
Reconfigurable Petri Systems

with Negative Application Conditions

Diploma Thesis

Alexander Rein

Bericht–Nr. 2008/01

ISSN-Nummer: 1436-9915



Acknowledgment

I would like to thank PD Dr. habil. Julia Padberg, Leen Lambers and Ulrike
Prange for their professional support. In addition, special thanks goes to my lovely
girlfriend Sabrina Jury for her big patience and her very big support in numerous
areas. Moreover, I would also like to thank my great parents for supporting me in
every circumstance. Finally, I am very grateful to Conny Ullrich for the idea of the
airport case study.

Danksagung

Ich danke PD Dr. habil. Julia Padberg, Leen Lambers und Ulrike Prange für ihre
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Abstract

This thesis introduces negative application conditions (NACs) for varied kinds of
reconfigurable Petri systems. These are Petri systems together with a set of trans-
formation rules that allow changing the Petri system dynamically. Negative appli-
cations are a control structure for restricting the application of a rule if a certain
structute is present.
As introduced in [Lam07] and [LEOP08], (weak) adhesive high-level replacement
(HLR) categories with negative application conditions are (weak) adhesive HLR
categories with three additional distinguished morphism classes and some additional
properties. These properties are required for generalizing results like Local Church-
Rosser Theorem, Parallelism Theorem, Completeness Theorem of Critical Pairs,
Concurrency Theorem, Embedding and Extension Theorem and Local Confluence
Theorem for the use of negative application conditions. The main goals of this the-
sis are proving that the categories PTSys of P/T systems, AHLNet of algebraic
high-level (AHL) nets, AHLSystems of AHL systems and PTSys(L) of L-labeled
P/T systems are weak adhesive HLR categories with negative application conditions.
Therefore, these categories are formally introduced and the required properties are
proven in detail. Additionally, the practical application of the achieved results is
presented in form of case studies.

Keywords: Petri net, Petri system, P/T net, P/T system, AHL net, AHL sys-
tem, labels, net transformation, control structure, negative application condition,
adhesive HLR category with NACs, adhesive HLR system with NACs, case study,
airport control system, ACS



Zusammenfassung

Diese Arbeit führt negative Anwendungsbedingungen (NACs) für verschiedene Ty-
pen von rekonfigurierbaren Petri Systemen ein. Dies sind Petri Systeme mit einer
Menge von Transformationsregeln, die eine dynamische Veränderung des Petri Sys-
tems ermöglichen. Negative Anwendungsbedingungen sind eine Kontrollstruktur um
die Anwendung einer Regel zu verbieten, wenn eine bestimmte Struktur vorhanden
ist.
Wie in [Lam07] und [LEOP08] vorgestellt, sind schwach adhäsive HLR Kategori-
en mit negativen Anwendungsbedingungen schwach adhäsive HLR Kategorien mit
drei zusätzlichen, ausgezeichneten Morphismenklassen und einigen zusätzlichen Ei-
genschaften. Diese Eigenschaften werden benötigt, um Ergebnisse wie das Lokale
Church-Rosser Theorem, das Parallelismustheorem, das Vollständigkeitstheorem der
kritischen Paare, das Nebenläufigkeitstheorem, das Einbettungs- und das Erweite-
rungstheorem und das Lokale Konfluenz Theorem für die Benutzung mit negativen
Anwendungsbedingungen zu verallgemeinern. Das Hauptziel dieser Arbeit besteht
darin nachzuweisen, dass die Kategorien PTSys der P/T Systeme, AHLNet der
AHL Netze, AHLSystems der AHL Systeme und PTSys(L) der L-gelabelten P/T
Systeme schwach adhäsive HLR Kategorien mit negativen Anwendungsbedingun-
gen sind. Dafür werden diese Kategorien formal eingeführt und die dafür benötigten
Eigenschaften detailliert bewiesen. Zusätzlich wird die praktische Anwendung der
erzielten Ergebnisse in Form von Fallstudien dargelegt.

Schlüsselwörter: Petri Netz, Petri System, P/T Netz, P/T System, AHL Netz,
AHL System, Labels, Netz Transformation, Kontrollstruktur, negative Anwendungs-
bedingung, adhäsive HLR Kategorie mit NACs, adhäsives HLR System mit NACs,
Fallstudie, Flughafen Kontrollsystem, ACS
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Chapter 1

Introduction

1.1 Overview and Motivation

Petri nets are a well-known formal modeling technique in theoretical computer sci-
ence. Their application area ranges over the description of workflows, the simu-
lation of concurrent and sequential processes, the mathematical representation of
distributed systems and the modeling of interactive web applications and complex
object-oriented software. Moreover, Petri nets have numerous application areas
beyond computer science like e.g. the modeling and simulation of manufacturing
systems and assembly processes and, in industrial automation, the description of
the control of industrial machinery and processes. Petri nets were invented in 1962
by Carl Adam Petri in the form of place / transition nets (short P/T nets). Ad-
vantages of P/T nets are their comprehensible graphical notation as bipartite and
directed graphs consisting places and transitions as nodes (see Figure 1.1) on the
one hand and their mathematical foundation on the other hand. Places may contain
any number of so called tokens. A distribution of tokens over all places of a P/T net
is called marking. A transition is enabled if there are (enough) tokens at all input
places. If a transition is enabled it is able to fire, i.e. it removes a specified number
of tokens of the input places and puts a specified number of tokens at the output
places. Firing of transitions is nondeterministic. Since the invention of P/T nets
a variety of mathematical descriptions of P/T nets have been established. In this
thesis, the well-known monoid notation presented in [MM90] is used.
A P/T system is the extension of a P/T net by an initial marking. P/T systems

Figure 1.1: P/T Net PN

are often prefered for modeling since the initial situation (e.g. the initial state of a
system) can be expressed by the initial marking.
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CHAPTER 1. INTRODUCTION Alexander Rein

Since the etablishment of Petri nets in the sixties of the last century, a lot of
extensions of Petri nets were introduced. One of these extensions are algebraic high-
level nets (short AHL nets). An AHL net is the extension of a P/T net by data
types. Therefore, an algebraic specification and an algebra are added to the net.
Tokens are now data types in contrast to P/T nets where tokens are indistinguish-
able. Every place has a determined type and can only contain tokens of this type.
Additionally, transitions have fire conditions and are only enabled if all fire condi-
tions are satisfied. Analogous to the case without data types, an algebraic high-level
system (short AHL system) is the extension of an AHL net by an initial marking.
Modeling with data types provides the advantage that the underlying net structure
is usually much smaller than the corresponding net without data types. Hence, AHL
nets are a very useful extension of P/T nets.
The phrase Petri net is often used as synonym for P/T net. In this thesis, Petri net
stands for low-level (i.e. P/T) as well as for high-level (i.e. AHL) net.
The relationship between two Petri nets can be described through a Petri net mor-
phism. Petri net morphisms are tuples of functions mapping the single components
of a Petri net with some special properties introduced later in this thesis. Petri net
morphisms can be extended to Petri morphisms describing the relationship between
Petri systems. Petri morphisms are Petri net morphisms with an additional property
with respect to the marking of the nets. They are also introduced later in this thesis.

A reconfigurable Petri system is a Petri system with a set of transformation rules
for transforming this Petri system. Reconfigurable Petri systems are a suitable vi-
sual language for describing dynamical systems, i.e. systems which are able to adapt
to changes while running. Thereby, the Petri system describes the behaviour of the
system and the transformations describe the adaptation of the system to changes.
These transformations base on the algebraic approach presented in [EEPT06]. This
approach is based on pushout constructions. Pushouts are a concept of category
theory. This is a mathematical fundamental theory dealing in an abstract way with
mathematical structures and the relationships between them. A detailed introduc-
tion to category theory can be found in [AHS90]. In fact, there are two main variants
of the algebraic approach, the single- and the double-pushout (DPO) approach. In
this thesis, the DPO approach introduced in [EEPT06] is used. Since the algebraic
approach is based on pure categorical constructions, it has a lot of instantiations, for
example graphs, labeled graphs, typed graphs, attributed graphs, hypergraphs, Petri
nets, Petri systems but also non-visual instantiations like algebraic specifications.
The concept of these so called high-level replacement (HLR) systems introduced in
[EHKPP91] and [EHKP91] was joined to that of adhesive categories introduced by
Lack and Sobociński in [LS04], leading to the concept of (weak) adhesive HLR cate-
gories described in Chapters 4 and 5 in [EEPT06]. A (weak) adhesive HLR category
is a category with special properties, which are not as strict as the properties of ad-
hesive categories. This means, every adhesive category is also a (weak) adhesive
HLR category, but the inverse conclusion does not hold in general. (Weak) adhesive
HLR categories base on a distinguished subclass of monomorphisms M with some
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CHAPTER 1. INTRODUCTION Alexander Rein

special properties instead on the class of all monomorphisms as adhesive categories.
There are adhesive HLR categories and weak adhesive HLR categories. The second
mentioned are adhesive HLR categories with some weakened properties. The no-
tion (weak) adhesive HLR category means that either an adhesive HLR or a weak
adhesive HLR category can be considered. Some of the most significant results
for adhesive HLR systems are the Local Church-Rosser Theorem, the Parallelism
Theorem, the Concurrency Theorem, the Embedding and the Extension Theorem,
the Completeness Theorem of Critical Pairs and the main result the Local Conflu-
ence Theorem. All these theorems are introduced, described in detail and proven in
[EEPT06]. Simplified and informally, the Local Church-Rosser Theorem states that
the order of two sequential transformations with a special property, called indepen-
dence, of one object does not matter (see Figure 1.2) and the Parallelism Theorem
states the existence of a direct transformation performing both transformations in
one step. The existence of a direct transformation for every pair of transforma-
tions (even dependent transformations) is guaranteed by the Concurrency Theorem.
The Embedding and the Extension Theorem allow extending a transformation into
a larger context. The Completeness Theorem of Critical Pairs expresses that ev-
ery pair of parallel dependent transformations belongs to a critical pair. Critical
pairs are required for the Local Confluence Theorem. The Local Confluence Theo-
rem states some conditions for the local confluence of the transformation system.
Local confluence means that for all pairs of direct transformations, it holds that the
different results can be transformed to the same result. This property is required
for most transformation systems. These theorems hold for all instances of adhesive
HLR systems, although some of them require some special properties.

addPreTransition addPostTransition

addPostTransition addPreTransition

Figure 1.2: Local Church-Rosser Property

In most transformation systems, there are a lot of basic conditions for the ap-
plicability of transformations. For example, a transformation may not be applied in
some situations, although it is theoretically possible. For expressing conditions like
this, some kind of control structure for the applicability of rules is required. Control
structures are necessary if rules should be applied automated and also reasonable if
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CHAPTER 1. INTRODUCTION Alexander Rein

the rules should be applied manually for preventing human failures.
Negative application conditions (NACs), introduced in Chapter 7 in [EEPT06], are
such a control structure for adhesive HLR systems. They restrict the application of
a rule if a certain structure is present. Furthermore, there are other control struc-
tures like labels, presented later in this thesis, and transformation units, presented
in [KKS97], which are not discussed in this thesis.
Two kinds of negative application conditions can be distinguished. On the one hand
there are left negative application conditions and on the other hand there are right
negative application conditions. The first mentioned restrict the application of a rule
if a certain structure is present before applying the rule and the second mentioned if
a certain structure is present after applying the rule. However, every right NAC can
be transformed to an equivalent left NAC as shown in Lemma 2.11 in [LEOP08].
For this reason, only left negative application conditions are considered in this thesis
and they are simply called negative application conditions in the following.
The necessity of negative application conditions for transformation systems is ob-
vious. A simple example therefore is the restriction of the repeated application of
a rule. This is shown in Figure 1.3), where a rule addPreTransition is applied re-
peatedly to a P/T system. Expanding this rule by an adequate negative application
condition forbids transformation (2) and all following transformations shown in Fig-
ure 1.3 since the structure of the NAC can be found in the second P/T system. Of
course, adding several negative application conditions to rules is possible. Generally,
negative application conditions can be used to restrict unwanted transformations.
Nevertheless, there are more concepts for preventing a couple of unwanted transfor-
mations. For example, labeled Petri systems can be used. Their general idea is quite
simple: A label is assigned to every place and a mapping between two places is only
allowed if they have the same label. Of course, labeling transitions is also possible,
although labeled places are sufficient for most applications. The use of labeled Petri
systems combined with negative application conditions is not redundant since labels
can only prevent some specific unwanted transformations through the restriction of
the mappings and are not able to express conditions like, e.g. restricting the appli-
cability of rules repeatedly.

(1)
=⇒ (2)

=⇒ (3)
=⇒ (4)

=⇒ ...

Figure 1.3: Repeated application of rule addPreTransition

A lot of theoretical results (for example all of the already mentioned theo-
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rems) have to be extended for the use of negative application conditions. In Fig-
ure 1.5 it is shown that the basic Local Church-Rosser Theorem does not hold in
general for the case with negative application conditions since the NAC of rule
addPostTransitionWithNAC (see Figure 1.4) forbids the application to the left
P/T system. The extension of the most significant results for the use of negative
application conditions in general adhesive HLR systems is already introduced by
Leen Lambers in [Lam07] and expanded in [LEOP08]. Therefore, the notion of
(weak) adhesive HLR categories with NACs is introduced. These are (weak) adhe-
sive HLR categories with several additional properties. Additional to the morphism
class M (weak) adhesive HLR categories with NACs have three distinguished mor-
phism classes: M′, Q and E ′ with special properties. Q-morphisms play a very
important role for adhesive HLR systems with NACs since they influence the satis-
faction of a negative application condition directly. In order to reduce the number
of required negative application conditions it is important to choose the morphism
class Q as general as possible. Morphism classes E ′ andM′ are already introduced in
[EEPT06] for E ′-M′ pair factorization,M-M′pushout-pullback decomposition prop-
erty and initial pushouts over M′-morphisms. These properties are required for
some of the most significant results for adhesive HLR systems. They are three of
eleven existing additional properties of a (weak) adhesive HLR category with NACs.
Furthermore, there are properties like unique epi-M factorization, special pushout-
pullback properties and several composition and decomposition properties of special
morphisms. The relevance of these properties is described in detail in [Lam07] and
[LEOP08].

The main focus of this thesis is to prove that Petri systems (P/T systems, AHL
systems as well as labeled P/T systems) fulfill these mentioned properties. There-
fore, the categories PTNet of P/T nets, PTSys of P/T systems, PTSys(L) of
labeled P/T systems, AHLNet of AHL nets and AHLSystems of AHL systems
are introduced in detail and it is proven that these categories are weak adhesive HLR
categories with NACs. Additionally, two case studies are given to show a concrete
application of the abstract results. The first case study contains the description and
the modeling of an airport control system, called ACS, with a reconfigurable P/T
system. ACS manages the coordination of the airplanes at the airport and ensures
that the runways can only be used exclusively by one airplane. ACS can adapt to
various changes of the airport. For example, starting and landing runways can be
added or removed under several conditions by transforming the basic ACS. The sec-
ond case study extends ACS to a reconfigurable AHL system, called AHL-ACS, with
additional functionality, for example managing the airplanes at the gates. Finally,
the theoretical results of adhesive HLR systems with NACs are applied to ACS and
AHL-ACS.
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NAC

←−
L

=⇒
R

Figure 1.4: Rule addPostTransitionWithNAC

addPreTransition
addPostTransitionWithNAC

addPostTransitionWithNAC
x addPreTransition

Figure 1.5: Violation of Local Church-Rosser Property

1.2 Structure of this Thesis

This work is structured into four main topics: Adhesive HLR systems with NACs,
reconfigurable P/T systems, reconfigurable AHL systems and reconfigurable labeled
P/T systems. Chapter 2 contains an introduction to adhesive HLR systems with
NACs, where all required properties are defined formally. Additionally, an overview
of the most significant notions of transformation systems and the most significant
results for adhesive HLR systems with NACs are presented. The content of this
chapter is very abstract and serves to show the theoretical background of adhesive
HLR systems with NACs. In Chapter 3 reconfigurable P/T systems are analyzed.
The first part of this chapter contains a short review of them. Therefore, P/T nets
and the category of P/T nets are presented first. Then the extension of P/T nets
to P/T systems is performed and the category of P/T systems is introduced. Addi-
tional information about these categories can be found in Appendix A with detailed
proofs for special morphisms and some categorical constructions. In the next step, it
is proven that the category of P/T systems is a weak adhesive category with NACs.
Finally, a case study for a reconfigurable P/T system is presented in the case of an
airport control system called ACS. Additionally, the theoretical results of Chapter 2
are applied to this example. In Chapter 4, P/T nets are extended by data types to
AHL nets and the categories of AHL nets and AHL systems are introduced. More de-
tailed information about these categories can be found in Appendix B with detailed
proofs for special morphisms and some categorical constructions. Subsequently, it
is proven that the category of AHL nets and the category of AHL systems are weak
adhesive HLR categories with NACs. Finally, a case study for a reconfigurable AHL
system is presented, which is the extension of ACS to AHL systems with additional
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CHAPTER 1. INTRODUCTION Alexander Rein

functionality. In Chapter 5 labeled P/T systems are introduced. The organization
of this chapter is analogous to Chapter 3. In the first step, a review of reconfig-
urable labeled P/T systems is given. More detailed information about the category
of labeled P/T systems can be found in Appendix C with detailed proofs for special
morphisms and some categorical constructions. Then it is proven that the category
of labeled P/T systems is a weak adhesive HLR category with NACs and, finally,
ACS is extended to labeled P/T systems. Additionally, the advantages of labels
are identified. Chapter 6 contains the conclusion and a description of future work.
Moreover, in Appendix D several detailed proofs can be found. Furthermore, Ap-
pendix A contains additional information about the category of sets and Appendix
B contains additional information about the categories of algebraic signatures and
the category of algebraic specifications.

1.3 Related Work

Graph transformation systems with the double-pushout (DPO) approach and its
generalization to adhesive HLR systems are introduced in detail in [EEPT06] and
[EPPH06]. [Roz97] compares the double-pushout approach and the single-pushout
(SPO) approach. Application conditions were first considered in the 1980s in [EH86],
and negative application conditions (NACs) in the 1990s in [HW95] and [HHT96].
For using negative application conditions without losing important qualities of ad-
hesive HLR systems, the extension of (weak) adhesive HLR categories to (weak) ad-
hesive HLR categories with NACs is presented in [LEO06], [Lam07] and [LEOP08]
with detailed proofs of the most significant results and theorems. In [PEL07], an
approach for the construction of (weak) adhesive HLR categories with some of the
required additional properties for the use of negative application conditions is pre-
sented. Examples for the use of negative application conditions can be found e.g. in
[BTS00], [HHT02], [KMPP05], [MTR05] and [EGdL+05].
P/T nets and P/T systems are introduced in [Rei85] and [NRT92] in original set-
theoretical notation. The algebraic notation, basing on a power set or monoid con-
struction, is introduced in [MM90]. [EP04], [HME05] and [EEPT06] contain an in-
troduction to P/T net transformation systems and reconfigurable P/T systems are
analyzed in [EEH+07]. A small example of a reconfigurable P/T system with nega-
tive application conditions can be found in [RPL+08]. The approach of transforming
Petri nets can be restricted to transformations that preserve specific properties as
safety or liveness as described in [PU03]. In a series of papers [LO04], [LO06a] and
[LO06b], net rewriting systems for describing concurrent systems are introduced.
In this context, a system configuration is described as a Petri net and a change of
the configuration is described as a graph rewriting rule. This means, rewriting of
Petri nets in terms of graph grammars is used for the reconfiguration of nets. These
so called marked-controlled reconfigurable nets (MCRN) are extended by control
techniques that allow changes of the net for specific markings. The enabling of a
rule is not only dependent on the net topology, but also on the marking of specific
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control places. MCReNet (see [LO06a]) is the corresponding tool for modeling and
verification of MCRNs.
For the step from low-level Petri nets to high-level Petri nets algebraic specifica-
tions and algebras as introduced in [EM85] and [EM90] are required. In [Pra07] and
[PER95] reconfigurable AHL nets are presented and in [Pra08] they are extended to
reconfigurable AHL systems by adding markings. Examples of algebraic high-level
net transformation systems can be found e.g. in [PER95], [EKMR99] and [Erm96].

12



Chapter 2

Adhesive HLR Systems with
NACs

2.1 Review of Adhesive HLR Categories with NACs

This chapter contains a review of adhesive HLR systems with negative application
conditions. In the first part, (weak) adhesive HLR categories are introduced. Sub-
sequently, the additional requirements of adhesive HLR systems with NACs are
presented. A more detailed introduction to adhesive HLR systems can be found in
[EEPT06]. [Lam07] and [LEOP08] contain detailed information about the expansion
of adhesive HLR systems by negative application conditions and [LEO06] introduces
conflict detection for graph transformation systems with negative application con-
ditions.

The intuitive idea of (weak) adhesive HLR categories is that of categories with
special properties for pushouts and pullbacks. Their formal definition is based on so
called van Kampen squares. These are commutative squares consisting of pushouts
and pullbacks with some special properties as defined in the next definition.

Definition 2.1 (van Kampen Square). A pushout (1) is a van Kampen square if,
for any commutative cube (2) with (1) in the bottom and where the back faces are
pullbacks, the following statement holds: the top face is a pushout if and only if the
front faces are pullbacks.

13
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A B

(1)

C D

m

f g

u

A′

C ′ B′

D′

A

C B

D

mf

gn

m′f ′

g′n′ a

bc

d

(2)

Based on this definition of van Kampen squares it is possible to define adhesive
HLR categories.

Definition 2.2 (Adhesive HLR Category). A category C with a morphism class
M is called adhesive HLR category if

1. M is a class of monomorphisms closed under isomorphisms, composition and
decomposition,

2. C has pushouts and pullbacks along M-morphisms and M-morphisms are
closed under pushouts and pullbacks,

3. pushouts in C along M-morphisms are van Kampen squares.

The category (PTNet,M) of P/T nets and P/T net morphisms with the class
M of all monomorphisms fails to be an adhesive HLR category (see Example 4.23
in [EEPT06]) since the van Kampen square property does not hold. Nevertheless,
(PTNet,M) is a weak adhesive HLR category. This is a adhesive HLR category
with a weakened van Kampen property. For defining transformation systems, the
properties of weak adhesive HLR categories, formalized in the next definition, are
sufficient. In the following, the phrase (weak) adhesive HLR category means that
either an adhesive HLR category or a weak adhesive HLR category can be considered.

Definition 2.3 (Weak Adhesive HLR Category). A category C with a morphism
class M is called weak adhesive HLR category if

1. M is a class of monomorphisms closed under isomorphisms, composition and
decomposition,

2. C has pushouts and pullbacks along M-morphisms and M-morphisms are
closed under pushouts and pullbacks,

3. pushouts in C alongM-morphisms are weak van Kampen squares, i.e. the VK
square property holds for all commutative cubes with m ∈M and (f ∈M or
b, c, d ∈M) (see Definition 2.1).

14
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As already mentioned, (weak) adhesive HLR categories with NACs contain some
additional conditions compared to the case without NACs. These conditions are
necessary for using negative application conditions within a transformation system
while preserving important qualities like Local Church-Rosser Theorem, Parallelism
Theorem, Completeness Theorem of Critical Pairs, Concurrency Theorem, Embed-
ding and Extension Theorem and Local Confluence Theorem. All these theorems
are presented in the next section of this thesis as well as in [Lam07] and [LEOP08],
where they are introduced and proven.

Definition 2.4 ((Weak) Adhesive HLR Category with NACs). A (weak) adhesive
HLR category with NACs is a (weak) adhesive HLR category C with special mor-
phism class M and in addition three morphism classes M′, E ′ and Q with the
following properties:

• unique epi-M factorization (see Definition 2.5)

• unique E ′-M′ pair factorization (see Definition 2.6)

• M-M′ pushout-pullback decomposition property (see Definition 2.7)

• M-Q pushout-pullback decomposition property (see Definition 2.8)

• initial pushouts over M′-morphisms (see Definition 2.10)

• M′ is closed under pushouts and pullbacks alongM-morphisms (see Definition
2.11)

• Q is closed under pushouts and pullbacks alongM-morphisms (see Definition
2.12)

• induced pullback-pushout property for M and Q (see Definition 2.13)

• composition property for morphisms in M′ and Q (see Definition 2.14)

• decomposition property for morphisms in M′ and Q (see Definition 2.15)

• Q is closed under composition and decomposition (see Definition 2.16)

The explicit definitions of the itemized properties above follow directly.

Definition 2.5 (Unique Epi-M Factorization). A (weak) adhesive HLR category
(C,M) has unique epi-M factorization if, for every morphism f : A → C, there
exists an object B, epimorphism e : A → B and monomorphism m : B → C ∈ M
with m ◦ e = f and the following universal property holds: For all epimorphisms
e′ : A→ B′ and monomorphisms m′ : B′ → C ∈M with m′ ◦ e′ = f exists a unique
isomorphism i : B → B′ with i ◦ e = e′ and m′ ◦ i = m.

15
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Definition 2.6 (Unique E ′-M′ Pair Factorization). Given a class of morphism pairs
E ′ with the same codomain and a morphism class M′, a (weak) adhesive HLR cat-
egory has E ′-M′ pair factorization if, for each pair of morphisms f1 : A1 → C and
f2 : A2 → C, there exist an object K and morphisms e1 : A1 → K, e2 : A2 → K
and m : K → C with (e1, e2) ∈ E ′ and m ∈M′ such that m◦e1 = f1 and m◦e2 = f2

A1

K C

A2

f1

f2

e1

e2

m

and the following universal property holds:
For every object K ′ and morphisms e′1 : A1 → K ′, e′2 : A2 → K ′ and m′ ∈ M′ :
K ′ → C with (e′1, e

′
2) ∈ E ′, m′ ◦ e′1 = f1 and m′ ◦ e′2 = f2 there exists a unique

isomorphism i : K → K ′ with i ◦ e1 = e′1, i ◦ e2 = e′2 and m′ ◦ i = m.

Definition 2.7 (M-M′ Pushout-Pullback Decomposition Property). A (weak) ad-
hesive HLR category (C,M) with a morphism class M′ has the M-M′ pushout-
pullback decomposition property if the following property holds:
Given the following commutative diagram with l ∈ M and w ∈ M′, and where
(1+2) is a pushout and (2) a pullback, then (1) and (2) are pushouts and also pull-
backs:

A B E

(1) (2)

C D F

k

l s

u

r

v

w

Definition 2.8 (M-Q Pushout-Pullback Decomposition Property). Replace mor-
phism class M′ in Definition 2.7 by Q.

Definition 2.9 (Initial Pushout). Given a morphism f : A→ A′ in a (weak) adhe-
sive HLR category, a morphism b : B → A with b ∈ M is called the boundary over
f if there is a pushout complement of f and b such that (1) is a pushout which is
initial over f . Initiality of (1) over f means, that for every pushout (2) with b′ ∈M
there exist unique morphisms b∗ : B → D and c∗ : C → E with b∗, c∗ ∈M such that
b′ ◦ b∗ = b, c′ ◦ c∗ = c and (3) is a pushout. B is then called the boundary object
and C the context with respect to f .

16
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B A B D A

(1) (3) (2)

C A′ C E A′

b

f ′

c

f

b′

f ′ f ′′ f

c′

b

c

b∗

c∗

Definition 2.10 (Initial Pushouts over M′-Morphisms). A (weak) adhesive HLR
category with a morphism class M′ has initial pushouts over M′-morphisms if,
for every morphism f : A → A′ ∈ M′, the diagram (see Definition 2.9) can be
constructed such that (1) is an initial pushout and b : B → A ∈M.

Definition 2.11 (M′ is closed under Pushouts and Pullbacks alongM-Morphisms).
Given a (weak) adhesive HLR category (C,M) with a morphism class M′, the
following statements hold:

1. M′ is closed under pushouts along M-morphisms if for every pushout (1)
where g, g′ ∈M and f ∈M′, it holds that f ′ ∈M′.

2. M′ is closed under pullbacks along M-morphisms if for every pullback (1)
where g, g′ ∈M and f ′ ∈M′, it holds that f ∈M′.

A B

(1)

C D

f

g

f ′

g′

Definition 2.12 (Q is closed under Pushouts and Pullbacks alongM-Morphisms).
Replace morphism class M′ in Definition 2.11 by Q.

Definition 2.13 (Induced Pullback-Pushout Property for M and Q). A (weak)
adhesive HLR category (C,M) with a morphism class Q has the induced pullback-
pushout property for M and Q if the following property holds:
Given morphisms a : A → C ∈ Q and b : B → C ∈ M and the following pullback
and pushout,

D B D B

(PB) (PO)

A C A E

d2

d1 b

a

d2

d1 e1

e2

then the induced morphism x : E → C with x ◦ e1 = b and x ◦ e2 = a is a
monomorphism in Q.

17



CHAPTER 2. ADHESIVE HLR SYSTEMS WITH NACS Alexander Rein

Definition 2.14 (Composition Property for Morphisms in M′ and Q). A (weak)
adhesive HLR category (C,M) with morphism classesM′ andQ has the composition
property for morphisms in M′ and Q if the following statement holds:
If f : A→ B ∈ Q and g : B → C ∈M′ then g ◦ f ∈ Q.

Definition 2.15 (Decomposition Property for Morphisms inM′ and Q). A (weak)
adhesive HLR category (C,M) with morphism classesM′ and Q has the decompo-
sition property for morphisms in M′ and Q if the following statement holds:
If g ◦ f ∈ Q and g ∈M′ then f ∈ Q.

Definition 2.16 (Q is closed under Composition and Decomposition). Given a
(weak) adhesive HLR category (C,M) with a morphism class Q.

• Q is closed under composition if for every pair f : A→ B ∈ Q, g : B → C ∈ Q
of morphisms it holds that g ◦ f ∈ Q.

• Q is closed under decomposition if for every morphism g ◦ f ∈ Q with g ∈ Q
it holds that f ∈ Q.

2.2 Most Significant Notions of Transformation Systems
with NACs

In the next part, the most significant notions of transformation systems are pre-
sented. Note that this thesis only summarizes some required basic notions. [EEPT06]
contains a detailed introduction to transformation systems.

Transformation systems presented in this thesis are rule-based, i.e. transforma-
tion steps are described by rules as formalized in the following definition.

Definition 2.17 (Rule / Production). A rule in a (weak) adhesive HLR category
(C,M) is given by three C-objects L, K and R and two C-morphisms l : K → L ∈
M and r : K → R ∈M. 1

According to the DPO approach presented in [EEPT06], the direct transforma-
tion of an object via the rule p = (L l← K

r→ R) is described by a double-pushout
diagram along the morphisms l and r of the rule. The formal definition follows later.

L K R

(1) (2)

G D H

m

l r

k n

f d

Since the morphisms of a rule are M-morphisms, the existence of pushouts along
these morphisms is guaranteed. Although, for a given morphism m : L→ G, called

1A rule is also called production.

18



CHAPTER 2. ADHESIVE HLR SYSTEMS WITH NACS Alexander Rein

match, from the left-hand side of the rule L to an object G, the existence of the so
called pushout complement D is not ensured. Therefore, applying a rule to an object
is not always possible and a necessary and sufficient condition for the applicability of
rules is required. This so called gluing condition is formalized in the next definition.

Definition 2.18 (Gluing Condition). Given an adhesive HLR system AHS over
a (weak) adhesive HLR category with initial pushouts, then a match m : L → G

satisfies the gluing condition with respect to a production p = (L l← K
r→ R) if, for

the initial pushout (1) over m, there is a morphism b∗ : B → K such that l ◦ b∗ = b:

B L K R

(1)

C G

b

m

c

l r
b∗

In this case, b, l ∈M implies b∗ ∈M by the decomposition property of M.

Remark 2.19. This is the categorical formulation of the gluing condition. Corre-
sponding gluing conditions are formalized for most instances of well known trans-
formation systems, for example graphs, P/T nets and systems and AHL nets and
systems. The gluing conditions for P/T systems, AHL nets and AHL systems are
defined in the appendix of this thesis (see Facts A.21, B.26 and B.32).

According to the gluing condition, the applicability of rules and transformations
are formalized in the following definitions.

Definition 2.20 (Applicability of a Rule). A rule p = (L l← K
r→ R) is applicable

for a match m : L → G if and only if m fulfills the gluing condition. A match m
that fulfills the gluing condition is also called consistent with respect to p.

Definition 2.21 (Direct Transformation via a Rule). Given a rule p = (L l← K
r→

R) and a consistent match m : L→ G with respect to p. Then the direct transfor-
mation is given by the following diagram, where (1) and (2) are pushouts:

L K R

(1) (2)

G D H

m

l r

k n

f d

H is called the result of the direct transformation. A sequence G0 ⇒ G1 ⇒ ...⇒ Gn
of direct transformations is called a transformation and is denoted G0

∗⇒ Gn. Gn is
called the result of the transformation.
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Now, the theory is extended by negative application conditions. Negative ap-
plication conditions afford the possibility to restrict the application of a rule if a
certain structure is present. Analogous to negative application conditions, there are
application conditions (see Definition 7.6 in [EEPT06]). Although, only negative
application conditions are considered in this thesis since they are the mostly used
kind of application conditions.
As already mentioned in the Inroduction, there are left negative application condi-
tions, which forbid the existence of a certain structure before applying a rule, and
there are right negative application conditions, which forbid the existence of a cer-
tain structure after applying a rule. In this thesis, only left negative application
conditions are considered and they are simply called negative application conditions
or shortly NACs.

Definition 2.22 ((Left) Negative Application Condition). A simple negative ap-
plication condition of a production p = (L l← K

r→ R) in a (weak) adhesive HLR
category with NACs (C,M,M′, E ′,Q) is of the form NAC(n), where n : L→ N is
a morphism.
A morphism m : L→ G satisfies NAC(n), written m |= NAC(n), if there does not
exist a morphism q : N → G ∈ Q with q ◦ n = m.

Remark 2.23. In this thesis, only adhesive HLR systems with rules having an empty
set of right negative application conditions are considered. This is without loss of
generality because each right NAC can be translated into an equivalent left NAC
as explained in Definition 2.9 in [Lam07]. See also Lemma 2.11 and Remark 2.8 in
[Lam07].

According to the case without negative application conditions, rules with nega-
tive application conditions and their applicability are defined in the following.

Definition 2.24 (Rule / Production with NACs). A rule p = (L ← K → R) (see
Definition 2.17) in a (weak) adhesive HLR category with NACs (C,M,M′, E ′,Q)
with a set of NACs NACp = {NAC(ni)|ni : L→ Ni, i ∈ I} (see Definition 2.22) is
called rule with NACs, where I is an index set.

Definition 2.25 (Applicability of a Rule with NACs). Given a rule p = (L l←
K

r→ R) with a set of negative application conditions NACp and a consistent match
m : L→ G with respect to p. Then the rule p is applicable if and only if m satisfies
all NACs of the set NACp.

Finally, the definition of an adhesive HLR system with NACs is given.

Definition 2.26 (Adhesive HLR System with NACs). An adhesive HLR system
with NACs AHS = (C,M,M′, E ′,Q, P ) consists of a (weak) adhesive HLR category
with NACs (C,M,M′, E ′,Q) as formalized in Definition 2.4 and a set of rules with
NACs P (see Definition 2.24).
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2.3 Most Significant Results for Adhesive HLR Systems
with NACs

This chapter contains the most important theorems for adhesive HLR systems with
NACs and additional required definitions. A more detailed description, small ex-
amples and detailed proofs of the following theorems can be found in [Lam07] and
[LEOP08].

2.3.1 Inverse Rules

A requirement for a lot of transformation systems is the possibility to revoke a
transformation step. In the case without negative application conditions, it is quite
obvious that for every given rule an inverse rule exists. In the case with negative
application conditions, this requirement demands the possibility to translate right
NACs into left NACs. As already mentioned, this possibility is given in the case
of adhesive HLR systems with NACs. The Theorem Inverse Direct Transformation
with NACs, given in this subsection, formalizes this result.

Definition 2.27 (Construction of NACs on Inverse Rule). For each NAC(ni) with
ni : L → Ni on p = (L ← K → R), the equivalent NAC Rp(NAC(ni)) on the
inverse rule p−1 = (R← K → L) is defined in the following way:

L K R

(1) (2)

Ni Z N ′
i

ni n′
i

• If the pair (K → L,L → Ni) has a pushout complement, construct (K →
Z,Z → Ni) as pushout complement (1). Then construct pushout (2) with the
morphism n′i : R→ N ′i and define Rp(NAC(ni)) = NAC(n′i).

• If the pair (K → L,L → Ni) does not have a pushout complement, define
Rp(NAC(ni)) = true.

For each set of NACs on p NACp =
⋃
i∈I NAC(ni), define the following set of NACs

on p−1 : NACp−1 = Rp(NACp) =
⋃
i∈I′ Rp(NAC(ni)) with i ∈ I ′ if and only if the

pair (K → L,L→ Ni) has a pushout complement.

Remark 2.28 (Translation of NACs). In [Lam07] and [LEOP08] a leftward transla-
tion Lp(NACp) of a set of right NACs NACp into a set of left NACs is introduced.
It is used to create the NACs of the inverse production. This approach is equivalent
to the construction of NACs on inverse rules presented in Definition 2.27.
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Theorem 2.29 (Inverse Direct Transformation with NACs). For each direct trans-
formation with NACs G ⇒ H via a rule p : L ← K → R with NACp a set of
NACs on p, there exists an inverse direct transformation with NACs H ⇒ G via the
inverse rule p−1 with NACp−1.

2.3.2 Parallelism

Parallelism is an important concept for every transformation system. Therefore,
the notion of independent direct transformations is necessary. Intuitively, it is quite
obvious that the order of some special (i.e. independent) transformations does not
matter. For example, in this context it makes no difference for the construction of
an airport if the starting runway or the landing runway is built first. Additionally,
there is the possibility to build both runways simultaneously. This also leads to the
same result of an airport with a starting and a landing runway. Especially, because
a lot of transformation systems are infinite, it is important to formalize these results
as universally valid theorems. The Local Church-Rosser Theorem with NACs and
the Parallelism Theorem with NACs, presented in this subsection, represent the gen-
eralization of the mentioned examples. All for these theorems required definitions
are also formalized in this subsection.
Note that the Parallelism Theorem with NACs requires binary coproducts compat-
ible with M and an additional composition property for Q-morphisms.

