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Continuations in the Java Virtual Machine

Tulian Dragos!, Antonio Cunei?, and Jan Vitek?

! Ecole Polytechnique Fédérale de Lausanne, Switzerland
2 Purdue University, USA

Abstract. Continuations have received considerable attention lately as
a possible solution to web application development. Other uses proposed
in the past, such as cooperative threading, coroutines or writing iterators,
made them an attractive feature of dynamically typed languages. We
present issues involved in adding continuations to a statically typed,
object-oriented language like Java, and its implementation in the Java
Virtual Machine. We propose three different flavors of continuations,
and study their interactions with the base language, focusing on Java’s
concurrency model. We describe our implementation in Ovm, a realtime
Java Virtual Machine, and discuss open issues.

1 Overview

Continuations are a way to represent the “rest of the computation” at a given
point in the program [1]. Most languages that have first-class continuations rep-
resent them as functions that, when called, cause the immediate transfer of
control from the caller to the point where it was captured. The computation will
resume in the same state as when it was captured. It has to be noted that, unlike
setjmp/longjmp in C, a continuation can be called at any point during program
execution, sometimes long after the activation frame where it was captured has
been left.

Continuations are used to encode coroutines, cooperative threading, to write
iterators (C# iterators or Python generators) and have been proposed as a
natural abstraction for interactive web applications [2, 3]. For instance, a tree
traversal iterator, which might be a non-trivial task to code in plain Java, can
be as simple as shown in Fig. 1. Yield suspends the current method and returns
a value to the caller. Subsequent calls to next resume the traversal immediately
after the previous call to yield. This method could not be coded in Java without
continuations. For brevity, we don’t include the definition of this method.

Our goal when designing continuations for Java was to confine changes to the
virtual machine. Previous work has shown that continuations can be added in
languages that target uncooperative virtual machines like the JVM or the .NET
[4,5]. However, implementing continuations in the virtual machine is likely to be
more efficient and make them available to all languages targeting that platform.
Furthermore, we chose to expose them through library functions rather than
new opcodes, so that existing compilers need not be modified to take advantage
of this new feature.



public class System {

public static Object callcc( public Iterator getIterator() {
Runnablel r); return new Generator() {
public static Object callccBounded( protected void generate() {
ContinuationBound cb, Runnablel r); preorder(Tree.this);
public static Object callccOneShot( }
Runnablel r);
/). private void preorder(Tree t) {
} if (t.isLeaf())
yield(t.value);
public interface Runnablel { else {
public void run(Continuation k); preorder(t.left);
} preorder(t.right);
}
public final class Continuation { 13N
public void call(Object v); }
}
(a) Additions to the java.lang package. (b) A tree iterator.
Fig. 1.

Continuations are exposed through the library function callcc®. This fol-
lows common practice in languages that have first-class continuations (Scheme,
Smalltalk, Ruby, ML, etc.). Fig. 2 shows an example of using callcc in our
system. The list of additions to the java.lang package is shown in Fig. 1 (a dif-
ferent class than System could have been used for adding callcc but we chose
to make it clear it is a VM service).

System.callcc(new Runnablel() {
public void run(Continuation k) {
k.call(new Integer(42));
}
H;

Fig. 2. Using callcc

1.1 Call/cc and Call

We follow standard semantics for the call/cc mechanism. In the following text
the term “execution context” will refer to the call stack, local variables and
instruction pointer during the execution of a method. Global state and objects
on the heap are not saved/restored by continuations.

3 Call with current continuation



System.callcc This method captures a continuation k which represents the
current execution context, with the instruction pointer pointing immedi-
ately after this call. It then proceeds to call method Runnablel.run on its
parameter.

Return value: If the call to Runnablel.run finishes without a call to k.call
being made, System.callcc returns null. Otherwise, it returns the value
passed as argument to k.call (see below).

Continuation.call A call to this method restores the execution context cap-
tured by the given continuation. The current execution context is dropped
and execution continues at the point where System.callcc was called, re-
turning the value passed as argument to call. This method never returns.

2 Continuations

There are several flavours of continuations presented in literature [6-8]. We have
chosen to implement three kinds of continuations: full continuations for their
expressivity, one—shot continuations because they are fast and serve a common
use—case, and delimited continuations as a good compromise between efficiency
and expressivity.

First—class continuations This is the most general kind of continuations.
There are no limitations with regard to the number of times a continua-
tion can be called, or its lifetime. Since they need to copy the full execution
stack, they are more costly than the other kinds of continuations.

Delimited continuations The user first obtains a continuation bound which is
then used to obtain a delimited continuation. Such a continuation is valid for
as long as the execution stack does not exit its bound. An invalid continuation
throws an exception when called. Valid delimited continuations can still be
called any number of times. A delimited continuation costs less than a full
continuation, since they only need to copy a subsection of the execution
stack, given by the continuation bound and the point where callcc is called.

One—shot continuations A one shot continuation can be called a single time.
They are valid for as long as the execution does not leave the callcc frame?.
They are the “cheapest” continuations available, since the system only has
to save the instruction pointer.

The user has the choice of which kind of continuations to use by calling the
corresponding callcc method. Full continuations can be used when the whole
execution context needs to be saved and restored, for instance to code threads.
One—shot continuations can be used fast for non—local returns while delimited
continuations are a good choice when only a limited part of the execution context
should be saved/restored (for instance, to write coroutines).

4 This can be regarded as an implicit application of that continuation by callcc itself,
after the runnable that was passed as argument returns.



3 Interactions with the Base Language

Existing Java language features turn out to interact in unexpected ways with
continuations. Exceptions, language support for synchronization through moni-
tors, threads and the Java security model all present possible issues when con-
tinuations are added to the language. We will consider each one in turn and
present the problems we identified and our solutions.

3.1 Exceptions

The try-catch-finally statement raises issues in the presence of continuations:
finally handlers are guaranteed to run, be it through normal or abrupt (exception
thrown) completion of its protected block. Consider the code shown in Fig. 3

(a)-

System.callcc(new Runnablel() {
public void run(Continuation k) {

Handle h = getNativeHandle(); this.kl = k;
try { try {
// use h in various ways System.callcc(new Runnablel() {
System.callcc( public void run(Continuation k) {
new Runnablel() { this.k2 = k;
public void run(Continuation k) { Y/
this.dangerousk = k; kl.call(Q);
i3N s
// use h again // k2 points here
} finally { } finally {
releaseNativeHandle(h); /).
} }
s

// k1 points here

(a) (b)

Fig. 3. Continuations and “finally”

In usual Java, this code ensures the native handler is released under all
circumstances. It also saves a continuation which can later be called, and make
use of the handle after it has been released. Furthermore, it will reach the end
of the try—finally block and run the handler once more — releasing the native
handler a second time.

The problem comes from the fact that callcc breaks the assumption that a
finally handler is run just once. The converse, calling a continuation while finally
handlers are active has a similar problem: should they be run? The answer is
not easy, since it depends on the continuation: in Fig. 3 (b) calling k1 leaves the
finally handler, while calling k2 does not.

Additionally, a VM-only solution cannot be adopted, since the Java VM [9]
has no notion of finally handlers. It is the compiler’s job to generate proper code



on all control flow paths to invoke the finally code. Thus, Java with continuations
has to either forbid such cases, or relax the guarantees of finally. To forbid
them, a simple extension to the type checker could ensure that all methods that
call callcc or Continuation.call are annotated with a special annotation,
and that no such methods are called from within blocks protected by a finally
handler. Relaxing the guarantees for finally is the road taken by Ruby and
Smalltalk, who will not honor their equivalent of finally when continuations
are involved.

An interesting alternative to try-finally is Scheme’s dynamic-wind [10], which
works like a try-finally with a prelude: whenever control enters the block (either
normally or through a continuation), the prelude is run; the same goes for leaving
the block and the postlude. Such a method can be easily written when having
callcc [11].

The best way to deal with continuations in the presence of Java’s try-finally is
an interesting research question, and has to be dealt with by any implementation
that adds continuation to the language. However, our focus in this paper is the
VM side of things, so we will not explore further.

3.2 Synchronization

Capturing a continuation inside a synchronized block means that such a block
can be re-entered any number of times through that continuation. Code inside
that block assumes that a number of locks have been acquired and therefore,
whenever it executes, they have to actually be held.

Our solution is that Continuation. call fails (with an I1legalMonitorState
exception) if the current thread does not hold exactly the same monitors as the
one which captured the continuation. To see why, we need to notice that final-
izers and monitors are closely related. A synchronized block implicitly defines
a finally handler which will release that monitor. It follows that we have the
following restrictions on callers of a continuation captured inside a synchronized
block:

Destination compatibility The caller must be able to release at least the
same monitors as the ones active at the point of capture. This is because it
will run the special finally handlers.

Source compatibility The caller must not hold monitors other than the ones
active at the point of capture. This is because it will drop the current exe-
cution context, and its own finally handlers will not be executed leading to
unreleased monitors.

It follows that the two sets of monitors have to be equal. Our implementa-
tion keeps track of the monitors acquired by a thread and makes the necessary
checks when a continuation si captured or applied. User code can test whether a
continuation is valid in the current context by calling Continuation.isValid.
This problem seems to have gone unnoticed by the creators of RiFE [5].



3.3 Threads

Continuations refer to the thread that created them. What happens if a thread
calls a continuation captured by another thread? Delimited and one—shot con-
tinuations fail at runtime. Since they carry only a part of the execution context,
they can’t recreate it on the target thread. Full continuations could, in princi-
ple, be called in a different thread than the one who captured them (our current
implementation does not allow this).

