
Forschungsberichte
der Fakultät IV – Elektrotechnik und Informatik

Controller Synthesis for Deterministic
Context Free Specification Languages

Sven Schneider, Anne-Kathrin Schmuck

December 11, 2013

Technische Universität Berlin
Bericht-Nr. 2013 - 09

ISSN 1436-9915

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DepositOnce

https://core.ac.uk/display/326320957?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Contents

1 Introduction 5

2 Reducing an Operational Supervisory Control Problem by Decomposition for
DPDA 6

2.0 Introduction 6

2.1 Models of Behavior 7
2.1.1 Labeled Graphs 7
2.1.2 Discrete Event Systems 8
2.1.3 Finalizing Pushdown Automata (FPDA) 10

2.2 Adequacy of DES w.r.t. FPDA 11
2.2.1 Adequate Encoding for DFA 12
2.2.2 Adequate Encoding for DPDA 13
2.2.3 Adequate Encodings for FPDA 15

2.3 (Operational) Supervisory Control Problem 15

2.4 SCP Characterizations via Suprema 17
2.4.1 Language-Based Characterization by Suprema 19
2.4.2 DES-Based Characterization by Suprema 19

2.5 SCP Characterizations via Greatest Fixed-Points 20
2.5.1 Examples of Good Iterators 21

2.6 Conclusion 23

3 Enforcing Controllability Least Restrictively for DPDA 25
3.1 Introduction 25

3.2 Preliminaries 25

3.3 Supervisory Control Revisited 29

3.4 Computability of Ω for DCFL 30

3.5 Conclusion 38

2/113

4 Enforcing Operational Properties including Blockfreeness for DPDA 39
4.0 Introduction 39

4.1 Abstract Transition Systems 39

4.2 Concrete Transition Systems 41
4.2.1 EPDA and DPDA 41
4.2.2 CFG and LR(1) 42
4.2.3 Parser 43

4.3 Approach 44
4.3.1 Approximating Accessibility 46
4.3.2 Step 1 46
4.3.3 Step 2 48
4.3.4 Step 3 & Step 4 48
4.3.5 Step 5 & Step 6 & Step 7 50
4.3.6 Step 8 52
4.3.7 Step 9 54
4.3.8 Step 10 54
4.3.9 Step 11 54
4.3.10 Step 12 54
4.3.11 Verification 55
4.3.12 Testing 55
4.3.13 Optimizations 55

4.4 Conclusion 56

4.5 Future Work 57

References 57

A Appendix 60
A.1 Counterexample 60

A.2 Formal Definitions for the Constructions 63
A.2.1 Split Read 63
A.2.2 Remove No Operation 64
A.2.3 Split Push Pop 65
A.2.4 Remove Multiple Push 66
A.2.5 DPDA to SDPDA 67
A.2.6 No Double Acceptance 67
A.2.7 SDPDA to LR1 68
A.2.8 Dollar Augmentation 70
A.2.9 Valid-Operations 70
A.2.10 LR1-Machine 71
A.2.11 Remove Nonproductive Productions 72

3/113

A.2.12 First 73
A.2.13 Step and Step-Sequences for EPDA 74
A.2.14 LR1-Parser 75
A.2.15 Drop Input Bottom Rules 76
A.2.16 Remove Top Rules 77
A.2.17 Remove Top Rule 78
A.2.18 Replace Zero-Popping Edges 79
A.2.19 Replace Multiple-Popping Edges 79
A.2.20 Convert EDPDA to DPDA 80
A.2.21 Symbolising 80
A.2.22 Restrict to Edges 81
A.2.23 Restrict to States 81
A.2.24 Accessibility 82
A.2.25 Ensure Blockfreeness 83
A.2.26 Split 83
A.2.27 Remove Noncontrollable States 86
A.2.28 Product Automaton 86
A.2.29 Ensure Controllability 87
A.2.30 Synthesize 87

A.3 Good Iterators 89
A.3.1 Language Basics 89
A.3.2 Complete Lattice Basics 90
A.3.3 Complete Lattice of DES 92
A.3.4 Synthesis Basics 93
A.3.5 Operation Fdes 94
A.3.6 Operation Fbf 94
A.3.7 Operation Fcont 95
A.3.8 Operation Fcont2 95
A.3.9 Operation Fcont3 96
A.3.10 Operation Fspec 96
A.3.11 Composition of Fspec, Fcont, Fbf, and Fdes 97
A.3.12 Composition of Fspec, Fcont2, Fbf, and des 98
A.3.13 Composition of Fspec, Fcont2, Fbf, and Fdes 99
A.3.14 Function Computation of Fixedpoint 101
A.3.15 Validity of Initialised Fixedpoint 103
A.3.16 Function Computations for Instances (Classic Approach) 107
A.3.17 Verification of Fixedpoint Algorithm (with Precomputation and Conditional Composi-

tion) 108

4/113

1. Introduction

Ramadge and Wonham [14] established supervisory control theory (SCT) for controller
synthesis on formal languages. Given a plant and a specification, SCT defines a proper
minimally restrictive supervisor as a controller which generates a closed loop system (i.e.,
a plant restricted by a controller) that contains as many words allowed by the plant as
possible while respecting the specification, not preventing uncontrollable events and
always guiding the system to a satisfactory (marking) state. Wonham and Ramadge
[17] presented an implementable fixed point algorithm to calculate the desired marked
controller language C, formally defined by the above stated supervisory control problem
(SCP), for regular plant and specification languages (P and S, respectively), by operating
on their DFA representations, generating a DFA representation of C. This fixed point
algorithm iteratively ensures

(i) controllability, and
(ii) blockfreeness.