Definition 2.30 (Parallel and Sequential Independence with NACs). Two direct
transformations G

p1,m1⇒ H1 with NACp1 and G
p2,m2⇒ H2 with NACp2 are parallel

independent if

∃h12 : L1 → D2 : (d2 ◦ h12 = m1 ∧ e2 ◦ h12 |= NACp1)

and
∃h21 : L2 → D1 : (d1 ◦ h21 = m2 ∧ e1 ◦ h21 |= NACp2)

as in the following diagram:

N1 N2

R1 K1 L1 L2 K2 R2

H1 D1 G D2 H2

m1

e1 d1

m2

e2d2

n1 n2

h21 h12

Two direct transformations G
p1,m1⇒ H1 with NACp1 and G

p2,m2⇒ H2 with NACp2

are sequentially independent if

∃h12 : R1 → D2 : (d2 ◦ h12 = m′1 ∧ e2 ◦ h12 |= NACp−1 1)
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and
∃h21 : L2 → D1 : (e1 ◦ h21 = m2 ∧ d1 ◦ h21 |= NACp2)

as in the following diagram:

N1 N2

L1 K1 R1 L2 K2 R2

G D1 H1 D2 H2

m′
1

e1d1

m2

e2d2

n1 n2

h21 h12

Theorem 2.31 (Local Church-Rosser Theorem with NACs). Given an adhesive
HLR system with NACs AHS and two parallel independent (see Definition 2.30)
direct transformations with NACs H1

p1,m1⇐ G
p2,m2⇒ H2, there are an object G′ and

direct transformations H1
p2,m′2⇒ G′ and H2

p1,m′1⇒ G′ such that G
p1,m1⇒ H1

p2,m′2⇒ G′ and

G
p2,m2⇒ H2

p1,m′1⇒ G′ are sequentially independent. Vice versa, given two sequentially

independent (see Definition 2.30) direct transformations with NACs G
p1,m1⇒ H1

p2,m′2⇒
G′ there are an object H2 and sequentially independent direct transformations G

p2,m2⇒
H2

p1,m′1⇒ G′ such that H1
p1,m1⇐ G

p2,m2⇒ H2 are parallel independent:

G

H1 H2

G′

p1,m1 p2,m2

p2,m′
2 p1,m′

1

Definition 2.32 (Parallel Rule and Transformation with NACs). Let AHS =
(C,M,M′, E ′,Q, P ) be an adhesive HLR system with NACs, where (C,M) has
binary coproducts compatible with M (see Definition 5.14 in [EEPT06]). Given

two rules pi = Li
li← Ki

ri→ Ri with NACpi for i = 1, 2, the parallel rule p1 + p2

with NACp1+p2 is defined by the coproduct constructions over the corresponding

objects and morphisms: p1 + p2 = L1 + L2
l1+l2← K1 + K2

r1+r2→ R2 + R2 and
NACp1+p2 = {n1 + idL2 |n1 ∈ NACp1} ∪ {idL1 + n2|n2 ∈ NACp2}.
A direct transformation G ⇒ G′ via p1 + p2 with NACp1+p2 and a match m :
L1 + L2 → G satisfying NACp1+p2 is a direct parallel transformation with NACs or
parallel transformation with NACs for short.

Theorem 2.33 (Parallelism Theorem with NACs: Synthesis). Let AHS = (C,
M,M′, E ′,Q, P ) be an adhesive HLR system with NACs, where (C,M) has binary
coproducts compatible with M and where the composition of a coproduct morphism
with a morphism in Q is again in Q.
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Then given a sequentially independent (see Definition 2.30) direct transformation
sequence with NACs G ⇒ H1 ⇒ G′ via p1,m1 (resp. p2,m

′
2) with NACp1 (resp.

NACp2), there is a construction leading to a parallel transformation with NACs
G⇒ G′ via [m1,m2] and the parallel rule p1 + p2 with NACp1+p2, called a synthesis
construction.

G

H1 H2

G′

p1,m1 p2,m2

p2,m′
2 p1,m′

1

p1+p2,[m1,m2]

Definition 2.34 (NAC-Compatible Parallel Transformation). Given a parallel trans-
formation with NACs G ⇒ G′ via match m : L1 + L2 → G and the parallel rule
p1 + p2 with NACp1+p2 . Let m1 : L1 → G, m2 : L2 → G be the matches of the
direct transformations G ⇒ H1 and G ⇒ H2 via p1 resp. p2 and m′1 and m′2 the
matches of the direct transformations H2 ⇒ G′ and H1 ⇒ G′ via p1 resp. p2 as con-
structed in the Parallelism Theorem without NACs (Analysis part in Theorem 5.18
in [EEPT06]). The parallel transformation with NACs G ⇒ G′ is NAC-compatible
if m1,m

′
1 |= NACp1 and m2,m

′
2 |= NACp2 .

Theorem 2.35 (Parallelism Theorem with NACs: Analysis). Let AHS = (C,M,
M′, E ′,Q, P ) be an adhesive HLR system with NACs, where (C,M) has binary
coproducts compatible with M and where the composition of a coproduct morphism
with a morphism in Q is again in Q.

• Given a NAC-compatible direct parallel transformation with NACs G ⇒ G′

via m : L1 + L2 → G and the parallel rule p1 + p2 with NACp1+p2, then there
is a construction leading to two sequentially independent (see Definition 2.30)
transformation sequences with NACs G⇒ H1 ⇒ G′ via p1,m1 and p2,m

′
2 and

G⇒ H2 ⇒ G′ via p2,m2 and p,m′1, called an analysis construction.

• Bijective Correspondence. The synthesis construction of Theorem 2.33 and
the analysis construction are inverse to each other up to isomorphism.

G

H1 H2

G′

p1,m1 p2,m2

p2,m′
2 p1,m′

1

p1+p2,[m1,m2]

2.3.3 Critical Pairs

A critical pair describes a conflict between two transformations in a minimal con-
text. The morphism class E ′ is required to express this minimal context. The critical
pairs and their completeness are a significant concept because an infinite number of
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transformations, which are in conflict, can be reduced to a finite number of critical
pairs (under the assumption that the set of rules is finite). Critical pairs are used
to show the (local) confluence of a transformation system. Local confluence means,
that for every given pair of tranformations of one object, transformation sequences
of both results exist, such that the final result is the same. A formal definition of
local confluence follows later.
In this subsection, the Completeness Theorem of Critical Pairs with NACs, express-
ing the possibility to embed a critical pair into a pair of transformations in conflict,
is presented. Therefore, it is necessary to define conflicts of direct transformations
with NACs, critical pairs themselves and extension diagrams first.
Note that E ′-M′ pair factorization (see Definition 2.6) as well as M-M′ pushout-
pullback decomposition property (see Definition 2.7) are required even in the case
without NACs for the completeness of critical pairs (see Lemma 6.22 in [EEPT06]).

Definition 2.36 (Conflict of Direct Transformations with NACs). Two direct trans-
formations G

p1,m1⇒ H1 with NACp1 and G
p2,m2⇒ H2 with NACp2 are in conflict if

and only if they are not parallel independent (see Definition 2.30).

Remark 2.37. A conflict characterization with a detailed proof can be found in
Lemma 3.10 in [Lam07].

Definition 2.38 (Critical Pair with NACs). A critical pair is a pair of direct trans-
formations K

p1,m1⇒ P1 with NACp1 and K
p2,m2⇒ P2 with NACp2 such that:

1. (a) @h12 : L1 → D2 : d2 ◦ h12 = m1 and (m1,m2) ∈ E ′. (use-delete-conflict)
or

(b) ∃h12 : L1 → D2 : d2 ◦ h12 = m1, but for one of the NACs n1 : L1 → N1

of p1 there exists a morphism q12 : N1 → P2 ∈ Q : q12 ◦ n1 = e2 ◦ h12 and
(q12, h2) ∈ E ′. (forbid-produce-conflict)

or

2. (a) @h21 : L2 → D1 : d1 ◦ h21 = m2 and (m1,m2) ∈ E ′. (delete-use-conflict)
or

(b) ∃h21 : L2 → D1 : d1 ◦ h21 = m2, but for one of the NACs n2 : L2 → N2

of p2 there exists a morphism q21 : N2 → P1 ∈ Q : q21 ◦ n1 = e1 ◦ h21 and
(q21, h1) ∈ E ′. (produce-forbid-conflict)

N1 N2

R1 K1 L1 L2 K2 R2

P1 D1 K D2 P2

r1 l1

h1 m1

e1 d1

r2l2

h2m2

e2d2

n1 n2

h21 h12

q12q21
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Definition 2.39 (Extension Diagram with NACs). An extension diagram is a dia-
gram (1),

G0 Gn

(1)

G′
0 G′

n

k0 kn

t ∗

t′ ∗

where k0 : G0 → G′0 is a morphism, called extension morphism, and t : G0
∗⇒ Gn

and t′ : G′0
∗⇒ G′n are transformations with NACs via the same rules (p0, ..., pn−1)

and matches (m0, ...,mn−1) and extended matches (k0 ◦m0, ..., kn−1 ◦mn−1) respec-
tively, defined by the following DPO diagrams:

pi : Li Ki Ri

Gi Di Gi+1

G′
i D′

i G′
i+1

li ri

mi ji ni

fi gi

ki di ki+1

f ′
i g′i

Theorem 2.40 (Completeness of Critical Pairs with NACs). For each pair of direct

transformations H1
p1,m′1⇐ G

p2,m′2⇒ H2 in conflict there is a critical pair with extension
diagrams (1) and (2) and m ∈M′.

P1 K P2

(1) (2)

H1 G H2

m

2.3.4 Concurrency

Through the Parallelism Theorem with NACs it is possible to summarize several
independent direct transformations into one equivalent direct transformation. How-
ever, in general there will be dependencies between several direct transformations of
a transformation sequence. In this case, it is possible to use the Concurrency The-
orem with NACs. This allows to translate every transformation sequence into an
equivalent direct transformation. Therefore, it is necessary to create the concurrent
rule with NACs, as formalized in the following definition. The concurrent rule con-
tains a set of NACs consisting all translated NACs occuring in the transformation
sequence. This translation of NACs is defined in Section 5 in [Lam07] and Section
4 in [LEOP08]. Certainly, since the Concurrency Theorem with NACs is one of
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the most significant results for adhesive HLR systems with NACs, it is formulated
explicitly in the following part of this thesis.
Note that the construction of E -related transformations as described in Fact 5.29
in [EEPT06] requires E ′-M′ pair factorization (see Definition 2.6) as well as M-
M′ pushout-pullback decomposition property (see Definition 2.7), even in the case
without NACs.

Definition 2.41 (Concurrent Rule with NACs, induced (co-, lhs-) match).

n = 0 For a direct transformation G0 ⇒ G1 via match g0 : L0 → G0, comatch
g1 : R1 → G1 and rule p0 : L0 ← K0 → R0 with NACp0 the concurrent rule pc
with NACs induced by G0 ⇒ G1 is defined by pc = p0 with NACpc = NACp0 ,
the concurrent comatch hc is defined by hc = g1, the concurrent lhs-match by
id : L0 → L0 and the concurrent match gc by gc = g0 : L0 → G0.

n ≥ 1 Consider p′c : L′c ← K ′c → R′c (resp. g′c : L′c → G0, h′c : R′c → Gn,
m′c : L0 → L′c), the concurrent rule with NACs (resp. concurrent match,
comatch, lhs-match) induced by G0

n⇒ Gn. Let ((e′c, en), h) be the E ′-M′ pair
factorization of the comatch h′c and match gn or Gn ⇒ Gn+1. According to
Fact 5.29 in [EEPT06] pushout-pullback decomposition, pushout composition
and decomposition lead to the diagram below in which (1) is a pullback and
all other squares are pushouts:

L′
c K ′

c R′
c Ln Kn Rn

Lc Cc E Cn Rc

(1)

Kc

G0 Dn Gn D Gn+1

h′c

g′c

gn

gn+1

mc
e′c en

l r

kc

kn

gc h hc

For a transformation sequence G0
n+1⇒ Gn+1 the concurrent rule pc with NACs

(resp. concurrent match, comatch, lhs-match) induced by G0
n+1⇒ Gn+1 is

defined by pc = Lc
l◦kc← Kc

r◦kn→ Rc (gc : Lc → G0, hc : Rc → Gn+1, mc ◦
m′c : L0 → Lc). Thereby NACpc is defined by NACpc = DLpc(NACLn) ∪
Dmc(NACL′c).

Remark 2.42. Dmc(NACL′c) is the downward translation of NACL′c with respect to
match mc (see Definition 5.1, Lemma 5.2, Remark 5.3 and Definition 5.4 in [Lam07]).
DLpc(NACLn) is the down- and leftward translation of NACLn with respect to rule
pc (see Def. 5.6 and Lemma 5.7 in [Lam07])
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Theorem 2.43 (Concurrency Theorem with NACs).

(i) Synthesis. Given a transformation sequence t : G0
∗⇒ Gn+1 via a sequence

of rules p1, p2, ..., pn, then there is a synthesis construction leading to a direct
transformation G0 ⇒ Gn+1 via the concurrent rule pc : Lc ← Kc → Rc
with NACpc, match gc : Lc → G0 and comatch hc : Rc → Gn+1 induced by
t : G0

∗⇒ Gn+1.

(ii) Analysis. Given a direct transformation G′0 ⇒ G′n+1 via the concurrent rule
pc : Lc ← Kc → Rc with NACpc induced by t : G0

∗⇒ Gn+1 via a sequence of
rules p1, p2, ..., pn, then there is an analysis construction leading to a transfor-
mation sequence t′ : G′0

∗⇒ G′n+1 with NACs via p1, p2, ..., pn.

(iii) Bijective Correspondence. The synthesis and analysis constructions are in-
verse to each other up to isomorphism.

2.3.5 Embedding and Extension

Under several conditions, a transformation t : G0
∗⇒ Gn can be extended to a

transformation t′ : G′0
∗⇒ G′n via an extension morphism k0 : G0 → G′0. The

transformation t′ is based on the same rules as t. The Embedding Theorem with
NACs describes a condition for the existence of this so called embedding and the
Extension Theorem with NACs states that this condition is not only sufficient, but
also necessary. A vertical composition of extension diagrams under several conditions
is possible through these theorems.
The Embedding Theorem with NACs requires an additional property compared to
the case without NACs named NAC-consistency. This property is formalized in the
following definition.
Note that the Embedding and the Extension Theorem require initial pushouts over
M′-morphisms (see Definition 2.10) even in the case without NACs.

Definition 2.44 (NAC-Consistency). A morphism k0 : G0 → G′0 is called NAC-
consistent with respect to a transformation t : G0

∗⇒ Gn if k0 ◦ gc |= NACpc with
NACpc the concurrent NAC and gc the concurrent match induced by t.

Theorem 2.45 (Embedding Theorem with NACs). Given a transformation t :
G0

n⇒ Gn with NACs. If k0 : G0 → G′0 is boundary consistent (i.e. consistency as in
Definition 6.12 in [EEPT06]) and NAC-consistent (see Definition 2.44) with respect
to t then there exists an extension diagram with NACs over t and k0.

Theorem 2.46 (Extension Theorem with NACs). Given a transformation t : G0
n⇒

Gn with NACs with a derived span der(t) = (G0
d0← Dn

dn→ Gn) (see Definition 6.9
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in [EEPT06]) and an extension diagram (1) as in the following picture:

B G0 Gn

(2) (1)

C G′
0 G′

n

k0 kn

b0
t ∗

t′ ∗

then

• k0 : G0 → G′0 is boundary consistent with respect to t, with the morphism
b : B → Dn.

• k0 : G0 → G′0 is NAC-consistent with respect to t.

• Let pc (resp. gc) be the concurrent rule with NACpc (resp. concurrent match)
induced by t. There is a direct transformation G′0 ⇒ G′n via der(t) with
NACder(t) = Dgc(NACpc) and match k0 given by pushouts (3) and (4) with
h, kn ∈M′.

• There are initial pushouts (5) and (6) over h ∈ M′ (see Definition 2.9) and
kn ∈M′, respectively, with the same boundary-context morphism B → C.

G0 Dn Gn B Dn B Dn

(3) (4) (5) (6)

G′
0 D′

n G′
n C D′

n C G′
n

d0 dn

k0 h kn

b

h

dn ◦ b

kn

2.3.6 Confluence

Confluence describes the behaviour of a whole transformation system or of a pair of
transformations. A pair of transformations of the same source object is called con-
fluent if it is possible to transform the two results of the single transformations into
the same object. A transformation system is called locally confluent if this property
holds for every pair of transformations. The formal definition of (local) confluence
is given in this subsection. Confluence is the main property of interest for adhesive
HLR systems (with NACs). The reasons therefore are quite obvious. Every trans-
formation system which provides multiple possibilities to transform the start object
into a different object shows this behaviour for at least one pair of transformations.
The Local Confluence Theorem with NACs, presented in this subsection, expresses a
sufficient condition for the local confluence of an adhesive HLR system with NACs.
Therefore, a property named strict NAC-confluence is required.
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Note that the Local Confluence Theorem even in the case without NACs (see Defi-
nition 6.28 in [EEPT06]) requires initial pushouts over M′-morphisms (see Defini-
tion 2.10), E ′-M′ pair factorization (see Definition 2.6) as well as M-M′ pushout-
pullback decomposition property (see Definition 2.7).

Definition 2.47 ((Local) Confluence). A pair of transformations (with NACs)
H1

∗⇐ G
∗⇒ H2 is confluent if there are transformations H1

∗⇒ X and H2
∗⇒ X:

K

H1 H2

X

∗ ∗

∗ ∗

An adhesive HLR system (with NACs) is locally confluent if this property holds for
each pair of direct transformations. The system is confluent if this holds for all pairs
of transformations.

Definition 2.48 (Strict NAC-Confluence of Critical Pairs). A critical pair P1
p1,g1⇐

K
p2,g2⇒ P2 is strictly NAC-confluent if and only if

• it is strictly confluent via some transformations t1 : K
p1,g1⇒ P1

∗⇒ X and
t2 : K

p2,g2⇒ P2
∗⇒ X (see Definition 6.26 in [EEPT06])

• and it is NAC-confluent for t1 and t2 i.e. for every morphism k0 : K → G ∈M′
which is NAC-consistent with respect to K

p1,g1⇒ P1 and K
p2,g2⇒ P2 it follows

that k0 is NAC-consistent with respect to t1 and t2.

G

K

P1 P2

X

k0

p1,g1 p2,g2

∗ ∗

Theorem 2.49 (Local Confluence Theorem with NACs). Given an adhesive HLR
system with NACs, it is locally confluent, if all its critical pairs are strictly NAC-
confluent.
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Chapter 3

Reconfigurable P/T Systems
with NACs

3.1 Review of Reconfigurable P/T Systems

This section contains a review of reconfigurable P/T systems with the most signif-
icant definitions and facts with respect to this thesis. In the first subsection, P/T
nets and the category PTNet of P/T nets and P/T net morphisms are introduced.
For the sake of completeness, special morphisms, coproducts, pushouts and pull-
backs along monomorphisms of this category are presented in Appendix A.1 and
the correctness of these constructions is proven.
In the second subsection, P/T nets are expanded to P/T systems by adding mark-
ings. The category PTSys of P/T systems and morphisms is introduced. Addition-
ally, the most important concepts of this category, with respect to this thesis, are
introduced in Appendix A.2 and their correctness is proven.

3.1.1 P/T Nets and the Category of P/T Nets

A P/T net is a bipartite and directed graph, consisting of places and transitions
as nodes. There are several formal definitions of P/T nets. In this thesis, the
well-known monoid notation presented in [MM90] is used. The next definitions for-
malize P/T nets and P/T net morphisms and introduce special P/T net morphisms.
Finally, the category PTNet of P/T nets and P/T net morphisms is introduced.

Definition 3.1 (P/T Net). A P/T net is given by PN = (P, T, pre, post) with
places P , transitions T , and pre- and post-domain functions pre, post : T → P⊕.

Remark 3.2. P⊕ is the free commutative monoid over P (see Section 2 in [EEH+07]).

Definition 3.3 (P/T Net Morphism (PTNet-Morphism)). Given P/T nets PNi =
(Pi, Ti, prei, posti) for i = 1, 2, a P/T net morphism f : PN1 → PN2 is given by
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f = (fP , fT ) with functions fP : P1 → P2 and fT : T1 → T2 satisfying

f⊕P ◦ pre1 = pre2 ◦ fT
f⊕P ◦ post1 = post2 ◦ fT

Definition 3.4 (Injective, (Jointly) Surjective and Bijective P/T Net Morphisms).
A P/T net morphism f : PN1 → PN2 with f = (fP , fT ) is called injective (resp.
surjective, bijective) if and only if fP and fT are injective (resp. surjective, bijective)
functions.
A pair of P/T net morphisms fi = (fiP , fiT ) : PNi → PN3 with i = 1, 2 is called
jointly surjective if and only if (f1P , f2P ) and (f1T , f2T ) are jointly surjective func-
tions.

Fact 3.5 (Category PTNet is a Weak Adhesive HLR Category). P/T nets and P/T
net morphisms form the category PTNet, where the composition of morphisms is
defined componentwise for places and transitions. This category is a weak adhe-
sive HLR category (see Definition 2.3) with the special morphism class M of all
monomorphisms (see Fact 4.21 in [EEPT06]).

Note. To simplify matters, some indices of PTNet-morphisms are neglected in the
following.

3.1.2 P/T Systems and the Category of P/T Systems

A P/T system is a P/T net with an initial marking and a P/T morphism is a P/T net
morphism with an additional property with respect to the marking. This subsection
contains a short review of P/T systems with the most important definitions. Finally,
the weak adhesive HLR category of P/T systems and P/T morphisms is introduced.

Definition 3.6 (P/T System). A P/T system PS = (PN,M) is a P/T net with
an initial marking M ∈ P⊕.

Definition 3.7 (P/T Morphism (PTSys-Morphism)). Given P/T systems PSi =
(PNi,Mi) with PNi = (Pi, Ti, prei, posti) for i = 1, 2, a P/T morphism f : PS1 →
PS2 is given by a P/T net morphism f = (fP , fT ) with the following additional
property:

∀p ∈ P1 : M1(p) ≤M2(fP (p))

Definition 3.8 (Injective, (Jointly) Surjective, Bijective P/T Morphisms). The
definitions of injectivity, (jointly) surjectivity and bijectivity of P/T morphisms are
equal to the definitions of the corresponding properties of P/T net morphisms (see
Definition 3.4).

Towards the weak adhesive HLR category PTSys of P/T systems and P/T
morphisms, a special monomorphism class named strict P/T morphisms, formalized
in the next two definitions, is required.
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Definition 3.9 (Marking Strict P/T Morphism). Given P/T systems PSi = (PNi,
Mi) with PNi = (Pi, Ti, prei, posti) for i = 1, 2, a marking strict P/T morphism
f : PS1 → PS2 is a P/T morphism f = (fP , fT ) with the following additional
property:

∀p ∈ P1 : M1(p) = M2(fP (p))

Definition 3.10 (Strict P/T Morphism). A strict P/T morphism is an injective
and marking strict (see Definition 3.9) P/T morphism.

Fact 3.11 (Category PTSys is a Weak Adhesive HLR Category). P/T systems and
P/T morphisms form the category PTSys, where the composition of morphisms is
defined as composition of P/T net morphisms. This category is a weak adhesive
HLR category (see Definition 2.3) with the special morphism class Mstrict of all
strict (see Definition 3.10) P/T morphisms (proof in Section 4 in [EEH+07]).

Since PTSys ia a weak adhesive HLR category with the special morphism class
of all strict morphisms, it is possible to formulate transformation rules in PTSys
with two strict morphisms. Referring to the title of this thesis, the next definition
introduces a reconfigurable P/T system.

Definition 3.12 (Reconfigurable P/T System). Given a P/T system PS and a set
RULES of rules, a reconfigurable P/T system is defined by (PS,RULES).

The following definitions introduce minimal surjective and minimal jointly sur-
jective P/T morphisms. These morphism classes are required for the proof that
PTSys with some special morphism classes is a weak adhesive HLR category with
NACs (see Definition 2.4). This proof is located in Section 3.2. The morphism
classes, formalized in the next definitions, are called minimal, although they are
defined by the maximal marking of the source places. This is because the marking
of the target P/T system is minimal, i.e. every marking that is smaller than the
minimal marking violates the well-definedness of the P/T morphism.

Definition 3.13 (Minimal Surjective P/T Morphism). A surjective P/T morphism
(see Definition 3.4) f = (fP , fT ) : PS1 → PS2 with PSi = (Pi, Ti, prei, posti,Mi) for
i = 1, 2 is called minimal if and only if M2 is minimal, i.e. the following statement
holds for all p2 ∈ P2:

M2(p2) = max({M1(p)|p ∈ f−1
P (p2)})

Definition 3.14 (Minimal Jointly Surjective P/T Morphisms). A pair of jointly
surjective P/T morphisms (see Definition 3.4) fi = (fiP , fiT ) : PNi → PN3 with
i = 1, 2 with PNj = (Pj , Tj , prej , postj ,Mj) for j = 1, 2, 3 is called minimal if and
only if M3 is minimal, i.e. the following statement holds for all p3 ∈ P3:

M3(p3) = max({M1(p)|p ∈ f−1
1P

(p3)} ∪ {M2(p)|p ∈ f−1
2P

(p3)})
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3.2 P/T Systems as
weak Adhesive HLR Category with NACs

In this section is shown, that the category PTSys is a weak adhesive HLR category
with NACs.

Theorem 3.15 ((PTSys,M,M′, E ′,Q) is a Weak Adhesive HLR Category with
NACs). The category (PTSys,M,M′, E ′,Q) with the following morphism classes
is a weak adhesive HLR category with NACs:

M : strict P/T morphisms (see Definition 3.10))
M′ : injective P/T morphisms (see Definition 3.8 and Facts A.16 and A.2)
Q : injective P/T morphisms (see Definition 3.8 and Facts A.16 and A.2)
E ′ : minimal jointly surjective P/T morphisms (see Definition 3.14)

Proof. As already mentioned, (PTSys,M) is a weak adhesive HLR category (see
Fact 3.11). Therefore, merely the additional properties of a weak adhesive HLR
category with NACs (see Definition 2.4) need to be proven. These properties are
proven in the following Facts 3.17, 3.19, 3.22, 3.23, 3.25, 3.26, 3.27, 3.28, 3.29, 3.30
and 3.31.

Remark 3.16 (Morphism Class Q). It is an extremely important result that Q-
morphisms do not have to be marking strict (see Definition 3.9). This is very useful
for modeling rules with NACs. So most restrictions can be expressed with a finite
set of NACs that would cause an infinite set of NACs if Q-morphisms were marking
strict. This is illustrated in the case study in Section 3.3.

Fact 3.17 ((PTSys,M,M′, E ′,Q) has Unique Epi-M Factorization). See Defini-
tion 2.5.

Proof. Given P/T systems PSi = (PNi,Mi) with PNi = (Pi, Ti, prei, posti) for i =
1, 2 and PTSys-morphism f : PS1 → PS2. A P/T morphism is a tuple of functions
and a unique epi-mono factorization exists for every function (see Theorem 3.6.1 in
[EMC+01]). So a P/T system PS3 = (PN3,M3) with PN3 = (P3, T3, pre3, post3)
and morphisms e = (eP , eT ) : PS1 → PS3, m = (mP ,mT ) : PS3 → PS2 can be
constructed such that

• P3 = {p ∈ P2|∃p1 ∈ P1 : fP (p1) = p}

• T3 = {t ∈ T2|∃t1 ∈ T1 : fT (t1) = t}

• pre3 = pre2|T3

• post3 = post2|T3

• ∀p ∈ P3 : M3(p) = M2(p)
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PS1

(=)

(=) PS3 PS′
3

(=)

PS2

f

e

m

e′

m′

i

eP , eT , mP and mT are defined by epi-mono factorizations of fP and fT in Sets.
So m ◦ e = f with ∀p ∈ P1 : eP (p) := fP (p), ∀t ∈ T1 : eT (t) := fT (t) and mP and
mT are inclusions. e is an epimorphism because eP and eT are surjective and m is
a monomorphism because mP and mT are injective. m is strict by construction.
Next, the well-definedness of e and m is shown.

∀t ∈ T1 : pre3(eT (t)) = pre2(fT (t))
= f⊕P (pre1(t))
= e⊕P (pre1(t))

post analogous.

∀p ∈ P1 : M1(p) ≤ M2(fP (p))
= M3(eP (p))

∀t ∈ T3 : pre2(mT (t)) = pre2(t)
= pre3(t)
= m⊕P (pre3(t))

post analogous.

∀p ∈ P3 : M3(p) = M2(mP (p))

At last, the universal property is shown. Let PS′3 = (PN ′3,M
′
3) with PN ′3 =

(P ′3, T
′
3, pre

′
3, post

′
3) be a P/T system and e′ : PS1 → PS′3 and m′ : PS′3 → PS2

be P/T morphisms with m′ ◦ e′ = f , where e′ is an epimorphism and m′ is strict.
The unique isomorphism i = (iP , iT ) : PS3 → PS′3 with i ◦ e = e′ and m′ ◦ i = m
is induced (componentwise in Sets) since e′P and e′T are surjective and m′P and m′T
are injective functions. Note that i is marking strict because m and m′ are also.
iP ◦ eP = e′P and iT ◦ eT = e′T imply that i ◦ e = e′ (analogously, m′P ◦ iP = mP

and m′T ◦ iT = mT imply that m′ ◦ i = m). Well-definedness of PTSys-morphism
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i = (iP , iT ) is implied by this commutativity:

∀t3 ∈ T3 : pre′3(iT (t3)) = pre′3(iT (eT (t1))) with eT (t1) = t3

= pre′3(e′T (t1))
= e′⊕P (pre1(t1))
= i⊕P (e⊕P (pre1(t1)))
= i⊕P (pre3(eT (t1)))
= i⊕P (pre3(t3))

post analogous.
Uniqueness of i follows from the componentwise uniqueness of the functions iP and
iT .

According to Remark 5.26 in [EEPT06], E ′-M′pair factorization (see Definition
2.6) can be constructed in categories with binary coproducts (see Fact A.17) by E0-
M0factorization, where E0 is a class of epimorphisms andM0 is a class of monomor-
phisms. The next fact proves that (PTSys,M,M′, E ′,Q) has unique E0-M′ factor-
ization, where E0 is the class of minimal surjective P/T morphisms (see Definition
3.13) and M0 = M′. The later following proof that (PTSys,M,M′, E ′,Q) has
unique E ′-M′ pair factorization uses this fact.

Fact 3.18 ((PTSys,M,M′, E ′,Q) has Unique E0-M′ Factorization). Let E0 be the
class of minimal surjective P/T morphisms (see Definition 3.13).
For every P/T morphism f : PS1 → PS2 a unique E0-M′ factorization (PS3, e,m)
with m ◦ e = f exists, where e ∈ E0 and m ∈ M′ with the following universal
property:
For all P/T systems PS′3 and morphisms e′ : PS1 → PS′3 and m′ : PS′3 → PS2 with
m′ ◦ e′ = f , a unique isomorphism i : PS3 → PS′3 with i ◦ e = e′ and m′ ◦ i = m
exists.

Proof. Given P/T systems PSi = (PNi,Mi) with PNi = (Pi, Ti, prei, posti) for
i = 1, 2 and PTSys-morphism f : PS1 → PS2. Construct P/T system PS3 =
(PN3,M3) with PN3 = (P3, T3, pre3, post3) and morphisms e = (eP , eT ) ∈ E0 :
PS1 → PS3 and m = (mP ,mT ) : PS3 → PS2 as described in Fact 3.17 except for
M3:

∀p3 ∈ P3 ⊆ P2 : M3(p3) = max({M1(p)|p ∈ f−1
P (p3))}

PS1

(=)

(=) PS3 PS′
3

(=)

PS2

f

e

m

e′

m′

i
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Well-definedness of this construction in PTNet is already shown in the proof of
Fact 3.17. Marking preserving of e and m as well as e ∈ E0 and m ∈ M′ follow
directly by construction.
Finally, the universal property is shown. Let PS′3 = (PN ′3,M

′
3) with PN ′3 =

(P ′3, T
′
3, pre

′
3, post

′
3) be a P/T system and e′ ∈ E0 : PS1 → PS′3 and m′ ∈ M′ :

PS′3 → PS2 be P/T morphisms with m′ ◦ e′ = f . The unique isomorphism
i = (iP , iT ) : PS3 → PS′3 with i ◦ e = e′ and m′ ◦ i = m is induced in PTNet
by epi-M factorization (see Fact 3.17) since E0-M′ factorization and epi-M factor-
ization only differ in the construction of M3 (and M ′3). M3

∼= M ′3 follows directly
by the minimal property of e and e′.

Fact 3.19 ((PTSys,M,M′, E ′,Q) has Unique E ′-M′ Pair Factorization). See Def-
inition 2.6.

Construction. Let f1 : PS1 → PS3 and f2 : PS2 → PS3 with PSi = (Pi, Ti, prei,
posti,Mi) for i = 1, 2, 3 be P/T morphisms. Since PTSys has binary coproducts (see
Fact A.17) there exist inclusions l1 : PS1 → PS1 + PS2 and l2 : PS2 → PS1 + PS2

and an induced morphism f = [f1, f2] : PS1 +PS2 → PS3 such that f ◦ l1 = f1 and
f ◦ l2 = f2, where PS1 + PS2 is the binary coproduct of PS1 and PS2.
Let (PSK , e,m) (with epimorphism e ∈ E0 and m ∈M′) be the E0-M factorization
(see Fact 3.18) of f . E ′-M′ pair factorization is defined by (PSK , (e1 = e ◦ l1 :
PS1 → PSK , e2 = e ◦ l2 : PS2 → PSK),m : PSK → PS3).

PS1

PS1 + PS2 PS3

PSK

PS2

f1

f2

l1

l2

f

e m

Proof.

1. m ◦ e1 = m ◦ e ◦ l1 = f ◦ l1 = f1.

2. m ◦ e2 = m ◦ e ◦ l2 = f ◦ l2 = f2.

3. (e1, e2) ∈ E ′. (l1, l2) are jointly surjective and strict since they are coproduct
inclusions (see Fact A.17). The fact that (e1, e2) are jointly epimorphic (i.e.
jointly surjective) follows directly from the composition property of epimor-
phisms and jointly epimorphic morphisms (see Fact D.1). (e1, e2) ∈ E ′ (are
minimal) since e ∈ E0 (is minimal) and l1 and l2 are strict.

4. m ∈M′ follows directly from E0-M′ factorization.
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5. Uniqueness up to isomorphism of E ′-M′ pair factorization. Let PS′K be a P/T
system and e′1 : PS1 → PS′K , e′2 : PS2 → PS′K and m′ ∈ M′ : PS′K → PS3,
where (e′1, e

′
2) ∈ E ′ and m′ ◦ e′1 = f1 and m′ ◦ e′2 = f2. Then an induced

morphism [e′1, e
′
2] : PS1+PS2 → PS′K with [e′1, e

′
2]◦l1 = e′1 and [e′1, e

′
2]◦l2 = e′2

exists.
In the following is shown, that (PS′K , [e

′
1, e
′
2],m′) is the E0-M′ factorization of

f .

f ◦ li = fi = m′ ◦ e′i = m′ ◦ [e′1, e
′
2] ◦ li for i = 1, 2⇒ f = m′ ◦ [e′1, e

′
2]

[e′1, e
′
2] is surjective since (e′1, e

′
2) are jointly surjective by assumption. Strict-

ness of l1 and l2 and the fact that (e′1, e
′
2) ∈ E ′ (are minimal) lead to [e′1, e

′
2] ∈ E0

(is minimal). m′ ∈ M′ holds by assumption. So (PS′K , [e
′
1, e
′
2],m′) is the E0-

M′ factorization of f (see Fact 3.18). Uniqueness of this factorization implies
the existence of a unique isomorphism i : PSK → PS′K with i ◦ e = [e′1, e

′
2]

and m′ ◦ i = m. i ◦ ej = e′j for j = 1, 2 remains to be shown.

i ◦ e1 = i ◦ e ◦ l1 = [e′1, e
′
2] ◦ l1 = e′1

i ◦ e2 = i ◦ e ◦ l2 = [e′1, e
′
2] ◦ l2 = e′2

For showing M-M′ pushout-pullback decomposition property (see Definition
2.7), the use of the fact that PTNet with the class M of all monomorphisms is a
weak adhesive HLR category (see Fact 3.5) is convenient. Additionally, a fact ex-
pressing the connection between pushouts in category PTNet and category PTSys
is required. This fact is formalized in the next step and used in some of the following
proofs.

Fact 3.20 (PTNet-PTSys Pushout Equivalence). Given the following commu-
tative diagram (1) in category PTSys with PSi = (PNi,Mi) with PNi = (Pi, Ti,
prei, posti) for i = 0..3 in (PTSys,M,M′, E ′,Q) with m,n ∈M, then the following
statements hold:

1. (1) is a pushout in PTSys if (1) is a pushout in PTNet and all places in P1

without a preimage in P0 are mapped strictly, i.e. ∀p1 ∈ P1\m(P0) : M1(p1) =
M3(g(p1)).

2. (1) is a pushout in PTNet if (1) is a pushout in PTSys.

PS0 PS1

(1)

PS2 PS3

m ∈M

f

n ∈M

g
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Proof. Part 1. Let (1) be a pushout in PTNet with ∀p3 ∈ g(P1)\m(P0) : M1(p1) =
M3(p3), where p3 = g(p1). Obviously (1) commutes in PTSys. Let PS4 =
(PN4,M4) with PN4 = (P4, T4, pre4, post4) be a P/T system and k : PS1 → PS4, h :
PS2 → PS4 be morphisms with k ◦m = h ◦ f in PTSys. Since (1) is a pushout in
PTNet, a unique induced morphism x : PS3 → PS4 with x◦g = k and x◦n = h in
PTNet exists. Now, x ∈ PTSys is shown, i.e. M3(p3) ≤M4(x(p3)) for all p3 ∈ P3.

1. For p3 = g(p1) with p1 ∈ P1\m(P0), it holds that M3(p3) = M3(g(p1)) =
M1(p1) ≤M4(k(p1)) = M4(x(g(p1))) = M4(x(p3)).

2. For p3 = n(p2) with p2 ∈ P2, it holds that M3(p3) = M3(n(p2)) = M2(p2) ≤
M4(h(p2)) = M4(x(n(p2))) = M4(x(p3)).

Uniqueness of x follows from the universal property of pushouts (in PTNet).
Part 2. Let (1) be a pushout in PTSys. From the construction of pushouts in

PTNet (see Fact A.12) follows that (1) is a pushout in PTSys.

For pointing out this fact, the following counterexample demonstrates that not
every pushout in PTNet containing two strict morphisms is a pushout in PTSys.

Counterexample 3.21 (Not every Pushout in PTNet with m,n ∈M is a Pushout
in PTSys).

∅ •

∅ • •

•

m

f

n

g

k

h ?

Fact 3.22 ((PTSys,M,M′, E ′,Q) has M-M′ Pushout-Pullback Decomposition
Property). See Definition 2.7.

Proof. Given the following commutative diagram in category PTSys with P/T sys-
tems PSx = (PNx,Mx) with PNx = (Px, Tx, prex, postx) for x = A,B,C,D,E, F
and l ∈M and w ∈M′, where (1+2) is a pushout and (2) a pullback.

PSA PSB PSE

(1) (2)

PSC PSD PSF

k

l s

u

r

v

w

l ∈M, (1+2) is a pushout, so v ∈M and, additionally, s ∈M since (2) is a pullback
andM-morphisms are closed under pushouts and pullbacks (see Def. 2.3). Theorem
4.26 (1.) in [EEPT06] (Pushouts along M-Morphisms are Pullbacks) implies that
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(1+2) is a pullback. (1) is also a pullback because of pullback decomposition.
The fact that (1) and (2) are pushouts in PTSys remains to be shown. (PTNet,M′)
is a weak adhesive HLR category,M⊂M′ andM Pushout-Pullback Decomposition
Lemma (see Theorem 4.26 (2.) in [EEPT06]) is valid in (weak) adhesive HLR
categories. So (1) and (2) are pushouts in PTNet.
Now, the assumption of Fact 3.20 (1.) is shown, i.e. u is strict on the places of PSC
that have no preimage in P/T system PSA.
Let pC ∈ PC\l(PA).