3.4 Java Security Model

The Java security model [12] uses a stack—walking algorithm for deciding whether
the access to some resource should be permitted or not. Access is granted if all
the code on the stack has the required permission (we ignore doPrivileged for
simplicity, as it does not affect this issue). Since continuations capture (portions
of) the stack, they carry around the security context of the code who captured
them, and makes it more difficult to reason about security. Indeed, it’s not only
control flow (who calls whom), but also data flow (what continuations can reach
a given call) that has to be taken into account. Imagine a continuation that
points to some security sensitive operation (like formatting the hard drive) that
reaches untrusted code (by careless programming). Untrusted code can call this
continuation and no one could stop disaster from happening. This problem is
similar to that of thread creation: a new thread has an empty stack, therefore
it could perform some sensitive actions which, later, could leak to the code that
created the thread. That code might not have had the necessary permissions to
carry on those operations itself. The security model handles this by making new
threads inherit the security context of their parent.

A similar solution for continuation would be to record for each thread the
security contexts at all points where a continuation was called, and modify the
algorithm to take them into account. However, this is not a satisfactory solution
since it implies an ever increasing chain of security contexts. Our implementation
does not address this issue, which should however be kept into consideration
when dealing with security-sensitive applications.

4 Implementation

We implemented continuations in Ovm [13], a framework for building virtual
machines, coming with several implementation of VM services (garbage collec-
tion, monitors, or execution engine) which can be combined to build a working
JVM. We used the j2c¢ execution engine, which is an ahead-of-time compiler that
uses C++ as target.

4.1 Garbage Collection

We used a conservative, mostly copying garbage collector. Using C+-+ as a target
has the disadvantage that the garbage collector has to be able to deal with lack



of precision. While pointers from objects can be precisely identified, pointers
from the stack have to be handled conservatively, and the pointed objects have
to be marked as not movable (pinned). Since continuations are not ordinary
objects, but carry stacks with them, they need to be visited before traversing
the reachability graph, and their “neighbours” pinned. This last requirement
comes from the fact that an object can be reached before its continuation is
visited, and therefore moved before it had the chance to be pinned. Note that
this issue does not appear in VMs that use heap-allocated activation frames,
such as [14], as they can be treated as ordinary objects.

We modified the mostly copying GC to handle continuations correctly. We
keep around a list of live continuations which is updated each time a continua-
tion is captured (continuation capture, as well as continuation calls are atomic
operations). When the GC starts, it visits all live continuations and treats their
stacks and registers as conservative roots. A subtle problem arises: since Ovm
provides no weak references, and continuations are referenced from the GC itself,
they will never be collected. Our solution is to “manually” garbage collect the live
continuation list. We use a simple mark and sweep algorithm which marks con-
tinuations in the live list when they are visited during normal GC walk. At the
end of the GC the list is swept. This way we guarantee that dead continuations
will be collected in the second GC run after they are dead.

4.2 Monitors

In order to satisfy the monitor-affinity property of continuations, we need to keep
track of the acquired locks. Each thread maintains a list of entered monitors,
which is updated on monitor enter and exit. When a continuation is captured,
the list of monitors is saved. When a continuation is called, we check that the
monitors entered by the current thread are the same as the ones saved in the
continuation. If this is not true, an I1legalMonitorState exception is thrown.
Continuations are invalidated eagerly, as soon as the most recently acquired
monitor has been released. This allows the programmer to test a continuation
before attempting to call it.

A current limitation is that thin locks [15] are not supported. Thin locks use
a partial word in objects to perform fast locking when there is no contention.

4.3 Performance

We present some preliminary performance results of our prototype. Figure 4
shows the cost of different operations involving continuations. Qur testing con-
figuration is real time Ovm with the j2c backend, and a mostly—copying garbage
collector. Each data point in the figure is an average over ten measurements.
Continuation capture is the most expensive operation. Its cost increases lin-
eary with the stack depth, and up to depths of 50 activation frames it is lower
than the cost of creating a thread in our system. Its cost is roughly 8 times the
cost of a normal call. One-shot continuations show a constant cost relative to
stack depth, about the same as a normal method call. It is interesting to note
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Fig. 4. Cost of continuation operations in different settings. We used a dual—core, Intel
Xeon 3GHz machine with 2GB RAM, running Linux 2.6.15.

that the cost of a continuation call is almost constant relative to stack depth,
roughly 2 times more expensive than method calls. We believe the difference
between capture and call is due to memory allocation that takes place during
capture. The cost of continuation capture is an area where we expect our future
implementation to show significant improvement. We didn’t include measure-
ments for bounded continuations as their behavior relative to stack depth is
similar to that of full continuations.

5 Conclusions

We have presented a way to integrate first—class continuations in the Java lan-
guage. We studied the interactions between existing language features and con-
tinuations and suggested possible approaches to reconcile the existing semantics
of Java regarding exceptions, threads, monitors and the security model. We have
implemented continuations in a Java VM, we have a system that handles mon-
itors correctly, and we conducted preliminary performance measurements. We
showed how a conservative copying GC can be extended to deal with continua-
tions. As far as we know, this is the first implementation of continuations in a
Java VM.

6 Future Work

We are planning to conduct further work on the interaction between contin-
uations and the “finally” exception mechanism, in order to obtain an efficient
implementation that does not sacrifice the expected exception semantics.



Continuation capture is eagarly copying the whole execution stack. We plan

to implement a more efficient scheme using lazy copying [16].
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One Method At A Time Is Quite A Waste Of Time

Andreas Gal, Michael Bebenita, and Michael Franz

Computer Science Department
University of California, Irvine
Irvine, CA, 92697, USA
{gal,bebenita, franz}@uci.edu

Abstract. Most just-in-time compilers for object-oriented languages operate at
the granularity of methods. Unfortunately, even “hot” methods often contain “cold”
code paths. As a consequence, just-in-time compilers waste time compiling code
that will be executed only rarely, if at all. We discuss an alternative approach in
which only truly “hot” code is ever compiled.

1 Introduction

Many modern object-oriented languages such as Smalltalk [7], Java [10, 1] and C# [8]
have a virtual machine-based execution model. Just-in-time compilation is often used
to translate the virtual machine bytecode into native machine code for faster execution.

Just-in-time compilers used in virtual machines are often quite similar in structure
to their static counterparts. In case of static compilation, the compiler processes the
program code method by method, constructing a control-flow graph (CFG) for each
method, and performing a series of optimization steps based on this graph. In the final
step the compiler traverses the CFG and emits native code.

Most dynamic compilers behave essentially identically: pick a method, construct its
CFG, and generate native code for it. In order to strike a balance between startup latency
and long term efficiency, JIT compilers often operate in a mixed mode environment
instead of compiling the entire program. In the case of Java, bytecode is first executed
through an interpreter. Methods that are invoked often are identified as “hott” and are
dynamically compiled into native code.

In a static compiler, using methods as compilation units is a natural choice. In static
compilation there is usually no profiling information available that could reveal whether
any particular part of a method is “hotter” and thus more “compilation worthy” than
others, it actually makes perfect sense to always compile entire methods and all possible
paths through them. After all, for a static compiler, all these different paths look equally
likely to be taken at runtime.

This is dramatically different in case of a dynamic compiler. In contrast to its static
counterpart, a dynamic compiler has access to runtime profile information that the vir-
tual machine can collect easily while it interprets code. With this profile information,
the dynamic compiler can decide which parts of a method actually contribute to the
overall runtime, and which parts are rarely taken and are in fact irrelevant from a global
perspective as far as optimization potential is concerned.
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Region-based compilation was proposed to address this issue. Suganuma et al. [13],
proposed a region-based just-in-time compiler for Java. It uses runtime profiling to se-
lect code regions for compilation and uses partial method inlining to inline profitable
parts of method bodies only. The authors observed not only a reduction in compilation
time, but also achieved better code quality due to rarely executed code being excluded
from analysis and optimization.

However, region-based compilation really only addresses the symptoms by trying
to exclude unprofitable code areas from compiled methods, instead of addressing the
actual problem, which is the choice of an unsuitable compilation unit in the first place.

The unsuitability of methods as compilation units becomes even more apparent
when trying to deal with long running hot code regions inside a method that is cur-
rently being interpreted. Once such a method is discovered to be hot, it is subsequently
compiled and optimized to directly executable native code. The runtime system then
has to perform an expensive and complex process called on-stack replacement [9] to
substitute the newly compiled code for the interpreted version. For a virtual machine,
being able to deal with on-stack replacement means having to support side-exits from
running interpreted methods, and side re-entries into compiled method bodies. Both of
these processes are so complex that very few open-source or research virtual machines
actually support on-stack replacement. Therefore it is a feature found mostly only in
commercial VMs and large-scale research efforts such as Jikes RVM [2, 4].

We have been exploring a different approach to building dynamic compilers in
which no CFG is ever constructed, and no source code level compilation units such as
methods are used. Instead, we use runtime profiling to detect frequently executed cyclic
code paths in the program. Our compiler then records and generates code from dynami-
cally recorded code traces along these paths. It assembles these traces dynamically into
a tree-like data-structure that covers frequently executed (and thus compilation worthy)
code paths through hot code regions. [35, 6]

Our tree-based code representation has a number of advantages. On the one hand,
it subsumes and greatly simplifies on-stack replacement. In our scheme, compiled code
is always entered independently of method boundaries. Thus replacing interpreted code
with the compiled equivalent becomes trivial. When a trace has been recorded, the
interpreter stops at the loop header (which is the entry point of the associated trace tree)
and the entire tree is recompiled. The trace tree can immediately be executed, replacing
the previously compiled copy. Since recording is only performed after the native code
has side exited into the interpreter, its not necessary to actually implement an on-stack
replacement mechanism that translates from one compiled state into another.

The other major benefit of our approach is that our trace tree data structure only
contains actually relevant code areas. Edges that are not executed at runtime (but appear
in the static CFG) are not considered in our representation, and are delegated to the
interpreter in the rare cases they are taken. Unlike compilers that use basic-block based
CFG analysis where advanced optimizations are expensive, our tree-based compiler can
perform advanced optimizations quickly. The lack of control flow merge points in our
tree-based representation simplifies optimization algorithms.