Obviously, step (i) may generate new blocking issues, while step (ii) may lead to new
controllability problems. The algorithm terminates iff no more controllability problems
or blocking situations are present. We perceive the languages P, S, and C involved in the
SCP as trace abstractions of the finite operational DFA-models used in the fixed-point
algorithm.

The applicability of SCT is significantly increased if larger specification language
classes can be used. In this report we investigate the case of deterministic context
free specification languages. The class of deterministic context free languages (DCFL)
contains the class of regular languages, and DCFL can be represented by deterministic
pushdown automata (DPDA). Therefore, to obtain a constructive algorithm to solve this
generalized supervisory control problem, steps (i) and (ii) of the fixed point algorithm
must be implementable for DPDA.

Before discussing effective procedures for ensuring controllability and blockfreeness
for DPDA in Chapter 3 and Chapter 4, respectively, we investigate the overall iteration
outlined above for the setting of DPDA specifications more closely in Chapter 2. This
is necessary because the operational computation of the fixed-point algorithm for the
DFA setting in [14], outlined above, does not correspond well to their trace-abstract
characterization of the desired closed-loop behavior used in the SCP. Furthermore, while
the standard trace abstraction is sufficient for DFA and observable Petri nets we show in
Chapter 2 that it is insufficient for DPDA with their unobservable λ-steps. This insight
enforces the perspective of synthesizing automata realizations instead of languages, taken
in this report.

Note that Griffin suggested an algorithm for the more restrictive setting of a prefix
closed regular plant and a prefix closed deterministic context free specification language
in [8]. However, as shown by the counterexample in Appendix A.1, Griffin’s algorithm
does not construct the minimally restrictive supervisor in general.

5/113

2. Reducing an Operational Supervisory
Control Problem by Decomposition for
DPDA

The purpose of Supervisory Control Theory (SCT) is to synthesize a controller for a plant
and a specification such that the desired closed-loop behavior is enforced. Effective solvers
have been constructed in the past for the setting of plants and specifications modeled
by Deterministic Finite Automata (DFA). We extend the domain of the specification to
Deterministic Pushdown Automata (DPDA) and verify an effective solver (up to two
basic building blocks which ensure controllability and blockfreeness, effectively solved
for this setting in Chapter 4 and Chapter 3). We verify the enforcement of desired
operational criteria, which are, in contrast to the setting of DFA, partly oblivious to the
(un)marked language of the closed loop. Our general approach trivially covers the setting
of DFA and can be reused and adapted to develop effective solvers for other settings as
the realizability of solutions to the supervisory control problem (SCP) is considered on
an abstract level.

2.0 Introduction

The SCP was introduced and solved for plants and specifications modeled by DFA in
[14, 17]. Subsequently, the SCP was considered for other settings including certain Petri
nets by, e.g., [5, 6]. Later, [8, 9] addressed the SCP for DFA plants and DPDA specifications
with prefix-closed marked languages. However, one key criterion of the SCP, namely
minimal restrictiveness, is violated by his approach as explained in Chapter 3.

Wonham and Ramadge synthesize the desired controller language C, formally defined
by the SCP, for regular plant and specification languages (P and S, respectively), by
operating on their DFA representations, generating a DFA representation of C in [17]. We
perceive the involved languages P, S, and C as trace abstractions of the finite operational
DFA-models. While this standard trace abstraction is sufficient for DFA and observable
Petri nets we show that it is insufficient for DPDA with their unobservable λ-steps.
This insight enforces the perspective of synthesizing automata realizations instead of
languages.

In Section 2.1, the models, relevant to this chapter, including DPDA, are introduced.
Afterwards we define trace abstractions for DPDA and analyze their basic properties in
Section 2.2. In Section 2.3 we provide operational criteria of the desired (least restric-
tive) controller, and formally define a reduction of synthesizing a controller satisfying
these constraints to the SCP by introducing an operational SCP (OSCP) based on trace
abstractions introduced before.

The operational computation of the concrete solver for the DFA setting of [14], which
is extensively used in the control of discrete event systems, does not correspond well to

6/113

their trace-abstract characterization of the desired closed-loop behavior. To bridge this
gap,

(i) in Section 2.4, we formalize the correspondence between operational and trace-
abstract solutions by suitably characterizing satisfactory controllers and verify their
equivalence to the standard SCP solutions; and

(ii) in Section 2.5, we introduce adequate fixed-point algorithms which
(a) determine only satisfactory controllers and
(b) are constructed over operations ensuring controllability and blockfreeness for

the underlying finite state models.
These fixed-point algorithms constitute solvers for the SCP for DFA plants and DPDA
specifications when using the effective procedures for ensuring controllability and block-
freeness for DPDA, discussed in Chapter 4 and Chapter 3. In summary, we consider the
implications of choosing DPDA as specifications on SCT
(a) by formalizing operational criteria for the desired controllers,
(b) by reducing the synthesis problem to the standard SCP by means of an OSCP

using adequate trace abstractions which guarantee the desired criteria for controller
realizations,

(c) by expressing the SCP by supremal elements of a complete lattice over our trace
abstractions, and

(d) by decomposing the suprema-based characterization into fixed-point algorithms
consisting of basic building blocks implemented in Chapter 4 and Chapter 3.