1. u|PC\(PA) is injective. Suppose that ∃pC 6= p′C ∈ PC\l(PA) : u(pC) = u(p′C),
then an image pF ∈ PF of pC and p′C with w(u(pC)) = pF = w(u(p′C))
exists. Pushout (1+2) and l ∈ M imply that ∃pA, p′A ∈ PA : r(k(v(pA))) =
pF = r(k(v(p′A))) and, additionally, l(pA) = pC ∧ l(p′A) = p′C , which is a
contradiction to the assumption that pC 6= p′C ∈ PC\l(pA).

2. u|PC\(PA) is mapping strict.
Since (1+2) is a pushout in PTSys, MC(pC) = MF (w(u(pC))) holds. Addi-
tionally, it is valid that

(a) MC(pC) ≤MD(u(pC)) and

(b) MD(u(pC)) ≤MF (w(u(pC))).

MC(pC) ≤MD(u(pC)) ≤MF (w(u(pC))) = MC(pC)
⇒MC(pC) = MD(u(pC))

Fact 3.20 (1.) leads to pushout (1) in PTSys. From pushout decomposition follows
that (2) is a pushout in PTSys.

Fact 3.23 ((PTSys,M,M′, E ′,Q) hasM-Q Pushout-Pullback Decomposition Prop-
erty). See Definition 2.8. Analogous to Fact 3.22 since Q=M′.

Subsequently, the fact that PTNet has initial pushouts over monomorphisms
(i.e. M′-morphisms) is shown. Then the fact that (PTSys,M,M′, E ′,Q) has initial
pushouts over M′-morphisms is proven by applying Fact 3.20 (1.).

Fact 3.24 (PTNet has Initial Pushouts over Monomorphisms). See Definition 2.10.

Construction. Let Minj be the class of all injective P/T net morphisms.
Given an injective PTNet-morphism f : PN0 → PN1 with PNi = (Pi, Ti, prei, posti)
for i = 0..1, then the boundary PNB = (PB, ∅, preB, postB) can be constructed as
follows:

• PB = {p ∈ P0|∃t ∈ (T1\f(T0)) : f(p) ∈ •t ∪ t•}

• preB, postB : ∅ → P⊕B

The context object PNC = (PC , TC , preC , postC) can be constructed as pushout
complement (see Section 7.3 in [EP04]):
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• PC = (P1\f(P0)) ∪ f(b(PB))

• TC = (T1\f(T0)) ∪ f(b(TB)) = (T1\f(T0)) ∪ f(b(∅)) = (T1\f(T0))

• preC = pre1|TC

• postC = post1|TC

The monomorphisms b : PNB → PN0 and c : PNC → PN1 are inclusions and
the monomorphism f ′ : PNB → PNC can be constructed as follows: f ′ = (f ′P , f

′
T )

with f ′P = fP|PB
and f ′T = fT|TB

= ∅. This construction leads to initial pushout (1).

PNB PN0 PNB PN2 PN0

(1) (3) (2)

PNC PN1 PNC PN3 PN1

b

f ′

c

f

b′

f ′ f ′′ f

c′

b

c

b∗

c∗

Proof. First of all, the well-definedness of the constructions above and the fact that
(1) is a pushout are shown. PNB is a valid P/T net since TB is empty and preB and
postB are the empty function (which is unique). The gluing condition (see Section

7.3 in [EP04]) for PNB
b→ PN0

f→ PN1 is always satisfied by construction since
IP=∅, DP ⊆ GP . Hence, the context net PNC and the morphisms f ′ and c exist
and are well-defined. Additionally, (1) is a pushout. Since f is a monomorphism,
f ′ is also a monomorphism by construction. b, c are monomorphisms since they are
inclusions.

Next, the initiality of (1) is proven. In the first step, the existence of b∗ and c∗ is
shown. Given pushout (2) with monomorphism b′. Then c′ is also a monomorphism
(M is closed under pushouts and (PTNet,Minj) is a weak adhesive HLR category)
and f ′′ is a monomorphism by construction. The fact that the gluing condition is
satisfied if and only if the pushout complement exists (see Section 3.5 and Section

7.3 in [EP04]) implies that the gluing condition for PN2
b′→ PN0

f→ PN1 is satisfied
and PB = DP ⊆ P2 holds, i.e. b(PNB) ⊆ b′(PN2). Analogously, because of the
uniqueness and the construction of pushout complements, c(PNC) ⊆ c′(PN3) holds.
Obviously, induced morphisms b∗ : PNB → PN2 with ∀pB ∈ PB : b∗(pB) = p2,
where b′(p2) = b(pB), and c∗ : PNC → PN3 with ∀nC ∈ PC ] TC : c∗(nC) = n3,
where c′(n3) = c(nC), exist. So b′ ◦ b∗ = b and c′ ◦ c∗ = c. Since b′, b, c′ and c are
monomorphisms, b∗ and c∗ are also monomorphisms.

Now, the well-definedness of b∗ and c∗ is shown. The proof for morphism b∗ is
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trivial since TB = ∅.

c′(pre3(c∗(tC))) = c′(pre3(t3)) with c′(t3) = c(tC) (*)
= pre1(c′(t3)) c′ is well-defined
= pre1(c(tC)) see (*)
= c(preC(tC)) c is well-defined
= c′(c∗(preC(tC))) c′ ◦ c∗ = c

⇒ pre3(c∗(tC)) = c∗(preC(tC)) c′ is mono

The last statement holds because of the well-definedness of c′. The proof for post is
analogous.

Finally, the fact that (3) is a pushout remains to be proven. In the first step,
only the commutativity of (3) is shown. Recapitulating, the following statements
hold: b′ ◦ b∗ = b, c′ ◦ c∗ = c, f ◦ b′ = c′ ◦ f ′′, f ◦ b = c ◦ f ′.

c′ ◦ f ′′ ◦ b∗ = f ◦ b′ ◦ b∗ PO (2)
= f ◦ b b′ ◦ b∗ = b
= c ◦ f ′ PO (1)
= c′ ◦ c∗ ◦ f ′ c′ ◦ c∗ = c

⇒ f ′′ ◦ b∗ = c∗ ◦ f ′ c′ is mono

Now, the fact that the commutative diagram (3) is a pushout, i.e. the universal
property holds, is shown. Remember that pushouts in PTNet are constructed
componentwise (see Fact A.12). In consequence of Fact D.3, the following remains
to be shown:

1. Every place and every transition n3 in PN3 that has preimages in PN2 as well
as in PNC has also a preimage nB in PNB with f ′′(b∗(nB)) = n3 = c∗(f ′(nB)).

2. (f ′′, c∗) are jointly surjective.

To simplify matters, the following proof is accomplished for places and transitions
together. Let n3 ∈ N3 for N being P or T .

1. n3 ∈ f ′′(N2) ∩ c∗(NC). Let n2 ∈ N2 with f ′′(n2) = n3 and nC ∈ NC with
c∗(nC) = n3 and assume @nB ∈ NB : b∗(nB) = n2 ∧ f ′(nB) = nC . Then
b′(n2) ∈ N0 and, since (2) is a pushout, c′(n3) = f(b′(n2)), i.e. c′(n3) =
c′(c∗(nC)) = c(nC). c(nC) = f(b′(n2)) and pushout (3) imply that ∃nB ∈ NB :
(b(nB) = b′(n2) ∧ f ′(nB) = nC), which is a contradiction to the assumption
that @nB ∈ NB : b∗(nB) = n2 ∧ f ′(nB) = nC .

2. n3 /∈ f ′′(N2)∪ c∗(NC). Then c′(n3) ∈ N1 and, since (2) is a pushout, there are
two possibilities:

(a) ∃n0 ∈ N0 : f(n0) = c′(n3). Pushout (2) implies that ∃n2 ∈ N2 : (b′(n2) =
n0 ∧ f ′′(n2) = n3), which is a contradiction to the assumption that n3 /∈
f ′′(N2).
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(b) @n0 ∈ N0 : f(n0) = c′(n3). Pushout (1) implies that ∃nC ∈ NC : c(nC) =
c′(n3) and c′ ◦ c∗ = c leads to c∗(nC) = n3, which is a contradiction to
the assumption that n3 /∈ c∗(NC).

By Fact D.3, (3) is a componentwise pushout in Sets, i.e. (3) is a pushout in
PTNet.

Fact 3.25 ((PTSys,M,M′, E ′,Q) has Initial Pushouts over M′-Morphisms). See
Definition 2.10.

Construction. Given an injective PTSys-morphism f : PS0 → PS1 ∈ M′ with
PSi = (PNi,Mi) and PNi = (Pi, Ti, prei, posti) for i = 0..1, then the boundary
PSB = (PNB,MB) with PNB = (PB, ∅, preB, postB) can be constructed analo-
gously to the boundary net in PTNet except for the set PB.

• PB = {p ∈ P0|∃t ∈ (T1\f(T0)) : f(p) ∈ •t ∪ t•} ∪ {p ∈ P0|M0(p) < M1(f(p))}

• ∀pB ∈ PB ⊆ P0 : MB(pB) = M0(pB)

Note that the boundary net in PTSys, compared to to the boundary net in PTNet,
contains additionally all places that are not mapped strictly by f . These places form
the set NSP = {p ∈ P0|M0(p) < M1(f(p))} of the non strict places.

The context object PSC = (PNC ,MC) with PNC = (PC , TC , preC , postC) can
be constructed as pushout complement in PTSys (see Theorem 5 in [EEH+07]),
analogous to the context net in PTNet.

• ∀pC ∈ PC ⊆ P1 : MC(pC) = M1(pC)

The construction of the strict morphisms b : PSB → PS0 ∈ M, c : PSC →
PS1 ∈M and the morphism f ′ : PSB → PSC ∈M′ is analogous to the construction
in PTNet. This construction leads to initial pushout (1).

PSB PS0 PSB PS2 PS0

(1) (3) (2)

PSC PS1 PSC PS3 PS1

b

f ′

c

f

b′

f ′ f ′′ f

c′

b

c

b∗

c∗

Proof. The gluing condition for PTSys (see Def. A.21) contains only one additional
requirement compared to the gluing condition for PTNet: Places to be deleted have
to be mapped strictly. Since PB contains all places of the set NSP , i.e. the places
that are not mapped strictly, this additional condition is always satisfied. The set
PB is the minimal set of places, that satisfies this condition. So it can be embed-
ded in every interface PS2 of pushout (2) (see Theorem 5 in [EEH+07]). The same
statement holds for PSC since it is constructed as pushout complement. The proof
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is analogous to the proof for PTNet.
The fact that (3) is a pushout in PTSys remains to be shown. According to Fact
3.20 (1.), it is sufficient to show that all places in P2 which have no preimage in PB
are mapped strictly by f ′′. Note that b∗ and c∗ are strict since b and c are strict by
construction and b′ and c′ are strict because of assumption.
Let p2 ∈ P2\b∗(PB). Suppose that M2(p2) < M3(f ′′(p2)). Then b′(p2) ∈ P0 with
M2(p2) = M0(b′(p2)) since b′ ∈M. Pushout (2) implies that ∃p1 ∈ P1 : c′(f ′′(p2)) =
p1 = f(b′(p2)) and, because of the strictness of c′, M3(f ′′(p2)) = M1(p1), i.e.
M0(b′(p2)) < M1(f(b′(p2))). The construction of PSB implies that ∃pB ∈ PB :
b(pB) = b′(p2). b′ ◦ b∗ = b leads to b∗(pB) = p2, which is a contradiction to the as-
sumption that p2 ∈ P2\b∗(PB). That means every place in P2 that has no preimage
in PB is mapped strictly by f ′′. By Fact 3.20 (1.), (3) is a pushout in PTSys.

Fact 3.26 (M′ in (PTSys,M,M′, E ′,Q) is closed under POs and PBs along
M-Morphisms). See Definition 2.11.

Proof. Pushout. This follows from closure property ofM-morphisms along pushouts
and pullbacks in (weak) adhesive HLR categories since (PTNet,M′) is a weak ad-
hesive HLR category and Fact 3.20 (2.) holds.
Pullback. This follows from standard category theory (pullbacks preserve monomor-
phisms).

Fact 3.27 (Q in (PTSys,M,M′, E ′,Q) is closed under POs and PBs alongM-Mor-
phisms). See Definition 2.12. Analogous to Fact 3.26 since Q=M′.

Fact 3.28 ((PTSys,M,M′, E ′,Q) has Induced Pullback-Pushout Property for M
and Q). See Definition 2.13.

Proof. Given the following pullback and pushout with PSi = (PNi,Mi) and PNi =
(Pi, Ti, prei, posti) for i = 0..4, h ∈ M and h′ ∈ Q in (PTSys,M,M′, E ′,Q). In
the following is shown, that the induced morphism x : PS3 → PS4 with x ◦ g′ = h
and x ◦ f ′ = h′ is a monomorphism in Q.

PS0 PS1 PS0 PS1

(PB) (PO)

PS2 PS4 PS2 PS3

f

g

h′

h

f

g

f ′

g′

Pushouts and pullbacks alongM-morphisms can be constructed componentwise (see
Section 4 in [EEH+07]) and h ∈ M and h′ ∈ Q (are monomorphisms). Since M-
morphisms are closed under pushouts and pullbacks, g ∈ M and g′ ∈ M follow.
Since pullbacks preserve monomorphisms and h′ ∈ Q (is a monomorphism), f ∈ Q
(is also a monomorphism). Fact 3.27 implies that f ′ ∈ Q (is also a monomorphism).
For the following part, it is important to consider that (g′, f ′) are jointly surjective
due to pushout (PO). To simplify matters, the following proof is accomplished for
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places and transitions together. Let N be P or T .
Suppose that x : PS3 → PS4 /∈ Q, i.e. x is not injective, i.e. ∃n3 6= n′3 ∈ N3 :
x(n3) = x(n′3). Let n4 = x(n3) = x(n′3) ∈ N4, some cases can be distinguished:

1. n3, n
′
3 ∈ g′(N1). g′ being injective and x ◦ g′ = h, yield directly that h is not

injective. This contradicts to the fact that h is a monomorphism.

2. n3 ∈ g′(N1) and n′3 ∈ f ′(N2). Let n1 ∈ N1 and n2 ∈ N2 with g′(n1) = n3 and
f ′(n2) = n′3. x ◦ g′ = h and x ◦ f ′ = h′ lead to the fact that h(n1) = n4 =
h′(n2). Pullback (PB) implies the existence of n0 ∈ N0 with f(n0) = n1 and
g(n0) = n2, contradicting to the fact that (PO) is a pushout.

Since the construction is symmetrical and (g′, f ′) are jointly surjective, all additional
cases can be reduced to these two.

Fact 3.29 ((PTSys,M,M′, E ′,Q) has Composition Property for Morphisms inM′
and Q). See Definition 2.14.

Proof. Let f : A → B ∈ Q and g : B → C ∈ M′ be PTSys-morphisms. From
standard category theory follows that g ◦f ∈ Q (since the composition of monomor-
phisms is a monomorphism).

Fact 3.30 ((PTSys,M,M′, E ′,Q) has Decomposition Property for Morphisms in
M′ and Q). See Definition 2.15.

Proof. Let g ◦ f ∈ Q and g ∈ M′ be PTSys-morphisms. From standard category
theory follows that f ∈ Q (decomposition property of monomorphisms).

Fact 3.31 (Q in (PTSys,M,M′, E ′,Q) is closed under Composition and Decom-
position). See Definition 2.16. Analogous to Fact 3.29 and Fact 3.30 since Q=M′.

3.3 Case Study: Airport Control System

3.3.1 Overview

In this chapter, an example for a reconfigurable P/T system with negative applica-
tion conditions is presented. The example is an airport control system, called ACS,
especially designed for small but expandable airports. This system should prevent
accidents in the airport area. ACS is not designed as an automated control system
but rather as an assistance for the tower employees. It has to secure that some areas
of the airport, like the starting or the landing runway, can only be used exclusively
by a given amount of airplanes. However, the system is not responsible for the co-
ordination of the airplanes at the gates. While running, ACS can adapt to various
changes of the airport. This is extremely helpful if an airport rearranges because
the whole system does not need to be stopped and upgraded.
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ACS is precisely described and modeled as reconfigurable P/T system with neg-
ative application conditions in this chapter. Every firing of a transition represents
a process at the airport and every transformation of the P/T system reflects the
rearrangement of the airport. In the context of this example, a lot of important
general results of adhesive HLR systems with NACs can be applied.

The example is divided into different parts. First of all, a detailed description of
the system is given. It contains a requirement engineering of ACS. The underlying
P/T systems and rules of the transformation system are presented afterwards.

3.3.2 Detailed Description

In the basic ACS only one runway is available which is used both as starting and
as landing runway. An airplane can only receive landing or starting permit if the
runway is not in use by another airplane. For ACS, the airport consists of the men-
tioned runway, the boarding and the deboarding area, the arrival and the departure
airspace of the airport, as well as the tower. The tower is only responsible for man-
aging the exclusive use of the different airport areas. In the context of ACS, airports
with a shared runway for starting and landing airplanes are called level-1-airports.
Airports that have separate starting and landing runways are called level-2-airports.
ACS provides a variety of different expansions for airports. Possible expansions are
increasing and decreasing the number of gates, adding and removing a starting or
landing runway, adding a hangar and adding a maintenance hangar. A more detailed
description of these expansions follows directly.

The increase of the number of gates offers more space for airplanes at the gates,
so that several airplanes can accomplish the boarding and deboarding procedure
simultaneously. This provides steady traffic at the airport. By applying this ex-
pansion, the maximum number of airplanes at the boarding and deboarding area
raises by one. ACS has no limitation for the number of gates. This expansion can
be revoked by decreasing the number of gates. Even though, the last gate of the
airport cannot be removed.
Additional starting runways are also useful expansions because they support the
steady traffic at the airport. For safety reasons, adding a starting runway to a level-
1-airport automatically changes the shared runway of the airport into a landing
runway. The application of this expansion to a level-2-airport does not affect the
existing landing runways. The number of runways is not limited by ACS. Airplanes
are able to takeoff simultaneously at different starting runways. If there are enough
positions at the gates, the airplanes may also enter the deboarding area concurrently.
This expansion can be revoked by removing a starting runway. Therefore, several
conditions have to be fulfilled:

• The starting runway is not in current use.

• The airport is a level-2-airport, i.e. a shared runway cannot be removed.

46



CHAPTER 3. P/T SYSTEMS WITH NACS Alexander Rein

• If this starting runway is the last starting runway of the airport, it can only
be removed if exactly one landing runway exists. In this case, the last landing
runway automatically changes into a shared runway.

This means, before removing the last starting runway of an airport with multiple
landing runways, a landing runway has to be transformed into a starting runway
or an additional starting runway has to be added. In this example, the mentioned
transformation of a landing runway into a starting runway is modeled by removing
a landing runway and adding a new starting runway.
The removing of the last starting runway represents the case of an emergency, for
example when the last starting runway is dilapidated. It is only possible to remove
the last starting runway under the assumption that only one single landing runway
exists because in the case of the existence of multiple landing runways one of them
could be turned into a starting runway.
Additional landing runways offer exactly the same advantages and the same expand-
ing possibilities as additional starting runways.

Another possible expansion of the airport is the construction of a hangar which
provides space for up to five airplanes. The hangar can be reached directly from
the deboarding area and, if existent, from the maintenance hangar. Airplanes are
only allowed to enter the hangar if there are enough positions available. Leaving the
hangar, the airplanes can reach the boarding area directly and also, if existing, the
maintenance hangar. Advantages of a hangar are the increased capacity of airplanes
at the airport and the possibility to store airplanes temporarily, so they do not block
the area of the gates and the air traffic can be continued more easily.
Another alternative expansion is the construction of a maintenance hangar in which
airplanes are repaired and maintained. In contrast to the hangar, the maintenance
hangar can only be used exclusively by one airplane. The maintenance hangar can
be reached directly from the deboarding area and, if existing, from the hangar. Air-
planes are only able to enter the maintenance hangar if it is not in current use.
Leaving the maintenance hangar, the airplanes can reach the boading area directly
and also, if existing, the hangar.
To simplify matters, the hangar and the maintenance hangar are not expandable or
removable.

3.3.3 Systems and Rules

ACS = (Lvl1ap,ACS-RULES) is a reconfigurable P/T system with NACs with the
following P/T system Lvl1ap and the following set of rules with NACsACS-RULES.
For simplicity, hooked arrows always represent inclusions. So the morphisms do not
need to be defined explicitly every time.
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Startsystem: Lvl1ap

Tower

Departure

TowerBoarding

BoardingDeboarding

Runway

Arrival

ClosedGates

arrived

landing

arriving

continueFlight

readyToTakeoff

takeoff

quitting

closeGateopenGate

This P/T system represents a level-1-airport. Since airplanes are able to arrive
at the airport anytime, the transition arriving has an empty pre-domain and is
always enabled. The place Arrival contains a token for every arriving airplane that
is in the airspace of the airport. Exclusively use of the runway by only one airplane
is guaranteed by the place Tower, where the initial marking is one token. Landing
permit for an airplane of the place Arrival can only be granted if the transition
landing is enabled. This means, the runway is not in current use and enough posi-
tions are available at the gate area. The gate area consists of the boarding and the
deboarding area, i.e. the places boarding and deboarding. It is an important condi-
tion for arriving airplanes that enough positions are available at the gate area. This
is guaranteed by the edges between transition landing and place TowerBoarding.
If this condition is not fulfilled, an arriving airplane could not leave the shared run-
way and pass through the gate area. It would block the shared runway and no
other airplane at the gate area could takeoff. However, this situation would not be
a deadlock because the arrived airplane could takeoff and leave the airport imme-
diately. Nevertheless, it seems useless that an airplane could get landing permit if
there are not enough positions available. This condition for granting landing permit
disappears for level-2-airports since they have separate starting and landing run-
ways. This way, an arriving airplane cannot block a starting airplane. Therefore,
the mentioned edges between transition landing and place TowerBoarding are not
required in level-2-airports.
An airplane token passes through the places Runway, Deboarding, Boarding and
Runway again until it leaves the airport by firing transition takeoff . Afterwards,
another airplane can receive landing permit. Every token at the place Departure
represents a started airplane in the airspace of the airport. Leaving the airspace of
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the airport is realized by firing transition quitting.
The place ClosedGates and the transitions openGate and closeGate offer the op-
tion to open and close gates. This place is used for changing the number of gates,
independent of the number of runways. The transitions openGate and closeGate
should only be fired before the number of gates is changed by a rule. They are not
required for the regular operation of the airport.

Rule 1: increaseNumberOfGates

ClosedGates

TowerBoarding

openGate closeGate ←↩
TowerBoarding

↪→

ClosedGates

TowerBoarding

openGate closeGate

Increasing the number of gates by one is represented by this rule. It removes place
ClosedGates and the transitions openGate and closeGate and replaces them with
transitions having the name as before and a new place ClosedGates, containing
a token. This complicated procedure for adding a token is necessary since the
morphisms l and r of a rule L l← K

r→ R have to be marking strict. Therefore, it
is not possible to change the amount of tokens of an existing place. Although, it is
possible, as modeled in this rule, to remove a place without tokens and to add a new
place (with the same name) with tokens. Note that a consistent match is marking
strict on places to be deleted (see gluing condition for P/T systems in Fact A.21),
i.e. it is guaranteed that there are no tokens at place ClosedGates of the (source)
airport net.

Rule 2a: decreaseNumberOfGates1

TowerBoarding

BoardingDeboarding

ClosedGates

arrived

continueFlight

readyToTakeoff

closeGateopenGate

←↩ TowerBoarding

BoardingDeboarding

arrived

continueFlight

readyToTakeoff

↪→
TowerBoarding

BoardingDeboarding

ClosedGates

arrived

continueFlight

readyToTakeoff

closeGateopenGate

To decrease the number of gates the use of the inverse production of rule 1 is
not sufficient because of the additional condition that the last gate cannot be re-
moved. Therefore, at least one token has to be at one of the places TowerBoarding,
Boarding or Deboarding. To ensure this condition three rules are required (2a, 2b,
2c). The functionality of these rules are equal and correlate with the inverse pro-
duction of rule 1 with the mentioned additional condition.
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Rule 2b: decreaseNumberOfGates2

TowerBoarding

BoardingDeboarding

ClosedGates

arrived

continueFlight

readyToTakeoff

closeGateopenGate

←↩ TowerBoarding

BoardingDeboarding

arrived

continueFlight

readyToTakeoff

↪→
TowerBoarding

BoardingDeboarding

ClosedGates

arrived

continueFlight

readyToTakeoff

closeGateopenGate

Rule 2c: decreaseNumberOfGates3

TowerBoarding

BoardingDeboarding

ClosedGates

arrived

continueFlight

readyToTakeoff

closeGateopenGate

←↩ TowerBoarding

BoardingDeboarding

arrived

continueFlight

readyToTakeoff

↪→
TowerBoarding

BoardingDeboarding

ClosedGates

arrived

continueFlight

readyToTakeoff

closeGateopenGate

Rule 3a: addSeperateStartingRunway

Tower

Departure

TowerBoarding

BoardingDeboarding

Runway

Arrival

arrived

landing

readyToTakeoff

takeoff

←↩
Tower

Departure

TowerBoarding

BoardingDeboarding

Runway

Arrival

arrived

↪→ Tower

Departure

TowerBoarding

BoardingDeboarding

Runway

Arrival

TowerDeparture StartingRunway

arrived

landing

readyToTakeoff

takeoff

This rule can only be applied to a level-1-airport. A seperate starting runway is
added and the shared runway of the airport is automatically changed into a landing
runway. The token at the place Tower prevents this rule from being applied to an
airport where an airplane is on the runway. This is necessary because ACS has no
information about the airplanes, i.e. it is not known if an airplane on the shared
runway is arriving or departing.

Rule 3b: addStartingRunway

TowerDeparture

Departure

TowerBoarding

Boarding

StartingRunway

readyToTakeoff

takeoff

←↩ TowerDeparture

Departure

TowerBoarding

Boarding

StartingRunway

readyToTakeoff

takeoff

↪→ TowerDeparture

Departure

TowerBoarding

Boarding

TowerDeparture2StartingRunway StartingRunway2

takeoff2

readyToTakeoff2readyToTakeoff

takeoff
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Adding an additional starting runway is modeled by this rule. The left-hand side
of this rule contains an existing starting runway to prevent nonsensical matches.
Alternatively, adding labels to places would prevent a lot of nonsensical matches
and the nets of the rules would be smaller. Labels are introduced in Chapter 5 of
this thesis and their advantages are presented later. So they are not used in this
example. To ensure that this rule can only be applied to a level-2-airport, a negative
application condition is required.

Rule 3b - NAC 1:

TowerDeparture

Departure

TowerBoarding

BoardingDeboarding

StartingRunway

Arrival

arrived

landing

readyToTakeoff

takeoff

Through this negative application condition it is not possible to apply this rule
to a level-1-airport.

Remark 3.32 (Morphism Class Q). As already mentioned in Section 3.16 the fact
that Q-morphisms do not have to be marking strict is an important result for recon-
figurable P/T systems. So one NAC is sufficient for this rule. Marking strictness of
Q-morphisms would cause an infinite set of NACs for this rule: For every possible
marking of the places one NAC would be necessary.
This also holds for all remaining rules.

Rule 4a: removeStartingRunway

Inverse to rule 3b without NACs.

This rule removes an empty starting runway of a level-2-airport with multiple
starting runways. It does not require a negative application condition because its
left-hand side contains two starting runways.
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Rule 4b: removeLastStartingRunway

Tower

Departure

TowerBoarding

BoardingDeboarding

Runway

Arrival

TowerDeparture

StartingRunway

arrived

landing

readyToTakeoff

takeoff

←↩
Tower

Departure

TowerBoarding

BoardingDeboarding

Runway

Arrival

arrived

↪→

Tower

Departure

TowerBoarding

BoardingDeboarding

Runway

Arrival

arrived

landing

readyToTakeoff

takeoff

Rule removeLastStartingRunway removes the last starting runway of a level-
2-airport under the assumption that this starting runway is empty and only one
landing runway exist. Additionally, the last existing landing runway is automati-
cally changed into a shared runway. Negative application conditions are required to
prevent the existence of additional runways.

Rule 4b - NAC 1:

Tower

Departure

TowerBoarding

Boarding

Deboarding

Runway

Arrival

LandingRunway2
TowerDeparture StartingRunwayTowerArrival2

arrived

landinglanding2

readyToTakeoff

takeoff

arrived2

This negative application condition forbids the existence of an additional landing
runway.

Rule 4b - NAC 2:

Tower

Departure

TowerBoarding

Boarding

Deboarding

Runway

Arrival

StartingRunway2TowerDeparture

StartingRunway

TowerDeparture2

arrived

landing

readyToTakeoff2

takeoff2

readyToTakeoff

takeoff

This negative application condition forbids the existence of an additional starting
runway.
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Rule 5a: addSeperateLandingRunway

Tower

Departure

TowerBoarding

BoardingDeboarding

Runway

Arrival

arrived

landing

readyToTakeoff

takeoff

←↩
Tower

Departure

TowerBoarding

BoardingDeboarding

Runway

Arrival

readyToTakeoff

takeoff

↪→ Tower

Departure

TowerBoarding

Boarding

Runway

Arrival

TowerArrival

Deboarding

LandingRunway

arrived

landing

readyToTakeoff

takeoff

By applying this rule to a level-1-airport, a seperate landing runway is added and
the shared runway of the airport is automatically changed into a starting runway.

Rule 5b: addLandingRunway

This rule equals rule 3b with inverted edges up to isomorphism without negative
application conditions.

Adding an additional landing runway to a level-2-airport is modeled by this rule.
It does not need a negative application condition because the transition landing of
a level-1-airport has different pre- and post-domains than the transition landing of
a level-2-airport. This fact prevents this rule from being applied to a level-1-airport.

Rule 6a: removeLandingRunway

This rule equals rule 4a with inverted edges up to isomorphism.

It describes the removing of an empty landing runway of a level-2-airport with
multiple landing runways.

Rule 6b: removeLastLandingRunway

TowerArrival

Departure

TowerBoarding

BoardingDeboarding

LandingRunway

Arrival

Tower Runway

arrived

landing

readyToTakeoff

takeoff

←↩

Departure

TowerBoarding

BoardingDeboarding

Arrival

Tower Runway

readyToTakeoff

takeoff

↪→

Departure

TowerBoarding

BoardingDeboarding

Arrival

Tower

Runway

arrived

landing

readyToTakeoff

takeoff

The removing of the last landing runway of a level-2-airport under the assump-
tion that this landing runway is empty and only one starting runway exists is ex-
pressed by this rule.
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Rule 6b - NAC 1:

TowerArrival

Departure

TowerBoarding

Boarding

Deboarding

LandingRunway

Arrival

LandingRunway2
Tower RunwayTowerArrival2

arrived

landinglanding2

readyToTakeoff

takeoff

arrived2

This negative application condition forbids the existence of an additional landing
runway.

Rule 6b - NAC 2:

TowerArrival

Departure

TowerBoarding

Boarding

Deboarding

LandingRunway

Arrival

StartingRunway2Tower

Runway

TowerDeparture2

arrived

landing

readyToTakeoff2

takeoff2

readyToTakeoff

takeoff

This negative application condition forbids the existence of an additional starting
runway.

Rule 7a: addHangarWithoutExistingMaintenance

TowerDepartureStartingRunway

BoardingDeboarding

LandingRunway TowerArrival

TowerBoarding

readyToTakeoff

continueFlight

arrived ←↩

TowerDepartureStartingRunway

BoardingDeboarding

LandingRunway TowerArrival

TowerBoarding

readyToTakeoff

continueFlight

arrived ↪→

Hangar

TowerDepartureStartingRunway

BoardingDeboarding

LandingRunway TowerArrival

TowerBoarding

TowerHangar

readyToTakeoff

continueFlight

arrived

enterHangar leaveHangar

This rule adds a hangar, which provides space for up to five airplanes, to an
airport that does not have a maintenance hangar yet. The left-hand side con-
tains the transitions arrived and readyToTakeoff and the places LandingRunway,
TowerArrival, StartingRunway and TowerDeparture only to prevent nonsensical
matches.
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Rule 7a - NAC 1:

AnyHangar

TowerDepartureStartingRunway

BoardingDeboarding

LandingRunway TowerArrival

TowerBoarding

TowerAnyHangar

readyToTakeoff

continueFlight

arrived

enterAnyHangar leaveAnyHangar

NAC 1 prevents this rule from being applied repeatedly. Additionally, if the
airport already has a maintenance hangar, a mapping from this NAC into the airport
net can be found and this rule cannot be applied.

Rule 7b: addHangarWithExistingMaintenance

TowerMaintenance

MaintenanceHangar

Deboarding Boarding

TowerBoarding

enterMaintenance leaveMaintenance
←↩

TowerMaintenance

MaintenanceHangar

Deboarding Boarding

TowerBoarding

enterMaintenance leaveMaintenance
↪→

TowerMaintenance

MaintenanceHangar

TowerHangar

Deboarding Boarding

Hangar

TowerBoarding

enterMaintenance

leaveHangarenterHangar

leaveMaintenance

enterHangar2 leaveHangar2

If an airport already has a maintenance hangar, this rule can be applied. A
hangar is added to the airport. It is reachable directly from the deboarding area
and the maintenance hangar. Leaving the hangar, the airplanes can go directly to
the boarding area or, alternatively, to the maintenance hangar. NACs are required
to distinguish between a maintenance hangar and a hangar of an airport because
they only differ in token count. Moreover, they have to prevent this rule from being
applied repeatedly.

Rule 7b - NAC 1:

TowerHangar

Hangar

Deboarding Boarding

TowerBoarding

enterHangar

leaveHangar
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The morphism from the left-hand side L of this rule to this negative application
condition NAC1 is obvious but not an inclusion. Therefore, it is defined explicitly:

n1 = (n1P , n1T ) : L→ NAC1 with

n1P : LP → NAC1P with
TowerBoarding 7→ TowerBoarding

Deboarding 7→ Deboarding

Boarding 7→ Boarding

MaintenanceHangar 7→ Hangar

TowerMaintenance 7→ TowerHangar

n1T : LT → NAC1T with
enterMaintenance 7→ enterHangar

leaveMaintenance 7→ leaveHangar

For a more detailed descripion see NAC 2 of this rule.

Rule 7b - NAC 2:

TowerHangar

Hangar

Deboarding Boarding

TowerBoarding

enterHangar

leaveHangar

The morphism from the left-hand side L of this rule to this negative application
condition NAC2 is obvious, but again not an inclusion. Therefore, it is defined
explicitly as well:

n2 : L→ NAC2 with
n2(x) = n1(x)

This morphism is well-defined since n1 is a valid PTSys-morphism and the places
and the transitions are the same in NAC 1 and NAC 2.

Negative application condition 1 and negative application condition 2 prevent a
match m : L→ AP , mapping the place MaintenanceHangar to the place Hangar
of the airport net AP , from being applied. This is shown in the following.
Let AP be a valid airport net with a hangar and a maintenance hangar and let
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m : L → AP be a match that maps the place MaintenanceHangar to the place
Hangar of the airport AP (satisfying the gluing condition in Fact A.21). Note that
the hangar offers space for up to five airplanes, i.e. the sum of the tokens at the
places Hangar and TowerHangar is always five, and the maintenance hangar is only
used exclusively, i.e. the sum of the tokens at the places MaintenanceHangar and
TowerMaintenance is always one. According to this property, one of the following
inclusions morphisms exist:

• q1 : NAC1 → AP ∈ Q with q1 ◦ n1 = m

• q2 : NAC2 → AP ∈ Q with q2 ◦ n2 = m

Therefore, the rule cannot be applied for m.
Obviously, if a match m2 : L → AP2 maps the MaintenanceHangar to the
MaintenanceHangar of AP , neither q3 : NAC1 → AP2 ∈ Q with q3 ◦ n1 = m2 nor
q4 : NAC1 → AP2 ∈ Q with q4 ◦ n1 = m2 exist since the maintenance hangar only
provides space for one airplane. So the rule can be applied (on the supposition that
m2 satisfies the gluing condition - Fact A.21 - and the following negative application
condition NAC3).

Rule 7b - NAC 3:
TowerMaintenance

MaintenanceHangar

TowerHangar

Deboarding Boarding

Hangar

TowerBoarding

enterMaintenance

leaveHangarenterHangar

leaveMaintenance

enterHangar2 leaveHangar2

This NAC prevents this rule from being applied repeatedly.

Rule 8a: addMaintenanceWithoutExistingHangar

TowerDepartureStartingRunway

BoardingDeboarding

LandingRunway TowerArrival

TowerBoarding

readyToTakeoff

continueFlight

arrived ←↩

TowerDepartureStartingRunway

BoardingDeboarding

LandingRunway TowerArrival

TowerBoarding

readyToTakeoff

continueFlight

arrived ↪→
MaintenanceHangar

TowerDepartureStartingRunway

BoardingDeboarding

LandingRunway TowerArrival

TowerBoarding

TowerMaintenance

readyToTakeoff

continueFlight

arrived

enterMaintenance leaveMaintenance

Analogous to rule 7a, except for building a maintenance hangar instead of a
hangar.
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Rule 8a - NAC 1:

AnyHangar

TowerDepartureStartingRunway

BoardingDeboarding

LandingRunway TowerArrival

TowerBoarding

TowerAnyHangar

readyToTakeoff

continueFlight

arrived

enterAnyHangar leaveAnyHangar

Rule 8b: addMaintenanceWithExistingHangar1

TowerHangar

Hangar

Deboarding Boarding

TowerBoarding

enterHangar

leaveHangar

←↩

TowerHangar

Hangar

Deboarding Boarding

TowerBoarding

enterHangar

leaveHangar

↪→

TowerMaintenance

MaintenanceHangar

TowerHangar

Deboarding Boarding

Hangar

TowerBoarding

enterMaintenance

leaveHangarenterHangar

leaveMaintenance

enterHangar2 leaveHangar2

This and the following rule are required to model the adding of a maintenance
hangar under the assumption that a hangar already exists. These rules resemble
the previous rule. A mapping from the place Hangar to the hangar of an airport
and not to its maintenance hangar has to be ensured. Therefore, the property of
the token count mentioned above is used again. The right-hand side of this rule
corresponds to the right-hand side of the rule 7b.

Rule 8b - NAC 1:

TowerMaintenance

MaintenanceHangar

TowerHangar

Deboarding Boarding

Hangar

TowerBoarding

enterMaintenance

leaveHangarenterHangar

leaveMaintenance

enterHangar2 leaveHangar2

This NAC prevents this rule from being applied repeatedly.
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Rule 8c: addMaintenanceWithExistingHangar2

TowerHangar

Hangar

Deboarding Boarding

TowerBoarding

enterHangar

leaveHangar

←↩

TowerHangar

Hangar

Deboarding Boarding

TowerBoarding

enterHangar

leaveHangar

↪→

TowerMaintenance

MaintenanceHangar

TowerHangar

Deboarding Boarding

Hangar

TowerBoarding

enterMaintenance

leaveHangarenterHangar

leaveMaintenance

enterHangar2 leaveHangar2

This rule together with the previous rule are described above.