12



2 Trace Compilation

Our trace-based JIT compiler targets the JVM bytecode language and starts the exe-
cution of class files through an interpreter, much like traditional JIT compilers do. To
detect “hot” code areas that are suitable candidates for dynamic compilation, we use a
simple heuristic first introduced by Bala et al. [3]. The interpreter is augmented to keep
track of frequently executed backwards branches. The targets of such branches are often
the loop headers of hot code areas. Once such a loop header is discovered, we attempt
to record a trace through the loop region associated with the header. Starting at the loop
header, the interpreter records subsequent instructions until the original loop header is
reached again.

During the recording phase, branch instructions are recorded as guard instructions
and indicate possible loop exits that must be safeguarded against during native code
execution. Our JIT compiler emits appropriate code to check that a previously observed
result of a guard condition still applies during future executions of the compiled trace.
If the condition fails, a side exit is performed and the compiled code hands control back
to the interpreter and resumes it in a state consistent with the side exit detected during
the native code execution.

During trace recording, method invocations are inlined into the trace. In case of a
static method invocation, the target method is fixed and no additional runtime checks
are required. For dynamically dispatched methods, the trace recorder inserts a guard
instruction to ensure that the same actual method implementation is reached as was
found during trace recording. If the guard fails, a regular dynamic dispatch is repeated
in the interpreter. If it succeeds, we have effectively performed method specialization
on a predicted receiver type. Since our compiler can handle multiple alternative paths
through a trace, eventually our compiler specializes method invocations for all com-
monly occurring receivers.

Guard instructions that appear in inlined methods must carry enough information
to be able to reconstruct the interpreter’s state in case a side exit occurs. In case of a
side exit in the same method scope that the trace was entered, all that has to be done is
to write back any values held in machine registers into the appropriate stack and local
variable locations. In case of a “deep” side exit inside a method invocation that is being
inlined, guard instructions must store enough information to allow the virtual machine
to fully construct the interpreter state, which includes constructing method frames on
the virtual machine stack.

During native code execution, if a guard instruction fails and a side exit occurs, our
JIT compiler must resume execution through the interpreter. Since this switch can be
expensive, our JIT compiler attempts to include traces that splinter off at side exits into
the original trace. For this, at every side exit we resume interpretation, but at the same
time also re-start the trace recorder to record instructions starting at the side exit point.
These secondary traces are completed when the interpreter revisits the original loop
header. This results in a tree of traces, spanning all observed paths through the original
program’s loop.

Figure 1 shows the control flow graph of a nested loop, and the corresponding trace
tree that is recorded once instruction 2 is detected as a loop header. From left to right,
straight line tree paths represent the traces that were recorded. The first trace to be
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Fig. 1. Example of a nested loop and a set of suitable traces through the nested loop. Each basic
block in the control-flow graph of the loop (left) is represented as a numbered node. (1) is the
loop header of the outer loop, (2) the loop header of the inner loop. Since (2) is executed more
frequently than (1), it will become the anchor node of the trace tree (right) that is recorded for
this loop. In the trace tree every trace starts at the anchor node and also terminates at it. Since (2)
is the anchor node of the trace tree, every trace ends with node (2). The loop header of the outer
loop is inlined into the trace tree as just another trace originating and terminating at node (2).

recorded is {2,3,5,2} followed by {2,3,5,7,1,6,7,1,2} and then {2,3,5,7,1,2},
etc. After every secondary trace that is recorded and added to the trace tree, our JIT
compiler recompiles the entire trace tree and emits new native code for it. At the next
entry of the compiled code through the loop header, this new version is executed until
another side exit is encountered, in which case the tree can be extended further.

The first recorded trace is usually the hottest path through the loop. Secondary traces
are less likely to occur during execution and thus benefit less from compilation. Our
compiler limits the growth of trace trees to an experimentally chosen number of traces.

3 Evaluation

We have built a dynamic compiler for Java based on the described trace tree compila-
tion method. The compiler was implemented as part of the JamVM [11] Java Virtual
Machine, which is a fast Java interpreter but previously lacked a just-in-time compiler.

To detect trace tree entry points we modified JamVM’s interpreter to keep track of
the execution frequency of JVML branch instructions. Once a certain threshold is sur-
passed the trace recorder will attempt to record a primary trace starting at the destination
of such frequently executed branch instructions.

After compiling the primary trace, the trace is executed in compiled form. The trace
recorder is started whenever a side exit occurs, attempting to grow the associated trace
tree.

Our current compiler prototype only performs a limited set of optimizations includ-
ing constant propagation, copy propagation, arithmetic optimizations, loop invariant

14



code motion and array bounds check elimination. The optimized intermediate repre-
sentation of the trace tree is then converted to PowerPC machine code.

With the current set of optimizations and our rather simplistic PowerPC code gener-
ator that does not perform instruction scheduling, we are able to speed up the execution
of section 2 of the Java Grande benchmark [12] set by factor 5 to 12.

On average, our system generates approximately 1500 bytes of machine code for
each benchmark program in section 2, which is significantly smaller than the code emit-
ted by method-based just-in-time compilers such as Sun’s Hotspot JVM [14]. The latter
generates approximately 30kB of code for each Section 2 benchmark program, but also
achieves an additional speedup of 1.5 to 2 over the performance of our prototype com-
piler.

For most benchmarks in section 2 the recorded trees achieve near-ideal coverage
of the performance critical part of the loop with 2-4 traces. This means that adding
additional traces will no longer produce any substantial speedup since all frequently
executed paths are covered. The largest trace tree is produced for HeapSort. The second
and third trace added to the tree produce a speedup of 2.5 over the initial trace by
reducing side exit frequency. The fourth trace produces another speedup of 2. Adding
additional traces beyond this point will not produce any visible speedup.

Also noteworthy about our prototype compiler is the compilation speed. Our sys-
tem spends 100 to 750 times less time in the just-in-time compiler than Sun’s Hotspot
JVM. While in part this can be explained with the fact that we compile less code in gen-
eral, this would only explain a compilation time speedup of approximately factor 20.
Thus, the overall compilation performance highlights that our trace-based compilation
approach is not only more selective when deciding what code to compile, but is also
less time consuming per instruction compiled.

4 Discussion

Traditional dynamic compilers are often built based on the same principles and ideas
that were invented for their static counterparts. We introduced a novel intermediate
representation which we call trace trees that eliminates the inherent weaknesses of us-
ing methods as compilation units in a dynamic compiler. The trace tree data structure
introduced in this paper enables our just-in-time compiler to incrementally discover al-
ternative paths through a loop and then optimize the loop as a whole, regardless of a
possible partial overlap between some of the paths.

When programs execute, the dynamic view of basic blocks and control flow edges
that one encounters can be quite different from the static control flow graph. Our trace-
tree representation captures this difference and provides a representation that solely
addresses “hot” code areas and “hot” edges between them. All other basic blocks and
instructions never become part of our compiler’s intermediate representation and there-
fore do not create a cost for the compiler.

Using trace trees as compilation units instead of source code constructs such as
methods also provides a intuitive boundary between “cold” code that is interpreted and
“hot” code that needs to be compiled, and defines a simple and efficient method to
transition between such areas (trace entry and trace side exits).
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Abstract. This position paper proposes the exploitation of type feed-
back mechanisms, or more precisely, polymorphic inline caches, for purely
interpreting implementations of object-oriented programming languages.
Using Squeak’s virtual machine as an example, polymorphic inline caches
are discussed as an alternative to global caching. An implementation
proposal for polymorphic inline caches in the Squeak virtual machine is
presented, and possible future applications for online optimization are
outlined.

1 Introduction

Bytecode interpreters are small in size and comparatively easy to implement,
but generally execute programs much less efficiently than just-in-time (JIT)
compilers. Techniques like threaded interpretation [9,11,2] focus on speeding
up bytecode interpretation itself, and caching [4, 5, 1] improves the performance
of message sends—the most common operation in object-oriented software [7].

It is interesting to observe that, while threading mechanisms are used natu-
rally to a varying degree in bytecode interpreter implementations, such systems
usually employ only global caching to speed up dynamic method dispatch. A
global cache is clearly beneficial with respect to overall performance. Still, it
does not provide optimal support for polymorphic message send sites, and it
does not allow for exploiting type information (we provide details on these issues
in the following section). In our opinion, the employment of polymorphic inline
caches (PICs) [5] instead can provide means for achieving significant speedups
in bytecode interpreters while exhibiting only a moderate increase in memory
footprint and implementation complexity.

In the next section, we briefly discuss global caches. The bytecode interpreter
we use as a case study throughout this paper is that of the Squeak [8,12] virtual
machine (VM) [13]. Section 3 proposes an approach to the implementation of
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PICs in the Squeak bytecode interpreter. Finally, section 4 gives a summary of
the paper and an outlook on possible future optimizations in bytecode inter-
preters that are encouraged by the introduction of type feedback mechanisms.

2 Global Caching: Discussion

The Squeak VM bytecode interpreter uses a global cache for improving method
lookup performance. This cache has a fixed size and maps <target class,
selector> pairs to concrete method implementations (compiled methods). It sig-
nificantly contributes to the overall performance of the Squeak interpreter.

However, such a cache has several shortcomings. Since it is global, collisions
are relatively frequent and lead to longer method lookup times. The cache has to
be flushed as soon as changes in the class hierarchy or in method implementations
occur. For changes in method implementations, the cache is not entirely flushed,
but only for the entries that refer to implementations of the selector in question.

Moreover, flushing is required whenever the garbage collector performs heap
compaction, as hashing is done based on target class and selector object ad-
dresses. After a flush, the cache needs to be repopulated, during which and
overall performance is lower.