While outlining the process of verifying the adequacy of the trace abstractions of
Section 2.2, we have verified the automata foundations of Section 2.1 and the central
results of Section 2.4 and Section 2.5 in the interactive theorem prover Isabelle/HOL [13].

2.1 Models of Behavior

We assume a fixed set of possible events Σ shared by all models contained in this
chapter. This set is, as usual, partitioned into a set of controllable events Σc and a set of
uncontrollable events Σuc. In examples we assume Σc = {a, b, c, d, e} and Σuc = {u, v}.

We use the following notation throughout the chapter.

Notation 1
Let A be a set. Then

(i) A∗ denotes the set of finite words over A,
(ii) Aω∗ denotes the set of finite and infinite words over A,

(iii) single symbols are denoted by greek letters (except for λ, the empty word),
(iv) words are denoted by s, w,
(v) · is the (usually omitted) concatenation operation on words (and languages),

(vi) v is the prefix relation,
(vii) A is the prefix-closure of A,
(viii) w is the suffix relation, and
(ix) λx. f (x) is the nameless function equal to f (e.g., f (x) = x2 implies f = λx.x2).

2.1.1 Labeled Graphs

We use labeled graphs as representations of discrete (operational) behavior, where edges
correspond to steps.

7/113

Definition 1 (Labelled Graphs)
G = (V, E, L, s, t, l) ∈ LGraph iff

(i) V is a set of vertices,
(ii) E is a set of edges,

(iii) L is a set of labels,
(iv) s : E→V maps each edge to its source-vertex,
(v) t : E→V maps each edge to its target-vertex, and

(vi) l : V→ 2L maps each vertex to the set of its labels.

Two operational behaviors (given as LGraphs) are equivalent iff they are renamings of
each other.

Definition 2 (LGraph-Isomorphisms)
Let G1 = (V1, E1, L, s1, t1, l1) and G2 = (V2, E2, L, s2, t2, l2) be two LGraphs with identical sets
of labels.
Then f = (fV : V1→V2, fE : E1→ E2) : G1→G2 containing mappings for vertices and edges is
an LGraph-isomorphism iff

(i) fV and fE are bijections,
(ii) sources are preserved: s2 ◦ fE = fV ◦ s1,

(iii) targets are preserved: t2 ◦ fE = fV ◦ t1, and
(iv) labels are preserved: l1 = l2 ◦ fV .

E1 V1

E2 V2

L

s1

t1

s2

t2

l1

l2

fVfE = =

Furthermore, G1
∼= G2 iff there is an LGraph-isomorphism f : G1→G2.

2.1.2 Discrete Event Systems

We introduce Discrete Event Systems (DES) as a denotational model which is entirely
decoupled from the syntax and semantics of concrete (e.g., automata) realizations. The
DES is given by the sets of

(i) all (possible) observations—the unmarked language Lum and
(ii) all (possible) desired observations—the marked language Lm.

Definition 3 (Discrete Event System)
D = Lum, Lm ∈ DES iff Lm ⊆ Lum = Lum ⊆ Σ∗.
Lum(D) and Lm(D) denote the two components of D.

We repeat the well known notions of language-blockfreeness and language-controlla-
bility of DES which are central to the standard SCT (cf. [14]).

Definition 4 (Blockfree and Controllable DES)
Let D1, D2 ∈ DES. Then

(i) D1 is language-blockfree1 iff Lum(D1) ⊆ Lm(D1) and

1Every observation is a prefix of a desired observation.

8/113

λ, i a au aua auau, f

auu, f

Figure 2.1.: P = ({auau, auu}, {auau, auu}) ∈ DES is represented as an LGraph: the
names of the vertices in the visualization are the labels of the vertices.

(ii) D1 is language-controllable2 w.r.t D2 (denoted by LCont(Lum(D1), Lum(D2), Σuc)) iff
(Lum(D1)·Σuc) ∩ Lum(D2) ⊆ Lum(D1).

We will use the following complete lattice in Section 2.4 to characterize important DES.
Suprema and infima of sets of languages are denoted using ∪ and ∩ in this chapter.

Lemma 1 (Complete Lattice of DES)
DES forms a complete lattice using the following operations where {A, B} ∪M ⊆ DES.

(i) the least element: ⊥ = ∅, ∅ ,
(ii) the greatest element: > = Σ∗, Σ∗ ,

(iii) the inclusion: A ≤ B iff Lum(A) ⊆ Lum(B) and Lm(A) ⊆ Lm(B).
(iv) the strict inclusion: A < B iff A ≤ B and A 6= B.
(v) the synchronous (infimal) composition (denoted by A×B in the rest of this report):

inf(A, B) = Lum(A) ∩ Lum(B), Lm(A) ∩ Lm(B) ,
(vi) the alternative (supremal) composition:

sup(A, B) = Lum(A) ∪ Lum(B), Lm(A) ∪ Lm(B) ,
(vii) the maximal DES included in all DES from M3: Inf(M) = ∩ Lum(M),∩Lm(M) , and
(viii) the least DES which includes all DES from M: Sup(M) = ∪ Lum(M),∪Lm(M) .

We give the natural operational behavior of a DES.

Definition 5 (Natural Operational Behaviour of DES)
Let D ∈ DES.
Then JDKDES

LGraph = (V, E, L, s, t, l) is the (natural) LGraph-representation of D iff
(i) V = Lum(D),

(ii) E = {(w, w·σ) | w·σ ∈ Lum(D)},
(iii) L = {i, f} ∪ Lum(D),
(iv) s(w, w′) = w,
(v) t(w, w′) = w′, and

(vi) l(w) = {w} ∪ {i | w = λ} ∪ {f | w ∈ Lm(D)}.