Rule 8c - NAC 1:
TowerMaintenance

MaintenanceHangar

TowerHangar

Deboarding Boarding

Hangar

TowerBoarding

enterMaintenance

leaveHangarenterHangar

leaveMaintenance

enterHangar2 leaveHangar2

3.3.4 Remark for level-1-airports

Despite the existence of the additional edges between the transition landing and
the place TowerBoarding, the situation that an arriving airplane cannot leave the
runway and pass through the gate area can occur through the application of rules.
One example for the development of this situation is that the last unused gate is
removed while an airplane uses the shared runway of a level-1-airport for landing.
This way the runway is blocked and no planes are able to takeoff because the arriv-
ing airplane cannot pass through the gate area and leave the runway.
It is possible to prevent this situation by using additional negative application condi-
tions. Certainly, the example would be very voluminous and the additional negative
application conditions would not provide any additional illustration in the context of
this thesis. Thus, it is neglected in this particular example and a senseful application
of rules is anticipated.

3.3.5 Applying Theoretical Results to ACS

In this section, it is illustrated how to apply some of the most important theoret-
ical results to ACS. However, this is only realized exemplarily and not completely.
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Departure

ClosedGates

Arrival

StartingRunwayLandingRunway

Deboarding

TowerArrival

TowerBoarding

Boarding

TowerDeparture

arriving

closeGate

landing

quitting

takeoff

arrived

openGate

readyToTakeoff

continueFlight

Figure 3.1: Level-2-airport G

The goal of this section is to show the practical relevance of the theoretical results
introduced in Section 2.1 for this example.

Parallelism

Through parallelism, multiple independent changes of the airport in one step are
possible. For example, a landing and a starting runway can be added to a level-2-
airport at the same time. In the sequential case, the rules addStartingRunway and
addLandingRunway are applied successively to the level-2-airport G shown in Fig-
ure 3.1. Obviously, these transformations are sequentially independent. Hence, it is
possible to apply the Local Church-Rosser Theorem with NACs (see Theorem 2.31).
It follows that the order of these transformations does not matter. Additionally, the
Parallelism Theorem with NACs (see Theorem 2.33 and also 2.35) can be applied.
This leads to the parallel rule (consisting of the componentwise disjoint unions of the
original P/T systems) which can be used for performing both changes of the airport
in one step. The parallel rule has one negative application condition consisting of
the componentwise disjoint union of the NAC of rule addStartingRunway and the
left-hand side of rule addLandingRunway.

Concurrency

Successive addition of a hangar and a maintenance hangar to the level-2-airport
G, depicted in Figure 3.1, are two sequentially dependent transformations. Thus,
the Parallelism Theorem for performing both changes in one step cannot be ap-
plied. Nevertheless, the Concurrency Theorem with NACs (see Theorem 2.43) can
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be applied and leads to the following diagram, where

p1 = (L1 ← L1 → R1) := addHangarWithoutExistingMaintenance

and

p2 = (L2 ← L2 → R2) := addMaintenanceWithExistingHangar2.

N N

L1 L1 R1 L2 L2 R2

L1 L1 R1 R1 Rc

L1

G G H1 H1 H2

mc

Note that this diagram is a special case since both rules are non-deleting.

The concurrent rule pc = (L1 ← L1 → Rc) with NACs of the transformation
sequence G

p1⇒ H1
p2⇒ H2 is shown in Figure 3.2. The downward translation (see

Definition 5.1 in [Lam07]) of the NAC of rule p1 with respect to mc = idL1 : L1 → L1

delivers an infinite set of negative application conditions, where the net part is iden-
tical to NAC 1 of rule p1 and the marking of this net is arbitrary. Obviously, these
NACs can be reduced to the one depicted in Figure 3.2. The down- and leftward
translation (see Definition 5.6 in [Lam07]) of the NAC of rule p2 delivers true.
This concurrent production is constructed according to Definition 2.41 and corre-
sponds to the intuitive idea of a production creating a hangar and a maintenance
hangar in one transformation step.

Note that the concurrent production of the transformation sequence, where
the hangar is built after the maintenance hangar (this means application of rule
addMaintenanceWithoutExistingHangar and afterwards the application of rule
addHangarWithExistingMaintenance), is identical up to isomorphism to the one
presented here (with the same NAC).
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TowerDepartureStartingRunway

BoardingDeboarding

LandingRunway TowerArrival

TowerBoarding

readyToTakeoff

continueFlight

arrived ←↩

TowerDepartureStartingRunway

BoardingDeboarding

LandingRunway TowerArrival

TowerBoarding

readyToTakeoff

continueFlight

arrived ↪→

TowerDeparture

Boarding

StartingRunway

Deboarding

TowerHangar

MaintenanceHangar

TowerMaintenance

TowerArrival

Hangar

TowerBoarding

LandingRunway

leaveHangar

continueFlight

enterMaintenance

readyToTakeoff

leaveMaintenance

enterHangar

arrived

leaveHangar2enterHangar2

NAC:

AnyHangar

TowerDepartureStartingRunway

BoardingDeboarding

LandingRunway TowerArrival

TowerBoarding

TowerAnyHangar

readyToTakeoff

continueFlight

arrived

enterAnyHangar leaveAnyHangar

Figure 3.2: Concurrent Rule with NAC
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Critical Pairs

An example for parallel dependent transformations is the application of rules

p1 = (L,L,R1) := addMaintenanceWithoutExistingHangar

and
p2 = (L,L,R2) := addHangarWithoutExistingMaintenance

to the level-2-airport G, depicted in Figure 3.1. Note that this is a special case
since the left-hand sides and the interfaces (K) of both rules are identical. So they
are simply called L. This pair of transformations provokes two conflicts. On the
one hand there is a produce-forbid-conflict and on the other hand there is a forbid-
produce-conflict. Completeness Theorem of Critical Pairs with NACs (see Theorem
2.40) states the existence of a critical pair with extension diagrams. In this case,
the critical pair corresponds to the rules themselves: (K

p1⇒ P1,K
p2⇒ P2) with the

negative application conditions of both rules, where K = L is the left-hand side of
rule p1 (which equals the left-hand side of rule p2) and Pi = Ri is the right-hand
side of rule pi for i = 1, 2. Note that both rules have the same negative application
condition N .

N N

R1 L L L L R2

R1 L L L R2

H1 G G G H2

Confluence

In order to prove the local confluence of an adhesive HLR system, strict NAC-
confluence (see Definition 2.48) of all critical pairs has to be shown, according to
Local Confluence Theorem with NACs (see Theorem 2.49). Exemplarily, strict NAC-
confluence of the critical pair defined above is proven.
First of all, the fact that the critical pair is confluent is shown.

K

P1 P2

K ′

p1 p2

p3 p4
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This is obvious since rule

p3 = (L3, L3, R3) := addHangarWithExistingMaintenance

can be applied to P1 and rule

p4 = (L4, L4, R4) := addMaintenanceWithExistingHangar2

can be applied to P2. The result of these transformations is the same airport with
a maintenance hangar and a hangar K ′ as pictured in Figure 3.3.

TowerDeparture

Boarding

StartingRunway

Deboarding

TowerMaintenance

MaintenanceHangar

TowerHangar

Arrival

TowerArrival

Departure

ClosedGates

Hangar

TowerBoarding

LandingRunway

landing

leaveHangar

arriving

continueFlight

enterMaintenance

readyToTakeoff

quitting

leaveMaintenance

takeoff

enterHangar

closeGate

arrived

leaveHangar2enterHangar2

openGate

Figure 3.3: Result K ′ of transformation sequences K
p1⇒ P1

p3⇒ K ′ and K
p2⇒ P2

p4⇒ K ′

In the next step, the strictness of this critical pair is shown. Construct pullback
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(PB) in the following diagram:

L L

L K L

R1 K (PB) K R2

P1 (2) K (3) P2

L3 P1 (4) P2 L4

L3 K ′ L4

R3 R4

id id

id ide1 e2

z3 z4id id

Morphisms z3 = e1 : K → P1 and z4 = e2 : K → P2 obviously exist such that (2),
(3) and (4) commute. Intuitively, this is because the transformations P1

p3⇒ K ′ and
P2

p4⇒ K ′ preserve all shared structures of K
p1⇒ P1 and K

p2⇒ P2.
Finally, NAC-confluence remains to be shown.

N1 N2 Nc1 Nc2

L1 L2 Lc1 Lc2

K

G

k0

Therefore, the following statement has to be proven: Every morphism k0 : K → G
that is NAC-consistent (see Definition 2.44) with respect to K

p1⇒ P1 and K
p2⇒ P2

is also NAC-consistent with respect to K
p1⇒ P1

p3⇒ K ′ and K
p2⇒ P2

p4⇒ K ′.
For proving this property, it is necessary to construct the concurrent rules of both
transformation sequences. This is already done above (see rule pc in Figure 3.2 and
remember that both concurrent rules are identical up to isomorphism). The negative
application conditions as well as the left-hand sides of rules p1 and p2 are equal to
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those of the concurrent rule(s) pc (see Figure 3.2).

N1 = N N2 = N Nc1 = N Nc2 = N

L1 = L L2 = L Lc1 = L Lc2 = L

K

G

k0

For this reason, strict NAC-confluence of this critical pair holds.

This result states that it does not matter whether the hangar or the maintenance
hangar of an airport is built first because the results can be transformed to the
same airport with a hangar and a maintenance hangar. More formally, all pairs of
transformations where the critical pair can be embedded are locally confluent.

Tool Support

Since the construction of critical pairs and the verification of their strict NAC-
confluence is very complex, a tool support is necessary. For showing the (local)
confluence of a whole transformation system, all critical pairs have to be constructed
and their strict NAC-confluence has to be shown. AGG (see [AGG08]) is a java-
based tool developed by the TFS-group at the Technische Universität Berlin as
environment for attributed graph transformation systems. AGG can handle negative
application conditions and perform critical pair analyses of transformation systems.
Note that AGG is still an ongoing project of the TFS-group and, therefore, still
under development.
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Chapter 4

Reconfigurable AHL Systems
with NACs

4.1 Review of Reconfigurable AHL Systems

An AHL net is the extension of a P/T net by a data type. The data type consists of
an algebraic specification and an algebra. This section contains a review of recon-
figurable AHL systems with the most significant definitions and facts with respect
to this thesis. In common literature, different definitions of AHL nets and AHL net
morphisms can be found. The sets of variables of the specification and the sets of
additional variables of the net part are neglected in most definitions even though
they are used. Besides that, different types of AHL nets and AHL net morphisms
exist. On the one hand there are so called fixed AHL net morphisms changing only
the net part of an AHL net. On the other hand there are AHL net morphisms
changing only the net structure and the algebra part of AHL nets. Generally, they
are called AHL net morphisms with fixed specification. Finally, there are so called
generalized AHL net morphisms changing also the specification and the algebra part
of the data type. In this thesis, only the last called morphisms are considered and
they are simply called AHL net morphisms.
To achieve the properties of a weak adhesive HLR category, these morphisms are re-
stricted to those being isomorphisms on the algebra part. Additionally, a restriction
to morphisms mapping the set of (specification) variables bijectively is reasonable
because of the intuitive assumption that there are always enough variables available.
Moreover, it is senseless to add or remove single variables by applying rules. Finally,
AHL net morphisms are restricted to those mapping the additional (net) variables
injectively in order to ensure preservation of firing.

Algebraic signatures, algebraic specifications and algebras are not introduced for-
mally in this thesis. A short imposition to algebraic signatures and algebras can be
found in Appendix B of [EEPT06]. A deeper introduction to this topic can be found
in [EM85]. Note that in this thesis specification morphisms (Spec-morphisms) are
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restricted to those mapping the sets of (specification) variables bijectively.

In the following subsection, AHL nets and the category of AHL nets and AHL
net morphisms are introduced. Special morphisms, coproducts, pushouts and pull-
backs of this category are defined in Appendix B.1 and their correctness is proven.
The gluing condition for transforming AHL nets is defined and its correctness is
proven in the appendix as well.
In the second subsection, AHL nets are expanded to AHL systems by adding mark-
ings. The category of AHL systems and morphisms is presented. For the sake of
completeness, the most important concepts of this category, with respect to this
thesis, are introduced in Appendix B.2 and their correctness is proven.

4.1.1 AHL Nets and the Category of AHL Nets

An AHL net can be considered as P/T net with a data type. The data type consists
of an algebraic signature and an algebra. Every place has a determined type (sort)
and can only contain tokens of this sort. Additionally, every transition has a set
of fire conditions, i.e. equations which have to be fulfilled to enable the transition.
The weight of the edges (i.e. the codomain of pre- and post-domain functions) are
terms over the specification. The next definitions formalize AHL nets and AHL net
morphisms.

Definition 4.1 (AHL Net). An AHL net is given by

AN = (SP, P, T, pre, post, cond, type,A) with

• algebraic specification SP = (S,OP,E,X) with

– sorts S

– operations OP

– equations E

– additional variables X

• places P

• transitions T

• pre- and post-domain functions pre, post : T → (TOP (X) ⊗ P )⊕, where ⊗
means the type-correct product

• fire conditions cond : T → Pfin(Eqns(S,OP,X))

• typing of places type : P → S

• (S,OP,E)-algebra A
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Note. In literature, the definitions of AHL nets differ. Usually, the sets of variables
are neglected. Algebra A is often called SP -algebra, although the additional vari-
ables X are not used in the equations E of the specification. These variables are
only used for the fire conditions and in arc descriptions (images of pre- and post-
domain functions). Since the type-function was established later, it cannot be found
in former literature.

As already mentioned, AHL net morphisms are restricted in this thesis. This
restriction is formalized in the next definition.

Definition 4.2 ((Generalized) AHL Net Morphism (AHLNet-Morphism)). Given
AHL nets ANi = (SPi, Pi, Ti, prei, posti, condi, typei, Ai) with SPi = (Si, OPi, Ei,
Xi) for i = 1, 2, an AHL net morphism f : AN1 → AN2 is given by

f = (fSP , fP , fT , fA) with

• generalized algebra homomorphism (fSP , fA) with

– specification morphism fSP = (fS , fOP , fX) : SP1 → SP2 with a seperate
injective mapping of the additional variables fX = (fXs)s∈S1 : X1 → X2

– algebra isomorphism fA = (fAs)s∈S1 : A1 → VfSP
(A2)

• fP : P1 → P2

• fT : T1 → T2

such that the following diagrams commute:

Pfin(Eqns(S1, OP1, X1)) T1 (TOP1(X1)⊗ P1)⊕

(=) (=)

Pfin(Eqns(S2, OP2, X2)) T2 (TOP2(X2)⊗ P2)⊕

cond1

cond2

pre1

post1

pre2

post2

fTPfin(f#
SP × f#

SP ) (f#
SP ⊗ fP )⊕

P1 S1

(=)

P2 S2

fP fS

type1

type2
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Remark 4.3 (AHL Net Morphisms).

1. f#
SP is the extension of specification morphism fSP to terms and equations (see

Definition 8.2 in [EM85]) which maps the (specification) variables bijectively.

2. VfSP
is the forgetful functor with respect to fSP (see Definition 8.1 (2.) in

[EM85]).

3. Pfin is the power set functor that maps a set to its power set (see Example
7.9 in [EM85]).

4. fX injective implies V ar(t) ⊆ V ar(fT (t)) that ensures the preservation of
firing.

Towards AHLNet as weak adhesive HLR category with NACs, some special
morphism classes are defined in the following part.

Definition 4.4 (Injective, Surjective, (Jointly) Surjective and Bijective AHL Net
Morphisms). An AHLNet-morphism f = (fSP , fP , fT , fA) : AN1 → AN2 as de-
fined above is called injective (resp. surjective, bijective) if and only if fP , fT , fSP
and fX are injective (resp. surjective, bijective).
A specification morphism fSP : SP1 → SP2 is called injective (resp. surjective,
bijective) if and only if f is componentwise injective (resp. surjective, bijective).
A pair of AHLNet-morphisms f = (fiSP , fiP , fiT , fiA) : ANi → AN3 for i = 1, 2
is called jointly surjective if and only if (f1x , f2x) are jointly surjective functions for
x = S,OP,X, P, T .

Strict injectivity is a property of an AHL net morphism referring to the equations
of the AHL nets. It states that no additional equations for mapped sorts and oper-
ations exist. The class of strict injective AHL net morphisms later forms morphism
class M.

Definition 4.5 (Strict Injective AHL Net Morphisms). An injective AHLNet-
morphism f : AN1 → AN2 is called strict injective if and only if f#−1

SP (E2) ⊆ E1,
where fSP is the specification morphism of f and Ei is the set of equations of ANi

for i = 1, 2.

A stronger property with respect to the equations than strict injectivity is equa-
tion strictness of AHL net morphisms. This property declares that the sets of
equations of both AHL nets (the domain and the codomain) is exactly the same.
Although, injectivity is not supposed. Equation strict and surjective morphisms
later form morphism class E0 for E0-M’ factorization.

Definition 4.6 (Equation Strict AHL Net Morphisms). An AHLNet-morphism
f : AN1 → AN2 is called equation strict if and only if E2 = f#

SP (E1), where fSP is
the specification morphism of f and Ei are the sets of equations of ANi for i = 1, 2.
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Analogous to the case without data types, a class of jointly epimorphic mor-
phisms is required for E ′-M′ pair factorization (see Definition 2.6). Therefore, jointly
equation strict morphisms are defined in the next step. This definition is similar to
the definition of equation strict morphisms except for the fact that morphism pairs
are considered.

Definition 4.7 (Jointly Equation Strict AHL Net Morphisms). A pair of AHL net
morphisms f1 : AN1 → AN3 and f2 : AN2 → AN3 with the same codomain is called
jointly equation strict if and only if E3 = f#

1SP
(E1) ∪ f#

2SP
(E2), where fiSP are the

specification morphisms of fi for i = 1, 2 and Ei are the sets of equations of ANi for
i = 1, 2, 3.

Remark 4.8 (Strictness of AHL Net Morphisms). Note that the definitions of strict-
ness of AHL net morphisms and P/T morphisms differ. The strictness of AHL net
morphisms refers to the specification morphism as defined above. By contrast, the
strictness of P/T morphisms refers to the marking of the places.
Equation strictness and injectivity of an AHL net morphism imply strict injectivity,
although the inverse conclusion does not hold.

Towards the category AHLNet, a composition of AHL net morphisms is re-
quired. Since this composition is not as obvious as in the case without data types,
it is formalized explicitly in the next definition.

Definition 4.9 (Composition of AHL Net Morphisms). Given AHL nets ANi =
(SPi, Pi, Ti, prei, posti, condi, typei, Ai) with SPi = (Si, OPi, Ei, Xi) for i = 1, 2.
The composition (g◦f) of AHLNet-morphisms f = (fSP , fP , fT , fA) : AN1 → AN2

and g = (gSP , gP , gT , gA) : AN2 → AN3 with fSP = (fS , fOP , fX) : SP1 → SP2,
gSP = (gS , gOP , gX) : SP2 → SP3, fA : A1 → VfSP

(A2) and gA : A2 → VgSP (A3) is
given by

• the composition in Sets of places and transitions gP ◦ fP and gT ◦ fT
• the composition of generalized algebra homomorphisms (fSP , fA) and (gSP , gA),

i.e. (gSP ◦ fSP , VfSP
(gA) ◦ fA) with

– the composition of specification morphisms gSP ◦ fSP , i.e. the compo-
nentwise composition in Sets of sorts gS ◦ fS , operations gOP ◦ fOP and
additional variables gX ◦ fX

– the composition of algebra homomorphisms VfSP
(gA) ◦ fA, i.e. the com-

ponentwise composition in Sets VfSP
(gA)s ◦ fAs for all sorts s ∈ S1

Finally, the weak adhesive HLR category AHLNet is defined.

Fact 4.10 (Category AHLNet is a Weak Adhesive HLR Category). AHL nets
and AHLNet-morphisms as defined above form the category AHLNet, where the
composition of morphisms is defined by the composition of AHLNet-morphisms as
defined in Definition 4.9. This category is a weak adhesive HLR category (see Defi-
nition 2.3) with the special morphism class M of all strict injective (see Definition

71



CHAPTER 4. AHL SYSTEMS WITH NACS Alexander Rein

4.5) AHLNet-morphisms (see Corollary 3.14 and Section 5 below Theorem 5.6 in
[Pra08]).

4.1.2 AHL Systems and the Category of AHL Systems

An AHL system is an AHL net with an initial marking. In contrast to P/T systems,
the marking of AHL systems consists of data types and not of indistinguishable
tokens.

Definition 4.11 (AHL System). An AHL system AS = (AN,M) is an AHL net
with an initial marking M ∈ CP⊕ with CP = (A⊗P ) = {(a, p)|a ∈ Atype(p), p ∈ P}
for P being the places of AN . CP stands for consistent place assignment.

Definition 4.12 (AHL Morphism (AHLSystems-Morphism)). An AHL morphism
f : (AN1,M1) → (AN2,M2) is given by an AHLNet-morphism f = (fSP , fP , fT ,
fA) as defined in Definition 4.2 with the following additional property:

∀(a, p) ∈ (A1 ⊗ P1) : M1(a, p) ≤M2(fA(a), fP (p))

for A1 being the algebra of AN1 and P1 being the places of AN1.

Remark 4.13 (Restriction of AHL morphisms). In this thesis, only AHL morphisms
with the mentioned restrictions of AHLNet-morphisms (see Definition 4.2) are
used.

Definition 4.14 (Injective, (Jointly) Surjectivite, Bijectivite AHL Morphisms).
The definitions of injectivity, (jointly) surjectivity and bijectivity of AHL morphisms
are equal to the definitions of the corresponding properties of AHL net morphisms
(see Definition 4.4).

Analogous to the case without data types, some special morphism classes are
required. On the one hand there are marking strict AHL morphisms, which are
defined analogously to the case without data types (see Definition 3.10). On the
other hand there are minimal (jointly) surjective AHL morphisms, which are also
defined analogously to the case without data types (see Definitions 3.13 and 3.14).
The second called morphism classes are called minimal since the marking of the
target AHL system is minimal, i.e. every marking that is smaller that the minimal
marking violates the well-definedness of the AHL morphism.

Definition 4.15 (Marking Strict AHL Morphism). Given AHL systems ASi =
(ANi,Mi) for i = 1, 2, a marking strict AHL morphism f = (fSP , fP , fT , fA) :
AS1 → AS2 is an AHL morphism with the following additional property:

∀(a, p) ∈ (A1 ⊗ P1) : M1(a, p) = M2(fA(a), fP (p))

for A1 being the algebra of AN1 and P1 being the places of AN1.
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Definition 4.16 (Strict AHL Morphism). An AHL morphism is called strict if and
only if it is marking strict (see Definition 4.15) and strict injective (see Definition
4.5).

Remark 4.17 (Strictness of AHL Morphisms). There are several definitions of strict-
ness of AHL morphisms. On the one hand there is the marking strictness according
to Definition 4.15. On the other hand there are two kinds of strictness with respect
to the equations, the strict injectivity (see Definition 4.5) and the equation strictness
(see Definition 4.6).
An AHL morphism is called strict if it is marking strict and strict injective (see
Definition 4.16).

Fact 4.18 (Category AHLSystems is a Weak Adhesive HLR Category). AHL sys-
tems and AHL morphisms form the category AHLSystems, where the composition
of morphisms is defined componentwise as the composition of AHLNet-morphisms.
This category is a weak adhesive HLR category (see Definition 2.3) with the special
morphism class Mstrict of all strict, i.e. marking strict (see Definition 4.15) and
strict injective (see Definition 4.5), AHL morphisms (see Theorem 5.6 in [Pra08]).

Definition 4.19 (Minimal Surjective AHL Morphism). A surjective AHL morphism
(see Definition 4.14) f : AS1 → AS2 with ASi = (ANi,Mi) for i = 1, 2 is called
minimal if and only if M2 is minimal, i.e. the following statement holds for all
(a2, p2) ∈ A2 ⊗ P2:

M2(a2, p2) = max({M1(a, p)|a ∈ f−1
A (a2) ∧ p ∈ f−1

P (p2)})

where P2 are the places and A2 is the algebra of AS2, fA is the algebra homomor-
phism and fP is the mapping of the places of f .

Definition 4.20 (Minimal Jointly Surjective AHL Morphism). A pair of jointly
surjective AHL morphisms (see Definition 4.14) fi : ASi → AS3 with i = 1, 2 is
called minimal if and only if M3 is minimal, i.e. the following statement holds for
all (a3, p3) ∈ A3 ⊗ P3:

M3(a3, p3) = max( {M1(a, p)|a ∈ f−1
1A

(a3) ∧ p ∈ f−1
1P

(p3)} ∪
{M2(a, p)|a ∈ f−1

2A
(a3) ∧ p ∈ f−1

2P
(p3)} )

where Mi is the marking, Pi are the places and Ai is the algebra of ASi, fiA is the
algebra homomorphism and fiP is the mapping of the places of fi for i = 1, 2.

Since the category AHLSystems is a weak adhesive HLR category with the
special morphism class of all strict morphisms, it is possible to formulate transfor-
mation rules in AHLSystems with two strict morphisms. Referring to the title of
this thesis, the next definition introduces a reconfigurable AHL system.

Definition 4.21 (Reconfigurable AHL System). Given an AHL system AS and a
set RULES of rules, a reconfigurable AHL system is defined by (AS,RULES).
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4.2 AHL Nets as
weak Adhesive HLR Category with NACs

In this section is shown that the category AHLNet is a weak adhesive HLR category
with NACs.

Theorem 4.22 ((AHLNet,M,M′, E ′,Q) is a Weak Adhesive HLR Category with
NACs). The category (AHLNet,M,M′, E ′,Q) with the following morphism classes
is a weak adhesive HLR category with NACs:

M : strict injective AHL net morphisms (see Definition 4.5)
M′ : injective AHL net morphisms (see Definition 4.4 and Fact B.3)
Q : injective AHL net morphisms (see Definition 4.4 and Fact B.3)
E ′ : jointly equation strict and jointly surjective AHL net morphisms

(see Definitions 4.7 and 4.4)

Proof. As already mentioned, (AHLNet,M) is a weak adhesive HLR category (see
Fact 4.10). Therefore, merely the additional properties of a weak adhesive HLR
category with NACs (see Definition 2.4) need to be proven. These properties are
proven in the following Facts 4.23, 4.25, 4.26, 4.27, 4.28, 4.29, 4.30, 4.31, 4.32, 4.33
and 4.34.

Remember that AHLNet-morphisms f = (fSP , fP , fT , fA) : AN1 → AN2 with
fSP = (fS , fOP , fX) being a specification morphism and fA = (fAs)s∈S being an
algebra homomorphism are restricted to AHL morphisms with the following prop-
erties, for AN1 and AN2 being AHL nets:

1. fA is an isomorphism

2. fX is injective

3. the mapping of the (specification) variables is implicitly bijective

To simplify matters, (specification) variables are neglected in the following proofs.
This is without without loss of generality because of the mentioned restrictions of
AHLNet-morphisms. As well, the construction of the sets of variables is trivial
where needed. Note that the (specification) variables are mapped implicitly by f#

SP .
There is no explicit function mapping these variables. In contrast, the additional
(net) variables X are mapped explicitly by the function fX .

Fact 4.23 ((AHLNet,M,M′, E ′,Q) has Unique Epi-M Factorization). See Defi-
nition 2.5.

Proof. Given AHLNet-morphism f : AN1 → AN2 with ANi = (SPi, Pi, Ti, prei,
posti, condi, typei, Ai) and SPi = (Si, OPi, Ei, Xi) for i = 1..2. An AHLNet-
morphism is a tuple f = (fSP , fP , fT , fA) with fSP = (fS , fOP , fX) of functions
(Sets-morphisms) and a unique epi-mono factorization exists for every function
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(see Theorem 3.6.1 in [EMC+01]). In the following, epimorphism e : AN1 → AN3

and monomorphism m : AN3 → AN2 ∈M are defined by componentwise epi-mono
factorizations of f in Sets (with respect to places, transitions, sorts and operations
of the signature and additional variables). The facts that e = f and m is an in-
clusion hold. So an AHL net AN3 = (SP3, P3, T3, pre3, post3, cond3, type3, A3) with
SP3 = (S3, OP3, E3, X3) can be constructed such that

• S3 = {s ∈ S2|∃s1 ∈ S1 : fS(s1) = s}

• OP3 = {op ∈ OP2|∃op1 ∈ OP1 : fOP (op1) = op}

• E3 = m#−1

SP (E2)

• X3eS(s)
= {x ∈ X2f (s)|∃x1 ∈ X1s : fX(x1) = x} for all sorts s ∈ S1

• A3 = VmSP (A2)

• P3 = {p ∈ P2|∃p1 ∈ P1 : fP (p1) = p}

• T3 = {t ∈ T2|∃t1 ∈ T1 : fT (t1) = t}

• pre3 = pre2|T3

• post3 = post2|T3

• type3 = type2|P3

• cond3 = cond2|T3

AN1 AN2

(=)

AN3

f

e m

Note that the proof for the net part is analogous to the proof of Fact 3.17. Well-
definedness of Σ3 = (S3, OP3) follows directly from the well-definedness of epi-mono
factorization in Sets. Additionally, the facts that E3 is a set of equations over S3

and OP3 and A3 is a SP3-algebra follow directly by construction. X3 is well-defined
since e is an epimorphism.
Next, the well-definedness of e is shown. Suppose e#

SP (E1) * E3. Then ∃e1 ∈
E1 : e#

SP (e1) /∈ E3 ⊆ E2. Since eS = fS and eOP = fOP , this is equivalent to
f#
SP (e1) /∈ E3 ⊆ E2. From the well-definedness of f follows that f#

SP (e1) ∈ E2\E3.
The definition of E3 implies that e1 contains at least one sort or one operation
that has no preimage in SP3. By definition of S3 and OP3, this mentioned sort or
operation of SP3 has no preimage in SP1, which is a contradiction to the assumption
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that e1 ∈ E1. Therefore, e#
SP (E1) = f#

SP (E1) ⊆ E3.
Next, the well-definedness of AHLNet-morphism e is shown.

(e#
SP ⊗ eP )⊕ ◦ pre1 = (f#

SP ⊗ fP )⊕ ◦ pre1

= pre2 ◦ fT
= pre3 ◦ eT

post analogous.

eS ◦ type1 = fS ◦ type1

= type2 ◦ fP
= type3 ◦ eP

Pfin(e#
SP ) ◦ cond1 = Pfin(f#

SP ) ◦ cond1

= cond2 ◦ fT
= cond3 ◦ eT

m is well-defined since it is an inclusion. Strictness of m holds by construction.
Commutativity of m ◦ e = f follows from componentwise epi-mono factorizations in
Sets.
Finally, the universal property is shown. Let e′ : AN1 → AN4 and m′ : AN4 →
AN2 ∈ M with m′ ◦ e′ = f be AHLNet-morphisms, where e′ is an epimorphism
and AN4 = (SP4, P4, T4, pre4, post4, cond4, type4, A4) with SP4 = (S4, OP4, E4, X4).
Unique isomorphisms iS : S3 → S4, iOP : OP3 → OP4 and iX = (iXs)s∈S3 :
X3 → X4 with ix ◦ ex = e′x ∧ m′x ◦ ix = mx for x = S,OP,X are induced by
epi-mono factorization in Sets. The fact that iΣ = (iS , iOP ) is a well-defined sig-
nature (iso)morphism is trivial to be shown. Equality of the sets of equations E3

and E4 up to isomorpism follows directly since m,m′ ∈ M are strict injective and
iΣ = (iS , iOP ) is an isomorphism with m′Σ ◦ iΣ = mΣ. So iSP = (iS , iOP , iX) is a
well-defined specification (iso)morphism.
The proof for the existence of unique isomorphisms ix with ix◦ex = e′x∧m′x◦ix = mx

for x = P, T is analogous to the corresponding proof without data types (see Fact
3.17). The existence of iA is obvious since algebra homomorphisms are restricted to
isomorphisms. Well-definedness of AHLNet-morphism i = (iSP , iP , iT , iA) follows
directly from the well-definedness of e, m, e′ and m′ and the mentioned commuta-
tivity.
Uniqueness of i = (iSP , iP , iT , iA) is implied by the uniqueness of its components in
Sets.

Analogous to the proof that PTSys is a weak adhesive HLR category with NACs
and according to Remark 5.26 in [EEPT06] (with M0 = M′), the next fact shows
that (AHLNet,M,M′, E ′,Q) has unique E0-M′ factorization. This and the fact
that AHLNet has binary coproducts (see Fact B.15) are used in the proof that
AHLNet has unique E ′-M′ pair factorization.
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Fact 4.24 ((AHLNet,M,M′, E ′,Q) has Unique E0-M′ Factorization). Let E0 be
the class of equation strict (see Definition 4.6) and surjective AHL net morphisms.
For every AHL net morphism f : AN1 → AN2 a unique E0-M′ factorization
(AN3, e,m) with m ◦ e = f exists, where e ∈ E0 and m ∈ M′ with the follow-
ing universal property:
For all AHL nets AN ′3 and morphisms e′ ∈ E0 : AN1 → AN ′3 and m′ ∈M′ : AN ′3 →
AN2 with m′ ◦ e′ = f , a unique isomorphism i : AN3 → AN ′3 with i ◦ e = e′ and
m′ ◦ i = m exists.

Proof. Given AHL nets ANi = (SPi, Pi, Ti, prei, posti, condi, typei, Ai) with SPi =
(Si, OPi, Ei, Xi) for i = 1, 2 and AHLNet-morphism f = (fSP , fP , fT , fA) : AN1 →
AN2 with fSP = (fS , fOP , fX). Construct AHL net AN3 = (SP3, P3, T3, pre3, post3,
cond3, type3, A3) with SP3 = (S3, OP3, E3, X3) and morphisms e = (eSP , eP , eT ,
eA) ∈ E0 : AN1 → AN3 with eSP = (eS , eOP , eX) and m = (mSP ,mP ,mT ,mA) ∈
M′ : AN3 → AN2 with mSP = (mS ,mOP ,mX) as described in Fact 4.23 except for
the set of equations E3 = e#

SP (E1).

AN1 AN2

(=)

AN3

f

e m

Well-definedness of this construction in AHLNet, except for the new set of equa-
tions E3, is already shown in the proof of Fact 4.23. Therefore, the fact that eSP
and mSP are well-defined specification morphisms is shown in the next step. This
follows directly by construction for morphism eSP .
Note that morphism m is an inclusion and m ◦ e = f holds.

∀eq3 ∈ E3 : ∃eq1 ∈ E1 : m#
SP (eq3) = m#

SP (e#
SP (e1)) = f#

SP (e1) ∈ E2

for any eq1 ∈ E1 with e#
SP (eq1) = eq3.

e ∈ E0 and m ∈M′ follow directly by construction.
Finally, the universal property is shown. Let AN ′3 = (SP ′3, P

′
3, T

′
3, pre

′
3, post

′
3, cond

′
3,

type′3, A
′
3) with SP ′3 = (S′3, OP

′
3, E

′
3, X

′
3) be an AHL net and e′ = (e′SP , e

′
P , e

′
T ,

e′A) ∈ E0 : AN1 → AN ′3 with e′SP = (e′S , e
′
OP , e

′
X) and m′ = (m′SP ,m

′
P ,m

′
T ,m

′
A) ∈

M′ : AN ′3 → AN2 with m′SP = (m′S ,m
′
OP ,m

′
X) be AHL net morphisms with

m′ ◦ e′ = f . The unique isomorphism i = (iSP , iP , iT , iA) : AN3 → AN ′3 with
iSP = (iS , iOP , iX) and i ◦ e = e′ and m′ ◦ i = m is induced as already shown in the
proof of epi-M-factorization (see Fact 4.23). However, E3

∼= E′3 remains to be shown
since the set of equations E3 differs from the corresponding set in the mentioned
fact.
Assume E3 � E′3. Then two cases can be distinguished:

1. ∃eq3 ∈ E3 : @eq′3 ∈ E′3 : i#SP (eq3) = eq′3. By construction, a set of preim-
ages of eq3 defined as Eeq3 := {eq ∈ E1|e#

SP (eq) = eq3} ⊆ E1 exists. The
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well-definedness of e′ implies that e′#SP (E1) ⊆ E3. Remember the fact that
iΣ = (iS , iOP ) is an isomorphism is already shown in the proof of epi-M-
factorization (see Fact 4.23). iΣ ◦ eΣ = e′Σ leads to the fact that all equations
eq1 ∈ Eeq3 are mapped to the same equation by e′#SP , i.e. ∃eq′3 ∈ E′3 : ∀eq1 ∈
Eeq3 : e′#SP (eq1) = eq′3 and i#SP (eq3) = eq′3. This is a contradiction to the
assumption that ∃eq3 ∈ E3 : @eq′3 ∈ E′3 : i#SP (eq3) = eq′3.

2. ∃eq′3 ∈ E′3 : @eq3 ∈ E3 : i#SP (eq3) = eq′3. Analogous, since this situation is
symmetric.

Fact 4.25 ((AHLNet,M,M′, E ′,Q) has Unique E ′-M′ Pair Factorization). See
Definition 2.6.

Construction. Let f1 : AN1 → AN3 and f2 : AN2 → AN3 with ANi = (SPi, Pi,
Ti, prei, posti, condi, typei, Ai) and SPi = (Si, OPi, Ei, Xi) for i = 1, 2, 3 be AHL
net morphisms. Since AHLNet has binary coproducts (see Fact B.15), there exist
inclusions l1 : AN1 → AN1 + AN2 and l2 : AN2 → AN1 + AN2 and an induced
morphism f = [f1, f2] : AN1 + AN2 → AN3 such that f ◦ l1 = f1 and f ◦ l2 = f2,
where AN1 +AN2 is the binary coproduct of AN1 and AN2.
Let (ANK , e,m) (with epimorphism e ∈ E0 and m ∈M′) be the E0-M factorization
(see Fact 4.24) of f . E ′-M′ pair factorization is defined by (ANK , (e1 = e ◦ l1 :
AN1 → ANK , e2 = e ◦ l2 : AN2 → ANK),m : ANK → AN3) with (e1, e2) ∈ E ′ and
m ∈M′.

AN1

AN1 + AN2 AN3

ANK

AN2

f1

f2

l1

l2

f

e m

Proof.

1. m ◦ e1 = m ◦ e ◦ l1 = f ◦ l1 = f1.

2. m ◦ e2 = m ◦ e ◦ l2 = f ◦ l2 = f2.

3. (e1, e2) ∈ E ′. (l1, l2) are jointly surjective since they are coproduct inclusions
(see Fact B.15) and the equations E1+2 of the coproduct object are defined as
E1+2 = E1 ] E2.
The fact that (e1, e2) are jointly epimorphic (jointly surjective) follows directly
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from the composition property of epimorphisms and jointly epimorphic mor-
phisms (see Fact D.1). (e1, e2) ∈ E ′ (are jointly equation strict) since e ∈ E0

(is equation strict) and E1+2 = E1 ] E2.

4. m ∈M′ follows directly from E0-M′ factorization.

5. Uniqueness up to isomorphism of E ′-M′ pair factorization. Let AN ′K be an
AHL net and e′1 : AN1 → AN ′K , e′2 : AN2 → AN ′K and m′ ∈ M′ : AN ′K →
AN3, where (e′1, e

′
2) ∈ E ′ and m′ ◦ e′1 = f1 and m′ ◦ e′2 = f2. Then an induced

morphism [e′1, e
′
2] : AN1+AN2 → AN ′K with [e′1, e

′
2]◦l1 = e′1 and [e′1, e

′
2]◦l2 = e′2

exists.
In the following, the fact that (AN ′K , [e

′
1, e
′
2],m′) is the E0-M′ factorization of

f is shown.

f ◦ li = fi = m′ ◦ e′i = m′ ◦ [e′1, e
′
2] ◦ li for i = 1, 2⇒ f = m′ ◦ [e′1, e

′
2]

Since (e1, e2) are jointly surjective by assumption, [e′1, e
′
2] is surjective. E1+2 =

E1 ] E2 and the fact that (e′1, e
′
2) ∈ E ′ (are jointly equation strict) lead to

[e′1, e
′
2] ∈ E0 (is equation strict). m′ ∈ M′ holds by assumption. This im-

plies that (AN ′K , [e
′
1, e
′
2],m′) is the E0-M′ factorization of f (see Fact 4.24).