The global cache suffers from being global. It cannot react to local changes in
an adequate way—i. e., by an update operation that is quasi-local in its effect on
cache contents. A local change, such as a class overwriting an inherited method,
actually affects only a small part of the entire class hierarchy. Nevertheless,
method lookup data for large parts of the class hierarchy needs to be restored.

Also, the global cache is, due to its mapping scheme, generally not able to
provide local information, that is information per send site. Such information
typically comprises of the concrete receiver types (classes) of a message at a
given polymorphic send site. It is called type feedback information [6] and is very
interesting with regard to optimizations (cf. Sec. 4).

The performance of the Squeak bytecode interpreter is good. Still, we believe
that it can benefit from a caching mechanism that supports local type feedback.
These so-called inline caches [4] are usually used in environments that employ
JIT compilation and bring great benefit in terms of dynamic message dispatch
performance.

Inline caches store the most recently looked-up method address at each given
send site. The address is cached at the send site, replacing the call instruction
to the lookup method with a direct jump to the code of the method. Since there
is a jump to the cached method, no lookup needs to be done at all. There is
only a slight overhead resulting from a check at the beginning of the method
verifying that the class of the receiver is the correct one. In case the receiver
class has changed, the standard lookup is used instead. Obviously, simple inline
caches are not an ideal solution for supporting polymorphic send sites since they
already fail if the same message is sent to an alternating list of objects.

PICs [5] store, for a given send site, the method addresses of N past message
sends, where N is the cache size. A PIC stores <receiver class, method address>
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key-value pairs. The Strongtalk [14] VM is a prominent example of such an
environment. It is comprised of a bytecode interpreter and a JIT compiler; the
interpreter already stores type feedback information in PICs to speed up message
sending. Information stored in these PICs is later exploited by JIT-compiled
native code.

3 Polymorphic Inline Caching in Bytecode Interpreters

We believe that PICs can be beneficial also in solely interpreting VM implemen-
tations, such as the Squeak VM [13]. In this section, we outline an implementa-
tion proposal for PICs in that environment.

An interpreter does not generate binary code for methods, thus PICs cannot
store memory addresses of code. In Squeak, the bytecode is stored in compiled
method objects. Here, PICs can store a reference to the compiled method object
instead.

The implementation affects both the Squeak VM and reflectively the
Smalltalk image. At the image level, each Smalltalk method is represented as an
instance of the CompiledMethod class. The format of CompiledMethod instances
needs to be modified to store send site type feedback information. In the VM,
the interpreter logic must be augmented to support storing and updating of said
information.

Squeak CompiledMethods have the layout shown in Fig. 1. The standard ob-
ject header provides information about the object itself, its class, hash value, etc.
The subsequent method header contains information on the method in question,
such as the number of arguments, local variables and literals. After that, there
are several pointers to the method’s literals, each referencing a given constant
occurring in the method. For example, all send bytecodes reference their selector
(the name of the method to call) as an offset in the literal frame. The bytecode
array represents the method code, and the trailer carries additional information
about the method’s source code location.

v e

#test i ... literals ... i |

object method

header header . trailer ...

- bﬁ/teéodés o

selector send send
bytecode bytecode

Fig. 1. Object layout of a Squeak CompiledMethod instance.

For the PIC implementation in Squeak, the literals region in CompiledMethod
instances is of special interest. In the current Squeak system, the compiler gen-
erates one slot in the literal frame for any unique selector. This means that send
bytecodes sending the same selector reference the same slot in the the literal
array (cf.Fig.1). The Smalltalk compiler needs to be modified to generate one
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entry in the literal array for each send, without the sharing property mentioned
above.

Thus we have as many literal slots storing selectors as there are send byte-
codes in the CompiledMethod (cf. Fig. 2). Each of these slots can hold a reference
to an object carrying type feedback information. To this end, several dedicated
classes (described below) are to be introduced into the image.

object method i r i R T
header header #est 1 #est | ..literals...| .- bytecodes ... | - trailer ...
selector selector send send

bytecode bytecode

Fig. 2. A CompiledMethod instance without selector sharing.

Initially, all selector slots contain selectors. Once a send site is visited by
the bytecode interpreter and the corresponding message is sent, the selector is
replaced by a reference to an inline cache (IC) object (cf.Fig.3), an instance
of the InlineCache class. An IC object contains five values: the selector, the
most recent target class of the send, the address of the most recently looked-up
method for the selector, a hotness counter, and a trip counter.

'?:;Z(:r r;:;zz(rj . i #test i literals ... i b)l/tec:ode%s : ...:tra:iler:...
selector send
bytecode bytecode
object #test class method hotness trip counter
header address counter P

inline cache object

Fig. 3. A former literal slot referencing an IC object.

The bytecode interpreter increases the hotness counter each time it executes
the corresponding message send. It then also checks whether the target class is
the same as it was when the send was executed the last time. If so, the stored
method address is used to retrieve the method implementation to be executed. If
the receiver class check fails, the trip counter is increased, and the correct class
and implementation are looked up and stored.

If such a send site causes actual lookups too often, its IC object reference can
be replaced with a PIC object reference (cf. Fig.4). A PIC object is organized
much like an IC object: it also carries the selector in question and type feedback
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information. The notable difference is that a PIC object carries up to 8 triples
of receiver class, method address, and hotness counter.

(CompiledMethod instance literal slot)

object Hest class method hotness class method hotness
header address counter address counter

polymorphic inline cache object

Fig. 4. A PIC object referenced from a CompiledMethod instance.

The bytecode interpreter, when executing the corresponding send, iterates
over the PIC and checks for the correct receiver class. Once it finds one already
stored, the respective stored method is executed and the pertaining hotness
counter is increased. If no matching receiver class is found, lookup proceeds as
usual and the result is stored in a free slot of the PIC object if available. It is
not necessary to store a hotness counter alongside with each PIC object entry,
but future optimizations can benefit from this information (see below).

4 Summary and Future Optimizations

In the previous sections, we have discussed caching optimization mechanisms for
bytecode interpreters. In our opinion, global caches are, although helpful with
regard to performance, not fully supportive of dynamic optimizations possible in
interpreters. For that we propose the introduction of PICs based on local type
feedback.

The locality of type feedback information is a feature of PICs that can be
exploited beyond performance improvements in the VM. Type feedback infor-
mation made available at the image level facilitates optimizations above the
abstraction barrier imposed by the Squeak VM.

The AOStA (Adaptively Optimizing Smalltalk Architecture) project [10] re-
lies on type feedback from the VM to dynamically and adaptively optimize
Smalltalk bytecodes in the image using bytecode manipulation. An example of
such an optimization is method inlining: based on type feedback information and
hotness counter data, methods frequently invoked from a given send site can be
inlined directly at the image level, without the need to create stack frames and
method context objects.

Originally, AOStA has been conceived for the VisualWorks VM [3]. The
VisualWorks JIT compiler generates PICs at send sites. A system like AOStA
can be beneficial also to purely interpreted systems like Squeak Smalltalk if the
underlying interpreter supports type feedback using PICs, as proposed in this
paper.
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1 Introduction

The purpose of this work is to incorporate the principles of session types into a
concrete object-oriented language, specifically an extension of Java, as a basis
for communications-based programming for distributed environments. Building
on preceding theoretical studies of this topic, we present the first practical im-
plementation of such a language, including a treatment of asynchronous com-
munication, higher-order sessions (delegation) and session subtyping. This paper
summarises the key design ideas of this work including the runtime architecture.
Benchmark results for our current implementation demonstrate that our design
introduces minimal overheads over the underlying transport, and is competitive
with, in many cases outperforming, RMI, the standard API for typed inter-
process communication in Java. A detailed version of this paper [12] is available
online [11].

1.1 Background

Sockets Communication is becoming one of the central elements of application
development in object-oriented programming languages. A frequent program-
ming pattern in communications-based applications arises when processes inter-
act via some structured sequence of communications, which as a whole forms
the natural unit of a conversation. The socket (in particular, the TCP socket)
is one of the most widely used programming abstractions for expressing such
conversation structures. Available through APIs in many object-oriented lan-
guages such as Java and Cf, sockets represent the communication endpoints of
a bidirectional byte stream abstraction, typically thought of as a connection.
Although well suited to this purpose, socket-based programming suffers from
several disadvantages.

e The byte stream abstraction is too low-level: no direct language level ab-
straction is provided for what each chunk of raw data means, let alone the
structure of a conversation as a whole.

e Control flows in a pair of communicating processes should together realise a
consistent conversation structure: the lack of an abstraction for the conver-
sation as a whole means a programmer can easily fail to, for example, handle
a specific incoming message or send a message when expected, with no way
to detect such mistakes before runtime.
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e The socket abstraction is directly coupled to a specific transport mecha-
nism. Thus streams are tied to a physical connection, which complicates, for
example, the delegation of an ongoing conversation.

These observations motivate the search for an abstraction mechanism for object-
oriented programming that can naturally represent diverse conversation struc-
tures and be efficiently mapped to representative transport mechanisms, whilst
preserving the familiar programming style of socket. Note Java RMI supports
type-safe communication, but the rigid shape of method call makes it difficult
to express general communication patterns using RPC.

Session Types A session is essentially a unit of sequential conversation, and
the associated session type is an abstraction of the conversation structure and
the messages exchanged, against which the communication behaviour of a pro-
gram can be validated. Session types have been studied in many contexts in the
last decade, including 7-calculus-based formalisms [9]; multi-threaded functional
languages [16]; CORBA [15]; operating systems [7]; and Web services [2].

With respect to the present problem, recent studies [6, 5,4, 3] have demon-
strated a clean integration of session type theory with object-oriented languages,
through formalisms distilling selected object-oriented concepts for accurate analy-
sis. Our work furthers these studies by contributing the design and implementa-
tion of a concrete, distributed language with session communication primitives
and type system, including the key components of the runtime architecture such
as the protocols that guarantee type-safe session delegation.