An example of this encoding is given in Figure 2.1 where a DES is visualized as an
LGraph.

Obviously, there is an isomorphism between the LGraph-representations of two DES
iff the DES are identical.

Lemma 2 (Sound Encoding)
Let D1, D2 ∈ DES.
Then JD1KDES

LGraph
∼= JD2KDES

LGraph iff D1 = D2.
2Whenever D2 has the observation w, D1 does not prevent w, and w·u is an observation of D2 (for an

uncontrollable event u), then w·u is not prevented by D1.
3Remark: Lm and Lum are here computing images, i.e., the sets of the (un)marked languages of DES

from M.

9/113

q0M q1 q2

a,2,•2; a,•,••
�,2,2; λ,•,•

b,•,λ
c,2,2

(⊥, (q0,λ,2)) `M ((q0,a,2,•2,q0), (q0,a,•2)) `M ((q0,a,•,••,q0), (q0,aa,••2))
`M ((q0,λ,•,•,q1), (q1,aa,••2)) `M ((q1,b,•,λ,q1), (q1,aab,•2))
`M ((q1,b,•,λ,q1), (q1,aabb,2)) `M ((q1,c,2,2,q2), (q2,aabbc,2))

Figure 2.2.: M ∈ FPDA with Lm(M) = {an+1bn+1c | n ∈ N} and an exemplary initial
derivation in which edges are printed in gray.

2.1.3 Finalizing Pushdown Automata (FPDA)

FPDA, introduced here, are DFA enriched with a single stack-variable which can be
used to remember aspects for later reuse of a generated word. An example of FPDA
generating a language unacceptable by any DFA is given in Figure 2.2: The FPDA M
operates by remembering the number of generated a as an equally long sequence of •
in its stack—then, for any generated b one • is popped from the stack. Furthermore,
we additionally assume that the automaton can decide to stop generating symbols by
“generating” the end-of-output marker �. This intuitive explanation is formalized in the
following definition of FPDA and their operational semantics.

Definition 6 (Finalizing Pushdown Automata (FPDA))
M = (Q, Σ, Γ, δ, q0,2, F, �) ∈ FPDA iff

(i) the states Q, the output alphabet Σ, the stack alphabet Γ, and the set of edges δ are finite,
(ii) δ : Q× (Σ ∪ {λ, �})× Γ× Γ∗ ×Q,

(iii) the end-of-output marker � is not contained in Σ,
(iv) the end-of-stack marker 2 is contained in Γ,
(v) the end-of-stack marker is never removed from the stack ((q, σ,2, s′, q′) implies s′ w 2),

(vi) the marking states F and the initial state q0 are contained in Q.

We provide the slightly nonstandard branching semantics of an FPDA M which utilizes
a history variable in the configurations to greatly simplify the definitions of the trace
abstractions presented in Section 2.2. Furthermore, this branching semantics corresponds
to the intuition that the finite state realizations are generators rather than acceptors of
languages.

Definition 7 (Semantics of FPDA)
(i) the set of configurations C(M) = Q× Σ∗·{λ, �} × Γ+ where (q, w, s) ∈ C(M) consists of

a state q, a history variable w (storing the symbols generated), and a stack variable s,
(ii) the initial configuration Cinit(M) is (q0, λ,2),

(iii) the set of marking configurations Cfin(M) is defined by {(q, w, s) ∈ C(M) | q ∈ F},
(iv) the annotated configurations Cδ(M) = ((δ ∪ {⊥})× C(M)) additionally contain “pre-

edges” from δ
(v) the single-step relation (operating on the annotated configurations) `M : Cδ(M)×Cδ(M) is

defined by (e, (p, w, s·s′′)) `M ((p, w′, s, s′, p′), (p′, w·w′, s′·s′′)) (i.e., q′ is the new state,
w′ is added to the history variable, and the prefix s of the stack-variable s·s′′ is replaced by
s′) where w w � implies w′ = λ (i.e., once the end-of-output marker � has been generated,
the history variable cannot be extended),

10/113

FPDA PDA DPDA NFA DFA

deterministic X X
λ-step-free X X
�-step-free X X X X
stack-free X X

Table 2.1.: Subclasses of FPDA.

(vi) the set of derivations D(M) contains all elements from Cδ(M)ω∗ starting in a configuration
of the form (⊥, c) where all adjacent (e1, c1), (e2, c2) ∈ Cδ(M) satisfy (e1, c1) `M (e2, c2),

(vii) the set of initial derivations DI(M) contains all elements of D(M) starting with the initial
configuration (i.e., (⊥, (q0, λ,2))),

(viii) the set of reachable configurations Creach(M) is defined by {c ∈ C(M) | ∃d ∈ DI(M), n ∈
N . d(n) = (e, c)},

(ix) let out : (C(M) ∪ Cδ(M))→Σ∗ be defined by out(e, (q, w, s)) = out(q, w, s) = (if w w
� then butlast(w) else w) (i.e., we drop the possibly contained end-of-output marker �
from the history variable to obtain the output of a configuration),

(x) the marked language Lm(M) is defined by out(Cfin(M) ∩ Creach(M)), and
(xi) the unmarked language Lum(M) is defined by out(Creach(M)).