Uniqueness of this factorization implies the existence of a unique isomorphism
i : ANK → AN ′K with i ◦ e = [e′1, e

′
2] and m′ ◦ i = m. The fact that i ◦ ej = e′j

for j = 1, 2 remains to be shown.

i ◦ e1 = i ◦ e ◦ l1 = [e′1, e
′
2] ◦ l1 = e′1

i ◦ e2 = i ◦ e ◦ l2 = [e′1, e
′
2] ◦ l2 = e′2

Fact 4.26 ((AHLNet,M,M′, E ′,Q) hasM-M′ Pushout-Pullback Decomposition
Property). See Definition 2.7.

Proof. Given the following commutative diagram with l ∈ M and w ∈ M′ in
AHLNet, and where (1+2) is a pushout and (2) a pullback. Analogous to the
first part of the proof of Fact 3.22, the facts that v, z ∈ M and (1+2) and (1) are
pullbacks hold. Therefore, the fact that (1) and (2) are pushouts remains to be
shown.

AN0 AN1 AN2

(1) (2)

AN3 AN4 AN5

k

l z

u

r

v

w

Let ANi = (SPi, Pi, Ti, prei, posti, condi, typei, Ai) with SPi = (Si, OPi, Ei, Xi)
for i = 0..5 be AHL nets. The proof for the net part is analogous to the proof
of Fact 3.22. So this property holds for the net part. Since lΣ = (lS , lOP ) and
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wΣ = (wS , wOP ) are monomorphisms in Sig, which is an adhesive HLR category (see
Fact 4.19 in [EEPT06]),M Pushout-Pullback Decomposition Lemma (see Theorem
4.26 (2.) in [EEPT06]) implies that (1) and (2) are pushouts in Sig. This lemma
also leads to the fact that (1) and (2) are pushouts with respect to the additional
variables X.
Next, E4 = z#

SP (E1) ∪ u#
SP (E3) is shown. Suppose that ∃e4 ∈ E4\(z#

SP (E1) ∪
u#
SP (E3)). Then ∃e5 ∈ E5 : w#

SP (e4) = e5. Since (1+2) is a pushout in Spec,
E5 = v#

SP (E2) ∪ w#
SP (u#

SP (E3)) holds and two cases can be distinguished:

1. e5 ∈ w#
SP (u#

SP (E3)). So ∃e3 ∈ E3, e
′
4 ∈ E4 : u#

SP (e3) = e′4 ∧ w#
SP (e′4) = e5.

The facts that w is injective and w#
SP (e4) = e5 imply that e′4 = e4, which is a

contradiction to the assumption that e4 ∈ E4\(z#
SP (E1) ∪ u#

SP (E3)).

2. e5 ∈ v#
SP (E2). Pullback (2) implies that E1 = r#−1

SP (E2) ∩ z#−1

SP (E4). Hence,
∃e1 ∈ E1 : (v#

SP (r#
SP (e1)) = e5 ∧ z#

SP (e1) = e4). This is a contradiction to the
assumption that e4 ∈ E4\(z#

SP (E1) ∪ u#
SP (E3)).

Therefore, SP4 = SP1 +SP0 SP3 is a pushout in Spec. Obviously, A4 = A1 +A0 A3

is the amalgamated sum (see Lemma B.17) of A1 and A3 with respect to A0 since
algebra homomorphisms are restricted to isomorphisms. Hence, (1) is a pushout in
AHLNet. Pushout decomposition implies that (2) is a pushout in AHLNet.

Fact 4.27 ((AHLNet,M,M′, E ′,Q) has M-Q Pushout-Pullback Decomposition
Property). See Definition 2.8. Analogous to Fact 4.26 since Q=M′.

Fact 4.28 ((AHLNet,M,M′, E ′,Q) has Initial Pushouts over M′-Morphisms).
See Definition 2.10.

Construction. Given an injective AHLNet-morphism f : AN0 → AN1 ∈ M′ with
ANi = (SPi, Pi, Ti, prei, posti, condi, typei, Ai) and SPi = (Si, OPi, Ei) for i = 0..1,
then the following dangling points are defined:

DP (P ) = { p ∈ P0 | ∃t ∈ T1\fT (T0) :

pre1(t) =
n∑
i=1

λi(ri, pi) with λi 6= 0 and fP (p) = pi

for some i or

post1(t) =
n∑
i=1

λi(ri, pi) with λi 6= 0 and fP (p) = pi

for some i}

DP (S) = DP ′(S) ∪DP ′′(S) ∪DP ′′′(S) with
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DP ′(S) = { s ∈ S0 | ∃op ∈ OP1\fOP (OP0) which
contains fS(s) as one of the sorts
in its signature}

DP ′′(S) = { s ∈ S0 | ∃e ∈ E1\f#
SP (E0) which

contains fS(s) as one of the sorts
in its signature}

DP ′′′(S) = { s ∈ S0 | ∃p ∈ P1\fP (P0) : type1(p) = fS(s)}

DP (TOP ) = { r ∈ TOP0(X0) | ∃t ∈ T1\fT (T0) :

pre1(t) =
n∑
i=1

λi(ri, pi) with λi 6= 0 and f#
SP (r) = ri

for some i or

post1(t) =
n∑
i=1

λi(ri, pi) with λi 6= 0 and f#
SP (r) = ri

for some i}

DP (EQNS) = { e ∈ EQNS(Σ0) | ∃t ∈ T1\fT (T0) : f#
SP (e) ∈ cond1(t)},

where Σ0 = (S0, OP0) is the signature of AN0

DP (OP ) = { op ∈ OP0 | ∃e ∈ E1\f#
SP (E0) which contains fOP (op) as one

of its operations}

Note that DP ′′(S) and DP (OP ) are required to satisfy the second part of the Spec
gluing condition (see Fact B.25).

The boundary ANB = (SPB, PB, ∅, preB, postB, condB, typeB, AB) can be con-
structed as follows:

• PB = DP (P )

• TB = ∅

• preB, postB : ∅ → (TOPB
(X)⊗ P )⊕

• SPB = (SB, OPB, EB) with

– SB = DP (S) ∪ type0(DP (P )) ∪ sorts(DP (TOP )) ∪ sorts(DP (EQNS))

– OPB = DP (OP ) ∪ opns(DP (TOP )) ∪ opns(DP (EQNS))

– EB = b#
−1

SP (E0), where bSP is the inclusion given by SB ⊆ S0 and OPB ⊆
OP0.

– XBs = {x ∈ X0s |∃t ∈ T1\fT (T0) : (cond1(t) contains fXs(x))∨
(pre1(t) contains fXs(x))∨
(post1(t) contains fXs(x))}

for all s ∈ SB ⊆ S0
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where sorts(TEQ) is the set of all sorts of TEQ and opns(TEQ) is the set of
all operations of TEQ for TEQ being a set of equations or a set of terms.

• AB = VbSP
(A0).

• typeB = type0|PB

• condB : ∅ → Pfin(Eqns(ΣB, X))

The context object ANC = (SPC , PC , TC , preC , postC , condC , typeC , AC) can be
constructed as pushout complement in AHLNet (see part 2 of proof of Fact B.26):

• PC = (P1\fP (P0)) ∪ fP (bP (PB))

• TC = (T1\fT (T0)) ∪ fT (bT (TB)) = (T1\fT (T0)) ∪ fT (bT (∅)) = (T1\fT (T0))

• preC = pre1|TC

• postC = post1|TC

• SPC = (SC , OPC , EC) with

– SC = (S1\fS(S0)) ∪ fS(bS(SB))

– OPC = (OP1\fOP (OP0)) ∪ fOP (bOP (OPB))

– EC = (E1\f#
SP (E0)) ∪ f#

SP (b#SP (EB))

– XCf ′
S

(s)
= (X1fS(s)

\fXs(X0s)) ∪ fXs(bXs(XBs)) for all s ∈ SB ⊆ S0. Re-
member b is an inclusion, fXs is injective and XBs ⊆ X0s for every s ∈ SB.

– XCs = X1s for all s /∈ fS(S0)

• AC = VcSP (A1), where cSP is the inclusion given by SC ⊆ S1 and OPC ⊆ OP1.

• typeC = type1|PC

• condC = cond1|TC

The monomorphisms b : ANB → AN0 ∈ M and c : ANC → AN1 ∈ M are
inclusions and the monomorphism f ′ : ANB → ANC ∈ M′ can be constructed as
restriction of f to ANB: f ′ = f|ANB

. This construction leads to initial pushout (1).

ANB AN0 ANB AN2 AN0

(1) (3) (2)

ANC AN1 ANC AN3 AN1

b

f ′

c

f

b′

f ′ f ′′ f

c′

b

c

b∗

c∗
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Proof. Well-definedness of ANB. The proof for the well-definedness of the net
part (the skeleton of the net) is analogous to the case without data types (see Fact
3.24). The construction implies that SB contains all required sorts for the places in
PB. Since TB is empty, no operations are required for the net part.
Next, the well-definedness of SPB and AB is shown. Let op ∈ OPB be an operation.
By construction, all sorts of the signature of op are in the set SB. EB = b#

−1
(E0)

ensures that EB only contains equations over the signature ΣB = (SB, OPB).
Obviously, AB is well-defined.

Well-definedness and strict injectivity of b are obvious since b is an inclu-
sion, TB = ∅, EB = b#

−1
(E0) and typeB = type0|PB

.

Well-definedness of ANC , morphisms c and f and pushout (1). Since
ANC is constructed as pushout complement, it is sufficient to show the satisfaction
of the gluing condition for ANB

b→ AN0
f→ AN1 (see Fact B.26).

In the first step, the satisfaction of the Spec gluing condition is shown. Because of
the injectivity of f , the set of identification points is always empty. DP ′(S) ⊆ bS(SB)
follows directly by construction.
The satisfaction of the Spec gluing condition requires to show that the set EC is
a set of equations over the signature ΣC = (SC , OPC). Let eC ∈ EC ⊆ E1 be an
equation. Several cases can be distinguished:

1. eC ∈ f#
SP (b#SP (EB)). For all sorts s and all operations op of eC , the fact that

s ∈ fS(bS(SB)) and op ∈ fS(bS(SB)) hold. By construction of ANC , s ∈ SC
and op ∈ OPC follow directly.

2. eC ∈ E1\f#
SP (E0). For all sorts s of eC , several cases can be distinguished:

(a) s ∈ fS(bS(SB)). This means s has a preimage in SB. By construction of
ANC , the fact that s ∈ SC holds.

(b) s ∈ fS(S0)\fS(bS(SB)). Then ∃s0 ∈ S0\bS(SB) : fS(s0) = s and, by
definition, s0 ∈ DP (S). Note that DP (S) ⊆ SB. This implies that
s ∈ fS(bS(SB)), which is a contradiction to the assumption that s ∈
fS(S0)\fS(bS(SB)).

(c) s ∈ S1\fS(S0). The construction of ΣC leads to s ∈ SC .

The proof for the operations of the equation eC is analogous.

So the Spec gluing condition (see Fact B.25) holds.
The proof for the satisfaction of the dangling condition for the places is analogous
to the corresponding proof without data types in PTNet (see Fact 3.24).
DP (TOP ) ⊆ b#SP (TOPB

(X)), DP (EQNS) ⊆ b#SP (TOPB
(X)) and DP ′′′(S) ⊆ bS(S)

follow directly by construction of ANB.
Since the gluing condition for ANB

b→ AN0
f→ AN1 is satisfied, the pushout com-

plement ANC and the morphisms f ′ and c are well-defined and (1) is a pushout (see
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Fact B.26). Additionally, c is strict injective since (1) is a pushout.

Initiality of pushout (1) remains to be shown. Let (2) be a pushout with
b′, c′ ∈M. Note that (2) satisfies the gluing condition (see Fact B.26).

Existence and well-definedness of b∗ ∈ M and c∗ ∈ M and required
commutativity. The proof for the existence and well-definedness of the net part
is analogous to the case without data types (see Fact 3.24).
In the first step, the existence of a signature morphism b∗Σ = (b∗S , b

∗
OP ) is shown.

Define b∗Σ := b′−1
Σ ◦ bΣ. Since SB ⊆ S0 and OPB ⊆ OP0 only contain dangling

points, it is sufficient for the well-definedness of b′−1
Σ for bΣ(ANB) to show that

every dangling point has a preimage in S2 resp. OP2. Note that b′ is strict injective.
Let sB ∈ SB be a sort of SB. Several cases can be distinguished:

1. sB ∈ sorts(DP (TOP )). By gluing condition, DP (TOP ) ⊆ b′#SP (TOP2(X)) holds,
i.e. ∃!s2 ∈ S2 : b′S(s2) = sB. So b′−1

S (sB) = s2. Note that s2 is unique since b′

is injective.

2. sB ∈ sorts(DP (EQNS)). Analogous.

3. sB ∈ type0(DP (P )). Analogous.

4. sB ∈ DP ′(S). Analogous.

5. sB ∈ DP ′′′(S). Analogous.

6. sB ∈ DP ′′(S). Due to the gluing condition of AN2
b′→ AN0

f→ AN1, E3 =
E1\f#

SP (E0)∪f#
SP (b′#SP (E2)) is a set of equations over Σ3 = (S3, OP3). To show

that this condition is sufficient for the existence of s2 ∈ S2 with b′S(s2) = sB,
assume sB /∈ b′S(S2). Remember that sB ∈ DP ′′(S). The definition of DP ′′(S)
implies ∃e1 ∈ E1\f#

SP (E0) which contains fS(sB) as one of the sorts in its
signature. By gluing condition of (2), E3 = E1\f#

SP (E0) ∪ f#
SP (b′#SP (E2)) and

S3 = S1\fS(S0) ∪ fS(b′S(S2)). So ∃e3 ∈ E3 : c′#SP (e3) = e1 and @s3 ∈ S3 :
c′S(s3) = fS(sB). Since e3 ∈ E3 contains s3 /∈ S3 as one of the sorts in
its signature, E3 is no set of equations over Σ3. The violation of the gluing
condition is a contradiction to the fact that (2) is a pushout. Hence, ∃!s2 ∈
S2 : b′S(s2) = sB. So b′−1

S (s2) = sB. Note that s2 is unique since b′ is injective.

The proof for the operations and the definition of bOP is analogous.
Well-definedness of b′−1

Σ and well-definedness of bΣ imply the well-definedness of b∗Σ.
By construction, b′Σ ◦ b∗Σ = bΣ holds.
Next, the preservation of the equations of EB by b∗SP is shown. b#SP (EB) ⊆ E0,
b′#
−1

SP (E0) ⊆ E2 (strictness of b′SP ) and b′SP ◦ b∗SP = bSP imply that every equation
eB ∈ EB ⊆ E0 can be translated to b′#

−1
SP (eB) = e2 ∈ E2 with b∗

#

SP (eB) = e2. There-
fore, b∗

#

SP (EB) ⊆ E2, i.e. b∗SP is a well-defined specification morphism.
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Define b∗X := b′−1
X ◦ bX . For the well-definedness of b′−1

X it is sufficient to show that
every dangling point of X0 has a preimage in X2 since XB only contains dangling
points. This follows directly from the gluing condition of (2).
Since algebra homomorphisms are restricted to isomorphisms, b∗A obviously ex-
ists (and is unique). b∗S ◦ typeB = type2 ◦ b∗P follows directly by construction.
Pfin(b∗

#

SP ) ◦ condB = cond2 ◦ b∗T and (b∗
#

SP ⊗ b∗P )⊕ ◦ preB = pre2 ◦ b∗T (post anal-
ogous) are obvious since TB is empty. So b∗ is a well-defined AHLNet-morphism
and b′ ◦ b∗ = b.
b∗ is strict injective, i.e. b∗ ∈ M, since M-morphisms are closed under decomposi-
tion in general (weak) adhesive HLR categories and b′ ◦ b∗ = b ∈M and b′ ∈M.

In the next step, morphism c∗SP is defined and the facts proven above for mor-
phism b∗SP are proven for morphism c∗.
Define c∗Σ := c′−1

Σ ◦ cΣ. To show the well-definedness of c′−1
Σ for cΣ(ANC), it is suf-

ficient to show that every sort (resp. operation) of SC (resp. OPC) has a preimage
in S3 (resp. OP3). Let sC ∈ SC be a sort of SC . Remark that SC ⊆ S1. Two cases
can be distinguished:

1. sC ∈ S1\fS(S0). The construction of the pushout complement implies that
∃!s3 ∈ S3 : c′S(s3) = sC . So c′−1

S (s3) = sC . Note that s3 is unique since c′ is
injective. (*)

2. sC ∈ fS(bS(SB)). As already shown, this is equivalent to sC ∈ fS(b′S(b∗S(SB))).
This implies sC ∈ fS(b′S(S2)). Since (2) is a pushout, ∃!s2 ∈ S2 : c′S(f ′′S(s2)) =
sC . Note that the uniqueness of s2 follows from the injectivity of c′S . Hence
c′−1
S (sC) = f ′′S(s2). (**)

The proof for the operations is analogous.
So c∗Σ is a well-defined signature morphism with c′Σ ◦ c∗Σ = cΣ. Additionally, the
injectivity of c∗Σ follows from the injectivity of cΣ and c′Σ.
The proofs that c∗SP is a well-defined specification morphism, i.e. c∗

#

SP (EC) ⊆ E3,
and that c∗ is strict injective, i.e. c∗ ∈M, are analogous to the proofs for morphism
b∗.
Define c∗X := c′−1

X ◦ cX . In the next step, the well-definedness of c′−1
X is shown.

Therefore, it is sufficient to show that every variable xC in XCsC
⊆ X1sC

has a
preimage in X3c∗

SP
(sC )

, for sC ∈ SC ⊆ c′SP (S3) ⊆ S1 being a sort of SC . Two cases
can be distinguished:

1. sC /∈ fS(S0). XCsC
= X1sC

follows directly by construction. Since (2) is a
pushout, X3s3

∼= X1sC
with c′S(s3) = sC holds.

2. sC ∈ fS(S0). Pushout (2) implies sC ∈ fS(b′S(S2)) = c′S(f ′′S(S2)) and pushout
(1) implies sC ∈ fS(bS(SB)) = cS(f ′S(SB)). By construction, for every variable
xC ∈ XCsC

⊆ X1sC
two cases can be distinguished, where s0 ∈ S0 : fS(s0) =

sC :
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(a) xC ∈ X1sC
\fXs0

(X0s0
). Analogous to the proof for the sorts above (*).

(b) xC ∈ fXs0
(bXs0

(XBs0
)). Analogous to the proof for the sorts above (**).

c∗A obviously exists (and is unique) since algebra homomorphisms are restricted to
isomorphisms.
The morphism c∗ is compatible with pre, post, type and cond functions since c∗ =
c′−1 ◦ c and c is well-defined and c′−1 is well-defined for c(ANC).

(3) is a pushout. First of all, the commutativity of (3) is shown. Recapitulat-
ing, b′ ◦ b∗ = b, c′ ◦ c∗ = c, c′ ◦ f ′′ = f ◦ b′ and f ◦ b = c ◦ f ′ hold.

c′ ◦ f ′′ ◦ b∗ = f ◦ b′ ◦ b∗
= f ◦ b
= c ◦ f ′
= c′ ◦ c∗ ◦ f ′

The fact that c′ ∈M (is a monomorphism in AHLNet) implies the commutativity
of (3). The facts that S3 = S2 +SB

SC and OP3 = OP2 +OPB
OPC are pushouts in

Sets and E3 = f ′′#SP (E2) ∪ c∗#SP (EC) remain to be shown.
(1+2) and (2) are pullbacks for the mentioned sets (sorts and operations) since
pushouts alongM-morphisms in (weak) adhesive HLR categories are pullbacks (see
Theorem 4.26 (1.) in [EEPT06]) and Sets is an adhesive category (see Definition 4.5
and Theorem 4.6 in [EEPT06]). The M Pushout-Pullback Decomposition Lemma
(see [EEPT06], Theorem 4.26) implies that (1) is a pushout for the mentioned sets,
i.e. (1) is a pushout in Sig.
This is analogous for the additional variables X.
To show that E3 = f ′′#SP (E2) ∪ c∗#SP (EC), suppose ∃e3 ∈ E3\(f ′′#SP (E2) ∪ c∗#SP (EC)).
Therefore, ∃e1 = c′#SP (e3) ∈ E1. Let sorts(e) be the set of all sorts of equation e and
opns(e) be the set of all operations of the equation e. Since (1) is a pushout, two
cases can be distinguished:

1. e1 ∈ f#
SP (E0). Obviously, the facts that sorts(e1) ⊆ fS(S0) ∩ c′S(S3) and

opns(e1) ⊆ fOP (OP0) ∩ c′OP (OP3) hold. Pushout (2) implies that sorts(e1) ⊆
fS(b′S(S2)) ∩ c′S(f ′′S(S2)) and analogous for operations. The strictness of b′

implies that ∃e2 ∈ E2 : f#
SP (b′#SP (e2)) = e1. The well-definedness of f ′′ and

the commutativity of (2) lead to ∃e′3 ∈ E3 : f ′′#SP (e2) = e′3 ∧ c′#SP (e′3) = e1.
Injectivity of w and c′#SP (e3) = e1 = c′#SP (e′3) imply that e′3 = e3, which is a
contradiction to the assumption that e3 ∈ E3\(f ′′#SP (E2) ∪ c∗#SP (EC)).

2. e1 ∈ c#
SP (EC) = c′#SP (c∗

#

SP (EC)). Then ∃eC ∈ EC , e′3 ∈ E3 : c∗
#

SP (eC) = e′3 ∧
c′#SP (e′3) = e1. The injectivity of w and c′#SP (e3) = e1 = c′#SP (e′3) lead to e′3 = e3.
This is a contradiction to the assumption that e3 ∈ E3\(f ′′#SP (E2) ∪ c∗#SP (EC)).
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Trivially, A3 = A2 +AB
AC is the amalgamated sum (see Lemma B.17) of A2 and

AC with respect to AB. As shown in Fact 3.24, (3) is a pushout for the net part.
So (3) is a pushout in AHLNet.

Fact 4.29 (M′ in (AHLNet,M,M′, E ′,Q) is closed under POs and PBs along
M-Morphisms). See Definition 2.11.

AN1 AN2

(1)

AN3 AN4

f

g ∈M

f ′

g′ ∈M

Proof. Pushout. Let (1) be a pushout and f ∈M′. Since this property holds for the
net part (see Fact 3.26), it is sufficient to show that f ′S ∈M′ and f ′OP ∈M′. Since
pushouts in Spec are constructed componentwise (for sorts and operations) in Sets,
which is an adhesive category (see Definition 4.5 and Theorem 4.6 in [EEPT06]),
f ′S ∈M′ and f ′OP ∈M′ hold. Remember the mapping fX of the additional variables
is restricted to injective morphisms.
Pullback. This follows from standard category theory (pullbacks preserve monomor-
phisms).

Fact 4.30 (Q in (AHLNet,M,M′, E ′,Q) is closed under POs and PBs along
M-Morphisms). See Definition 2.12. Analogous to Fact 4.29 since Q=M′.

Fact 4.31 ((AHLNet,M,M′, E ′,Q) has Induced Pullback-Pushout Property for
M and Q). See Definition 2.13.

Proof. Given the following pullback and pushout with ANi = (SPi, Pi, Ti, prei,
posti, condi, typei, Ai) and SPi = (Si, OPi, Ei) for i = 0..4, h ∈ M and h′ ∈ Q
in (AHLNet,M,M′, E ′,Q) then the induced morphism x : AN3 → AN4 with
x ◦ g′ = h and x ◦ f ′ = h′ is a monomorphism in Q.

AN0 AN1 AN0 AN1

(PB) (PO)

AN2 AN4 AN2 AN3

f

g

h′

h

f

g

f ′

g′

Since this fact holds for the net part (see Fact 3.28), the injectivity of xSP =
(xS , xOP , xX) remains to be shown. The proof for (xS , xOP ) is analogous to the
proof of the mentioned fact for N being S or OP . Remember that xX is always
injective. x is a well-defined AHLNet-morphism since x is induced by pushout
(PO).

Fact 4.32 ((AHLNet,M,M′, E ′,Q) has Composition Property for Morphisms in
M′ and Q). See Definition 2.14.
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Proof. This follows from standard category theory (composition property of monomor-
phisms).

Fact 4.33 ((AHLNet,M,M′, E ′,Q) has Decomposition Property for Morphisms
in M′ and Q). See Definition 2.15. This follows from standard category theory
(decomposition property of monomorphisms).

Fact 4.34 (Q in (AHLNet,M,M′, E ′,Q) is closed under Composition and Decom-
position). See Definition 2.16. Analogous to Fact 4.32 and Fact 4.33 since Q=M′.

4.3 AHL Systems as
weak Adhesive HLR Category with NACs

In this section is shown, that the category AHLSystems is a weak adhesive HLR
category with NACs.

Theorem 4.35 ((AHLSystems,M,M′, E ′,Q) is a Weak Adhesive HLR Category
with NACs). The category (AHLSystems,M,M′, E ′,Q) with the following mor-
phism classes is a weak adhesive HLR category with NACs:

M : strict AHL morphisms (see Definition 4.16)
M′ : injective AHL morphisms (see Definition 4.14 and Fact B.27)
Q : injective AHL morphisms (see Definition 4.14 and Fact B.27)
E ′ : jointly equation strict and minimal jointly surjective AHL morphisms

(see Definitions 4.7 and 4.20)

Proof. As already mentioned, (AHLSystems,M) is a weak adhesive HLR category
(see Fact 4.18). Therefore, merely the additional properties of a weak adhesive HLR
category with NACs (see Definition 2.4) need to be proven. These properties are
proven in the following Facts 4.36, 4.38, 4.40, 4.41, 4.42 and 4.43.

Fact 4.36 ((AHLSystems,M,M′, E ′,Q) has Unique Epi-M Factorization). See
Definition 2.5. The Construction is analogous to Fact 4.23 with the additional
marking M3 of AN3 with M3 := M2 for M2 being the marking of AN2.

Proof. Trivial, since this fact is already proven for AHLNet (see Fact 4.23).

Analogous to the case of AHLNet, a unique E0-M′ factorization (corresponding
to the E0-M0 factorization in Remark 5.26 in [EEPT06]) is defined in the next step.
This and the fact that AHLSystems has binary coproducts (see Fact B.28) are
used in the proof that AHLSystems has unique E ′-M′ pair factorization.

Fact 4.37 ((AHLSystems,M,M′, E ′,Q) has Unique E0-M′ Factorization). Let
E0 be the class of equation strict (see Definition 4.6) and minimal surjective (see
Definition 4.19) AHL morphisms.
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Construction. The construction is analogous to the construction in AHLNet (see
Fact 4.24). The marking M3 of the constructed AHL system AS3 = (AN3,M3) is
uniquely determined by the minimal property of morphism e:

M3(a3, p3) = max({M1(a, p)|a ∈ e−1
A (a3) ∧ p ∈ e−1

P (p3)})

AS1 AS2

(=)

AS3

f

e m

Proof. Fact 4.24 shows this property in AHLNet. Marking preservation of e and
m and e ∈ E0 and m ∈M′ follow directly by construction. The unique isomorphism
i = (iSP , iP , iT , iA) : AN3 → AN ′3 with iSP = (iS , iOP , iX) and i ◦ e = e′ and
m′ ◦ i = m is induced in AHLNet as already shown in the proof of Fact 4.24.
M3 = M ′3 follows directly from the the minimal property of e and e′.

Fact 4.38 ((AHLSystems,M,M′, E ′,Q) has Unique E ′-M′ Pair Factorization).
See Definition 2.6.

Construction. The construction is analogous to the construction in AHLNet (see
Fact 4.25). The marking MK of the constructed AHL system ASK = (ANK ,MK)
is uniquely determined by E0-M′ factorization:

MK(aK , pK) = max( {M1(a, p)|a ∈ l−1
1A

(e−1
A (a3)) ∧ p ∈ l−1

1P
(e−1
P (p3))}

∪ {M2(a, p)|a ∈ l−1
2A

(e−1
A (a3)) ∧ p ∈ l−1

2P
(e−1
P (p3))})

AS1

AS1 + AS2 AS3

ASK

AS2

f1

f2

l1

l2

f

e m

Proof. Fact 4.25 shows this property in AHLNet. (e1 = e ◦ l1, e2 = e ◦ l2) ∈ E ′ (are
minimal) follows from the fact that e ∈ E0 (is minimal) and l1 and l2 are marking
strict.
For the universal property, the fact that [e′1, e

′
2] ∈ E0 (is minimal) remains to be

shown. This is trivial since coproduct inclusions are marking strict. Therefore,
(AN ′K , [e

′
1, e
′
2],m′) is the E0-M′ factorization of f in AHLSystems, which is unique

up to isomorphism.

Analogous to the case without data types, there is a connection between pushouts
in AHLNet and in AHLSystems. The next fact formalizes this connection. It is
required for some of the following proofs.
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Fact 4.39 (AHLNet-AHLSystems Pushout Equivalence). Given the following
commutative diagram (1) with ANi = (SPi, Pi, Ti, prei, posti, condi, typei, Ai) with
SPi = (Si, OPi, Ei, Xi) for i = 0..3 in (AHLSystems,M,M′, E ′,Q) with m,n ∈
M, then the following statements hold:

1. (1) is a pushout in AHLSystems if (1) is a pushout in AHLNet and all
places in P1 without a preimage in P0 are mapped strictly by gP , i.e.

∀(a1, p1) ∈ (A1 ⊗ (P1\mP (P0))) : M1(a1, p1) = M3(gA(a1), gP (p1))

2. (1) is a pushout in AHLNet if (1) is a pushout in AHLSystems.

AS0 AS1

(1)

AS2 AS3

m

f

n

g

Proof. The proof of this fact is analogous to the proof of the corresponding fact for
the case without data types (see Fact 3.20).

Fact 4.40 ((AHLSystems,M,M′, E ′,Q) hasM-M′ Pushout-Pullback Decompo-
sition Property). See Definition 2.7.

Proof. Since this fact is already shown for AHL nets (see Fact 4.26) and pullbacks
(1) and (2) follow from the categorical properties of (weak) adhesive HLR categories
(see proof of Fact 4.26), the fact that (1) is a pushout in AHLSystems remains
to be proven. By Fact 4.39, it is sufficient to show ∀(a3, p3) ∈ A3 ⊗ (P3\lP (P0)) :
M3(a3, p3) = M4(uA(a3), uP (p3)). The following diagram shows the expansion of
the construction in AHL Nets:

(AN0, M0) (AN1, M1) (AN2, M2)

(1) (2)

(AN3, M3) (AN4, M4) (AN5, M5)

k

l z

u

r

v

w

Let (a3, p3) ∈ A3 ⊗ (P3\lP (P0)). Since (1+2) is a pushout in AHLSystems,
M3(a3, p3) = M5(wA(uA(a3)), wP (uP (p3))) hold. Additionally, it is valid that

1. M3(a3, p3) ≤M4(uA(a3), uP (p3)) and

2. M4(uA(a3), uP (p3)) ≤M5(wA(uA(a3)), wP (uP (p3))).
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M3(a3, p3) ≤M4(uA(a3), uP (p3)) ≤M5(wA(uA(a3)), wP (uP (p3))) = M3(a3, p3)
⇒M3(a3, p3) = M4(uA(a3), uP (p3))

Pushout decomposition implies that (2) is a pushout.

Fact 4.41 ((AHLSystems,M,M′, E ′,Q) has M-Q Pushout-Pullback Decompo-
sition Property). See Definition 2.8. Analogous to Fact 4.40 since Q=M′.

Fact 4.42 ((AHLSystems,M,M′, E ′,Q) has Initial Pushouts overM′-Morphisms).
See Definition 2.10.

Construction. Given AHL systems ASi = (ANi,Mi) with ANi = (SPi, Pi, Ti, prei,
posti, condi, typei, Ai) with SPi = (Si, OPi, Ei, Xi) for i = 0, 1 and an injective
AHLSystems-morphism f : AS0 → AS1 ∈ M′, then the boundary ASB can be
constructed analogously to the boundary net in AHLNet (see Fact 4.28) except for
the set PB:

• PB = PBAHLNet
∪ {p ∈ P0|∃a ∈ A0 : M0(a, p) < M1(fA(a), fP (p))}, where

PBAHLNet
is the set PB of the boundary in AHLNet (see Fact 4.28).

• ∀(a, p) ∈ (AB ⊗ PB) ⊆ (A0 ⊗ P0) : MB(a, p) = M0(a, p).

The boundary net in AHLSystems differs from the boundary net in AHLNet
because it additionally contains all places that are not mapped strictly by f . This
construction is analogous to the case without data types (see Fact 3.25).

The context object ASC = (ANC ,MC) with ANC = (SPC , PC , TC , preC , postC ,
condC , typeC , AC) with SPC = (SC , OPC , EC , XC) can be constructed as pushout
complement in AHLSystems, analogous to the pushout complement in AHLNet
with:

∀(a, p) ∈ (AC ⊗ PC) ⊆ (A1 ⊗ P1) : MC(a, p) = M1(a, p)

The construction of the strict morphisms b : PSB → PS0 ∈ M, c : PSC →
PS1 ∈M and the morphism f ′ : PSB → PSC ∈M′ is analogous to the construction
in AHLNet. This construction leads to initial pushout (1).

ASB AS0 ASB AS2 AS0

(1) (3) (2)

ASC AS1 ASC AS3 AS1

b

f ′

c

f

b′

f ′ f ′′ f

c′

b

c

b∗

c∗

Proof. This is analogous to the case without data types since this is already proven
for AHLNet (see Fact 4.28) and the expansion of Fact 3.20 for P/T nets to AHL
nets holds (see Fact 4.39).
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Fact 4.43 (Additional Properties of (AHLSystems,M,M′, E ′,Q)). The category
(AHLSystems,M,M′, E ′,Q) has the following properties:

1. M′ is closed under POs and PBs along M-Morphisms (see Definition 2.11).

2. Q is closed under POs and PBs along M-Morphisms (see Definition 2.12).

3. Induced Pullback-Pushout Property for M and Q (see Definition 2.13).

4. Composition Property for Morphisms in M′ and Q (see Definition 2.14).

5. Decomposition Property for Morphisms in M′ and Q (see Definition 2.15).

6. Q is closed under Composition and Decomposition (see Definition 2.16).

Proof. This follows directly by the fact that (AHLNet,M,M′, E ′,Q) is a weak
adhesive HLR category with NACs with the morphism classes presented in Theorem
4.22.

4.4 Case Study: AHL Airport Control System

4.4.1 Overview

This chapter extends the airport control system ACS presented in Section 3.3 to
AHL systems. This system is called AHL-ACS. Analogous to ACS, it is supposed to
prevent accidents in the airport area and, additionally to ACS, it is also responsible
for the coordination of the airplanes at the gates. The system can handle airplanes
and gates of different sizes and manage the coordination of the airplanes at the gates.
In this chapter, AHL-ACS is described in detail and modeled as reconfigurable AHL
system with negative application conditions. Analogous to ACS, transforming the
AHL system represents the rearrangement of the airport and firing of a transition
reflects a process at the airport.

The example is divided into different parts. First of all, the requirement engi-
neering of AHL-ACS is presented. Afterwards, the specifications and algebras are
described. Finally, the AHL systems and rules are introduced.

4.4.2 Detailed Description

In principle, AHL-ACS has the same functionality as ACS with some additional
features. To simplify matters, all functionalities also modeled in ACS are neglected
in this example. So the airport is restricted to a level-2-airport with one starting
runway, one landing runway and space for up to five airplanes at the gate area. The
neglected functionalities could be modeled analogous to the case without data types
(see Section 3.3).
The capacity of the gate area corresponds to the number of airplanes being able to
use the gate area simultaneously. In the case of ACS, this number is called number
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of gates.

In AHL-ACS, the representation of an airplane consists of an ID and a fixed size.
AHL-ACS distinguishes seperate gates and ensures that a gate can only be used ex-
clusively by one airplane. Every gate has a fixed size. In the case of AHL-ACS,
size of a gate means that only airplanes of exactly this size are allowed to use this
certain gate. Only one gate of size 1 is available in the basic AHL-ACS (i.e. in the
initial situation).
AHL-ACS ensures that only airplanes of supported sizes are allowed to use the air-
port. A size is called supported if at least one gate of this size exists. Airplanes
with unsupported sizes are neither allowed to enter the airport nor the airspace of
the airport.
The possibility to change the number of gates while running is also provided by
AHL-ACS. Additionally, new sizes of airplanes can be created and used in the sys-
tem. A detailed description of these expansions follows.

Adding new sizes of airplanes is always possible, provided that the new size does
not already exist. Added (and not later removed) sizes and the size available in the
basic AHL-ACS are called known sizes. Removing sizes of airplanes is only allowed if
the airport does not support this size. These operations correspond to an updating
of the airplane data base and does not affect the airport directly at this moment.
Furthermore, adding new gates of known sizes is always possible. However, the
following condition has to be satisfied: If the new gate is the first gate of this size,
this size has to be added to the supported sizes of the airport. Neither the number
of gates nor the number of sizes is limited by AHL-ACS.
In contrast to this expansion of the airport, it is also possible to remove gates.
Therefore, the following constraints have to hold:

• A gate can only be removed if it is unused.

• A gate of a size can be removed if another gate of this size exists.

• The last gate of a size can only be removed if at least one other gate (of any
size) exists and no airplane of this size is at the airport (including the airspace
of the airport). In this case, the support of this size is removed as well.

4.4.3 Systems and Rules

AHL-ACS is given by the reconfigurable AHL system with NACs AHL-ACS =
(Lvl2ap,AHL-ACS-RULES) with the AHL system Lvl2ap and the set of rules
AHL-ACS-RULES presented in this subsection.
First of all, the required specifications and algebras are defined.
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Specifications and Algebras

SP-ACS0 =
sorts: airplane,

apSize,
blackToken

opns: • :→ blackToken,
getSize : airplane→ apSize

vars: b1 : blackToken
eqns: b1 = •

ASP -ACS0 = ((N+ × N+),N+, {•}, •, (a, s) getSize7−→ s)

A′SP -ACS0 = ((N+ × S), S, {•}, •, (a, s) getSize7−→ s) with
S = {si|i ∈ N+}

Specification SP-ACS0 forms the base of AHL-ACS. The sort apSize stands for
airplane size. Remaining sorts blackToken and airplane and the operation getSize
are self-explanatory. The equation b1 = • ensures that the carrier set of the sort
blackToken of every SP-ACS0-algebra is a singleton, i.e. a set with exactly one
element.
ASP -ACS0 and A′SP -ACS0 are algebras to this specification, where N+ = N\{0} is the
set of all positive integers. Algebra ASP -ACS0, used in the AHL system, and alge-
bra A′SP -ACS0, used in some rules, differ in order to express that various mappings
are possible. These and the following specifications and algebras marked with an
apostrophe (’) are only used in the transformation rules. Remember that algebra
homomorphisms are restricted to isomorphisms.