1.2 Problem Outline

The task at hand can be divided into three main problems.

Session programming abstractions. The abstractions should be expressive,
enabling the representation of diverse conversation structures, and moreover us-
able, which stipulates a combination of clear syntax and intuitive (unsurprising)
semantics, generating programming patterns natural to OOP. Naive implementa-
tion of the simplified theory has limitations other than usability, for instance the
object calculi mentioned above [6, 5,4, 3] do not permit operations on different
sessions to be interleaved, precluding many real-world communication patterns.
Exception handling for session operations is another such issue not addressed in
the preceding theoretical work but certainly required for practical use.

Integration of session types. Session type theory has often focused on type
inference, whereas Java has explicit type declaration: an implementation of ses-
sion types closer to the latter would probably be easier for Java programmers
to understand. Hence, syntax for session type declaration and an algorithm for
static type checking (including new features such as interleaving and exceptions)
are required. In addition, we consider how the standard imperative constructs
in Java should combine with the chosen session programming abstractions, as
reflected by our extended type system.
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Runtime architecture. One of the main technical contributions of the present
work is the design of the runtime support for asynchronous session communica-
tion, with the use of session type information as a fundamental element. Firstly,
a safe execution of communication cannot be verified for distributed systems at
compiletime, as a communicating party cannot statically assess the behaviour of
peers discovered only at runtime. We solve this problem using a validation mech-
anism at session initiation, in which the two parties exchange their session types
to determine whether or not their interactive behaviours are compatible. This
session type information is used throughout the established session by both par-
ties; for example, session types play a crucial part in coordinating the protocols
for higher-order communication, session delegation. To validate the feasibility
of our approach, we measure the performance of our primitives using several
benchmark programs, comparing their cost over the untyped transport.

2 Approach

We outline the approach of our current design-implementation framework for
the proposed language [11]. A core design feature is the use of session types
in decoupling user description of session operations (abstraction concerns) and
their execution mechanism (implementation concerns), analogous to high-level
control flows and the underlying machine instructions in structured sequential
programming. The key elements of our approach, addressing the issues described
in the previous section, are as follows.

1. A type syntax for sessions based on [5, 6,4, 3], but with enhanced readabil-
ity and conformance to Java syntax.

2. Object-based session programming primitives that present an API-style
interface. The fundamental abstraction is the session-typed socket, which
represents a session endpoint.

3. A new programming discipline/style, derived from the first two points,
for communications-based programs with guaranteed type and communica-
tion safety, which begins with a specification of intended communication
structures using session types.

4. Static session type checking, implemented using the Polyglot compiler
framework [14], coupled with dynamic compatibility validation at ses-
sion initiation through a handshake protocol. Both components utilise session
subtyping [8, 2].

5. The runtime support for the session abstraction, which encapsulates a va-
riety of communication mechanisms with minimal overhead whilst abstract-
ing from physical connections. The runtime incorporates the protocol for
session initiation as well as delegation and close, and makes extensive use of
session type information from point 3.

Session type declaration. The session type syntax abstracts the basic (object)
send and receive actions, conditional behaviour through branching and selection
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(rather than binary if-statements, as in [5,6,4,3]), and unbounded behaviour
through while-loop iteration. We illustrate using a small example.

protocol p {

begin. // Sesstion initiation
7L // Iteration
7{ // Branch, two possible subconversations (labelled)
GET: !(T), // Send (object) type T
PUT: 7(T) // Receive (object) type T
}
1=.
end
}

T may itself be a session type, representing session delegation.

Session-typed sockets. We augment the standard socket to support the ses-
sion communication primitives and session type checking. A session-typed socket,
hereafter referred to as simply session socket, represents a session endpoint, over
which session operations are performed like method calls to the socket object.
We continue the above example.

STSocket s = STSocketImpl.create(p); // ‘p’ as declared above

s.request (host, port); // begin.
Tt=...;
s.inwhile() { // 2l
s.branch() { Vanzt
case GET: { s.send(t); } // 1(T),
case PUT: { t = s.receive(); } // 2(T)
} /7 }
} VZARED
s.close(); //end

Whilst session programming is similar to standard API-based socket pro-
gramming, the branch and inwhile operations (also, the corresponding select
and outwhile operations), are new language constructs with intuitive semantics.
The branch waits for the opposing session party to select a label, and inwhile
iterates according to a control message implicitly communicated between the
two session parties; these operations can be thought of as distributed versions
of the standard switch and while statements that maintain synchronisation of
control flow across both parties.

Session type checking. The type checker tracks the implementation of a ses-
sion against the specified protocol, observing the correspondence between session
operations and their types as demonstrated in the above example. For receive
operations, both type inference, from the declared type, and checking, through
explicit casting of the received object, are supported. The implementation may
subtype the specification [8,2]: a branch can offer more, and a select can use

26



less, labels than specified. Type checking delegation operations is uniform with
normal message types, but cannot occur within an iterative context.

The above issues relate to checking structural correspondence; we must also
preserve session linearity. For example, aliasing of session sockets is forbidden,
and session operations are not permitted within iterative constructs other than
in/outwhile. Session implementation may diverge over conditional constructs
provided there is a common supertype across all branches: the statement is
typed as the lowest such type if it exists, for instance

// Session type: !{GET:2(T), PUT:!(T)}

if(...) {

s.select(GET) { T t = s.receive(); } // !{GET:2(T)}
}
else {

s.select (PUT) { s.send(new T()); } // !{PUT:!(T)}
}

The type system allows session sockets to be passed as method arguments,
which can be thought of as a “local” delegation: methods that accept session
sockets specify the expected session type of the socket in place of STSocket in
their declaration. We also have a treatment of exception handling for sessions.

try {
s.request (host, port);
... // Body of session tmplementation
}
catch(SessionIncompatibleException sie) { ... }
catch(I0Exception ioe) { ... }
finally {
try { s.close(); } catch (IOException x) {}
}

Sessions should be implemented using the try-catch construct to handle the
listed exceptions (or within a method that throws these exceptions). The first
exception signals that session initiation has failed because the opposing party
has an incompatible behaviour for interaction; this is determined by a duality
relation on session types (! (T) duals 7(T), etc.) that also permits subtyping e.g.
a client that requires just one service may enter a session with a server offering
several services. I0Exception is inherited from standard Java socket program-
ming to signal communication failure during a session. For linearity, a session
may not span multiple try-catch blocks unless delegated or passed as a method
argument; thus, the occurrence of an exception necessarily terminates the session
at both session parties. However, session interleaving is freely supported within
a single try-statement, which expresses some semantic dependency between such
sessions: an exception on any of the sessions is implicitly signalled to the others.
Nested session exceptions can be thrown to an outer level, and the type checker
permits only the close operation to be performed within the finally-block of a
try-statement. The design of the session exception mechanism is ongoing work.
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Runtime layer. The runtime layer encapsulates the underlying communication
mechanisms; the interface to the runtime layer is the device by which session
abstraction is decoupled from actual implementation. This enables exploitation
of the transport, using session type information, for efficient communication with
minimal overhead. The runtime is currently implemented in Java as the STSocket
API: the compiler translates user code to the target API as a source-to-source
translation. We describe some of the key components of the runtime.

e Initiation handshake. Session initiation involves a duality check between
the session types of the two parties; if incompatible, the specified exception is
raised at both parties. The current implementation uses literal class naming,
which is sufficient for many examples. An earlier implementation [10] has
support for class downloading; we plan to further investigate extensions that
combine runtime verification of class compatibility and class downloading.
Optimisations such as piggy-backing user messages on the handshake for
short sessions are possible.

e Delegation protocol. The runtime incorporates an implementation of the
delegation protocol [12], which governs the interaction between parties in
bringing about session delegation in a transparent manner. Session types
play a crucial role in treating asynchrony, one of the main design factors of
the delegation protocol which includes the case for simultaneous (double)
delegation of a session by both parties. Our protocol allows the delegat-
ing party to immediately close the delegated session, precluding (indefinite)
message forwarding by a proxy agent (an alternative design).

e Closing protocol. An additional handshake at session closure is required
to handle certain delegation cases, specifically when the passive party of a
delegated session performs only output operations, namely send, select and
outwhile. This is because this party may asynchronously complete his/her
session contract before the delegating party is actually able to perform the
delegation operation: the session must be kept “alive” until both parties
agree that it has ended. The collaboration between the delegation and closing
protocols is non-trivial, and to maintain asynchrony, the latter is performed
in a separately spawned thread.

The current implementation of our work includes session sockets based on
the Java Socket and NIO libraries. Performance results of several benchmark
programs [12,11] demonstrate that the session-based programming principles
proposed in this work can be realised with low overhead. Indeed, our imple-
mentation in many cases exhibits better performance than RMI, the standard
method for typed inter-process communication in Java. One factor is that the
RMI supports additional features such as class downloading; however, the bench-
mark programs do not use this feature, and so the overheads incurred by RMI
are minimal for this point. Moreover, the presence of session types and the in-
formation they convey, such as communication direction and (bounded) message
size, suggest the potential for further optimisation at both the user and transport
level.
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3 Conclusion and Related Work

The present work clarifies, through a concrete implementation, the significant im-
pact that the introduction of sessions and session types into object-programming
languages can have, on both programming discipline and runtime architecture.
Below we summarise the key technical contributions of the present work over
the preceding (mainly theoretical) work on session types.

— Practical programming methodology for session types. Starting from
protocol declaration, we ensure type safety through combined type checking
and inference, extending typability with session subtyping.

— Integration of session types into OOP. This is realised by the design of
session sockets, extending the type system to prevent aliasing of the socket
objects, and through a natural and consistent integration with standard
imperative constructs and exception handling, allowing session interleaving.