The concatenation of d1, d2 ∈ D(M) at index n∈N is given by (d1·nd2) = λi. if i ≤ n then
d1(i) else d2(i− n).

An example of an FPDA-derivation is given in Figure 2.2. The well known sub-classes of
FPDA having one ore more of the properties below are defined in Table 2.1.

Definition 8 (Sub-classes of FPDA)
An FPDA is deterministic iff for every reachable configuration all two distinct steps append
distinct elements of Σ ∪ {�} to the history variable. An FPDA is λ-step-free iff no edge in δ is of
the form (p, λ, s, s′, p′). An FPDA is �-step-free iff no edge in δ is of the form (p, �, s, s′, p′). An
FPDA is stack-free iff every edge in δ is of the form (p, a,2,2, p′).

Remark 1
There is no complete lattice over DFA (DPDA, FPDA) since regular languages (deterministic
context free languages, context free languages) are not closed under infinite union4 and intersec-
tion5. Therefore, similarly to [14], we state the SCP over the complete lattice of trace abstractions.
In particular, we are using the complete lattice over DES from Lemma 1.

2.2 Adequacy of DES w.r.t. FPDA

Since we want to express the SCP for FPDA in terms of an SCP over DES it is essential
that DES adequately describe the operational behavior of FPDA. We provide three
variations of encodings of

(i) FPDA into DES and
4A union of infinitely many singletons is not context free: ∪{{anbn} | n ∈ N, n prime} = {anbn | n ∈

N, n prime}
5 An intersection of infinitely many singletons is not context free: ∩{Σ∗ \ {anbn} | n ∈ N, n prime} =

Σ∗ \ {anbn | n ∈ N, n prime}

11/113

(ii) FPDA into LGraphs
and investigate in each of the three variations whether the FPDA to DES encoding
preserves the operational behavior, i.e., we compare the operational behavior of the
FPDA and the resulting DES by translating both into LGraphs using the encodings DES
to LGraph and FPDA to LGraph. In fact, we provide adequate encodings for DFA and
DPDA.

2.2.1 Adequate Encoding for DFA

The following encoding defines for an FPDA (and its operational semantics) the observable
operational behavior, expressed as an LGraph. In this variation we expect every step to
be fully observable which is only true for DFA and λ-step free DPDA.

Definition 9 (Natural Operational Behaviour of FPDA)
Let M ∈ FPDA.
Then JMKFPDA

LGraph = (E, V, L, s, t, l) is the (natural) LGraph-representation of M iff
(i) V is the smallest set containing Cinit(M) which is closed under `M ,

(ii) E =`M ,
(iii) L = {i, f} ∪ Lum(M),
(iv) s(c1, e, c2) = c1,
(v) t(c1, e, c2) = c2, and

(vi) l(c) = {out(c)} ∪ {i | c = Cinit(M)} ∪ {f | c ∈ Cfin(M)}.

Since each step is observable, two FPDA are equivalent w.r.t. J·KFPDA
LGraph iff they are renam-

ings of each other.

Proposition 1 (Sound Encoding) Let M1, M2 ∈ FPDA be accessible.
Then JM1KFPDA

LGraph
∼= JM2KFPDA

LGraph iff M1 is a renaming (states, stack-elements, stack-end-marker, and
end-of-output-marker) of M2. 2

Observe that the standard/natural encoding J·KFPDA
DES is the (implicitly used) trace abstrac-

tion from FPDA into DES used in [17] as a denotational description of the operational
behavior of DFA.

Definition 10 (Natural Encoding J·KFPDA
DES)

Let M ∈ FPDA.
Then JMKFPDA

DES = Lum(M), Lm(M) ∈ DES.

We can conclude that for two FPDA which are DFA or λ-step free DPDA the observable
operational behavior coincides iff their DES representations have equivalent observable
operational behaviors, i.e., they have identical (un)marked languages.

Theorem 1 (J·KFPDA
DES is Fully Abstract w.r.t. J·KFPDA

LGraph)
Let M1, M2 ∈ FPDA, deterministic, �-step-free, and λ-step-free.
Then, JM1KFPDA

LGraph
∼= JM2KFPDA

LGraph iff JJM1KFPDA
DES KDES

LGraph
∼= JJM2KFPDA

DES KDES
LGraph.

Confer to Figure 2.3 for a visualization of Theorem 1. However, since none of the
assumptions of Theorem 1 can be dropped, as stated in the following corollary, the
encodings of FPDA into LGraph and DES are unsatisfactory (e.g., consider DPDA with
λ-steps).

12/113

DES LGraph

LGraphFPDA

DESLGraph

LGraph FPDA

J·KDES
LGraph

J·KFPDA
DES

J·KFPDA
LGraph

J·KDES
LGraph

J·KFPDA
DES

J·KFPDA
LGraph

∼=(2)

∼=(1)

Figure 2.3.: For Theorem 1: (1) holds iff (2) holds.

0

M0

12
a,2,2a,2,2

0

M1

12
�,2,2a,2,2

0

M2

1 2
a,2,2 λ,2,2

λ,2,2

0

M3

1
a,2,2

Figure 2.4.: M0, M1, M2, and M3 have the same J·KFPDA
DES image {λ, a}, {a} which is

language-blockfree. Only M3 is operationally-blockfree.

Corollary 1
Let M1 ∈ FPDA which is not deterministic, not �-step-free, or not λ-step-free and let M2 ∈ DFA.
Then, JM1KFPDA

LGraph
∼= JM2KFPDA

LGraph not if but only if JJM1KFPDA
DES KDES

LGraph
∼= JJM2KFPDA

DES KDES
LGraph.