SP-ACS1’ = SP-ACS0 +
sorts: ∅
opns: size :→ apSize
vars: ∅
eqns: ∅

ASP -ACS1′ = A′SP -ACS0 with the additional constant (s1)

SP-ACS2’ = SP-ACS1’ +
sorts: ∅
opns: size′ :→ apSize
vars: ∅
eqns: ∅

ASP -ACS2′ = ASP -ACS1′ with the additional constant (s2)
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SP-ACS2” = SP-ACS2’ +
sorts: ∅
opns: size′′ :→ apSize
vars: ∅
eqns: ∅

ASP -ACS2′′ = ASP -ACS2′ with the additional constant (s2)

SP-ACS1 = SP-ACS0 +
sorts: ∅
opns: size1 :→ apSize
vars: ∅
eqns: ∅

ASP -ACS1 = ASP -ACS0 with the additional constant (1)

SP-ACS2 = SP-ACS1 +
sorts: ∅
opns: size2 :→ apSize
vars: ∅
eqns: ∅

ASP -ACS2 = ASP -ACS1 with the additional constant (2)

SP-ACS = SP-ACS1 +
sorts: nat
opns: getID : airplane→ nat
vars: ∅
eqns: ∅

ASP -ACS = ASP -ACS1 with the additional carrier set and operation

(N+, (a, s)
getID7−→ a)

SP-ACSa = SP-ACS +
sorts: ∅
opns: size2 :→ apSize
vars: ∅
eqns: ∅

ASP -ACSa = ASP -ACS with the additional constant (2)

Specification SP-ACS and algebra ASP -ACS are used in the start system Lvl2ap.
The additional sort nat and the additional operation getID, assigning a unique
identification to every airplane, are defined to distinguish between different airplanes
(of the same size) in the AHL system. Neither this sort nor this operation are used
in the transformation rules.
Note that some of the presented specifications and algebras are only required for
showing theoretical results to AHL-ACS in Subsection 4.4.4.
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Startsystem: Lvl2ap
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This picture shows the start system of AHL-ACS with specification SP-ACS
and algebra ASP -ACS . Note that a ∈ Xairplane and s ∈ XapSize in this and all fol-
lowing presented AHL-ACS nets. The place Support contains exactly one token of
each supported size. Only size 1 is supported in the initial situation. The transitions
newSup and remSup should only be fired before resp. after changing the supported
sizes and the place AddRemSupport should not be used in the regular operation of
AHL-ACS. It is only required for adding and removing supported sizes.
Firing transition arriving represents the arrival of an airplane in the airspace of the
airport (place Arrival). In contrast to ACS, this transition has a nonempty pre-
domain and a firing condition. It is only enabled if the size of the arriving airplane
a equals size s and there is a token of this size at the place Support. This ensures
that only airplanes of supported sizes are allowed to enter the airspace and use the
airport. For each arrived airplane, an airplane token is placed at Arrival and a size
token of the size of the airplane is placed at APSizeCounter. This place represents
a counter for all airplanes at the airport and stores their sizes. If an airplane leaves
the airport a token of the corresponding size is removed from this place. This is
represented by firing transition quitting.
The starting and the landing runways are modeled as in ACS. Note that the number
of runways cannot be changed in this example. The place TowerGateArea ensures
that only five airplanes can use the gate area simultaneously. In this example, the
gate area represents the size of the whole gate area, no matter how many gates exist.
To simplify matters, the size of the gate area is fixed. Note again that changing the
size of the gate area could be modeled analogously to the case without data types
(see Rules increaseNumberOfGates and decreaseNumberOfGates in ACS).
The first and only gate of the airport is represented by the places Gate and the
complement place TowerGate of this gate. So the exclusive use of the gate by only
one airplane is guaranteed. The condition of the transition enterGate ensures that
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only airplanes of size 1 can use this gate.
Note that the specification SP-ACS has only one constant size1 of the sort apSize.
The values of the constants of sort apSize form the set of the known sizes mentioned
above.

Through different matches it is possible to create and remove arbitrary (but
unused) constants and gates of arbitrary (but known) sizes without using an infinite
set of rules. This is feasible although algebra homomorphisms are restricted to
isomorphisms because the carrier sets are not changed.
Note that all morphisms used in the following rules are inclusions.

Rule 1: addNewSize

SP-ACS1’
ASP -ACS1′

←↩ SP-ACS1’
ASP -ACS1′

↪→ SP-ACS2’
ASP -ACS2′

Adding a new size to the set of known sizes is expressed by this rule. A new
constant of the sort apSize is added to the airport. Its value is determined by
the match. A negative application condition is required to prevent the creation of
multiple constants with the same value. The second constant of the sort apSize is
required to prevent a mapping from sort apSize to sort nat and operation getSize to
getID. Note that the applicability of this rule is ensured since it is guaranteed that
at least one constant of the sort apSize exists. This is because the gluing condition
(see Fact B.32) restricts the removal of the last constant since the last gate cannot
be removed (and the constant is used in the fire condition of its entering transition).

Rule 1 - NAC 1:

SP-ACS2’
ASP -ACS2′

This negative application condition prevents this rule from being applied if there
already exists a constant with the same value.

Rule 2: removeSize

Inverse to Rule 1 without negative application conditions.

The application of this rule removes a known size. This means that a constant
is removed from the airport net by applying this rule. No negative application
condition is required to ensure the condition that no airplane of this size is at the
airport since this condition has to be satisfied before removing the last gate of a
size. Additionally, the gluing condition (see Fact B.32) guarantees that no gate of
this size exists.
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Rule 3a: addFirstGate
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This rule expresses the adding of the first gate of an arbitrary size. As already
mentioned, the size is determined by the match. The application to an airport
removes the place AddRemSupport with the adjacent transitions and recreates these
nodes with one token of the new size at the place AddRemSupport. Additionally,
a gate of this size is added. After applying this rule, the transition newSup should
be fired so that airplanes of the new supported size can use the airport. This
complicated procedure for adding a token is necessary since M-morphisms have to
be marking strict.
Note that the gluing condition (see Fact B.32) prevents this rule from being applied if
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there is a token at the place AddRemSupport. Nevertheless, one negative application
condition is still required.

Rule 3a - NAC 1:
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a
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s
1

TowerGateArea:blackToken
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ASP -ACS1′

This negative application condition prevents this rule from being applied if a
token of the new supported size is already at the place Support, i.e. the airport
already supports the new size. So it is guaranteed that only the first gate of a size
can be created by this rule.

Remark 4.44. It is an important result that Q-morphisms do not have to be marking
strict. Otherwise an infinite set of NACs would be required to achieve this and the
most following conditions.
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Rule 3b: addGate
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Adding a gate of an arbitrary size is modeled by this rule. However, it can only
be applied if at least one gate of this size exists, i.e. the airport already supports this
size. This condition is ensured by the token of the size s1 at the place AnyP lace,
which can be mapped arbitrarily. No negative application conditions are required
for this rule.
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Rule 4a: removeGate

L

LandingRunway:airplane

a●
TowerArrival:blackToken

a

GateEArea:airplane getSize(a)=sizea
enterGate

Gate:airplane

a a leaveGate

●●

a GateLArea:airplane

readyToTakeoff

aTowerGateArea:blackToken

●●arrived a●

StartingRunway:airplane
TowerDeparture:blackToken

TowerGate:blackToken

getSize(a)=size
enterGate2

Gate2:airplane

a a
leaveGate2

●●

TowerGate2:blackToken

a a

SP-ACS1’
ASP -ACS1′

↑

K

LandingRunway:airplane

a●
TowerArrival:blackToken

a

GateEArea:airplane getSize(a)=sizea
enterGate

Gate:airplane

a a leaveGate

●●

a
GateLArea:airplane

readyToTakeoff

aTowerGateArea:blackToken

●●arrived a●

StartingRunway:airplaneTowerDeparture:blackToken

TowerGate:blackToken

SP-ACS1’
ASP -ACS1′

↓

R

LandingRunway:airplane

a●
TowerArrival:blackToken

a

GateEArea:airplane getSize(a)=sizea
enterGate

Gate:airplane

a a leaveGate

●●

a
GateLArea:airplane

readyToTakeoff

aTowerGateArea:blackToken

●●arrived a●

StartingRunway:airplaneTowerDeparture:blackToken

TowerGate:blackToken

SP-ACS1’
ASP -ACS1′

This rule expresses the removal of gates, where it is not sufficient to use the
inverse rule of rule 3b. The additional condition that the gate to be removed is
not the last gate of a size has to be verified. Removing the last gate of a size is
modeled by a different rule since this requires special treatment. The token at place
TowerGate2 ensures that the gate to be removed is not in current use.
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Rule 4b: removeLastGate
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Removing the last gate of a size entails the removing of the support of this size.
This is modeled by this rule. It can only be applied if there is a token of the size
to be removed at the place AddRemSupport and at least one gate of an arbitrary
but different size is left. Identifying the constants size = s1 and size′ = s2 by a
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match is not possible since this would need a non-isomorphic algebra homomorphism.
Nevertheless, two negative application conditions are required.

Rule 4b - NAC 1:
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This negative application condition ensures that the last gate of a size can only
be removed if there is no airplane of this size at the airport. This is necessary to
prevent airplanes from being stuck.

Rule 4b - NAC 2:
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This negative application condition guarantees that this rule can only be applied
if the gate to be removed is the last gate of its size.

4.4.4 Applying Theoretical Results to AHL-ACS

In the case of ACS examples for independent and dependent transformations, paral-
lelism, concurrency and critical pairs are presented. In this section, a critical pair of
a given pair of transformations is calculated and its strict NAC-confluence (see Def-
inition 2.48) is shown. Remember that strict NAC-confluence of all critical pairs of
an adhesive HLR system with NACs implies its local confluence (see Theorem 2.49).
However, it is very complex to prove the strict NAC-confluence of critical pairs as
shown in the following. Therefore, this is only demonstrated exemplarily for one
critical pair. As already mentioned, a tool support in this context is necessary to
perform critical pair analyses. The java-based tool AGG (see [AGG08]) provides
this functionality. Note that AGG is still an ongoing project of the TFS-group and,
therefore, still under development.
For proving the strict NAC-confluence of the following critical pair, it is necessary to
construct a concurrent rule (see Definition 2.41) and a derived span (see Definition
6.9 in [EEPT06]).
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Figure 4.1: AHL system G

Based on AHL system G, pictured in Figure 4.1, the transformations by applying
rules

p1 = (L1, L1, R1) := removeSize

for removing constant size2 and

p2 = (L2,K2, R2) := addFirstGate

for adding a gate of size2 are parallel dependent since there is a delete-use conflict
(with respect to constant size2).

H1
p1⇐ G

p2⇒ H2
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The critical pair (P1
p1⇐ K

p2⇒ P2) of these transformations is depicted in Figure 4.2.
The NACs of this critical pair are the NACs of the rules p1 and p2 (in this case only
the NAC of p2, called N2).
Showing the strict NAC-confluence of a critical pair (see Definition 2.48) proceeds

always the same. First, the confluence of this critical pair is shown. Note that rule
removeLastGate cannot be applied to P2 since no second gate exists. Nevertheless,
the removed size can be added again (i.e. apply rule p3 := addNewSize to P1)
resulting in the AHL system K. Applying p2 = addFirstGate to K leads to AHL
system P2. So this critical pair is confluent.

K

P1

P2

K

P2

p1

p2

id

p3

p2

Next, the strictness of the critical pair is shown. Therefore, the derived span (see
Definition 6.9 in [EEPT06]) of transformation sequence P1

p3⇒ K
p2⇒ P2 which is given

by P1 ← D → P2 with D as pictured in Figure 4.3 needs to be calculated. Now, the
pullback (PB) in the following diagram is constructed, where D2 is the gluing object
of the transformation K

p2⇒ P2, pictured in Figure 4.4, and the pullback object D is
identical to object D of the derived span shown in Figure 4.3:

K

P1 (PB) D2

P1 (1) D (2) P2

D (3) P2

P2

z1 z2

z3 z4

The existence of morphisms z3 = id : D → D and z4 : D → P2 such that (2), (3)
and (4) commute is obvious.
In the last step, NAC-confluence is shown. Therefore, the concurrent rule with
NACs (see Definition 2.41) pc1 of K

p1⇒ P1
p3⇒ K

p2⇒ P2 is constructed. This rule,
depicted in Figure 4.5, removes a constant of the sort apSize of the airport system
and then adds a new constant with the same value and a new gate of this size. Its
first negative application condition prevents this rule from being applied if a gate
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of this size exists (i.e. there is a token of this size at place Support). This NAC
corresponds to the down- and leftward translation (see Definition 5.6 in [Lam07]) of
the NAC of rule p2. The second negative application condition results from to the
down- and leftward translation of the NAC of rule p3 and forbids the existence of a
second constant with the same value as the constant to be removed.
Let k0 : K → G ∈ M′ be a NAC-consistent (see Definition 2.44) morphism with
respect to K

p2⇒ P2. Remember that p1 has no negative application condition.
Therefore, NAC-consistency with respect to K

p1⇒ P1 holds for every morphism
k0 : K → G.

N2 Nc1 N ′
c1

(=)

L1 L2 Lc1

(=)

K

G

m1 m2 mc1

k0

x1

x2

For proving NAC-confluence, NAC-consistency of k0 with respect to K
pc⇒ P2 re-

mains to be shown. This obviously holds for Nc1 since Nc1 and N2 only differ in
one additional constant. Note that m2 : L2 → K maps constant size to size2 and
mc1 : Lc1 → K maps size′ to size2. More formally, NAC-confluence follows from
Theorem 6.6 in [Lam07] (where NAC N ′c1 is neglected) since the second concurrent
rule pc2 is rule p2 itself and x1 : L2 → Lc1 and x2 : N2 → Nc1 , as pictured in the
diagram above, exist.
NAC-consistency of k0 including N ′c1 does not hold in general since the existence of
a second constant with the same value is not prohibited explicitly by the NAC of p2.
However, the creation of an AHL system G with two constants of the same value by
applying rules to the start system is not possible in AHL-ACS. So NAC-confluence
holds with respect to the language generated by grammar AHL-ACS (see Definition
5.4 in [EEPT06]), but not for general AHL systems. This condition is sufficient for
a reconfigurable AHL system since a valid startsystem is included.
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Chapter 5

Reconfigurable Labeled
P/T Systems with NACs

5.1 Introduction of
Reconfigurable Labeled P/T Systems

Labeled P/T systems are an extremely useful extension of P/T systems. The idea
of labels is quite easy: Places obtain fixed labels and can only be mapped to places
with the same label. This obviously prevents nonsensical matches. Moreover, mod-
eling with labeled P/T systems is less error-prone than with unlabeled P/T systems
since the labeled rules are usually smaller and more clear. In this thesis, only P/T
systems with labeled places are considered, although, adding labels to transitions is
also possible. In most cases, labeled places are sufficient for intuitive modeling and
labeled transitions are not required.
Labeled P/T systems are introduced in this section and it is shown that the cate-
gory PTSys(L) of L-labeled P/T systems and L-labeled P/T morphisms is a weak
adhesive HLR category. Special morphisms (i.e. monomorphisms, epimorphisms,
jointly epimorphic morphisms, isomorphisms) and some categorical constructions
(binary coproducts, pushouts and pullbacks along M-morphisms) of this category
are defined in Appendix C.1 and the correctness of these constructions is proven.

For labeling P/T systems over an arbitrary, but fixed set L, a so called labeling
function λ : P → L, assigning a label to each place is used. The next definition
introduces L-labeled P/T systems (short labeled P/T systems) formally.

Definition 5.1 (L-Labeled P/T System). A L-labeled P/T system LPS = (PS, λ :
P → L) is given by P/T system PS and a labeling function λ : P → L assigning a
label l ∈ L to each place p ∈ P .

L-labeled P/T morphisms (short labeled P/T morphisms) are P/T morphisms
preserving the labeling of the places. The formal definition follows directly.
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Definition 5.2 (L-Labeled P/T Morphism). A L-labeled P/T morphism

f : (PS1, λ1)→ (PS2, λ2)

is a P/T morphism f = (fP , fT ) with λ1 = λ2 ◦ fP .

In the next step, the category PTSys(L) of L-labeled P/T systems and L-labeled
P/T morphisms is introduced, its well-definedness is shown and it is proven that this
category is a weak adhesive HLR category with the special morphism classM of all
strict L-labeled P/T morphisms (see Definition 3.10).

Fact 5.3 (Category PTSys(L) is a Weak Adhesive HLR Category). L-labeled P/T
systems and L-labeled P/T morphisms form the category PTSys(L), where the
composition of morphisms is defined as the composition of PTSys-morphisms and
the identity is defined as identity in PTSys. This category is a weak adhesive HLR
category (see Definition 2.3) with the special morphism class Mstrict of all strict
L-labeled P/T morphisms (see Definition 3.10).

Proof. Consider the category L with only one object L (an arbitrary set of labels)
and only one morphism id : L → L (the identical function). L obviously is a well-
defined category.
Construct the comma category C = ComCat(F, Incl, {1}) (see Definition A.41 in
[EEPT06]) with F : PTSys → Sets, FOb((P, T, pre, post)) = P , FMor((fP , fT )) =
fP and the inclusion functor Incl : L → Sets, InclOb(L) = L and InclMor(idL) =
idL:

ObC = class of all triples (PS,L, λ : P → L)
MorC((PS1, L, λ1), (PS2, L, λ2)) = { (fPS : PS1 → PS2, idL : L→ L)

|idL ◦ λ1 = λ2 ◦ fP1 }
(fPS1 , idL) ◦ (fPS2 , idL) = (fPS1 ◦ fPS2 , idL ◦ idL)

id(PS,L,λ:P→L) = (idPS , idL)

Obviously, C is isomorphic to PTSys(L). Hence, PTSys(L) is a well-defined cat-
egory.
The fact that PTSys(L) is a weak adhesive HLR category remains to be shown.
Therefore, according to Theorem 4.15 (4.) in [EEPT06], the following statements
have to be proven.

1. (L,M2) is a (weak) adhesive HLR category, which obviously holds for the class
of all L-morphisms M2

2. F preserves pushouts along Mstrict-morphisms, which is also obvious since
pushouts in PTSys are constructed componentwise (see Fact A.19)

3. Incl preserves pullbacks along M2 morphisms, which is obvious as well.
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Therefore, (C,Mstrict×M2) and for this reason also (PTSys(L),Mstrict) are weak
adhesive HLR categories.

Obviously, a forgetful functor mapping L-labeled P/T systems to the corre-
sponding unlabeled P/T systems exists. Note this functor is called forgetful since
the functor ”forgets” the labeling. This functor is required for some of the proofs in
the next section.

Definition 5.4 (Forgetful Functor V : PTSys(L) → PTSys). Forgetful functor
V : PTSys(L)→ PTSys is defined by

VOb(PS, λ) = PS

VMor(f) = f

Finally, a reconfigurable labeled P/T system is defined formally. The definition
is analogous to the definition in the case of P/T systems and AHL systems.

Definition 5.5 (Reconfigurable L-Labeled P/T System). Given a L-labeled P/T
system PSL and a set RULES of rules, a reconfigurable (L-)labeled P/T system is
defined by (PSL,RULES).

5.2 Labeled P/T Systems as
weak Adhesive HLR Category with NACs

In this section is shown, that the category PTSys(L) is a weak adhesive HLR
category with NACs.

Theorem 5.6 ((PTSys(L),M,M′, E ′,Q) is a Weak Adhesive HLR Category with
NACs). The category (PTSys(L),M,M′, E ′,Q) with the following morphism classes
is a weak adhesive HLR category with NACs:

M : strict L-labeled P/T morphisms (see Definition 3.10)
M′ : injective L-labeled P/T morphisms (see Definition 3.8 and Fact C.1)
Q : injective L-labeled P/T morphisms (see Definition 3.8 and Fact C.1)
E ′ : minimal jointly surjective L-labeled P/T morphisms (see Definition 3.14)

Proof. As already proven in Fact 5.3, (PTSys(L),M) is a weak adhesive HLR cat-
egory. Therefore, merely the additional properties of a weak adhesive HLR category
with NACs (see Definition 2.4) need to be proven. These properties are proven in
the following Facts 5.7, 5.9, 5.10, 5.11, 5.12, 5.13, 5.14, 5.15, 5.16, 5.17 and 5.18.

Fact 5.7 ((PTSys(L),M,M′, E ′,Q) has Unique Epi-M Factorization). See Defi-
nition 2.5.
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Proof. This is analogous to the construction in PTSys (see Fact 3.17) since Fact
C.1 holds.

(PS1, λ1)

(=)

(=) (PS3, λ3) (PS′
3, λ

′
3)

(=)

(PS2, λ2)

f

e

m

e′

m′

i

Choose λ3(eP (p1)) := λ1(p1) for all p1 ∈ P1. First, the well-definedness of PTSys(L)-
morphisms e and m is shown. By construction, this follows directly for e. Remember
that m is an inclusion.

∀p3 ∈ P3 ⊆ P2 : λ2(mP (p3)) = λ2(p3) = λ2(fP (p1)) = λ1(p1) = λ3(eP (p1)) = λ3(p3)

with fP (p1) = p3 = eP (p1).
The proof for the universal property is analogous to the case without labels (see Fact
3.17). The fact that i : (PS3, λ3)→ (PS′3, λ

′
3) is a well-defined PTSys(L)-morphism

remains to be shown.

∀p3 ∈ P3 ⊆ P2 : λ3(p3) = λ2(p3) = λ′3(m′−1
P (p3)) = λ′3(iP (p3))

where m is an inclusion, m′ is a monomorphism and m′ ◦ i = m holds.

Analogous to the case without labels, a unique E0-M′ factorization is introduced
in the next fact. It is used for proving that (PTSys,M,M′, E ′,Q) has unique E ′-M′
pair factorization.

Fact 5.8 ((PTSys(L),M,M′, E ′,Q) has Unique E0-M′ Factorization). Let E0 be
the class of minimal surjective L-labeled P/T morphisms (see Definition 3.13).

Proof. This follows directly since (PTSys(L),M,M′, E ′,Q) has unique epi-M fac-
torization (see Fact 5.7), E0-M′ factorization and epi-M factorization only differ in
the marking of PS3 and (PTSys,M,M′, E ′,Q) has E0-M′ fatorization (see Fact
3.18). Note that Fact C.1 holds.

Fact 5.9 ((PTSys(L),M,M′, E ′,Q) has Unique E ′-M′ Pair Factorization). See
Definition 2.6.

Proof. This is analogous to the proof of Fact 3.19 since (PTSys(L),M,M′, E ′,Q)
has unique E0-M′ factorization and binary coproducts corresponding to binary co-
products in PTSys (see Fact C.3). Note jointly epimorphic morphisms in PTSys(L)
are defined as in PTSys (see Fact C.2).
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Fact 5.10 ((PTSys(L),M,M′, E ′,Q) hasM-M′ Pushout-Pullback Decomposition
Property). See Definition 2.7.

Proof. This fact holds since

1. the corresponding fact holds for (PTSys,M,M′, E ′,Q) (see Fact 3.22),

2. pushouts (resp. pullbacks) along M-morphisms in PTSys(L) are pushouts
(resp. pullbacks) along M-morphisms in PTSys (see Facts C.5 and C.6) and

3. M- and M′-morphisms are preserved by forgetful functor V (see Definition
5.4 and Fact C.1).

Fact 5.11 ((PTSys(L),M,M′, E ′,Q) has M-Q Pushout-Pullback Decomposition
Property). See Definition 2.8. Analogous to 5.10 since Q=M′.
Fact 5.12 ((PTSys(L),M,M′, E ′,Q) has Initial Pushouts over M′-Morphisms).
See Definition 2.10.
Construction. The construction is analogous to the construction of initial pushouts
in (PTSys,M,M′, E ′,Q) (see Fact 3.25) with the following labeling functions:

λB = λ0|PB

λC = λ1|PC

(PSB, λB) (PS0, λ0) (PSB, λB) (PS2, λ2) (PS0, λ0)

(1) (3) (2)

(PSC , λC) (PS1, λ1) (PSC , λC) (PS3, λ3) (PS1, λ1)

b

f ′

c

f

b′

f ′ f ′′ f

c′

b

c

b∗

c∗

Proof. Remember that pushouts along M-morphisms in PTSys(L) are pushouts
along M-morphisms in PTSys (see Fact C.5) and M- and M′-morphisms are pre-
served by forgetful functor V (see Definition 5.4 and Fact C.1).
Referring to the proof of Fact 3.25, the fact that all constructed morphisms are
well-defined L-labeled P/T morphisms remains to be shown. This follows directly
by construction for inclusions b and c.
Well-definedness of f ′:

∀pB ∈ PB : λB(pB) = λ0(bP (pB))
= λ1(fP (bP (pB)))
= λ1(cP (f ′P (pB)))
= λC(f ′P (pB))
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Well-definedness of b∗:

∀pB ∈ PB : λB(pB) = λ0(bP (pB))
= λ0(b′P (b∗P (pB)))
= λ2(b∗P (pB))

Well-definedness of c∗:

∀pC ∈ PC : λC(pC) = λ1(cP (pC))
= λ1(c′P (c∗P (pC)))
= λ3(c∗P (pC))

Recapitulating, (1) and (3) are pushouts in PTSys(L) since they are pushouts in
PTSys (see Fact C.5) and (2) is constructed as pushout in PTSys(L). Hence, (1)
is the initial pushout over f ′ in (PTSys(L),M,M′, E ′,Q).

Fact 5.13 (M′ in (PTSys(L),M,M′, E ′,Q) is closed under POs and PBs along
M-Morphisms). See Definition 2.11.

Proof. Analogous to the proof of the corresponding fact in PTSys (see Fact 3.26)
since Fact C.1 holds.

Fact 5.14 (Q in (PTSys(L),M,M′, E ′,Q) is closed under POs and PBs along
M-Morphisms). See Definition 2.12. Analogous to Fact 5.13 since Q=M′.

Fact 5.15 ((PTSys(L),M,M′, E ′,Q) has Induced Pullback-Pushout Property for
M and Q). See Definition 2.13.

Proof. Trivial, since (PTSys,M,M′, E ′,Q) has this property (see Fact 3.28) and
monomorphisms, pushouts and pullbacks along M-morphisms in PTSys(L) are
defined as in PTSys (see Facts C.1, C.5 and C.6).

Fact 5.16 ((PTSys(L),M,M′, E ′,Q) has Composition Property for Morphisms in
M′ and Q). See Definition 2.14.

Proof. Let f : A → B ∈ Q and g : B → C ∈ M′ be PTSys(L)-morphisms.
From standard category theory follows that g ◦ f ∈ Q (since the composition of
monomorphisms is monomorphism).

Fact 5.17 ((PTSys(L),M,M′, E ′,Q) has Decomposition Property for Morphisms
in M′ and Q). See Definition 2.15.

Proof. Let g◦f ∈ Q and g ∈M′ be PTSys(L)-morphisms. From standard category
theory follows that f ∈ Q (decomposition property of monomorphisms).

Fact 5.18 (Q in (PTSys(L),M,M′, E ′,Q) is closed under Composition and De-
composition). See Definition 2.16. Analogous to Fact 5.16 and Fact 5.17 since
Q=M′.
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5.3 Case Study: Airport Control System with Labels

This section illustrates the advantages of labeled P/T systems. Therefore, the start-
system and some rules of the airport control system (ACS) introduced in Section
3.3 are expanded to labeled P/T systems. Note that this section does not comprise
a self-contained example.
In this example, the usual notation for labels is used: Label l of place p is denoted
by p : l, which means λ(p) = l ∈ L.

Startsystem: LLvl1ap

tr:Tower

dep:Departure

tb:TowerBoarding

b:Boardingdeb:Deboarding

r:Runway

ar:Arrival

cg:ClosedGates

arrived

landing

arriving

continueFlight

readyToTakeoff

takeoff

quitting

closeGateopenGate

This is the labeled startsystem of this example. It corresponds to the startsystem
of ACS (see startsystem in Subsection 3.3.3), where the names of the places are used
as labels.
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Rule 3b: addStartingRunway

dep:Departure

tb:TowerBoarding

b:Boarding

←↩

dep:Departure

tb:TowerBoarding

b:Boarding

↪→
td:Tower

dep:Departure

tb:TowerBoarding

b:Boarding

sr:Runway

readyToTakeoff

takeoff

Adding a starting runway to a level-2-airport is expressed by this rule. It is
smaller and, hence, easier to overlook than the corresponding rule in unlabeled ACS
(see rule 3b in Subsection 3.3.3). Likewise this rule corresponds rather to the usual
modeling approach and is to be understood intuitively. The left-hand side does not
contain a runway since nonsensical matches are excluded by labeling.

Rule 3b - NAC 1:

td:Tower

dep:Departure

tb:TowerBoarding

b:Boarding

sr:Runway

ar:Arrival

landing

Analogous to the negative application condition of the corresponding rule in
unlabeled ACS (see rule 3b in Subsection 3.3.3), the application of this rule to a
level-1-airport is forbidden by this negative application condition. The existence of
the edges between the transition landing and the place tb : TowerBoarding is a
sufficient condition for a level-1-airport.

117



CHAPTER 5. LABELED P/T SYSTEMS WITH NACS Alexander Rein

Rule 7a: addHangarWithoutExistingMaintenance

b:Boardingdeb:Deboarding

tb:TowerBoarding

←↩
b:Boardingdeb:Deboarding

tb:TowerBoarding

↪→

h:Hangar

b:Boardingdeb:Deboarding

tb:TowerBoarding

th:TowerHangar

enterHangar leaveHangar

The rule for adding a hangar under the assumption that no maintenance hangar
exists yet is much smaller than the corresponding unlabeled rule (see rule 7a in
Subsection 3.3.3) since unsensical matches are excluded by labeling. Additionally,
it is to be understood intuitively in contrast to the corresponding unlabeled rule.

Rule 7a - NAC 1:

h:Hangar

b:Boardingdeb:Deboarding

tb:TowerBoarding

This negative application condition prevents this rule from being applied repeat-
edly. Comparing this NAC with the corresponding unlabeled NAC (see NAC 1 of
rule 7a in Subsection 3.3.3) shows the advantages of the labels clearly. The unla-
beled NAC is, in contrast to this NAC, voluminous and very hard to understand.
Although, the condition that this rule can only be applied if no maintenance hangar
exists is not ensured by this negative application condition. Therefore, an additional
negative application condition is required.

Rule 7a - NAC 2:

m:MaintenanceHangar

b:Boardingdeb:Deboarding

tb:TowerBoarding

Through this negative application condition, the rule can only be applied if no
maintenance hangar exists at the airport.
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Rule 7b: addHangarWithExistingMaintenance

tm:TowerMaintenance

m:MaintenanceHangar

deb:Deboarding b:Boarding

tb:TowerBoarding

←↩

tm:TowerMaintenance

m:MaintenanceHangar

deb:Deboarding b:Boarding

tb:TowerBoarding

↪→

tm:TowerMaintenance

m:MaintenanceHangar

th:TowerHangar

deb:Deboarding b:Boarding

h:Hangar

tb:TowerBoarding

leaveHangarenterHangar

enterHangar2 leaveHangar2

Adding a hangar under the assumption that a maintenance hangar already exists
is modeled by this rule. In addition to the fact that the rule is clearly smaller than
the suitable rule without NACs (see rule 7b in Subsection 3.3.3), this rule requires
only one negative application condition. This is because a match from the mainte-
nance hangar to a hangar is not possible because of the labeling.
This example illustrates that the modeling with labels is less error-prone than with-
out.

Rule 7b - NAC 1:

tm:TowerMaintenance

m:MaintenanceHangar

deb:Deboarding b:Boarding

h:Hangar

tb:TowerBoarding

This negative application condition prevents this rule from being applied repeat-
edly.
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Rule 8b: addMaintenanceWithExistingHangar

th:TowerHangar

h:Hangar

deb:Deboarding b:Boarding

tb:TowerBoarding

←↩

th:TowerHangar

h:Hangar

deb:Deboarding b:Boarding

tb:TowerBoarding

↪→

tm:TowerMaintenance

m:MaintenanceHangar

TowerHangar

deb:Deboarding b:Boarding

h:Hangar

tb:TowerBoarding

enterMaintenance leaveMaintenance

enterHangar2 leaveHangar2

The use of labels leads to the possibility to express the adding of a maintenance
hangar under the assumption that a hangar already exists in one rule. In the case
of unlabeled ACS (see rule 8b and 8c in Subsection 3.3.3) two rules are required to
prevent mappings from the hangar to a maintenance hangar since the only difference
between hangar and maintenance hangar is the token count. Another advantage of
this rule is that it is smaller than the suitable rules in unlabeled ACS (see rule 8b
and 8c in Subsection 3.3.3).

Rule 8b - NAC 1:

th:TowerHangar

h:Hangar

deb:Deboarding b:Boarding

m:MaintenanceHangar

tb:TowerBoarding

This negative application condition prevents this rule from being applied repeat-
edly.
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Chapter 6

Conclusion

6.1 Summary

In this thesis, reconfigurable Petri systems are extended by negative application
conditions. Therefore, it is shown that the related categories are weak adhesive
HLR categories with NACs. These proofs are accomplished for the case of (non-
labeled) P/T systems, AHL nets, AHL systems and L-labeled P/T systems. In this
context, the analyzed categories are introduced and their special morphisms and
categorical constructions are identified and formally proven.
Weak adhesive HLR categories with NACs are weak adhesive HLR categories with
three additional distinguished morphism classes and some special properties. Table
6.1 gives an overview of the achieved results for Petri nets and Petri systems. Note
that the proofs for P/T nets and L-labeled P/T nets are not accomplished explicitly
in this thesis. Although, these results can be derived from the corresponding proofs
for P/T systems and L-labeled P/T systems. Note also that L-labeled P/T systems
in this thesis are P/T systems with labeled places and unlabeled transitions.

nets systems

P/T M : injective
M′ : injective
Q : injective
E ′ : jointly surjective

M : strict
M′ : injective
Q : injective
E ′ : minimal jointly surjective

labeled P/T M : injective
M′ : injective
Q : injective
E ′ : jointly surjective

M : strict
M′ : injective
Q : injective
E ′ : minimal jointly surjective

AHL M : strict injective
M′ : injective
Q : injective
E ′ : jointly equation strict

and jointly surjective

M : strict
M′ : injective
Q : injective
E ′ : jointly equation strict

and minimal jointly
surjective

Table 6.1: Requirements for Petri Nets and Systems to be weak adhesive HLR categories with NACs
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Q-morphisms influence the satisfaction of negative application conditions directly.
Hence, it is a very important result that the morphism class Q is the class of all
monomorphisms in every analyzed category. This is especially significant for the
categories of Petri systems (PTSys, AHLSystems and PTSys(L)).
A restriction of Q-morphisms to marking strict morphisms would limit the signifi-
cance of negative application conditions for Petri systems extremely. In the case of
such a restriction, one negative application condition would be required for every
possible marking of the net. This would cause an infinite set of negative application
conditions in most cases and, therefore, a NAC would have less expressive power
than in the case with Q being the class of all monomorphisms.
With the obtained results (see Table 6.1), negative application conditions can be
used in reconfigurable Petri systems without losing important qualities like the Lo-
cal Church-Rosser Theorem, the Parallelism Theorem, the Completeness Theorem
of Critical Pairs, the Concurrency Theorem, the Embedding and the Extension The-
orem and the main result the Local Confluence Theorem. All these theorems are
lifted up for the use of negative application conditions in [Lam07] and [LEOP08]
and are presented in this thesis as well.
An interesting side result of the achieved results (see Table 6.1) is that the Con-
currency Theorem, the Embedding and the Extension Theorem, the Completeness
Theorem of Critical Pairs and also the Local Confluence Theorem can now be used
even in the case without NACs in all analyzed categories. This is because these theo-
rems require some of the proven properties, e.g. initial pushouts overM′-morphisms
are required for the application of the Embedding and the Extension Theorem.
The practical applicability of the theoretical results is demonstrated with two small
case studies. An airport control system, called ACS, is presented in form of a re-
configurable P/T system with NACs. ACS is designed to prevent accidents at the
airport. It secures that some areas of the airport, like the starting or the landing
runway, can only be used exclusively by a given amount of airplanes. ACS can adapt
to various changes of the airport, e.g. adding and removing of starting and land-
ing runways, adding and removing additional gates, adding a hangar and adding a
maintenance hangar. Later, ACS is extended to AHL-ACS, a reconfigurable AHL
system with NACs with additional functionalities. In contrast to ACS, AHL-ACS is
responsible for the coordination of the airplanes at the gates. In this example, every
airplane and every gate has a determined size. An airplane is only allowed to use a
specific gate if it is of the same size. The size of airplanes and gates is modeled as
data type. Additional sizes can be added and removed, which is represented by an
extension of the data type. Gates of arbitrary sizes can also be added and removed,
which is expressed by changing the net structure.
The case studies demonstrate the necessity of negative application conditions for
expressing several conditions. In the AHL case, the specification is not fixed, in
contrast to most common examples. Some of the mentioned theorems above are ap-
plied to the examples for showing their practical relevance and demonstrating their
significance.
Finally, ACS is exemplarily converted to a L-labeled P/T system and the advantages
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of L-labeled P/T systems are analyzed. Labels are extremely useful for ensuring in-
tuitive modeling since their use prevents most nonsensical matches. Thus, modeling
with labels is less error-prone and the rules are in general much smaller and easier
to overlook than the corresponding rules without labels.

6.2 Future Work

One ongoing research task are algebraic higher order (AHO) nets (see [HME05]
and [Hof02]), which allow the existence of dynamical tokens like Petri systems and
transformation rules. They can be considered as AHL nets with a higher-order spec-
ification. In the ongoing research project forMAlNET (see [for08]) of the TFS-group
at Technische Universität Berlin, these nets are used for modeling workflows of mo-
bile ad-hoc networks. In this context, the AHO nets have a specific (higher-order)
specification and algebra formalizing Petri systems with firing steps, rules and the
application of rules to the Petri systems and various features. These nets have two
kinds of places. On the one hand there are system places containing tokens of the
sort system, i.e. Petri systems, and on the other hand there are rule places con-
taining tokens of the sort rule, i.e. rules for transforming Petri systems. By firing
transitions on the system level of the AHO net, the Petri systems on the token level
can be moved, fired and dynamically changed. Up to now, negative application con-
ditions cannot be used within AHO nets. Therefore, the NACs have to be integrated
into the undelying algebra of AHO nets.
Another ongoing research is the extension of the results of this thesis to open AHL
nets and open AHL systems. They are developed in the case of the diploma thesis
of Conny Ullrich (see [Ull08]) and are an extension of AHL nets by open places and
communication transitions. In contrast to AHL nets, an open AHL has three sepa-
rate sets of places - local, input and output places - and two sets of transitions - local
and communication transitions. Arbitrary tokens can appear at input places and
arbitrary tokens can disappear from output places. Thus, open places are suitable
for modeling communication channels and for expressing external events. The cat-
egories OAHLNets of open AHL nets and OAHLSystems of open AHL systems
are introduced in [Ull08] and the fact that they are weak adhesive HLR categories is
proven. Hence, transformation rules for open AHL nets and systems can be formu-
lated. Moreover, the identification of input and output places by transformations
is possible. This is feasible if, for example, an external event should be changed to
an internal event or if communication is modeled by open places and the current
communication partner is an actor of the AHL system itself. Up to now, using
negative application conditions is not possible in reconfigurable open AHL nets and
systems without losing important qualities of adhesive HLR systems. Therefore, the
additional properties of adhesive HLR categories with NACs have to be proven for
the categories OAHLNets of open AHL nets and OAHLSystems of open AHL
systems.
With regard to the mentioned research project forMAlNET (see [for08]) which fo-
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cuses on the formal modeling of mobile ad-hoc networks with algebraic higher-order
nets, a tool to support visual editing and simulation of AHO nets (resp. systems)
was developed within the Visual Languages Project at the Technische Universität
Berlin (see [RON08]). Up to now, this editor, developed as an Eclipse-Plugin (see
[ECL08]), is restricted to reconfigurable object nets (RONs) and can only handle
injective mappings. RONs are a subclass of AHO nets with fixed transition types
and do not have a formal semantic given by a signature and algebra. Nevertheless,
RONs are sufficient for modeling the most examples of MANETs. Negative appli-
cation conditions can be used within the Ron-Editor (see [RON08]), although, only
injective morphisms are supported. The Ron-Editor is an ongoing project and still
under development. In this context, the extension of the editor to general morphisms
and the theory of adhesive HLR systems with NACs is a reasonable upgrade.
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P/T Nets and P/T Systems

A.1 The Category of P/T Nets

The most important concepts of the category PTNet, with respect to this thesis,
are introduced in this section and their correctness is proven.