— Runtime architecture. The design of the runtime mechanisms is key to
the practical use of session types, which in turn are a fundamental element
of this design. The runtime encapsulates the underlying message transport
and session communication protocols, including the session initiation hand-
shake, where session types are exchanged and validated; and the delegation
protocol, which separates the session abstraction from physical connections.

In the following we discuss some of the related works; a more complete discussion
such as a comparison with several typed languages based on process calculi
(Pict, Polyphonic Cff, Cw, the Concurrency and Coordination Runtime (CCR),
JavaSeal, Occam-pi and X10) can be found in [12].

One of the first applications of session types in practice is found in Web
Services. The Web Service Description Language (WS-CDL) [17], developed by
a W3C standardisation working group, employs a variant of session types to
address the need for static validation of business protocols. A WS-CDL descrip-
tion is realised as the interactions of distributed endpoints written in languages
such as Java or WS4-BPEL [1], or that proposed by the present work. Recent
work [2] has studied the principles behind deriving sound and complete endpoint
implementations from a CDL description.

A variant of session types has been combined with a derivative of Cf for
systems programming, playing a crucial role in the development of Singularity
OS for shared memory uni/multiprocessor environments [7]. Session types, re-
ferred to as contracts, are used to specify the interaction between OS modules
as message-passing conversations. Reflecting the hardware and software assump-
tions of this work (i.e. shared memory and homogeneity of OS modules), features
for distribution, such as the session initiation handshake, are not significant. Fur-
ther, their work does not support subtyping, another requirement of practical
distributed applications, and promotes a programming methodology more tightly
coupled to the underlying execution mechanism than our approach.

An implementation of a session type system in Haskell is studied in [13]
through an encoding of a simple session calculus. Again, this work is targeted

29



at a concurrent, but not distributed, environment. It may be difficult to realise
the session compatibility check or type-safe delegation since the encoding does
not directly type I/O channels.
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Abstract. Scratch-Pad Memories (SPMs) are considered to be effective
in helping reduce memory energy consumption. However, the variety of
SPM management techniques complicates the choice of the right one
to implement. In this paper, we first give a synthesis on existing SPM
management techniques for low-power and -energy outlining their com-
parative advantages, drawbacks and trade-offs. Then, we propose a new
general classification which encompasses most existing research works.
This classification has the advantage of clearly exhibiting lesser explored
techniques, hence providing hints for future research.

1 Introduction

Reducing energy consumption of embedded systems is a topical and very crucial
subject. Many systems are energy-constrained and, despite batteries progress,
these systems still have a limited autonomy. This mainly concerns numerous
daily life objects such as cell phones, laptops, PDAs, MP3 players, etc.

Different options to save energy, hence increase autonomy, exist but we can’t
detail them here due to the lack of space. The interested reader can refer to
[Graybill and Melhem, 2002; Zendra, 2006] for a more comprehensive view. These
various approaches can be classified in two main categories: hardware optimiza-
tions and software optimizations. Hardware techniques fall beyond the scope of
this paper, but a large amount of literature about them is available (see first
parts of [Graybill and Melhem, 2002]). Some works interestingly couple hard-
ware techniques with software ones, such as [Poletti et al., 2004] (that relies
on Direct Memory Access, or DMA, to reduce the copy cost between SPM and
DRAM), or [Benini et al., 2000] (using Application-Specific Memory, ASM).

In this paper, however, we will focus on software, compiler-assisted tech-
niques. Cache memories, although they help a lot with program speed, do not
always fit in embedded systems: they increase the system size and its energy
cost (cache area plus managing logic). In contrast, SPMs have interesting fea-
tures. Like caches, they consist of small, fast SRAM, but the main difference
is that SPMs are directly and explicitly managed at the software level, either
by the developer or by the compiler, whereas caches require extra dedicated
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circuits. Compared to cache, SPM thus has several advantages [Zendra, 2006].
SPM requires up to 40% less energy and 34% less area than cache [Banakar et
al., 2002]. Additionally, SPM cost is lower and its software management makes
it more predictable, which is an important feature for real-time systems.
According to [Adiletta et al., 2002; Brash, 2002], a large variety of chips with
SPM is available today in the market. Moreover, trends [LCTES, 2003] indicate
that the dominance of SPMs is likely to continue in the future. Consequently,
many authors have tried to profit from the advantages of SPMs and various
related research directions have been investigated. These techniques and algo-
rithms, synthesized in [Benini and Micheli, 1999], try to optimally allocate ap-
plication code and/or data to SPM in order to reduce the energy consumption of
embedded systems. The interested reader can look at [Benini and Micheli, 2000]
for a comprehensive list of references. Although some of the research works we
present in this paper have not been targeted specifically to Object-Oriented
Languages (OOL), we think their underlying principles still apply to OOL.

The rest of the paper is organized as follows. Section 2 describes some soft-
ware optimization techniques for SPM. Section 3 presents a discussion with a
new classification. Finally, section 4 concludes.

2 Software Optimization Techniques for SPM

Numerous research works focus on SPM optimized management techniques. In
this section, we present a survey and a classification of these techniques. In
order to manage the SPM space, some approaches try to answer the question of
which data to allocate to which memory type. Others are based on optimizing
data locality. All these methods rely on profiling information to place the most
frequently used or most cache conflicting data in fast memory, and other data
in slower memory. The main trade-offs of these approaches revolve around the
objects considered (arrays, loops, global, heap or stack variables...).

2.1 Techniques Focusing on Data Placement in Memory According
to Memory Type

The first category of SPM management techniques comprises those that can be
characterized as focusing on data placement in memory according to memory
type. These approaches try to answer the question of which program variables
should be allocated to which memory or memory bank. In these techniques,
because of the reduced size of SRAM, the lesser-used variables are first allocated
to slower memory banks (DRAM), while the most frequently used variables are
kept in fast memory (SRAM) as much as possible. These methods use profile
data to gather access frequency information in order to place frequently used
data in fast memory, and other data in slower memory. To do so, most authors
model the problem as a 0/1 integer linear programming (ILP) problem and then
use an available IP solver to solve it.
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[Avissar et al., 2002] considers global and stack variables and chooses between
SPM and cache, while [Steinke et al., 2002b; Wehmeyer et al., 2004] consider
global variables, functions and basic blocks and choose between SPM banks. In-
stead of using one single large SPM, the simulated results obtained by [Wehmeyer
et al., 2004] have shown that by using a partitioned SPM improvements of up
to 22% in the energy consumption of the memory subsystem can be obtained.

These techniques are all based on the frequency of data accesses. In contrast,
[Panda et al., 1997] considers arrays and scalar variables and focuses on data that
is the most cache-conflict prone. The authors rely on profile data to place the
most conflicting data in SRAM. All of these approaches require knowledge of the
SPM size at compile time but [Nguyen et al., 2005] presents a compiler method
whose resulting executable is portable across SPMs of any size. It consists on
discovering SPM size first, either by making an OS or low-level system call if
available, or by probing addresses in memory using a binary search pattern and
observing the latency to find the range of addresses belonging to SPM. Then,
the memory allocation algorithm is the same as in [Avissar et al., 2002].

2.2 Techniques Focusing on the Locality of Memory Access

The techniques presented in this section can be considered as a refinement of
those of section 2.1. Indeed, in addition to finding the best data placement with
respect to memory types, it is interesting to investigate the locality of memory
accesses in order to further optimize energy usage.

Spatial Locality Some methods are based on optimizing spatial locality, that
is on ensuring that successive SPM accesses use the same SPM bank as much as
possible. Indeed, increasing the spatial locality for a set of SPM banks clearly
increases the duration of idleness for other SPM banks, which in turn helps
to amortize the cost of placing a bank into low-power mode and then later
transitioning it back to normal operation mode.

[Athavale et al., 2001] explores the energy consumption of array allocation
mechanisms in Java. Using a set of array-dominated benchmarks and a parti-
tioned memory architecture with multiple low-power operating modes, the au-
thors study two data optimization techniques: memory layout modification and
array interleaving. This memory layout modification consists in changing the
storage order of data inside an array in order to improve its spatial locality.
In addition, array interleaving groups together in the same memory module el-
ements that belong to different multi-dimensional arrays, thus increasing the
inter-access interval (time between two references to the same module) for the
unused modules. This provides an opportunity to operate the unused memory
modules in a lower power mode for a longer time. Their experimental results
show that using layout transformation and array interleaving optimization pro-
vides an average of 9.68% and 14.96% energy savings, respectively.

The compiler-based strategy proposed in [Kandemir et al., 2005] is also ef-
fective in reducing leakage energy of on-chip SPMs and has the advantage of
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dealing with arrays and loops in general without a restriction to a specific lan-
guage. In addition to having some similarities with [Athavale et al., 2001], the
technique presented in [Kandemir et al., 2005] also seems general enough to be
applicable to any object-oriented language. The idea in [Kandemir et al., 2005] is
to divide SPM into banks and use compiler-guided data layout optimization and
data migration to maximize SPM bank idleness, thereby increasing the chances
of placing banks into low-power state. This work focuses on reducing leakage
consumption of on-chip SPMs without hurting performance.

Temporal Locality Other methods are based on temporal locality, that is the
fact that recently accessed SPM banks are likely to be accessed again in a near
future. [Verma et al., 2004] presents a profile based approach which, on the basis
of live ranges of both variables and code segments, replenishes the content of
the SPM. These elements are optimally chosen in order to minimize the energy
overheads due to spilling memory object to and from the SPM. This technique
also computes addresses within the SPM address range where variables and
code segments have to be copied. These addresses are computed such that a
large number of variables and code segments fit in the same SPM space.