For example, consider the FPDA in Figure 2.4. When choosing M0, M1, or M2 for M1

and M3 for M2 in Corollary 1 then JJM1KFPDA
DES KDES

LGraph
∼= JJM2KFPDA

DES KDES
LGraph is satisfied but not

JM1KFPDA
LGraph

∼= JM2KFPDA
LGraph.

2.2.2 Adequate Encoding for DPDA

Corollary 1 states that DES are no sound denotational model for FPDA (including DPDA)
w.r.t. the full observability defined via J·KFPDA

LGraph. The problem stems from the steps which
are invisible in the DES (λ-steps, �-steps, and nondeterministic choices (note that this
kind of step is also not explicitly contained in the operational semantics)) but visible to
the behavioral equivalence JM1KFPDA

LGraph
∼= JM2KFPDA

LGraph. These steps could be made visible by
modification of the FPDA, however, this is not reasonable for non-determinism and the
end-of-output marker (see Remark 2 in Section 2.3). In this section we consider FPDA
which are deterministic and �-step-free (i.e., DPDA): as the λ-steps represent the internal
steps of the controller, properties on its occurrence in executions of the closed loop may
be of great importance.

We distinguish between two kinds of λ-step-sequences: finite sequences and infinite
sequences.
IFinite λ-step-sequences do not necessarily need to be observable for DPDA because
DPDA do not have a worst-case-execution-time in general6. Thus, we assume in this
chapter that there are no properties to be enforced on these finite sequences. Observe
that in DPDA at most finitely many λ-steps, which are executed deterministically, occur
between two visible steps. We can therefore replace maximal finite sequences by a single
vertex (with label f iff some vertex in the finite sequence had the label f) by J·KFPDA-λ

LGraph as
exemplified in Figure 2.5 (page 14).

6Consider {anbmcn | n, m ∈ N} ∪ {anbmdm | n, m ∈ N}: all a and b have to be recorded by the stack:
when reaching a c all records of b have to be removed in an unbounded number of steps.

13/113

λ, i c
b
a

d
e

a, f ax
b bx
c, f c cx
d, f

e e

λ, i c, f
b

a, f

d
e

ax
bx
cx
d, f

e e

Figure 2.5.: The operation J·KFPDA-λ
LGraph transforms the LGraph returned by J·KFPDA

LGraph on the left
into the LGraph on the right.

Definition 11 (Operational Encoding J·KFPDA-λ
LGraph)

Let M ∈ DPDA.
Let JMKFPDA

LGraph = (V, E, L, s, t, l).
Then JMKFPDA-λ

LGraph is the greatest fixed point of the following operation: Whenever
(i) e1, e2 ∈ E

(ii) t(e1) = s(e2)
(iii) w ∈ Σ∗, σ ∈ Σ
(iv) w ∈ l(s(e1)),
(v) w ∈ l(s(e2)), and

(vi) wσ ∈ l(t(e2))
then

(i) e1, e2 are removed from E,
(ii) s(e2) is removed from V,

(iii) a fresh edge e is added to E s.t. s(e) = s(e1) and t(e) = t(e2), and
(iv) f is added to l(s(e)) if f ∈ l(s(e2)).

IInfinite λ-step-sequences represent lifelocks which can be contracted in the operational
semantics into a single step which makes that step visible with the symbol �∈ Σuc.

Definition 12 (Encoding J·KFPDA-ω
DES)

Let M ∈ DPDA.
Then JMKFPDA-ω

DES = noteLL(Lum(M)), noteLL(Lm(M)) ∈ DES where noteLL(A) = {w �|
w ∈ A ∧ ∃d ∈ DI(M), N ∈ N . ∀k ≥ N . out(d(k)) = w}.

We can conclude that when finite sequences of λ-steps are not to be observed (by
using J·KFPDA-λ

LGraph) and lifelocks are made visible in the DES (by using J·KFPDA-ω
DES), then for two

DPDA the observable operational behavior coincides iff their DES representations have
equivalent observable operational behaviors.

Theorem 2 (J·KFPDA-ω
DES is Fully Abstract w.r.t. J·KFPDA-λ

LGraph)
Let M1, M2 ∈ DPDA.
Then, JM1KFPDA-λ

LGraph
∼= JM2KFPDA-λ

LGraph iff JJM1KFPDA-ω
DES KDES

LGraph
∼= JJM2KFPDA-ω

DES KDES
LGraph.

Finally, since the encodings preserve the observable behavior (except for the �-append-
ing encoding J·KFPDA-ω

DES), they preserve in particular the (un)marked languages.

Corollary 2 (Preservation of (un)marked languages)
If F ∈ {J·KDES

LGraph, J·KFPDA
LGraph, J·KFPDA-λ

LGraph , J·KFPDA
DES }

then Lm(X) = Lm(F(X)) and Lum(X) = Lum(F(X)).
Furthermore, for J·KFPDA-ω

DES :
Lm(X) = Lm(JXKFPDA-ω

DES) ∩ Σ∗ and Lum(X) = Lum(JXKFPDA-ω
DES) ∩ Σ∗.

14/113

2.2.3 Adequate Encodings for FPDA

To determine adequate encodings of all FPDA, the uncovering of lifelocks can be extended
to the uncovering of all formerly invisible steps (then also including non-determinism,
�-steps, and possibly even finite sequences of λ-steps which were hidden in the previous
subsection). For such an encoding, a similar soundness theorem can be formulated.
However, we will explain in Remark 2 in Section 2.3 that this encoding fails to be
satisfactory for the task of properly reducing the synthesis problem by means of an OSCP
as some operational criteria are no longer enforced on realizations of controllers.