A.1.1 Special Morphisms

In this subsection, special morphisms of the category PTNet are introduced. There-
fore, special morphisms in Sets are presented and the correctness of these construc-
tions is proven. The definitions of the special morphisms in Sets are used in the
proofs of the special morphisms in PTNet.

Fact A.1 (Monomorphisms in Sets). Injective functions are monomorphisms in
category Sets.

Proof. Part 1 (⇒). Let m : B → C be an injective function and f, g : A → B be
functions with m ◦ f = m ◦ g.

∀a ∈ A : (m ◦ f)(a) = (m ◦ g)(a)
⇒ ∀a ∈ A : m(f(a)) = m(g(a))
⇒ ∀a ∈ A : f(a) = g(a) m injective
⇒ f = g

Part 2 (⇐). Let m : B → C be a monomorphism in Sets.
Suppose that m is not injective, i.e. ∃b1 6= b2 ∈ B : m(b1) = m(b2). There
exist functions f, g : A → B with f(a) = b1 and g(a) = b2 with a ∈ A and
∀a′ 6= a ∈ A : f(a′) = g(a′).

⇒ ∀a ∈ A : m(f(a)) = m(g(a))
⇒ m ◦ f = m ◦ g
⇒ f = g m monomorphism

This is a contradiction to the definition of f and g.
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Fact A.2 (Monomorphisms in PTNet). Injective P/T net morphisms are monomor-
phisms in category PTNet.

Proof. Let PNx = (Px, Tx, prex, postx) for x = A,B,C be P/T nets.

PNA PNB PNCg
f

m

Part 1 (⇒). Let m : PNB → PNC be an injective P/T net morphism and f, g :
PNA → PNB be P/T net morphisms with m ◦ f = m ◦ g.
From the definition follows that mP and mT are injective functions, i.e. mP and
mT are monomorphisms in the category Sets, as proven above.

m ◦ f = m ◦ g
⇒ mP ◦ fP = mP ◦ gP
∧ mT ◦ fT = mT ◦ gT

⇒ fP = gP mP monomorphism
∧ fT = gT mT monomorphism

⇒ f = g

Part 2 (⇐). Let m : PNB → PNC be a monomorphism in PTNet.
In the following, the fact that mP and mT are monomorphisms in the category Sets,
i.e. injective functions, is shown.

Suppose that mP is not injective. Then ∃p1 6= p2 ∈ PB : mP (p1) = mP (p2).
Construct PNA with

• PA = {p1}

• TA = ∅

• preA = ∅

• postA = ∅

and inclusion f = (fP , fT ) : PNA → PNB and g = (gP , gT ) : PNA → PNB

with gP (p1) = p2. The well-definedness of this construction is evident. Obviously,
m ◦ f = m ◦ g holds, although f 6= g. This is a contradiction to the fact that m is a
monomorphism. Hence, mP is injective.

Suppose that mT is not injective. Then ∃t1 6= t2 ∈ TB : mT (t1) = tC =
mT (t2). The well-definedness of m implies that m⊕P (preB(t1)) = preC(mT (t1)) =
preC(tC) = preC(mT (t2)) = m⊕P (preB(t2)) (post analogous). Since the fact that m
is a monomorphism implies the injectivity of mP , as already proven above, only the
case with mP being injective has to be considered in the following. So preB(t1) =
preB(t2) (post analogous). Construct PNA with

• PA = {p|p ∈ preB(t1) ∪ postB(t1)}.
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• TA = {t1}

• preA(t1) = preB(t1)

• postA(t1) = postB(t1)

and inclusion f = (fP , fT ) : PNA → PNB and g = (gP , gT ) : PNA → PNB with
inclusion gP (p) = p and gT (t1) = t2. Well-definedness of PNA and f is evident.
Well-definedness of g:

• preB(gT (t1)) = preB(t2) = preB(t1) = preA(t1) = g⊕P (preA(t1))

• post analogous.

Obviously, m ◦ f = m ◦ g holds, although f 6= g. This is a contradiction to the fact
that m is a monomorphism.
Hence, mP and mT are injective, i.e. m is injective.

Fact A.3 (Epimorphisms in Sets). Surjective functions are epimorphisms in cate-
gory Sets.

Proof. Part 1 (⇒). Let e : A → B be a surjective function and f, g : B → C be
functions with f ◦ e = g ◦ e.

∀a ∈ A : (f ◦ e)(a) = (g ◦ e)(a)
⇒ ∀a ∈ A : f(e(a)) = g(e(a))
⇒ ∀b ∈ B : f(b) = g(b) e surjective
⇒ f = g

Part 2 (⇐). Let e : A→ B be an epimorphism in Sets.
Suppose that e is not surjective, i.e. ∃b ∈ B : @a ∈ A : e(a) = b. There exist
functions f, g : B → C with f(b) 6= g(b) and ∀b′ 6= b ∈ B : f(b′) = g(b′).

⇒ ∀a ∈ A : f(e(a)) = g(e(a))
⇒ f ◦ e = g ◦ e
⇒ f = g e epimorphism

This is a contradiction to the definition of f and g.

Fact A.4 (Epimorphisms in PTNet). Surjective P/T net morphisms are epimor-
phisms in category PTNet.

Proof. Let PNx = (Px, Tx, prex, postx) for x = A,B,C be P/T nets.

PNA PNB PNCg
f

e
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Part 1 (⇒). Let e : PNA → PNB be a surjective P/T net morphism and f, g :
PNB → PNC be P/T net morphisms with f ◦ e = g ◦ e.
From the definition follows that eP and eT are surjective functions, i.e. eP and eT
are epimorphisms in the category Sets, as proven above.

f ◦ e = g ◦ e
⇒ fP ◦ eP = gP ◦ eP
∧ fT ◦ eT = gT ◦ eT

⇒ fP = gP eP epimorphism
∧ fT = gT eT epimorphism

⇒ f = g

Part 2 (⇐). Let e : PNA → PNB be an epimorphism in PTNet.
In the following, the fact that eP and eT are epimorphisms in the category Sets, i.e.
surjective functions, is shown.

Suppose eT is not surjective. Then ∃tB ∈ TB : @tA ∈ TA : eT (tA) = tB.
Construct PNC with

• PC = PB

• TC = TB ∪ {t′b} with t′B /∈ TB.

• preC(t) =

{
preB(t) |t ∈ TB
preB(tB) |t = t′B

• postC(t) =

{
postB(t) |t ∈ TB
postB(tB) |t = t′B

and inclusion f = (fP , fT ) : PNB → PNC and g = (gP , gT ) : PNB → PNC with

• gP (p) = p

• gT (t) =

{
t′B |t = tB

t |else

PNC is a copy of the net PNB, where transition tB is duplicated. Well-definedness
of PNC and f is evident. Well-definedness of g:

• ∀t ∈ TB\{tB} : preC(gT (t)) = preC(t) = preB(t) = g⊕P (preB(t))

• for t = tB : preC(gT (tB)) = preC(t′B) = preB(tB) = g⊕P (preB(tB))

• post analogous.

Obviously, f ◦ e = g ◦ e holds, although f 6= g. This is a contradiction to the fact
that e is an epimorphism.
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Suppose eP is not surjective. Then ∃pB ∈ PB : @pA ∈ PA : eP (pA) = pB. Since
the fact that e is an epimorphism implies the surjectivity of eT , as already proven
above, only the case with eT being surjective has to be considered in the following.
So no adjacent transition with pB exists. Construct PNC with

• PC = PB ∪ {p′B} with p′B /∈ PB.

• TC = TB.

• preC = preB

• postC = postB

and inclusion f = (fP , fT ) : PNB → PNC and g = (gP , gT ) : PNB → PNC with

• gP (p) =

{
p′B |p = pB

p |else

• gT (t) = t

PNC is a copy of the net PNB, where pB is duplicated. Well-definedness of this
construction is evident since pB has no adjacent transitions.
Obviously, f ◦ e = g ◦ e holds, although f 6= g. This is a contradiction to the fact
that e is an epimorphism.
So eP and eT are surjective, i.e. e is surjective.

Fact A.5 (Jointly Epimorphic PTNet-Morphisms). Jointly surjective PTNet-
morphisms are jointly epimorphic morphisms in category PTNet.

Proof. Analogous to the proof for epimorphic PTNet-morphisms (see Fact A.4).

Fact A.6 (Isomorphisms in Sets). Bijective functions are isomorphisms in category
Sets.

Proof. Part 1 (⇒). Let i : A→ B be a bijective function.
A unique inverse function i−1 : B → A with the property ∀b ∈ B : i−1(b) = a if
i(a) = b exists. Obviously, i−1 ◦ i = idA and i ◦ i−1 = idB.
Part 2 (⇐). Let i : A→ B be an isomorphism in Sets.
The morphism hierarchy (standard category theory) implies that i is a monomor-
phism and an epimorphism. As already proven, this statement is equivalent to the
statement that i is injective and surjective, i.e. i is bijective.

Fact A.7 (Isomorphisms in PTNet). Bijective P/T net morphisms are isomor-
phisms in category PTNet.
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Proof. Part 1 (⇒). Let i : A→ B be a bijective P/T net morphism.
By definition, iP and iT are bijective functions. As proven in Fact A.6, iP and iT
are isomorphisms in category Sets. So ∃i−1

P : i−1
P ◦ iP = idAP

∧ iP ◦ i−1
P = idBP

and
∃i−1
T : i−1

T ◦ iT = idAT
∧ iT ◦ i−1

T = idBT
. Obviously, i−1 = (i−1

P , i−1
T ) implies that

i−1 ◦ i = idA and i ◦ i−1 = idB.
Part 2 (⇐). Let i : A→ B be an isomorphism in PTNet.
Obviously, iP and iT are isomorphisms in Sets. As already proven in Fact A.6, iP
and iT are bijective functions, i.e. i is bijective.

A.1.2 Categorical Constructions

In this subsection, binary coproducts, pushouts and pullbacks along monomorphisms
in the category PTNet are presented. Since all these constructions are defined
componentwise, the same constructions are also presented in the category Sets.

Fact A.8 (Binary Coproducts in Sets). A set A+B with two injective morphisms
i1 : A → A + B and i2 : B → A + B is the binary coproduct of A and B in the
category Sets if and only if A+B is the disjoint union of A and B and i1 and i2 are
injections mapping every element of the sets A and B to the corresponding object
of the disjoint union.
This fact is well known and can be found in Example 27.4.2 in [EMC+01].

Fact A.9 (Binary Coproducts in PTNet). A P/T net PN1 +PN2 = (P1 +P2, T1 +
T2, pre12, post12) with two injective morphisms l1 : PN1 → PN1 + PN2 and l2 :
PN2 → PN1 + PN2 is the binary coproduct of PN1 = (P1, T1, pre1, post1) and
PN2 = (P2, T2, pre2, post2) in the category PTNet if and only if P1 + P2 is the
disjoint union of P1 and P2, T1 + T2 is the disjoint union of T1 and T2, l1 and l2 are
injections mapping every element of the sets P1, P2, T1 and T2 to the corresponding
object of the disjoint union and pre12 and post12 are induced by l1 and l2.

PN1 PN1 + PN2 PN2

PN3

x

l1 l2

f1 f2

Proof. Part 1 (⇒). Let PN1 + PN2 = (P1 + P2, T1 + T2, pre12, post12) with P1 +
P2 = P1 ] P2 and T1 + T2 = T1 ] T2 be a P/T net with pre12 and post12 induced
by l1 : PN1 → PN1 + PN2 and l2 : PN2 → PN1 + PN2. Consider P/T net
PN3 = (P3, T3, pre3, post3) and morphisms f : PN1 → PN3 and g : PN2 → PN3.
As proven in Fact A.8, (P1 + P2, l1P , l2P ) is the coproduct in Sets of P1 and P2

and (T1 + T2, l1T , l2T ) is the coproduct in Sets of T1 and T2. This fact implies the
existence of morphisms [fP , gP ] : P1 + P2 → P3 and [fT , gT ] : T1 + T2 → T3 with
[fP , gP ] ◦ l1P = fP , [fP , gP ] ◦ l2P = gP and [fT , gT ] ◦ l1T = fT and [fT , gT ] ◦ l2T = gT ,
which is equivalent to [f, g] ◦ l1 = f and [f, g] ◦ l2 = g for [f, g] = ([fP , gP ], [fT , gT ]).
This morphism is well-defined since PN1 +PN2 is the componentwise disjoint union
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of PN1 and PN2 and pre12 and post12 are induced by the injections l1 and l2.
Part 2 (⇐). Let (PN1 + PN2 = (P1 + P2, T1 + T2, pre12, post12), l1 : PN1 →
PN1+PN2, l2 : PN2 → PN1+PN2) be the coproduct of PN1 = (P1, T1, pre1, post1)
and PN2 = (P2, T2, pre2, post2) in PTNet.
In the next step, the facts that (P1 + P2, l1P , l2P ) is the coproduct of P1 and P2 in
Sets and (T1 + T2, l1T , l2T ) is the coproduct of T1 and T2 in Sets are shown.

Suppose that P1 + P2 is not the disjoint union of P1 and P2. Several cases can
be distinguished:

• ∃p ∈ P1 + P2\(l1P (P1) ∪ l2P (P2)), i.e. (l1, l2) are not jointly surjective in
PTNet. As already proven in Fact A.5, this is equivalent to the fact that
(l1, l2) are not jointly epimorphic in category PTNet. This is a contradiction
to Fact D.2.

• ∃p ∈ l1P (P1) ∪ l2P (P2). Choose PN3 = (P1 ] P2, T1 ] T2, pre3, post3), with

– pre3(x) =

{
pre1(x) |x ∈ P1

pre2(x) |x ∈ P2

– post analogous.

and inclusions f : PN1 → PN3 (mapping to PN1-part of PN3) and g : PN2 →
PN3 (mapping to PN2-part of PN3). Well-definedness of this construction is
evident. Since p ∈ l1P (P1) ∪ l2P (P2), but fP (p) 6= gP (p) by construction, no
unique morphism x : PN1 + PN2 → PN3 with x ◦ l1 = f and x ◦ l2 = g
exists, which is a contradiction to the fact that PN1 + PN2 is the coproduct
in PTNet.

• ∃p 6= p′ ∈ P1 + P2 : l1P (p) = l1P (p′). Choose (PN3, f1, f2) as componentwise
disjoint union of PN1 and PN2 and fj : PNj → PN3 as inclusions for j = 1, 2
(as described above). Obviously, no morphism x : PN1 + PN2 → PN3 with
x ◦ l1 = f1 and x ◦ l2 = f2 exists. This is a contradiction to the fact that
PN1 + PN2 is the coproduct in PTNet. This is analogous for l2P being
non-injective.

This is analogous for T1 + T2.
Therefore, P1 + P2 = P1 ] P2 and T1 + T2 = T1 ] T2 and l1 = (l1P , l1T ) and
l2 = (l2P , l2T ) are injections mapping every element of the sets P1, P2, T1 and T2 to
the corresponding element of the disjoint union. pre12 and post12 are induced by l1
and l2.

Remark A.10 (Compatibility of Coproducts with Injective P/T Net Morphisms).
Coproducts in PTNet are compatible with injective P/T net morphisms (i.e. mono-
morphisms). This fact holds since coproducts in PTNet are componentwise in
Sets. The compatibility of coproducts with monomorphisms (resp. M-morphisms)
is essential for the Parallelism Theorem. For a formal definition see Definition 5.14
in [EEPT06].
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Fact A.11 (Pushouts in Sets). In the category Sets the pushout of a span C
g←

A
f→ B can be constructed by the quotient D = B ] C/≡, where ≡ is the smallest

equivalence relation with (f(a) = g(a)) ∈≡ for all a ∈ A. The morphisms f ′ : C → D
and g′ : B → D are defined by f ′(c) = [c] for all c ∈ C and g′(b) = [b] for all b ∈ B.
Fact 2.17 in [EEPT06] contains the formal proof of this fact.

Fact A.12 (Pushouts in PTNet). Pushouts in PTNet exist and are constructed
componentwise in Sets for places and transitions (see Section 7.2 in [EP04]).
The formal proof for pushouts along M-morphisms can be found in Fact 4.21 in
[EEPT06]. This proof bases on the construction of pushouts in comma categories
(see Definition A.41 in [EEPT06]). See also Fact 2 in [PEL07] for the formal proof
of componentwise pushouts in comma categories.

Fact A.13 (Pullbacks in Sets). In the category Sets the pullback of a span C
f→

D
g← B is given by A =

⋃
d∈D f

−1(d)× g−1(d) = {(c, d)|f(c) = g(b)} ⊆ C ×B with
morphisms f ′ : A→ B : (c, b) 7→ b and g′ : A→ C : (c, b) 7→ c.
The proof is given in Fact 2.23 in [EEPT06].

Fact A.14 (Pullbacks in PTNet along Monomorphisms). In the category PTNet
pullbacks along monomorphisms can be constructed componentwise for places and
transitions.

Proof-Idea. PTNet is isomorphic to the comma category (see Definition A.41 in
[EEPT06]) ComCat(IDSets,�⊕; I) with I = {1, 2}, where �⊕ is the free commu-
tative monoid functor. According to Lemma A.40 in [EEPT06], �⊕ : Sets→ Sets
preserves pullbacks along monomorphisms. Hence, pullbacks along monomorphisms
can be constructed componentwise.

Remark A.15 (General Pullbacks in PTNet). The category PTNet has (gen-
eral) pullbacks, but they cannot be constructed componentwise. See Fact A.24
in [EEPT06]. However, in this thesis only pullbacks along monomorphisms are con-
sidered.

A.2 The Category of P/T Systems

This section contains the most important concepts of the category PTSys with
respect to this thesis.

A.2.1 Special Morphisms

Fact A.16 (Special Morphisms in PTSys). Monomorphisms (resp. epimorphisms,
jointly epimorphic morphisms) in PTSys are PTSys-morphisms that are mono-
morphisms (resp. epimorphisms, jointly epimorphic) in PTNet. Isomorphisms in
PTSys are marking strict PTSys-morphisms which are isomorphisms in PTNet.
The proofs therefore are analogous to the corresponding proofs in PTNet (see
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Facts A.2 for monomorphisms, A.4 for epimorphisms, A.5 for jointly epimorphic
morphisms and A.7 for isomorphisms).

A.2.2 Categorical Constructions

In this subsection, the most important categorical constructions, with respect to this
thesis, are introduced. Binary coproducts are required for the Parallelism Theorem
and for some proofs in this thesis. The definitions of pushouts and pullbacks are
required for every adhesive HLR system.

Fact A.17 (Binary Coproducts in PTSys). The definition of binary coproducts in
PTSys is the same as in PTNet with the additional assumption that the injections
l1 and l2 are marking strict.

Proof. Analogous to the proof for PTNet (see Fact A.9). Obviously, the marking
strictness of the injections is required to ensure the existence of the unique morphism
for the universal property.

Remark A.18 (Compatibility of Coproducts with Strict P/T Morphisms). Coprod-
ucts in PTSys are compatible with strict P/T morphisms. This fact holds since
coproducts in PTNet are constructed componentwise in Sets and coproduct inclu-
sions are marking strict.

Fact A.19 (Pushouts in PTSys along Strict Morphisms). Pushout (PN2,M2) n→
(PN3,M3)

g← (PN1,M1) over the morphisms m : (PN0,M0) → (PN1,M1) and
f : (PN0,M0) → (PN2,M2), where m is a strict P/T morphism (see Definition
3.10), can be constructed as pushout in PTNet. The marking M3 is defined by

(1) ∀p1 ∈ P1\m(P0) : M3(g(p1)) = M1(p1)

(2) ∀p2 ∈ P2\f(P0) : M3(n(p2)) = M2(p2)

(3) ∀p0 ∈ P0 : M3(n ◦ f(p0)) = M2(f(p0))

for Pi being the places of PNi for i = 0..3. n is also a strict P/T morphism.
This fact is proven in Theorem 1 in [EEH+07].

Fact A.20 (Pullbacks in PTSys along Strict Morphisms). Given g : (PN1,M1)→
(PN3,M3) and n : (PN2,M2)→ (PN3,M3), where n is a strict P/T morphism (see

Definition 3.10), the pullback (PN2,M2)
f← (PN0,M0) m→ (PN1,M1) in PTSys is

constructed as pullback in PTNet and the marking M0 is defined by

∀p0 ∈ P0 : M0(p0) = M1(m(p0))

for P0 being the places of PN0. m is also a strict P/T morphism.
This fact is proven in Theorem 2 in [EEH+07].
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A.2.3 Gluing Condition

For transforming P/T systems, a necessary and sufficient gluing condition (see Def-
inition 2.18) for the applicability of rules to P/T systems is formalized in the next
definition.

Fact A.21 (Gluing Condition for PTSys). Let M be the class of strict PTSys-
morphisms and PSx = (Px, Tx, prex, postx,Mx) for x = 1, L,K,R be P/T systems.
Given a production p = (PSL

l∈M← PSK
r∈M→ PSR) in PTSys and a match m :

PSL → PS1, the gluing points GP , the dangling points DP and the identification
points IP of PSL are defined by

GP = l(PK ∪ TK),
DP = {p ∈ PL|∃t ∈ (T1\mT (TL)) : mP (p) ∈ pre1(t)⊕ post1(t)}
IP = {p ∈ PL|∃p′ ∈ PL : p 6= p′ ∧mP (p) = mP (p′)} ∪

{t ∈ TL|∃t′ ∈ TL : t 6= t′ ∧mT (t) = mT (t′)}

The match m satisfies the gluing condition with respect to p if and only if the
following statements hold:

1. IP ⊆ GP (identification condition)

2. DP ⊆ GP (dangling condition)

3. m is marking strict on places to be deleted, i.e. ∀p ∈ PL\l(PK) : ML(p) =
M1(m(p))

A rule in PTSys is applicable at a match m if and only if the gluing condition is
satisfied for m (proof in [EEH+07] Section 5).
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AHL Nets and AHL Systems

B.1 The Category of AHL Nets

In this section, the most important concepts of the category AHLNet, with respect
to this thesis, are introduced.

B.1.1 Special Morphisms

Special morphisms of the category AHLNet are introduced in this subsection.
Therefore, special morphisms in Sig and Spec are presented and the correctness
of these constructions is proven. The definitions of the special morphisms in Sig
and Spec are used in the proofs of the special morphisms in AHLNet.

Fact B.1 (Monomorphisms in Sig). Injective signature morphisms are monomor-
phisms in category Sig.

Proof. Given a signature morphism m = (mS ,mOP ) : (S2, OP2)→ (S3, OP3).
Part 1 (⇒). Let m be an injective signature morphism, i.e. mS and mOP are
injective (monomorphisms in Sets), and f, g : (S1, OP1) → (S2, OP2) be signature
morphisms with m ◦ f = m ◦ g.

m ◦ f = m ◦ g
⇒ mx ◦ fx = mx ◦ gx for x = S,OP
⇒ fx = gx mx monomorphism for x = S,OP
⇒ f = g

Part 2 (⇐). Let m be a monomorphism in category Sig.
In the following, the fact that mS and mOP are monomorphisms in category Sets,
i.e. injective functions, is shown.

Suppose that mS is not injective. Then ∃s2 6= s′2 ∈ S2 : mS(s2) = mS(s′2)
Construct (S1, OP1) with

• S1 = {s2}
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• OP1 = ∅
and inclusion f : (S1, OP1)→ (S2, OP2) and g = (gS , gOP ) : (S1, OP1)→ (S2, OP2)
with gS(s2) = s′2 and gOP = ∅.
Well-definedness of this construction is evident. Obviously, m ◦ f = m ◦ g holds,
although f 6= g. This is a contradiction to the fact that m is a monomorphism.

Suppose that mOP is not injective. Then ∃op2 6= op′2 ∈ OP2 : mop(op2) =
mop(op3). If op2 and op′2 have different signatures, mS is not injective. As already
proven, this is a contradiction to the fact that m is a monomorphism.
If op2 and op′2 have the same signature, construct (S1, OP1) with

• S1 = sorts(op2), where sorts(op2) is the set of all sorts of the signature of op2

• OP1 = {op2}
and inclusion f : (S1, OP1)→ (S2, OP2) and g = (gS , gOP ) : (S1, OP1)→ (S2, OP2)
with inclusion gS and gOP (op2) = op′2.
Well-definedness of this construction is evident. Obviously, m ◦ f = m ◦ g holds,
although f 6= g. This is a contradiction to the fact that m is a monomorphism.

Fact B.2 (Monomorphisms in Spec). Injective specification morphisms are mono-
morphisms in category Spec.

Proof. Analogous to the proof for monomorphisms in Sig (see Fact B.1). Choose
E1 = ∅ in part 2 of the mentioned proof.

Fact B.3 (Monomorphisms in AHLNet). Injective AHLNet-morphisms are mono-
morphisms in the category AHLNet.

Proof. Let ANi = (SPi, Pi, Ti, prei, posti, condi, typei, Ai) with SPi = (Si, OPi, Ei,
Xi) for i = 1, 2, 3 be AHL nets.
Part 1 (⇒). Let m = (mSP ,mP ,mT ,mA) : AN2 → AN3 be an injective AHLNet-
morphism and f, g : AN1 → AN2 be AHLNet-morphisms with m ◦ f = m ◦ g.
By definition, mP , mT , mS , mOP and mX are injective functions, i.e. monomor-
phisms in category Sets, as already proven in Fact A.1. Note that mA is an isomor-
phism. The morphism hierarchy (standard category theory) leads to the fact that
mA is a monomorphism (and an epimorphism).

m ◦ f = m ◦ g
⇒ mx ◦ fx = mx ◦ gx for x = S,OP,X, P, T,A
⇒ fx = gx mx monomorphism for x = S,OP,X, P, T,A
⇒ f = g

Part 2 (⇐). Let m = (mSP ,mP ,mT ,mA) : AN2 → AN3 be a monomorphism in
AHLNet.
In the following, the fact that mP , mT , mS , mOP and mX are monomorphisms
in category Sets, i.e. injective functions, is shown. Note again that mA is an
isomorphism.
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Suppose that mP is not injective. This proof is analogous to the proof without
data types (see proof of Fact A.2).

Suppose that mT is not injective. This proof is analogous to the proof without
data types (see proof of Fact A.2).

Suppose that (mS ,mOP ) is not injective, i.e. (mS ,mOP ) is no monomorphism
in category Spec. Construct AN1 = (SP1, P1, T1, pre1, post1, cond1, type1, A1) with
SP1 = (S1, OP1, E1, X1) with

• S1, OP1, E1 as described in the proof of Fact B.2.

• X1s = ∅

• P1, T1 = ∅

• pre1, post1, cond1, type1 = ∅

• A1 = VfSP
(A2)

and inclusion f : AN1 → AN2 and g = (gSP , gP , gT , gA) : AN1 → AN2 and gSP =
(gS , gOP , gX) : SP1 → SP2 with

• gSP as described in the proof of Fact B.2 with the empty function gX = fX = ∅

• gP , gT = ∅

• inclusion fA

• gA = fA if mS is injective, otherwise gAs2
= m−1

s′2
◦ ms2 with s2 and s′2 as

defined in the proof of Fact B.2.

Well-definedness of AN1 and f is evident. Well-definedness of g:

• Well-definedness of gSP is already proven in the proof of Fact B.2.

• gX : X1 → X2 is obviously well-defined since X1 = ∅ and gX = ∅ is the empty
function.

• gA : A1 → A2 is well-defined since fA is well-defined and algebra homomor-
phisms are restriced to isomorphisms.

Obviously, m ◦ f = m ◦ g holds, although f 6= g. This is a contradiction to the fact
that m is a monomorphism.

Note that mX is (componentwise) injective by definition.

Fact B.4 (Epimorphisms in Sig). Surjective signature morphisms are epimorphisms
in category Sig.
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Proof. Given a signature morphism e = (eS , eOP ) : (S1, OP1)→ (S2, OP2).
Part 1 (⇒). Let e be a surjective signature morphism, i.e. eS and eOP are surjective
(i.e. epimorphisms in Sets, as proven in Fact A.3) and f, g : (S2, OP2)→ (S3, OP3)
be signature morphisms with f ◦ e = g ◦ e.

f ◦ e = g ◦ e
⇒ fx ◦ ex = gx ◦ ex for x = S,OP
⇒ fx = gx ex epimorphism for x = S,OP
⇒ f = g

Part 2 (⇐). Let e be an epimorphism in Sig.
In the following, the fact that eS and eOP are epimorphisms in category Sets, i.e.
surjective functions, is shown.

Suppose that eS is not surjective. Then ∃s2 ∈ S2 : @s1 ∈ S1 : eS(s1) = s2.
Construct (S3, OP3) as a copy of (S2, OP2) except for

• an additional sort s′2 ∈ S3

• additional operations for this sort op{{s2 ← s′2}} ∈ ÕP 3s′2
⇔ op ∈ ÕP 2s2

,

where ÕP is is the set of all operations containing s as one of the sorts in its
signature of the specification SPi and {{s2 ← s′2}} is the substitution of s2 by
s′2

Informally, (S3, OP3) is a copy of (S2, OP2) with a complete copy of sort s2 to
s′2 with all operations containing s2 as one of the sorts in their signature. Note
that the corresponding operations have the same names (”overloaded operations”).
Obviously, (S3, OP3) is well-defined.
Next, construct inclusion f : (S2, OP2)→ (S3, OP3) and g = (gS , gOP ) : (S2, OPs)→
(S3, OP3) with g = f except for

• gS(s2) = s′2

• gOP (op) maps to the overloaded operation with the same name as fOP (op) but
a different signature

Well-definedness of the morphisms is evident. Obviously, f ◦e = g◦e holds, although
f 6= g. This is a contradiction to the fact that e is an epimorphism.

Suppose that eOP is not surjective. Then ∃op2 ∈ OP2 : @op1 ∈ OP1 : eOP (op1) =
op2. If the signature of op2 contains sorts without a preimage in S1, then eS is not
surjective. Remember that the surjectivity of eS is a necessary condition for e being
an epimorphism, as already proven above. So this case can be neglected.
Construct (S3, OP3) as a copy of (S2, OP2) with an additional operation op′2 with
the same signature as op2. Obviously, (S3, OP3) is well-defined.
Next, construct inclusion f : (S2, OP2)→ (S3, OP3) and g = (gS , gOP ) : (S2, OP2)→
(S3, OP3) with g = f except for gOP (op2) = op′2. Well-definedness of the morphisms
is evident. Obviously, f ◦ e = g ◦ e holds, although f 6= g. This is a contradiction to
the fact that e is an epimorphism.
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Fact B.5 (Epimorphisms in Spec). Surjective specification morphisms are epimor-
phisms in category Spec.

Proof. Given a specification morphism e = (eS , eOP ) : SP1 → SP2 with SPi =
(Si, OPi, Ei) for i = 1, 2.
Part 1 (⇒). Let e be a surjective signature morphism. This proof is analogous to
the corresponding proof in category Sig (see Fact B.4).
Part 2 (⇐). Let e be an epimorphism in Spec.
In the following, the fact that eS and eOP are epimorphisms in category Sets, i.e.
surjective functions, is shown.

Suppose that eS is not surjective. Note that Spec-morphisms are restricted
to morphisms mapping the variables bijectively. This proof is analogous to the
corresponding proof in Sig (see Fact B.4) with the following additional constructions:

• E3 = E2 ∪E′3, with the same equations E′3 for the new sort defined as e{{v ←
v′}} ∈ E′3 ⇔ e ∈ E2, where {{v ← v′}} is the substitution of all variables v of
the sort s2 by the corresponding variables v′ of the sort s′2.

Informally, SP3 is a copy of SP2 with a complete copy of sort s2 to s′2 with all
operations and equations containing s2 as one of the sorts in their signature. Note
that the names of the corresponding operations are equal (”overloaded operations”).
SP3 is obviously well-defined.

Suppose that eOP is not surjective. This proof is analogous to the corresponding
proof in Sig (see Fact B.4) with the following additional equations

• E3 = E2∪E′3, with new equations E′3 for the new operation defined as e{{op2 ←
op′2}} ∈ E3 ⇔ e ∈ E2, where {{e2 ← e′2}} is the substitution of operation op2

by the new operation op′2

Well-definedness of this construction is evident.

Fact B.6 (Epimorphisms in AHLNet). Surjective AHLNet-morphisms are epi-
morphisms in the category AHLNet.

Proof. Let ANi = (SPi, Pi, Ti, prei, posti, condi, typei, Ai) with SPi = (Si, OPi, Ei,
Xi) for i = 1, 2, 3 be AHL nets.
Part 1 (⇒). Let e : AN1 → AN2 be a surjective AHLNet-morphism and f, g :
AN2 → AN3 be AHLNet-morphisms with f ◦ e = g ◦ e.
By definition, mP , mT , mS , mOP and mX are surjective functions, i.e. epimor-
phisms in category Sets, as already proven in Fact A.3. Note again that fA is an
isomorphism, i.e. fA is a monomorphism (and an epimorphism).

f ◦ e = g ◦ e
⇒ fx ◦ ex = gx ◦ ex for x = S,OP,X, P, T,A
⇒ fx = gx ex epimorphism for x = S,OP,X, P, T,A
⇒ f = g
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Part 2 (⇐). Let e be an epimorphism in AHLNet.
In the following, the fact that eP , eT , eS , eOP and eX are epimorphisms in category
Sets, i.e. surjective functions, is shown. Note again that eA is an isomorphism.

Suppose that eP is not surjective. This proof is analogous to the proof without
data types (see proof of Fact A.4).

Suppose that eT is not surjective. This proof is analogous to the proof without
data types (see proof of Fact A.4).

Suppose that eS is not surjective. Then ∃s2 ∈ S2 : @s1 ∈ S1 : eS(s1) = s2 and
some cases can be distinguished:

• If ∃p2 ∈ P2 : type2(p2) = s2, then @p1 ∈ P1 : eP (p1) = p2, i.e. eP is not
surjective. Note the fact that e is an epimorphism implies that eP is surjective,
as already proven above.

• If ∃t2 ∈ T2 : pre2(t2) contains s2 as one of the sorts in its signature, @t1 ∈ T1 :
eT (t1) = t2, i.e. eT is not surjective. Note the fact that e is an epimorphism
implies that eT is surjective, as already proven above. This is analogous for
post and cond.

• s2 is a sort not used in the net part. Construct AN3 as a copy of AN2 except
for

– S3, OP3, E3 as described in proof of Fact B.5

– new additional variables for the new sort X3s′2
= {x′|x ∈ X2s2

}
– A3s′2

= A2s2

– A3op = A2op for all op ∈ ÕP 3s′2
(see above for a definition of this set)

Obviously, AN3 is well-defined.
Next, construct inclusion f : AN2 → AN3 and g = (gSP , gP , gT , gA) : AN2 →
AN3 with gSP = (gS , gOP , gX) : AN2 → AN3 with g = f except for

– gSP as described in the proof of Fact B.5 with gX(x) = x′

– gAs′2
= fAs2

Well-definedness of the morphisms is evident. Obviously, f ◦ e = g ◦ e holds,
although f 6= g. This is a contradiction to the fact that e is an epimorphism.

Suppose that eOP is not surjective. Then ∃op2 ∈ OP2 : @op1 ∈ OP1 : eOP (op1) =
op2. If the signature of op2 contains sorts without a preimage in S1, then eS is not
surjective. Remember that surjectivity of eS is a necessary condition for e being an
epimorphism, as already proven above. So this case can be neglected.
If the signature of op2 only contains sorts with a preimage in S1, the following cases
can be distinguished:
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• If ∃t2 ∈ T2 : pre2(t2) contains op2 as one of the operations in its signature,
@t1 ∈ T1 : eT (t1) = t2, i.e. eT is not surjective. Note the fact that e is an
epimorphism implies that eT is surjective, as already proven. This is analogous
for post and cond.

• op2 is an operation not used in the net part. Construct AN3 as a copy of AN2

except for

– S3, OP3, E3 as described in the proof of Fact B.5

– A3op′2
= A2op2

Obviously, AN3 is well-defined.
Next, construct inclusion f : AN2 → AN3 and g = (gSP , gP , gT , gA) : AN2 →
AN3 with gSP = (gS , gOP , gX) : AN2 → AN3 with g = f except for

– gOP (op2) = op′2

Well-definedness of the morphisms is evident. Obviously, f ◦ e = g ◦ e holds,
although f 6= g. This is a contradiction to the fact that e is an epimorphism.

Suppose that eX is not (componentwise) surjective, i.e. ∃eXs with s ∈ S1 which
is not surjective. Then ∃x2 ∈ X2eS(s)

: @x1 ∈ X1s : eXs(x1) = x2. Construct AN3 as
a copy of AN2 except for

• X3eS(s)
= X2eS(s)

∪ {x′2} with x′2 /∈ X2eS(s)
.

Obviously, AN3 is well-defined.
Next, construct inclusion f : AN2 → AN3 and g = (gSP , gP , gT , gA) : AN2 → AN3

with gSP = (gS , gOP , gX) : AN2 → AN3 with g = f except for

• gXeS(s)
(x2) = x′2

Well-definedness of the morphisms is evident. Note that gX is (componentwise)
injective by construction. Obviously, f ◦ e = g ◦ e holds, although f 6= g. This is a
contradiction to the fact that e is an epimorphism.

Fact B.7 (Jointly Epimorphic Morphisms in Sig). Jointly surjective Sig-morphisms
are jointly epimorphic morphisms in category Sig. Jointly surjective Sig-morphisms
are componentwise jointly surjective for sorts and operations.

Proof. Analogous to the proof of Fact B.4.

Fact B.8 (Jointly Epimorphic Morphisms in Spec). Jointly surjective Spec-mor-
phisms are jointly epimorphic morphisms in category Spec. Jointly surjective Spec-
morphisms are componentwise jointly surjective for sorts and operations.

Proof. Analogous to the proof of Fact B.5.
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Fact B.9 (Jointly Epimorphic Morphisms in AHLNet). Jointly surjective AHLNet-
morphisms are jointly epimorphic morphisms in category AHLNet.

Proof. Analogous to the proof of Fact B.6.