2.3 Comprehensive Techniques Dealing with all Memory Objects

The techniques we mentioned in the previous sections have the drawback of not
taking into account all kinds of objects. In the current section, we will focus on
Udayakumaran and Barua’s works, which conversely deal with all memory ob-
jects: arrays, loops, global, heap and stack variables. Udayakumaran and Barua’s
approach is based on works by Kandemir et al. and tries to improve them.

Both methods move data back and forth between DRAM and SPM under
compiler control, but two improvements are brought by [Udayakumaran and
Barua, 2003] over [Kandemir et al., 2001].

First of all, [Kandemir et al., 2001] considers global and stack array vari-
ables only and has the three additional following restrictions. One, the programs
should primarily access arrays of the innermost loops. Two, the loops must be
well-structured and must not have any other control flow such as if-else, break
and continue statements. Three, the codes containing these constructs must be
well written, that is to say without any of the hand-made optimizations of-
ten found in many such codes, because these optimizations consider not only
the loop nest in question, but also a much larger context. Combining these
three restrictions, Kandemir et al.’s method applies to well-structured scientific
and multimedia codes. However, as underlined by Udayakumaran and Barua,
most programs in embedded systems do not fit within these strict restrictions.
[Udayakumaran and Barua, 2003] has improved the generality of the method
and applies it to all global and stack variables, and all access patterns to those
variables. The method thus becomes more general and is able to exploit locality
for all codes, including those with irregular accesses patterns, variables other
than arrays, code with pointers and irregular control flow.
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The second improvement brought by [Udayakumaran and Barua, 2003] is
that [Kandemir et al., 2001] considers each loop nest independently, whereas
Udayakumaran and Barua’s method is a whole-program analysis across all con-
trol structures. This has several consequences. One is that the method pre-
sented by Kandemir et al. is locally optimized for each loop, while the method
of Udayakumaran and Barua is globally optimized for the entire program. An-
other consequence is that with the method of Kandemir et al. the entire SPM
is available for each loop nest. In contrast, the approach of Udayakumaran and
Barua might choose to do this, but is not constrained to do so. It may choose to
use part of the SPM for data that is shared between successive control constructs
thus saving on transfer time and energy to DRAM.

Note however that for arrays, it is possible to bring in parts of an array
instead of considering the whole array with [Kandemir et al., 2001], whereas this
is impossible with [Udayakumaran and Barua, 2003].

Udayakumaran and Barua have extended their work in other papers. For
example, the approach in [Udayakumaran et al., 2006] also handles code objects
and provides some measurements for energy consumption. Their results from
simulation show that their scheme reduces runtime by up to 39.8% and energy
by up to 31.3% on average for their benchmarks, depending on the SRAM size
used, when compared to [Avissar et al., 2002).

The much cited [Dominguez et al., 2005] is also a very interesting piece of
work because it is, to our best knowledge, the only work that considers heap
data and has an SPM management policy at runtime that allows fixed moves
(as shown in Table 1). Their simulation results show that this method reduces
the average runtime by 34.6% and the average power consumption by 39.9% for
the same size of SPM fixed at 5% of total data size, when compared to placing
all heap variables in DRAM and only global and stack data in SPM.

Finally, [Udayakumaran and Barua, 2006] extends the work done by investi-
gating SPM allocation for arrays. This last paper modifies the algorithm already
proposed by adding a code to identify partial variables such as a row, a column
or even a collection of elements belonging to an array variable that is accessed
by a loop nest, using an affine analysis pass. The aim of this pass is to enable
allocation of parts of an array, for instance when the whole array does not fit
into the SPM. However, this paper presents results according to runtime only,
energy consumption is not considered. We think this should be addressed.

3 Discussion

In this paragraph, we try to bring a fresh look at the SPM management tech-
niques. Thus, we have done a general study that allows us to propose a new
classification presented in Table 1 which considers two criteria.

The first criterion deals with the way information is collected and the second
criterion refers to the SPM management policy at runtime. For the Information
Collection criterion, Compilation means that the code is analyzed at compile
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Table 1. A Classification of SPM Management Phases

References Information SPM Management
Collection Policy at Runtime
[Kandemir et al., 2001] Compilation + Profiles|Static
[Udayakumaran and Barua, 2003]|Compilation Free Moves
[Udayakumaran et al., 2006] Compilation Free Moves
[Udayakumaran and Barua 2006] |Compilation Free Moves
[Nguyen et al., 2005] Compilation + Profiles|Static
[Egger et al., 2006} Compilation + Profiles|Static
[Absar and Catthoor, 2005] Compilation Static
[Poletti et al., 2004] Compilation Static
[Steinke et al., 2002a] Compilation Static
[Verma et al., 2003] Compilation Static
[Verma et al., 2004] Compilation Free Moves
[Dominguez et al., 2005] Compilation Fixed Moves
[Avissar et al., 2002] Compilation + Profiles|Static
[Steinke et al., 2002b] Compilation Static
[Wehmeyer et al., 2004] Compilation + Profiles|Static
[Panda et al., 1997] Compilation + Profiles|Static
[Athavale et al 2001] Compilation Static
[Kandemir et al., 2005] Compilation + Profiles|Static
[Hiser and Davidson, 2004] Compilation + Profiles|Static

time, whereas Profiles indicates the use of runtime profiling. The SPM Manage-
ment Policy at Runtime can be Static which means that data could be over-
written but not moved to another place. With Moves some existing variables
in SPM could be evicted to make space for incoming ones. In this way, data is
never lost. On the one hand, Fized Moves always place data at the same offset
in the SPM or DRAM. On the other hand, with Free Moves the SPM allocation
can be dynamically adapted at runtime by placing most frequently used data at
any free location in the SPM or DRAM.

Several methods are Static and are based on Compilation information only
[Absar and Catthoor, 2005; Steinke et al., 2002b; Athavale et al., 2001]. However,
with execution Profiles an accurate view of the data access patterns can be ob-
tained, since the profiles contain information about which variables are accessed
during which program phase. In this context, [Egger et al., 2006; Avissar et al.,
2002; Kandemir et al., 2001] provided experimental results which generally im-
prove the ones they had obtained with the Static approach. Furthermore, SPM
management policies based on Moves [Dominguez et al., 2005; Verma et al., 2004;
Udayakumaran and Barua, 2003] are more effective than Static ones, because
they optimize the use of the SPM space and allow to change the content of
the SPM at runtime. In other words, just like in a cache, data is moved back
and forth between DRAM and SPM, but under compiler control. The energy
overhead of performing a move is compensated by a better placement.
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As we can see from Table 1, there are different combinations of Information
Collection and SPM Management Policy at Runtime. However, our synthesis
shows that there is no method merging compilation and profiles information
with an SPM management policy based on moves. This thus seems a potentially
interesting area for new research. Furthermore, most of the presented works are
not targeted to OOL but apply to them nonetheless. We consider it would be
interesting to also study SPM management techniques by taking into account
some more specific features of OOL such as object memory layout.

4 Conclusion and perspectives

In this paper, we have given in section 2 a global structure of the use of op-
timized SPM management techniques. The classification we have proposed en-
ables to make a synthesis of most SPM management techniques, which makes
it possible to have a more global and precise view of these techniques aiming at
reducing energy and/or power consumption in embedded systems. Indeed, our
classification in section 3 exhibits very clearly the fact that combining Compi-
lation, Profiles information and an SPM management policy based on Moves
at runtime has not been explored yet. In our point of view, this could be more
effective in reducing energy consumption as the results obtained separately are
interesting. We plan to explore this in our future works, as well as to study SPM
with respect to some specific features of OOL.
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Ensuring that User Defined Code does not See
Uninitialized Fields

Anders Bach Nielsen

Dept. of Computer Science, University of Aarhus, Denmark

Abstract. Initialization of objects is commonly handled by user code, often in
special routines known as constructors. This applies even in a virtual machine
with multiple concurrent execution engines that all share the same heap. But for
a language where run-time values play a role in the type system, no user defined
code can be allowed to use a field before it is initialized. This paper presents an
approach which ensures that user code will not see uninitialized fields. It uses a
dual-mode execution model to maintain a reasonable level of performance.

1 Introduction

There are many approaches to object initialization in modern languages. Some do it
like Java [9], where default values are assigned to fields in the newly created object and
then run a special method, a constructor, to set the fields to user defined values. Not that
many do initialization of objects like gbeta [5] does. In gbeta there is no constructor
and each field in an object has a special block of instructions to initialize that particular
field. The reason why the Java way does not suffice in gbeta is because fields that are
significant for typing, must be initialized before user code, using those types, is allowed
to run. The fact that gbeta types depend on run-time values is at the core of the type
system feature known as family polymorphism [6,11,12,8].

An object in gbeta is a list of part-objects and each part-object can hold a number
of fields. These fields can either be mutable references to other objects or immutable
references to objects or patterns. When creating a new object, we do not want anyone
to know it exists before all fields are completely initialized. If this was running in a
virtual machine with several concurrent execution engines, e.g. interpreters, it would
break the type system if an uninitialized object somehow leaked to the heap and some
other running execution engine used one of the uninitialized fields, in this leaked object.

The issue is now to create a virtual machine, which has multiple concurrent exe-
cution engines and a shared heap, and will make sure no references to a new object is
leaked to the heap before it is completely initialized. In a normal heap no field refers
to a partially initialized object, but in an initializing heap there may be some fields
referring to a partially initialized object.

The approache presented in this paper will use a dual-mode execution model. We
are not the first to present at multi mode execution model [2] and it is not to be mis-
taken for Just-in-Time compilation done in the Java HotSpot [3,10] virtual machine.
In Java HotSpot they have two execution modes 1) interpreted and 2) running native
code. There is no semantic difference between these two modes. The execution engine
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running native code just runs faster. We want to have two execution modes depending
on the state of the heap.

2 Class and Object Layout

The class and object layout described in this section is a simplified version of the gbeta
pattern and object layout. We have also removed the notion of methods, because they
do not contribute anything.