2.3 (Operational) Supervisory Control Problem

According to the previous section, lifelocks (i.e., infinite λ-sequences) are observable
when using the trace abstraction J·KFPDA-ω

DES . This allows us to specify an operational SCP
(OSCP) preventing lifelocks in FPDA realizations of constructed controllers. Before
introducing the OSCP we formalize the SCP as introduced in [17] in our notation using
DES as a fundamental model rather than the marked language alone.

Definition 13 (SCP)
Let P, S ∈ DES be a plant and a specification.
Then SCP(P, S) contains the least restrictive controllers C ∈ DES w.r.t.

(i) Lm(C×P) ⊆ Lm(S),
(ii) C×P is language-Σuc-controllable w.r.t. P, and

(iii) C×P is language-blockfree.
Least restrictive means that C′×P≤C×P for any C′ ∈ DES satisfying (i)–(iii).

Based on the SCP, we introduce the following OSCP.

Definition 14 (Operational SCP (OSCP))
Given a plant P ∈ DFA and a specification S ∈ DPDA.
Then OSCP(P, S) is the set of all C ∈ DPDA satisfying JCKFPDA-ω

DES ∈ SCP(JPKFPDA
DES , JSKFPDA

DES).

Since the closed-loop construction relies on the synchronization of a controller C ∈
DPDA (broader classes for C from FPDA are only considered in Remark 2) and a plant
P ∈ DFA (P ∈ DFA throughout this chapter), we give such a construction which returns
a DPDA. This construction is quite similar to the synchronous composition of DPDA
with DFA from, for example, [10, page 135].

Definition 15 (FPDA-DFA-Synchronous Composition)
Let M1 = (Q1, Σ, Γ, δ1, q1

0,2, F1, �) ∈ FPDA.
Let M2 = (Q2, Σ, Γ′, δ2, q2

0,2′, F2, �′) ∈ DFA.
Then M1 ×M2 = M = (Q, Σ, Γ, δ, q0,2, F, �) is given by

(i) Q = Q1×Q2

(ii) ((q1, q2), w, s, s′, (q′1, q′2)) ∈ δ iff (q1, w, s, s′, q′1) ∈ δ1 and either
(w ∈ Σ and (q2, w,2′,2′, q′2)∈δ2) or (w ∈ {λ, �} and q2 = q′2),

(iii) q0 = (q1
0, q2

0), and
(iv) F = F1 × F2.

The main criteria for reasonability of the OSCP definition are the properties of closed
loops for controllers which are solutions to the OSCP. After giving such relevant criteria
in the following definition, we present our first main result.

15/113

Definition 16 (Properties of FPDA)
Let M1, M2 ∈ FPDA. Then

(i) M1 has a lifelock iff for some infinite d ∈ DI(M1) there is an N ∈ N such that the unmarked
language of d is constant after N (i.e., for all k ≥ N: out(d(N)) = out(d(k))),

(ii) M1 is operational-blockfree iff for any finite di ∈ DI(M1) of length n ∈ N ending in
di(n) = (e, c) there is a continuation dc ∈ D(M1) such that di·ndc is a marking derivation
and di and dc match at the gluing point n (i.e., dc(0) = (⊥, c)),

(iii) M1 is operational-satisfying M2 iff for any d1 ∈ DI(M1) of length n1 ending in a marking
state, there is some d2 ∈ DI(M2) of length n2 ending in a marking state such that
out(d1(n1)) = out(d2(n2)), and

(iv) M1 is operational-Σuc-controllable w.r.t. M2 iff whenever d1 ∈ DI(M1) is of length
n1 ∈ N ending in d1(n1) = (e1, c1), d2 ∈ DI(M2) is of length n2 ∈ N, out(d1(n1)) =
out(d2(n2)), d2(n2) `M2 (e2, c2), out(e2, c2) = out(d2(n2))u, and u ∈ Σuc, then there
is a continuation dc ∈ D(M1) of length n3 ∈ N such that out((d1·n1 dc)(n1 + n3)) =
out(d2(n2))u and d1 and dc match at the gluing point n1 (i.e., dc(0) = (⊥, c1)).

Incidentally (mainly due to the determinism), all of the above properties are satisfied for
closed loops generated from solutions to the OSCP from Definition 14.

Theorem 3 (Further Properties of OSCP controllers)
Given a plant P ∈ DFA and a specification S ∈ DPDA.
Let C ∈ OSCP(P, S).
Then

(i) C× P is operational-satisfying S,
(ii) C× P is operational-Σuc-controllable w.r.t. P,

(iii) C× P has no lifelocks, and
(iv) C× P is operational-blockfree.

Remark 2 (Nonextendability of Theorem 3)
Theorem 3 cannot be extended to S ∈ NFA or S ∈ FPDA which are not �-step-free since
language-blockfreeness is insufficient for operational-blockfreeness in general (see M0 and M1 in
Figure 2.4 page 13).

