of 20 samples.

Some postprocessing of the adapted parameters is necessary to determine the value of σy.
Since no system failure has been occurred during measurement, σy has to be equal or larger
than the maximum of each necessary σy,i in measurement i resulting in an acceptable prediction
of the "true" σy, see Fig. 6d.

The identified structural parameters are summarized in Table 5. By use of these parameters,
the resulting failure probability has been calculated to pF ≈ 5.3 · 10−4 < 1 · 10−3. Therefore, the
operation of the frame can be allowed.

Table 5: Comparison of "true" and identified structural parameters

Parameter "True" value Identified value Deviation
E [N/m2] 220.00 · 109 218.57 · 109 −0.7%
σy [N/m2] 301.00 · 106 298.21 · 106 −0.9%
b [m] 0.1993 0.2013 +1.0%
hc [m] 0.1415 0.1417 +0.1%
hg [m] 0.8491 0.8484 −0.1%

5.3 Challenge 3: Design under uncertainties

The optimization problem is defined as

zopt = min
(hc,hg)∈R2

>0

{z (hc, hg) | pF (hc, hg) < pT} . (12)

The objective function z = 2hcH+hgL is proportional to the weight of the frame: z ∼ m = ρV =
ρ(2AcH + AgL) = ρbz. The probability of failure pF , also depending on the design variables
hc and hg, has to be smaller than the given target value of pT = 10−4. In each iteration, the
computational model has been evaluated by N = 107 samples in a plain Monte-Carlo simulation
with unknown loading parameters as described in Section 5.1 for Challenge 1.

By taking the material parameters (E, σy) and the cross-section width b as uncertain like in
Section 5.1, the optimal values hc,opt = 0.1449 m and hg,opt = 0.8925 m have been determined.
Both optimal values hc,opt and hg,opt are larger than the given "true" values. At that, the
objective function reaches the value of zopt = 11.2434 m2.

6 Final remarks
The proposed benchmark and a probabilistic reference solution for a typical structural engi-
neering system should help to clarify the benefit of the polymorphic uncertainty modeling for
decision making and design optimization. Evidently, a combination of diverse uncertainty models
requires significant additional computational efforts compared to a purely probabilistic frame-
work. It is usually expected that such efforts provide a basis for better decisions which is at the
moment neither evident nor really justified.

Besides the methods for the uncertainty and system modeling themselves, one of the crucial
issues remains an objective comparison of results provided by different uncertainty models. It
is an open problem which we hope to discuss on the basis of the submitted solutions to the
benchmark. Obviously, it can be done by use of decisions made.

The second challenge of the benchmark deals with the question how data assimilation can
help in decision making. On this way, the epistemic uncertainties could be essentially reduced,
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as far as possible. However, dealing with epistemic uncertainties in data assimilation is the
next challenge. Finally, a design optimization problem under polymorphic uncertainty is more
demanding process than that with probabilistic methods only. Again, a basis of the objective
comparison of various optimal solutions with respect to safety and efficiency is a matter of
discussion. It is worth mentioning that several aspects have been simplified in the present
benchmark, like dynamic effects, lateral forces or realistic steel profiles. They do not limit the
goals of the present benchmark study and are intended to be taken into account in the future
benchmarks.

Researchers dealing with uncertainty quantification are invited to participate in this bench-
mark study and submit their solutions to the corresponding author via e-mail (yuriy.petryna@tu-
berlin.de) or at least to refer to this benchmark in case of separate publications. Each submitted
solution will be registered and independently checked as described above. A joint publication in-
cluding comparison of all submitted results will be prepared and discussed with the participants.
The information on the benchmark as well as all necessary data are available in [20].
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