The layout of a class, as seen in Fig. 1, is a list of field initialization code blocks
(icode blocks). Each icode block is a list of instructions needed to initialize the corre-
sponding fields in the new object. The object has a pointer to its class and a list of fields.
Each field can be either a mutable reference or a immutable object or class.

In Fig. 1 the icode blocks of a class are denoted /CB one to five. The objects class
pointer is marked as CLP and the fields are denoted as SL one to five.

The instructions in an icode block can be as simple as writing a zero or null value
to a field. It can also be as complex as creating new object and calling methods on this
newly created object. This is why field initialization is important.

Class

ICB1||ICB2||ICB3||ICB4||ICB5

Object

s aYa aYa aYa aYa D
@ SL 1 SL2 SL3 SL4 SL5
. AN AN J \ AN J

Fig. 1. Simplified Class and Object Layout

3 Normal versus Initializing

When creating a new object from a class, we evaluate the instruction in each icode
block. There is no special instruction block that acts as a constructor, the evaluation of
all icode blocks gives the initialized object. The instructions in a given icode block are
targeted at a specific field in the new object. This gives us the ability to rearrange or
concatenate icode blocks to larger instruction blocks.

Initialization of a field can involve running any number of instructions, as mentioned
in section 2. The instructions can be divided into two groups. Non-Leaking instructions
are those that read values from other fields or those that write only to their targeted
field. It is especially those that do not leak a (direct or indirect) pointer to the object
being initialized. General instructions are those which can write any value anywhere.
This way they can leak a pointer to the heap of the object being initialized.
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There are basically two kinds of icode blocks. The icode blocks which only contain
Non-Leaking instructions are classified as normal and the icode blocks which contain
one or more General instructions would require more careful initialization, so those are
classified as initializing.

The structure of a class is a list of icode blocks, as seen in Fig. 2 a). An icode
block can use values of other fields, initialized by other icode blocks in the same object.
This gives dependencies among icode blocks and some fields need to be initialized
before others. The initializing icode blocks may depend on fields initialized by either
normal or initializing icode blocks, but normal icode blocks may only depend on fields
initialized by other normal icode blocks. If an normal icode block (A) depends on a field
initialized by an initializing icode block (B), then icode block (A) should be classified
as an initializing icode block as well. If we have a situation where two icode blocks
depend on each other, a cyclic dependency, we will just abort with a proper error. More
sophisticated approaches can be used to handle many kinds of cyclic dependencies, but
in this context we focus on handling the statically non-cyclic cases efficiently, and the
more complex cases are postponed as future work. If we have no cyclic dependencies,
we can rearrange the icode blocks so all normal icode blocks are grouped first and the
initializing icode blocks last. This rearrangement will take into account the icode block
dependencies. After such a rearrangement a class could look like Fig. 2 b). To improve
initialization performance we can concatenate the normal icode blocks to one large
instruction block and do the same for the initialization icode blocks. We now have two
large instruction blocks, as seen in Fig. 2 c). To be able to find the initialization block,
we tag the block with a start marker instruction and an end marker instruction, seen as
the black blocks in Fig. 2 c).

Class

3) ICB1} |032‘ ICB3ICB4} ICBS}
\ \ / S

Y 4 ¥ ¥ v
b 1'IcB3 |oss‘|c32|cs1 ICB 4

© LICBS ICB 5 ICB2’ILICB1 ICB4JI

Fig. 2. Rearranging and concatenating icode blocks in a class
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4 The ExecutionBase

The virtual machine consists of one global space and one heap that is shared among
several running execution engines. Each execution engine has its own activation record
stack, where the current activation record has an evaluation stack and a temporary array.
Each of these execution engines is running in its own thread. The heart of each execution
engine (ExecutionBase) is sketched in Fig. 3 and a more detailed description of
what should happen in this loop will be explained in section 5.

The code presented in Fig. 3 does not look like an interpreter and that is because it
is not. The actual interpretation is hidden in the method call run () on line 104.

This action of switching execution engine, in this case interpreter, could look like
an expensive action and it probably is. But if we look at how often we have icode blocks
that need the execution engine to run in initializing mode, then this is a rare situation.
Most of the time the execution engine will run in the initial normal mode.

S Running in Two Different Modes

In this section we will give a more detailed description of a scenario where the virtual
machine is running multiple execution engines in normal mode and one of the execution
engines encounters a initializing block of instructions.

1. Let us assume that the virtual machine has started, no initializing blocks have been
encountered and we have started one or more execution engine threads. In this case
all execution engines are running in normal mode and all reachable objects in the
heap are fully initialized. One of the execution engines is now instructed to create
a new object from a class on the evaluation stack.

2. The execution engine starts creating the object by evaluating the field initialisation
instructions in a sequential order.

3. The execution engine reads an instruction telling it that the next block is to be run
in initializing mode and it should thus switch to run a initializing execution engine.
But not only does this execution thread have to run in initializing mode, all other
threads have to run in initializing mode as well. This is because all threads may
potentially try to evaluate an uninitialized field once a partially initialized object
has been leaked. This triggers a series of events:

(a) The execution engine will now create a restore point and return to the
ExecutionBase, see Fig. 3 line 104, with an argument telling it to switch
to a execution engine in initializing mode to resume execution.

(b) The ExecutionBase gets a message that it should start an initializing ex-
ecution engine. It then reads a global counter that tells how many initializing
blocks are executing at the moment.

i. If this global counter is zero, then the other execution engines have to
switch to run in initializing mode as well. The ExecutionBase then
sends a message to the other running execution engines, telling them to
switch. It then increments the global counter by one and waits for the other
interpreters to signal back that they have switched to initializing mode.
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// this is a shared resource and has to be guarded by some

// concurrency control. This is left out to ease the readability
// of this example.

static int noOfInitializing = 0;

enum TerminationState {terminated,

100

101

102

103

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

123

124

126

willgoinitializing,
willgonormal};

Interpreterx interp = new Normallnterpreter();

int ret;
while (true) {

ret = interp->run();
if (ret == terminated) {

// interpreter has reached normal end of execution

break;
} else if (ret == willgoinitializing &&
noOfInitializing == 0) {
// send message to other threads to run
// in initializing mode
noOfInitializing++;

// wait for other thread to signal they have switched

interp = new InitializingInterpreter();
} else if (ret == willgoinitializing &&
noOfInitializing > 0) {
noOfInitializing++;

} else if (ret == willgonormal) {
noOfInitializing——;
if (noOfInitializing == 0) {

// send message to other threads to run
// in normal mode
interp = new NormalInterpreter();

Fig. 3. The ExecutionBase
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ii. If the global counter is larger than zero, then all execution engines are
running in initializing mode and it will just increment the global counter
by one and continue.

(c) If it had to switch, it will now create a new initializing execution engine and
continue running the thread where the other execution engine left off. The sys-
tem is now only running initializing execution engines and every time we want
to look up an immutable field we always need to check if its not null. All
though some immutable fields can be initialized to null, but that would cause a
run time error, if its not handled by the programmer.

4. The execution engine reaches the end of the initializing block and read an instruc-
tion telling it that this initializing block has ended. Again this will trigger a series
of events.

(a) The execution engine will create a restore point and return to the
ExecutionBase with an argument telling it to create a execution engine
running in normal mode to resume execution.

(b) The ExecutionBase gets a message that it should switch to run as a normal
execution engine. It then reads the global counter to see if there are any other
threads running in a initializing block.

i. First of all it will decrement the global counter by one.

ii. If the global counter is zero, then this was the last thread in an initializing
block. It will now send a notify message to the other threads telling them
that they can return to normal mode. This thread will switch to a normal
execution engine immediately and continue execution.

iii. If the global counter is larger than zero, then this means that another execu-
tion engine has entered an initializing block and this thread cannot switch
to normal mode just yet. It will continue execution in initializing mode
until signalled.

(c) If it had to make a switch, it will create a new normal interpreter and continue
execution from where the other left off. So either all threads are running normal
execution engines again or one had entered a initializing block, so they are still
in initializing mode.

6 Implementation Status

We are currently implementing a new virtual machine for gbeta, in its current state of
development. The language has evolvedin several ways [4,7] since it was described in
the PhD thesis [5] by Erik Ernst.

The method described in this paper is ongoing work and some parts of it are already
implemented in the currently running version of our virtual machine.

7 Related Work

An immutable field in Java is declared £inal and given its value in the constructor.
This is not to be confused with a field declared £inal and given its value in the dec-
laration. Such a field is compiled into constants and special rules apply [9]. In the Java
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Language Specification [9] in section 17.5 the authors state: That an object is consid-
ered to be completely initialized when its constructor finishes. They also state: that the
usage model for final fields is simple. Set the final fields for an object in that object’s
constructor. Do not write a reference to the object being constructed in a place where
another thread can see it before the object’s constructor is finished.

A great deal of work has been put into strengthening the Java Memory Model [1]
and how synchronisation of threads should be done. But the problem of comparing Java
immutable fields to gbeta fields is that in Java the system would still run. In Java you
would observe odd behavior when reading £inal files that have not been initialized.
In gbeta you use run time values of fields as part of the type system. In this way a given
class resides within a object stored in a field. If this field was uninitialized the system
would fail to find the class and the system would break down.

This is why we have to make sure that user defined code does not see these unini-
tialized fields of objects.

8 Conclusion

In this paper we have proposed a way of handling initialization of objects, where we
respect the type system, in a way that no object is visible to the system until it is com-
pletely initialized. This way user defined code will only see completely initialized ob-
jects and thereby all promises made by the type system about fields will hold. The pro-
posed method, of having a dual-mode execution engine, depends on an analysis where
we can identify regions in the field initializing code that could potentially leak a pointer
to the newly created object to the heap. This method is being tried out in practise in the
ongoing implementation effort.
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