Fact B.10 (Isomorphisms in Sig). Bijective Sig-morphisms are isomorphisms in
the category Sig.

Proof. Trivial, since this statement holds in Sets (see Fact A.6).

Fact B.11 (Isomorphisms in Spec). Bijective and strict Spec-morphisms are iso-
morphisms in the category Spec.

Proof. Trivial. The strictness of isomorphism i : SP1 → SP2 is required to assure
the existence of i−1.

Fact B.12 (Isomorphisms in AHLNet). Bijective and strict AHLNet-morphisms
are isomorphisms in the category AHLNet.

Proof. Let i = (iSP , iP , iT , iA) : AN1 → AN2 with iSP = (iS , iOP , iX) : SP1 → SP2

be an AHLNet-morphism for ANi = (SPi, Pi, Ti, prei, posti, condi, typei, Ai) with
SPi = (Si, OPi, Ei, Xi) for i = 1, 2 being AHL nets.
Part 1 (⇒). Let i be bijective and strict.
By definition, ix for x = SP, P, T,X are bijective, i.e. isomorphisms. This statement
also holds for x = A because of the restriction of the morphisms to isomorphisms
for the algebra component. Hence, ∃i−1

x : i−1
x ◦ ix = idx1 ∧ ix ◦ i−1

x = idx2 for
x = SP, P, T,A,X.
Obviously, i−1 = (i−1

SP , i
−1
P , i−1

T , i−1
A ) is a well-defined AHLNet-morphism with i−1 ◦

i = idAN1 and i ◦ i−1 = idAN2 .
Part 2 (⇐). Let i be an isomorphism in AHLNet.
Obviously, ix for x = SP, P, T,X are isomorphisms. By the restriction of AHLNet-
morphisms, this statement also holds for x = A. According to Fact B.11 and Fact
A.6, ix for x = SP, P, T,A,X is bijective, i.e. i = (iSP , iP , iT , iA) is bijective.
Isomorphism i implies the existence of an inverse morphism i−1. Hence, i−1

SP (E2) ⊆
E1, i.e. i is strict.

B.1.2 Categorical Constructions

In this subsection, binary coproducts, pushouts and pullbacks along strict injective
morphisms in the category AHLNet are presented. Since all these constructions are
defined componentwise, the same constructions are also presented in the category
Sig and Spec.

Fact B.13 (Binary Coproducts in Sig). Binary coproducts in Sig are component-
wise coproducts for sorts and operations.
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Proof. Let Σi = (Si, OPi) for i = 1, 2 and Σ1 + Σ2 = (S1 + S2, OP1 + OP2) be
signatures and l1 = (l1S , l1OP ) : Σ1 → Σ1 + Σ2 and l2 = (l2S , l2OP ) : Σ2 → Σ1 + Σ2

be Sig-morphisms.

Σ1 Σ1 + Σ2 Σ2

Σ3

h

l1 l2

f g

Part 1 (⇒). Let Σ1 + Σ2 be the componentwise disjoint union of Σ1 and Σ2 for
sorts and operations and l1, l2 be inclusions.
Given signature Σ3 = (S3, OP3) with morphisms f : Σ1 → Σ3 and g : Σ2 → Σ3.
Define h = (hS , hOP ) : Σ1 + Σ2 → Σ3 with

• hS(s) =

{
fS(s) |s ∈ S1

gS(s) |s ∈ S2

• hOP analogous.

Well-definedness of h follows directly by well-definedness of f and g. By construc-
tion, h ◦ l1 = f and h ◦ l2 = g.
Part 2 (⇐). Let (Σ1 + Σ2, l1, l2) be the coproduct of Σ1 and Σ2 in Sig.
In the following, the facts that Σ1 + Σ2 is the componentwise disjoint union of Σ1

and Σ2 and l1 and l2 are inclusions are shown.
Assume S1 + S2 is not the disjoint union of S1 and S2. Several cases can be distin-
guished:

• ∃s ∈ S1 + S2\(l1(S1) ∪ l2(S2)), i.e. (l1, l2) are not jointly surjective in Sig.
As already proven, this is equivalent to the fact that (l1, l2) are not jointly
epimorphic in category Sig. This is a contradiction to Fact D.2.

• ∃s ∈ l1(S1)∪ l2(S2). Construct Σ3 as componentwise disjoint union of Σ1 and
Σ2 and inclusions f : Σ1 → Σ3 and g : Σ2 → Σ3. Then no unique morphism
h : Σ1 + Σ2 → Σ3 with h◦ l1 = f and h◦ l2 = g exists, which is a contradiction
to the fact that Σ1 + Σ2 is the coproduct in Sig.

• ∃s 6= s′ ∈ S1 + S2 : l1S (s) = l1S (s′). Construct Σ3 as componentwise disjoint
union of Σ1 and Σ2 and f : Σ1 → Σ3 and g : Σ2 → Σ3 as inclusions. Obviously,
no morphism h : Σ1 + Σ2 → Σ3 with h ◦ l1 = f and h ◦ l2 = g exists. This
is a contradiction to the fact that Σ1 + Σ2 is the coproduct in Sig. This is
analogous for l2S being non-injective.

This is analogous for OP1 +OP2.

Fact B.14 (Binary Coproducts in Spec). Binary coproducts in Spec are compo-
nentwise coproducts for sorts, operations and equations.
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Proof.

(Σ1, E1) (Σ1 + Σ2, E1 + E2) (Σ2, E2)

(Σ3, E3)

h

l1 l2

f g

Analogous to Sig with the addition that the componentwise union of equations
remains to be shown.
Part 1 (⇒). Obviously.
Part 2 (⇐). Assume E1 + E2 is not the disjoint union of E1 and E2. Since
S1 + S2 and OP1 + OP2 are the disjoint unions for the corresponding components,
∃e ∈ (E1 + E2)\(l1(E1) ∪ l2(E2)) holds by assumption. Construct Σ3 = (S3, OP3)
as componentwise disjoint unions of the corresponding sets. Then a unique induced
morphism hΣ : (S1 + S2, OP1 + OP2) with hΣ ◦ l1Σ = fΣ and hΣ ◦ l2Σ = gΣ exists.
However, hΣ is no specification morphism since h#

Σ (e) /∈ E3.

Fact B.15 (Binary Coproducts in AHLNet). Binary coproducts in AHLNet are
componentwise coproducts for the specification SP = (S,OP,X), the places P and
the transitions T .

Proof. Let ANi = (SPi, Pi, Ti, prei, posti, condi, typei, Ai) with SPi = (Si, OPi, Ei,
Xi) for i = 1, 2 and AN1 + AN2 = (SP1 + SP2, P1 + P2, T1 + T2, pre1+2, post1+2,
cond1+2, type1+2, A1 +A2) with SP1 +SP2 = (S1 +S2, OP1 +OP2, E1 +E2, X1 +X2)
be AHL nets and l1 = (l1SP , l1P , l1T , l1A) : AN1 → AN1 + AN2 with l1SP =
(l1S , l1OP , l1X ) and l2 = (l2SP , l2P , l2T , l2A) : AN2 → AN1 + AN2 with l2SP =
(l2S , l2OP , l2X ) be AHLNet-morphisms.

AN1 AN1 + AN2 AN2

AN3

h

l1 l2

f g

Part 1 (⇒). Let (S1, OP1, E1) + (S2, OP2, E2), P1 + P2, T1 + T2 and X1 + X2 be
coproducts and l1, l2 be inclusions.
Given AHL net AN3 = (SP3, P3, T3, pre3, post3, cond3, type3, A3) with SP3 = (S3,
OP3, E3, X3) and AHLNet-morphisms f = (fSP , fP , fT , fA) : AN1 → AN3 with
fSP = (fS , fOP , fX) and g = (gSP , gP , gT , gA) : AN2 → AN3 with gSP = (gS , gOP ,
gX). The componentwise coproducts imply that ∃hx : x1 + x2 → x3 with hx ◦ l1 =
f ∧ hx ◦ l2 = g for x = SP, P, T,X. This statement also holds for x = A because
AHLNet-morphisms are isomorphisms on the algebra part. h = (hSP , hP , hT , hA)
is a well-defined AHLNet-morphism because of the well-definedness of li for i = 1, 2,
f and g. By construction, h ◦ l1 = f and h ◦ l2 = g hold.
Part 2 (⇐). Let (AN1+AN2, l1, l2) be the coproduct of AN1 and AN2 in AHLNet.
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In the following, the fact that AN1 + AN2 is the componentwise disjoint union of
AN1 and AN2 and morphisms li for i = 1, 2 are inclusions, i.e. the componentwise
coproduct, is shown.

Assume P1 +P2 (resp. T1 + T2) is not the coproduct of P1 and P2 (resp. T1 and
T2). This is analogous to the proof without data types (see proof of Fact A.9).

Assume (S1, OP1, E1) + (S2, OP2, E2) is not the coproduct of specifications (S1,
OP1, E1) and (S2, OP2, E2). This is analogous to the proof of Fact B.14.

Assume X1 + X2 is not the coproduct of X1 and X2. Since S1 + S2 is the
coproduct of S1 and S2, the set (X1 + X2)s of variables of the sort s ∈ S1 + S2

has a preimage in X1 or X2. Note that the mapping of the additional variables
is restricted to injective functions. So ∃x ∈ (X1 + X2)s ∧ s ∈ S1 : x /∈ X1s or
∃x ∈ (X1 + X2)s ∧ s ∈ S2 : x /∈ X2s , i.e. l1Xs

or l2Xs
is not surjective. Construct

AN3 as componentwise coproduct for the specification, the places, the transitions
and the additional variables of AN1 and AN2. Obviously, there exist inclusions
f : AN1 → AN3 and g : AN2 → AN3, although no morphism h : AN1+AN2 → AN3

exists since x cannot be mapped injectively. This is a contradiction to the fact that
AN1 +AN2 is the coproduct of AN1 and AN2 in AHLNet.

Remark B.16 (Compatibility of Coproducts with Strict Injective AHL Net Mor-
phisms). Coproducts in AHLNet are compatible with strict injective morphisms.
This fact holds since coproducts in AHLNet are constructed componentwise in
Sets.

Since the category AHLNet contains an algebra part, a technique to create the
algebra part for a pushout construction in Spec is required. It is called amalga-
mation and is defined in the following part. For a more detailed introduction to
amalgamation and its application area see [EM85] and [EM90].

Lemma B.17 (Amalgamation Lemma and Construction). Given pushout (1) in
Spec with SPi = (Si, OPi, Ei) for i = 1, 2, 3, 4 and SPi algebras Ai for i = 1, 2, 3
with Vf (A2) = A1 = Vg(A3). Then the amalgamated sum A4 of A2 and A3 with
respect to A1, written A4 = A2 +A1 A3, is a SP4-algebra defined by

• A4s = if s ∈ f ′S(S3) then A3s3
else A2s2

with f ′S(s3) = s resp. g′S(s2) = s

• opA4 analogous.

SP1 SP2

(1)

SP3 SP4

f ∈M

g g′

f ′ ∈M

Additionally, the following properties hold

1. A4 is uniquely defined by the construction

2. Vg′(A4) = A2 and Vf ′(A4) = A3
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Vice versa, given pushout (1) as defined above and SP4-algebra A4, a unique repre-
sentation as the amalgamated sum of A4 = A2 +A1 A3 exists, where A1, A2 and A3

are defined as follows:

• A2 = Vg′(A4)

• A3 = Vf ′(A4)

• A1 = Vf (A2) = Vg(A3)

The proof of the amalgamation lemma can be found in Lemma 8.11 in [EM85].

Fact B.18 (Pushouts in Spec). In category Spec, the pushout SP3
f ′→ SP4

g′← SP2

of a span SP3
g← SP1

f→ SP2 for SPi = (Si, OPi, Ei) for i = 1..4 can be constructed
componentwise for sorts and operations with E4 = g′#(E2) ∪ f ′#(E3).
The proof for pushouts along inclusions can be found on pages 210-212 in [EM85].
For the general case see Section 10B in [EM90], although this section contains no
formal proof.

Remark B.19 (Pushouts in Sig). The construction of pushouts in Sig is analogous
to the construction of pushouts in Spec with empty sets of equations: Pushouts in
Sig are constructed componentwise for sorts and operations.

Fact B.20 (Pushouts in AHLNet). In category AHLNet, the pushout AN3
f ′→

AN4
g′← AN2 of a span AN3

g← AN1
f→ AN2 for ANi = (SPi, Pi, Ti, prei, posti, condi,

typei, Ai) with SPi = (Si, OPi, Ei, Xi) for i = 1..4 can be constructed componentwise
for specifications, places, transitions and additional variables. pre4, post4, cond4 and
type4 are induced. A4 is given by amalgamation of A2 and A3 with respect to AN1

(see Lemma B.17).
The proof of this fact is located in Lemma 5.2 in [PER95]. Note that the additional
variables as well as the type-function are neglected in this proof.

Fact B.21 (Pullbacks in Spec along Strict Injective Morphisms). In the category

Spec the pullback SP3
g← SP1

f→ SP2 of a span SP3
f ′→ SP4

g′← SP2 for SPi =
(Si, OPi, Ei) for i = 1..4 with f ′ or g′ being strict injective can be constructed
componentwise for sorts and operations with E1 = f#−1

(E2) ∩ g#−1
(E3) (see Fact

4.24 in [EEPT06]).

Remark B.22 (Pullbacks in Sig along Monomorphisms). The construction of pull-
backs in Sig along monomorphisms is analogous to the construction of pullbacks
in Spec with empty sets of equations: Pullbacks in Sig along monomorphisms are
constructed componentwise for sorts and operations.

Fact B.23 (Pullbacks in AHLNet along Strict Injective Morphisms). Pullbacks
in AHLNet along strict injective morphisms are constructed componentwise for
specifications, places, transitions and additional variables. The construction of the
algebra part is obvious since algebra homomorphisms are restricted to isomorphisms.
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Proof-Idea. This follows from the fact that pullbacks (alongM-morphisms) in gen-
eralized comma categories (see Definition 7.9 in [Pra07]) can be constructed compo-
nentwise if functors Gi preserve pullbacks along Mli morphisms (see Theorem 2 in
[Pra07]). Note that the mentioned theorem does not state this fact explicitly. See
Section 5 in [Pra07] for the corresponding construction of category AHLNet.

B.1.3 Gluing Condition

For transforming AHL nets, a necessary and sufficient gluing condition (see Defini-
tion 2.18) for the applicability of rules to AHL nets is required. For the definition of
the AHLNet gluing condition the Sig and the Spec gluing conditions are required.
So they are defined at first.

Fact B.24 (Gluing Condition for Sig). Let M be the class of all monomorphisms
in Sig.
Given a production p = ((SL, OPL) l∈M← (SK , OPK) r∈M→ (SR, OPR)) in Sig and a
match m = (mS ,mOP ) : (SL, OPL)→ (S1, OP1), the gluing points GP , the dangling
points DP and the identification points IP of L are defined by

GP (S) = lS(SK),
GP (OP ) = lOP (OPK),
DP (S) = {s ∈ SL | ∃op ∈ OP1\mOP (OPL) which contains mS(s) as one of

the sorts in its signature}
IP (S) = {s ∈ SL|∃s′ ∈ SL : s 6= s′ ∧mS(s) = mS(s′)}
IP (OP ) = {op ∈ OPL|∃op′ ∈ OPL : op 6= op′ ∧mOP (op) = mOP (op′)}

The match m satisfies the gluing condition with respect to p if and only if the
following statements hold:

1. DP (S) ∪ IP (S) ⊆ GP (S)

2. IP (OP ) ⊆ GP (OP )

A rule in Sig is applicable at a match m if and only if the gluing condition is satisfied
for m (see Definition 2.6 and Lemma 2.7 in [PER95] and note that the Sig gluing
condition corresponds to the Spec gluing condition with the assumption that the
sets of equations are empty).

Fact B.25 (Gluing Condition for Spec). Let M be the class of all strict injective
morphisms in Spec.
Given a production p = (SPL

l∈M← SPK
r∈M→ SPR) with SPi = (Si, OPi, Ei) for

i = 1, L,K,R in Spec and a match m = (mS ,mOP ) : SPL → SP1. Then the match
m satisfies the gluing condition with respect to p if and only if

1. m satisfies the Sig gluing condition with respect to p (see Fact B.24)
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2. the set EC = (E1\m#(EL)) ∪ m#(l#(EK)) is a set of equations over the
signature (SC , OPC), where

SC = (S1\mS(SL)) ∪mS(lS(SK))
OPC = (OP1\mOP (OPL)) ∪mOP (lOP (OPK))

A rule in Spec is applicable at a match m if and only if the gluing condition is
satisfied for m (see Definition 2.6 and Lemma 2.7 in [PER95]).

Fact B.26 (Gluing Condition for AHLNet). LetM be the class of all strict injec-
tive morphisms in AHLNet.
Given a production p = (ANL

l∈M← ANK
r∈M→ ANR) with ANi = (SPi, Pi, Ti, prei,

posti, condi, typei, Ai) and SPi = (Si, OPi, Ei, Xi) for i = 1, L,K,R in AHLNet
and a match m = (mSP ,mP ,mT ,mA) : ANL → AN1 with mSP = (mS ,mOP ,mX) :
SPL → SP1.

ANL ANK ANR

(1)

AN1 ANC

l

m f

g

r

Then the following dangling points DP are defined:

DP (P ) = { p ∈ PL | ∃t ∈ T1\mT (TL) :

pre1(t) =
n∑
i=1

λi(ri, pi) with λi 6= 0 and mP (p) = pi

for some i or

post1(t) =
n∑
i=1

λi(ri, pi) with λi 6= 0 and mP (p) = pi

for some i}

DP (TOP ) = { r ∈ TOPL
(XL) | ∃t ∈ T1\mT (TL) :

pre1(t) =
n∑
i=1

λi(ri, pi) with λi 6= 0 and m#
SP (r) = ri

for some i or

post1(t) =
n∑
i=1

λi(ri, pi) with λi 6= 0 and m#
SP (r) = ri

for some i}

DP (EQNS) = { e ∈ EQNS(ΣL)

| ∃t ∈ TL\mT (TL) : m#
SP (e) ∈ cond1(t)}
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where ΣL = (SL, OPL) is the signature of ANL

DP (S) = { s ∈ SL | ∃p ∈ P1\mP (PL) : type1(p) = mS(s)}
Note that the dangling points of the additional variables X are implicitly defined

by DP (TOP ) and DP (EQNS).
The match m satisfies the gluing condition with respect to p if and only if

1. the identification condition for the places and transitions is satisfied (see Fact
A.21)

2. the Spec gluing condition is satisfied (see Fact B.25)

3. DP (P ) ⊆ lP (PK)

4. DP (TOP ) ⊆ l#SP (TOPL
(XL))

5. DP (S) ⊆ lS(SK) (*)

A rule in AHLNet is applicable at a match m if and only if the gluing condition is
satisfied for m.

Proof. Lemma 5.5 and Lemma 5.6 in [PER95] contain the proofs for the necessity
and the sufficiency of the satisfaction of the gluing condition for the existence of a
pushout complement. However, in [PER95] AHL nets are defined without a type
function and the additional variables are neglected. Note that the identification con-
dition for the additional variables is always satisfied since they cannot be identified.
The dangling points for the additional variables are implicitly defined by DP (TOP )
and DP (EQNS). So the fact that (*) is a necessary and sufficient additional con-
dition for the existence of the context net remains to be shown.
Let ANC = (SPC , PC , TC , preC , postC , condC , typeC , AC) with SPC = (SC , OPC ,
EC , XC) be an AHL net and f : ANK → ANC and g : ANC → AN1 be AHLNet-
morphisms.
Part 1 (⇒). Let ANC with f and g be the pushout complement for ANK

l→
ANL

m→ AN1. From Lemma 5.6 in [PER95] follows that the gluing condition with-
out (*) is satisfied for the given morphisms. Assume (*) does not hold. Then
∃sL ∈ SL, ∃p1 ∈ P1 : (@pL ∈ PL : mP (pL) = p1 ∧ type1(p1) = mS(sL)) and
@sK ∈ SK : lS(sK) = sL. Pushout properties imply that ∃pC ∈ PC : gP (pC) = p1.
typeC(pC) = sC with sC ∈ SC : gS(sC) = mS(sL) follows directly and, by pushout
properties, ∃sK ∈ SK : lS(sK) = sL ∧ fS(sK) = sC , which is a contradiction to the
fact that (*) is not satisfied.
Part 2 (⇐). Let the gluing condition with (*) be satisfied for ANK

l→ ANL
m→ AN1.

Then the pushout complement can be constructed as described in Lemma 5.5 in
[PER95]. Note that the definitions of g′ and f ′ in this fact are mixed up. Addition-
ally, typeC : PC → SC is the restriction of type1 to PC . This function is well-defined
because of (*). The additional variables XC can be constructed as pushout comple-
ment in Sets for every sort. Well-definedness of f and g holds since f = m ◦ l and
g is an inclusion.
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B.2 The Category of AHL Systems

In this section, the most important concepts of the category AHLSystems, with
respect to this thesis, are introduced.

B.2.1 Special Morphisms

Fact B.27 (Special Morphisms in AHLSystems). Monomorphisms (resp. epi-
morphisms, jointly epimorphic morphisms) in AHLSystems are AHLSystems-
morphisms which are monomorphisms (resp. epimorphisms, jointly epimorphic)
in AHLNet. Isomorphisms in AHLSystems are marking strict AHLSystems-
morphisms which are isomorphisms in AHLNet.
The proofs therefore are analogous to the corresponding proofs in AHLNet (see
Facts B.3 for monomorphisms, B.6 for epimorphisms, B.9 for jointly epimorphic
morphisms and B.12 for isomorphisms).

B.2.2 Categorical Constructions

Binary coproducts, pushouts and pullbacks in the category AHLSystems are in-
troduced in this subsection.

Fact B.28 (Binary Coproducts in AHLSystems). The definition of binary coprod-
ucts in AHLSystems is the same as in AHLNet with the additional assumption
that the injections i1 and i2 are marking strict.

Proof. Analogous to the proof for AHLNet. Obviously, the marking strictness of
the injections is required to ensure the existence of the unique morphism for the
universal property.

Remark B.29 (Compatibility of Coproducts with Strict AHL Morphisms). Coprod-
ucts in AHLSystems are compatible with strict AHL morphisms (see Definition
4.16). This fact holds since coproducts in AHLNet are constructed componentwise
in Sets and coproduct inclusions are marking strict.

Fact B.30 (Pushouts in AHLSystems along Strict Morphisms). The pushout
(AN2,M2) n→ (AN3,M3)

g← (AN1,M1) over the morphisms m : (AN0,M0) →
(AN1,M1) and f : (AN0,M0) → (AN2,M2), where m is a strict AHL morphism
(see Definition 4.16) and ANi = (SPi, Pi, Ti, prei, posti, condi, typei, Ai) with SPi =
(Si, OPi, Ei, Xi) for i = 1, 2, can be constructed as pushout in AHLNet. The
marking M3 is defined by

(1) ∀(a1, p1) ∈ (A1 ⊗ (P1\mP (P0))) : M3(gA(a1), gP (p1)) = M1(a1, p1)

(2) ∀(a2, p2) ∈ (A2 ⊗ (P2\fP (P0))) : M3(nA(a2), nP (p2)) = M2(p2)

(3) ∀(a0, p0) ∈ (A0 ⊗ P0) : M3(nA ◦ fA(a0), nP ◦ fP (p0)) = M2(fA(a0), fP (p0))

n also is a strict AHL morphism.
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Proof. The proof of this fact is analogous to the proof of the corresponding fact
without data types (see Theorem 1 in [EEH+07]).

Fact B.31 (Pullbacks in AHLSystems along Strict Morphisms). Given AHL mor-
phisms g : (AS1,M1) → (AN3,M3) and n : (AN2,M2) → (AN3,M3), where n is

strict (see Definition 4.16), the pullback (AN2,M2)
f← (AN0,M0) m→ (AN1,M1)

in AHLSystems is constructed as pullback in AHLNet and the marking M0 is
defined by

∀(a0, p0) ∈ (A0 ⊗ P0) : M0(a0, p0) = M1(mA(a0),mP (p0))

for P0 being the places and A0 being the algebra of AN0.
m is also a strict AHL morphism.

Proof. The proof of this fact is analogous to the proof of the corresponding fact
without data types (see Theorem 2 in [EEH+07]).

B.2.3 Gluing Condition

This subsection contains the expansion of the gluing condition for AHL nets to AHL
systems.

Definition B.32 (Gluing Condition for AHLSystems). Let M be the class of
strict AHL morphisms (see Definition 4.16) and ASx = (ANx,Mx) with ANx =
(SPx, Px, Tx, prex, postx, condx, typex, Ax) with SPx = (Sx, OPx, Ex, Xx) for x =
1, L,K,R be AHL systems.
Given a production p = (ASL

l∈M← ASK
r∈M→ ASR) in AHLSystems and a match

m : ASL → AS1. The match m satisfies the gluing condition with respect to p if
and only if the following statements hold:

1. The AHLNet gluing condition is satisfied for m with respect to p.

2. m is marking strict on places to be deleted, i.e.

∀(a, p) ∈ (AL ⊗ (PL\lP (PK))) : ML(a, p) = M1(mA(a),mP (p))

A rule in AHLSystems is applicable at a match m if and only if the gluing condition
is satisfied for m.
The proof of this fact is analogous to the proof of the corresponding fact without
data types in [EEH+07] Section 5 since the AHL net gluing condition is a necessary
and sufficient condition for the existence of the context net in category AHLNet
(see Fact B.26).

151



Appendix C

Labeled P/T Systems

C.1 The Category of Labeled P/T Systems

The most important concepts of the category PTSys(L), with respect to this thesis,
are introduced in this section and their correctness is proven.
In the following, let V : PTSys(L) → PTSys be the forgetful functor given in
Definition 5.4 and M be the class of strict L-labeled P/T morphisms. Note that V
obviously preserves M-morphisms.

C.1.1 Special Morphisms

Fact C.1 (Special Morphisms in PTSys(L)). Monomorphisms (resp. epimor-
phisms, isomorphisms) in category PTSys(L) are monomorphisms (resp. epimor-
phisms, isomorphisms) in category PTSys (see Fact A.16).

Proof. Remember that PTSys(L) is isomorphic to the comma category C presented
in the proof of Fact 5.3.
Part 1 (⇐). This follows directly by Fact A.43 (1.) in [EEPT06].
Part 2 (⇒). This is trivial for isomorphisms since functors preserve isomorphisms
(see Definition 5.4). Let m : (PSB, λB) → (PSC , λC) (resp. e : (PSA, λA) →
(PSB, λB)) be a monomorphism (resp. an epimorphism) in category PTSys(L).
Assume m (resp. e) is no monomorphism (resp. epimorphism) in category PTSys.

(PSA, λA) (PSB, λB) (PSC , λC)g
f

m

(PSA, λA) (PSB, λB) (PSC , λC)g
f

e

Then a P/T system PSA = (PNA,MA) (resp. PSB = (PNB,MB)) with a labeling
function λA (resp. λB) uniquely determined by f and g and two L-labeled P/T
morphisms f 6= g : (PSA, λA)→ (PSB, λB) (resp. f 6= g : (PSB, λB)→ (PSC , λC))
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can be constructed as described in part 2 of the corresponding proof in PTNet
(see Fact A.2, resp. Fact A.4). The marking MA (resp. MC) is arbitrary, although
it has to be ensured that f and g are well-defined. Hence, m (resp. e) is not a
monomorphism (resp. epimorphism) in PTSys(L), which is a direct contradiction
to the assumption that m (resp. e) is a monomorphism (resp. epimorphism) in
category PTSys(L).

Fact C.2 (Jointly Epimorphic Morphisms in PTSys(L)). Jointly epimorphic mor-
phisms in category PTSys(L) are jointly epimorphic morphisms in category PTSys,
i.e. jointly surjective PTSys morphisms (see Fact A.16).

Proof. Given L-labeled P/T morphisms ei : (PSi, λi) → (PSB, λB) in category
PTSys(L), where PSi = (PNi,Mi) are P/T systems and i = 1, 2.

(PS1, λ1)
(PSB, λB) (PSC , λC)

(PS2, λ2)
g
fe1

e2

Part 1 (⇐). Let (e1, e2) be jointly epimorphic in category PTSys. Given arbitrary
PTSys(L)-morphisms f, g : (PSB, λB)→ (PSC , λC) with g ◦ ei = f ◦ ei for i = 1, 2.
Then g ◦ei = f ◦ei for i = 1, 2 holds in PTSys. Since (e1, e2) are jointly epimorphic
in PTSys, g = h holds in PTSys. Hence, g = h also holds in PTSys(L).
Remember Fact A.16 implies that (e1, e2) are (componentwise) jointly surjective.
Part 2 (⇒). Let (e1, e2) be jointly epimorphic in category PTSys(L). Suppose
(e1, e2) are not jointly epimorphic in category PTSys. Then a L-labeled P/T system
PSC = (PNC ,MC , λC) and morphisms g 6= f : (PSB, λB) → (PSC , λC) can be
constructed as described in the second part of proof of Fact A.4, where MC is an
arbitrary marking that ensures the well-definedness of morphisms f and g and λC is
uniquely determined by f and g. So (e1, e2) are not jointly epimorphic in PTSys(L).
This is a contradiction to the assumption that (e1, e2) are jointly epimorphic in
category PTSys(L).

C.1.2 Categorical Constructions

Fact C.3 (Binary Coproducts in PTSys(L)). Binary Coproducts in PTSys(L) are
binary coproducts in PTSys.

Proof. Given L-labeled P/T systems (PSi, λi) with PSi = (Pi, Ti, prei, posti,Mi)
and λi : Pi → L for i = 1, 2.

(PS1, λ1) (PS1 + PS2, λ1 + λ2) (PS2, λ2)

(PS3, λ3)

x

l1 l2

f1 f2
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Part 1 (⇐). Let (PS1 + PS2, l1, l2) be the coproduct of PS1 and PS2 in PTSys
(see Fact A.17). Labeling function λ1 + λ2 is the binary coproduct in Sets of
morphisms λ1 and λ2. Well-definedness of the inclusions l1 and l2 is evident. Given
L-labeled P/T system (PS3, λ3) and morphisms f1 : (PS1, λ1) → (PS3, λ3) and
f2 : (PS2, λ2) → (PS3, λ3). Then the induced morphism x : PS1 + PS2 → PS3 in
PTSys is a well-defined PTSys(L)-morphism:

∀p ∈ liP (Pi) : λ1 + λ2(p) = λi(p) = λ3(fiP (p)) = λ3(xP (liP (p))) = λ3(xP (p))

for i = 1, 2. Note that l1 and l2 are inclusions and jointly surjective by construction.
Part 2 (⇒). Given coproduct ((PS1+PS2, λ1+λ2), l1, l2) of (PS1, λ1) and (PS2, λ2)
in PTSys(L). Suppose (PS1 + PS2, l1, l2) is not the binary coproduct of PS1 and
PS2 in PTSys. Analogous to part 2 of the proof without labels (see Fact A.9) the
same cases can be distinguished, where the labeling λ3 of PN3 is uniquely induced
by f1 and f2. Additionally, there are two cases left:

1. ∃p1 ∈ P1 : M1(p1) < M1 +M2(l1P (p1)). Choose the componentwise coproduct
in PTSys with the induced labeling and two strict inclusions ((PN3, λ3), f1 :
PS1 → PS3, f2 : PS2 → PS3) as object of comparison. Obviously, no induced
L-labeled P/T morphism x : (PS1 +PS2, λ1 +λ2)→ (PS3, λ3) with x◦ l1 = f1

and x◦l2 = f2 exists. This is a contradiction to the fact that ((PS1 +PS2, λ1 +
λ2), l1, l2) is the coproduct in PTSys(L).

2. ∃p2 ∈ P2 : M2(p2) < M1 +M2(l2P (p2)). Analogous to the previous case.

Remark C.4 (Compatibility of Coproducts with Strict L-Labeled P/T Morphisms).
Coproducts in PTSys(L) are compatible with strict L-labeled morphisms. This
fact holds since coproducts in PTSys(L) are constructed as coproducts in PTSys.
See also Theorem 3 in [PEL07].

Fact C.5 (Pushouts in PTSys(L) along M-Morphisms). Pushouts in category
PTSys(L) along M-morphisms are pushouts in category PTSys along M-mor-
phisms.

Proof. Remember that PTSys(L) is isomorphic to the comma category C presented
in the proof of Fact 5.3.
This follows directly from the properties of the comma category (see Fact 2 in
[PEL07]) since functor F presented in the proof of Fact 5.3 preserves pushouts
along M1-morphisms.

Fact C.6 (Pullbacks in PTSys(L) along M-Morphisms). Pullbacks in category
PTSys(L) are pullbacks in category PTSys.

Proof. Remember that PTSys(L) is isomorphic to the comma category C presented
in the proof of Fact 5.3.
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Part 1 (⇐). This follows directly from Fact A.43 (2.) in [EEPT06].
Part 2 (⇒). This follows from the comma category construction as well. Neverthe-
less, it is proven explicitly in this thesis since Fact A.43 (2.) in [EEPT06] does not
state this conclusion explicitly.
Consider pullback (1) in PTSys(L), where PSi = (Pi, Ti, prei, posti,Mi) are P/T
systems and λi : Pi → L are the labeling functions of the places for i = 0..4, in the
following diagram.

(PS0, λ0)

(PS1, λ1) (PS2, λ2)

(1)

(PS3, λ3) (PS4, λ4)

f ∈M

g g′

f ′ ∈M

h

h′

x

Commutativity of (1) in PTSys follows from functor properties and commutativity
of (1) in PTSys(L):

V (g′) ◦ V (f) = V (g′ ◦ f) = V (f ′ ◦ g) = V (f ′) ◦ V (g)

Suppose (1) is no pullback in PTSys. According to the assumption and the facts
that f, f ′ ∈ M (are injective and strict) and (1) commutes in PTSys, only two
cases can be distinguished:

1. ∃p2 ∈ P2,∃p3 ∈ P3 : g′P (p2) = g′P (p3) ∧ (@p1 ∈ P1 : fP (p1) = p2 ∧ gP (p1) =
p2). Construct (PS0, h, h

′) as pullback in PTSys and λ0 as induced labeling
function. Obviously, labeled P/T morphism x : (PS0, λ0) → (PS1, λ1) with
f ◦x = h and g ◦x = h′ does not exist. This is a contradiction to the fact that
(1) is a pullback in PTSys(L).

2. ∃t2 ∈ T2,∃t3 ∈ T3 : g′T (t2) = g′T (t3) ∧ (@t1 ∈ T1 : fT (t1) = t2 ∧ gT (t1) = t2).
Analogous to the previous case.
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Additional Proofs

This chapter contains several proofs which are required in this thesis.

Fact D.1 (Composition of Jointly Epimorphic and Epimorphic Morphisms are
Jointly Epimorphic). Given a category C, jointly epimorphic morphisms (l1, l2) :
Ai → B for i = 1, 2 and epimorphism e : B → C. Then it holds that (e1 =
e ◦ l1, e2 = e ◦ l2) are jointly epimorphic.

A1

B C D
A2

l1

l2

e

e1

e2

g

h

Proof. For all objects D and morphisms g, h : C → D with g ◦ ei = h ◦ ei for i = 1, 2
the following holds:
g ◦ ei = h ◦ ei ⇔ g ◦ e ◦ li = h ◦ e ◦ li. Since (l1, l2) are jointly epimorphic and e is an
epimorphism, g = h holds.

Fact D.2 (Coproduct Morphisms are Jointly Epimorphic). Let C be a category
with binary coproducts. Then the following statement holds:
If (A1 + A2, l1, l2) is the binary coproduct of A1 and A2 then (l1, l2) are jointly
epimorphic (see Definition A.16 in [EEPT06]).

Proof.

A1 A1 + A2 A2

X

xh g

l1 l2

g◦l1 g◦l2

Let g, h : A1 + A2 → X be morphisms with g ◦ li = h ◦ li for i = 1, 2. Then there
exist morphisms g ◦ l1 : A1 → X and g ◦ l2 : A2 → X. The universal property of the
coproduct construction implies the existence of a unique morphism x : A1 +A2 → X
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with x ◦ li = g ◦ li for i = 1, 2. The uniqueness of x implies that g = x. Since
h ◦ li = g ◦ li for i = 1, 2, the uniqueness of x leads to h = x as well. So it is proven
that g = h. This implies that (l1, l2) are jointly epimorphic.

Fact D.3 (Pushouts in Sets along Monomorphisms). Given the following commu-
tative diagram (1) in Sets, where all of the given morphisms are monomorphisms,
then (1) is a pushout if and only if the following statements hold:

1. ∀d ∈ g′(B) ∩ f ′(C) : ∃a ∈ A : f(a) = b ∧ g(a) = c with g′(b) = d ∧ f ′(c) = d

2. (g′, f ′) are jointly surjective

A B

(1)

C D

f

g

f ′

g′

Proof. Part 1 (⇒). Let (1) be a pushout in Sets.

1. Let d ∈ g′(B) ∩ f ′(C). Suppose that @a ∈ A : f(a) = b ∧ g(a) = c with
g′(b) = d∧f ′(c) = d. Let D′ = D\{d}∪{b, c} and f̃ ′ : C → D′ and g̃′ : B → D′

with

f̃ ′(x) =

{
f ′(x) |x 6= c

c |x = c

g̃′(x) =

{
g′(x) |x 6= b

b |x = b

Then no induced morphism x : D → D′ with x ◦ g′ = g̃′ and x ◦ f ′ = f̃ ′ exists,
which is a contradiction to the assumption that (1) is a pushout in Sets.

2. Obviously, since (1) is a pushout, (g′, f ′) are jointly surjective.

Part 2 (⇐). Let the following statements hold: ∀d ∈ g′(B) ∩ f ′(C) : ∃a ∈ A :
f(a) = b ∧ g(a) = c with g′(b) = d ∧ f ′(c) = d and (g′, f ′) are jointly surjective.
Since (1) commutes, only the universal property remains to be shown. Given object
X and morphisms h : B → X and k : C → X. The induced morphism x : D → X
is defined for all d ∈ D by

x(d) =

{
h(b) |d = g′(b) ∈ g′(B)
k(c) |d = f ′(c) ∈ f ′(C)\g′(B)

1. Well-definedness of x. Obviously, since h and k are well-defined and (g′, f ′)
are jointly surjective.

2. x ◦ g′ = h follows directly from definition of x.
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3. x ◦ f ′ = k. For d ∈ f ′(C)\g′(B) it follows directly. Let d ∈ g′(B) ∩ f ′(C), i.e.
∃b ∈ B : g′(b) = d ∧ ∃c ∈ C : f ′(c) = d. According to the assumption, ∃a ∈
A : g′(f(a)) = f ′(g(a)) and x(d) = h(b) = k(c), i.e. k(d) = x(d) = x(f ′(c)),
follow. Note that d always has at least one preimage in B or C because of the
jointly surjectivity of (g′, f ′).

4. Uniqueness of x with respect to the commutativity. Suppose that x′ : D → X
with x′ ◦ g′ = h and x′ ◦ f ′ = k exists. Obviously, ∀b ∈ B : ∃d ∈ D : g′(b) = d
and it holds that x′(d) = h(b) = x(d). Analogously, ∀c ∈ C : ∃d ∈ D : f ′(c) =
d and it holds that x′(d) = k(c) = x(d). Since (g′, f ′) are jointly surjective, it
is shown that x = x′.
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