We have integrated enough information into the DES representations of DPDA and
DFA to be able to reuse the unmodified SCP. The more direct approach, of modifying
the SCP to include conditions enforcing, e.g., lifelockfreeness, operational blockfreeness,
or even more advanced properties where cost-optimal controllers are to be synthesized,
is nontrivial because the validity of the SCP has to be verified as well. Even with extra
conditions, the set of sound controllers must be closed under arbitrary union, which is
not true if for example lifelockfreeness is to be enforced (for example, if τ ∈ Σc represents
a λ-step, the supremal language of bounded executions of τ allows lifelock executions of
τ: ∪{{τn} | n ∈ N} = {τ}∗).

Using Theorem 2 we can conclude that all closed loops for solutions to the OSCP have
equivalent observable behavior; therefore, the concrete choice of a controller realization
is irrelevant.

Theorem 4 (OSCP Solutions are Equivalent)
Given a plant P ∈ DFA, a specification S ∈ DPDA, and C1, C2 ∈ OSCP(P, S).
Then JC1 × PKFPDA-λ

LGraph
∼= JC2 × PKFPDA-λ

LGraph .

16/113

2.4 SCP Characterizations via Suprema

In this section we formalize the SCP over DES by defining sound and maximal (i.e., least
restrictive) controllers and compare this formalization to the supremal characterization
of [14]. The DES based representations are used in Section 2.5 to verify solvers for the
SCP which are also adequate for DPDA specifications. These solvers deterministically
generate the sound and maximal controllers which are additionally smallest (i.e., contain
the least set of words).

Definition 17 (Sound, Maximal, and Smallest Solutions)
Given a plant P ∈ DES and a specification S ∈ DES.
Let C ∈ DES.
Then (by using Equations (2.1)–(2.3) in Table 2.2 on page 18)

(i) C is a sound controller iff the closed loop P×C is safe in the sense of (i)–(iii) from Defini-
tion 13, formally C ∈ Ssat(P, S),

(ii) C is a maximal controller iff the closed loop P×C is sound and less restrictive than any
other safe closed loop, formally C ∈ Smax(P, S), and

(iii) C is a smallest maximal controller iff it is a maximal controller and any strictly smaller
maximal controller produces a more restrictive closed loop, formally C ∈ Smin

max(P, S).

We explain the basic differences between these types of controllers by an example.

Example 1 (Comparison of Solutions)
Let P be a language-blockfree plant. Let S = Σ∗, Σ∗ be a specification. The controller C1 =
∅, ∅ is sound but not maximal. The controller C2 = S is maximal. The controller C3 = P is

smallest maximal. While C1 is not desirable (and just defined for presentation purposes), there
is no difference between C2 and C3 w.r.t. the overall goal of the SCT to determine a controller
enforcing the desired observable operational behavior on the closed loop. For implementation on a
physical device, C2 is for P 6= S more compact and requires therefore less space. Nevertheless, the
solvers, we are aware of, produce the controller C3. The problem of determining the size-optimal
automata realization of some sound and maximal controller is left for the future.

Similarly to Theorem 4 we can state that the plant P is consistently restricted by all
controllers C ∈ Smax(P, S).

Theorem 5 (Consistent Restriction)
Given a plant P ∈ DES and a specification S ∈ DES.
Let C, C′ ∈ Smax(P, S).
Then P×C = P×C′.

17/113

C ∈ Ssat(P, S) iff

∧¶ Lm(P×C) ⊆ Lm(S)
∧· LCont(Lum(P×C), Lum(P), Σuc)

∧¸ Lum(P×C) ⊆ Lm(P×C)

 (2.1)

C ∈ Smax(P, S) iff
(
∧¶C ∈ Ssat(P, S)
∧·∀C′ ∈ Ssat(P, S) . P×C′ ≤ P×C

)
(2.2)

C ∈ Smin
max(P, S) iff

(
∧¶C ∈ Smax(P, S)
∧·∀C′ ∈ Smax(P, S) . C′ < C → P×C′ < P×C

)
(2.3)

Φmm(Am, Sm) ,
(
∧¶Am ⊆ Sm
∧· LCont(Am, Lum(P), Σuc)

)
(2.4)

Φum(Aum, Sm) ,

∧¶Aum ⊆ Sm
∧· LCont(Aum, Lum(P), Σuc)
∧¸Aum = Aum
∧¹Aum ⊆ Aum ∩ Sm

 (2.5)

C ∈ Lmm(P, S) iff
(
∧¶ Lm(P×C) = ∪{A | Φmm(A, Lm(S))}
∧· Lum(P×C) = Lm(P×C)

)
(2.6)

C ∈ Lum(P, S) iff
(
∧¶ Lum(P×C) = ∪{A | Φum(A, Lm(S))}
∧· Lm(P×C) = Lm(S) ∩ Lum(P×C)

)
(2.7)

Lsi
mm(P, S) , Lmm(P, P×S) (2.8)

Lsi
um(P, S) , Lum(P, P×S) (2.9)

C ∈ Lsi
mm(P, S) iff

(
∧¶ Lm(C) = ∪{A | Φmm(A, Lm(P×S))}
∧· Lum(C) = Lm(P×C)

)
(2.10)

C ∈ Lsi
um(P, S) iff

(
∧¶ Lum(C) = ∪{A | Φum(A, Lm(P×S))}
∧· Lm(C) = Lm(S) ∩ Lum(P×C)

)
(2.11)

C ∈ Dmm(P, S) iff P×C = Sup({ A, A | Φmm(A, Lm(S))}) (2.12)
C ∈ Dum(P, S) iff P×C = Sup({ A, Lm(S) ∩ A | Φum(A, Lm(S))}) (2.13)

Dsi
mm(P, S) , Dmm(P, P×S) (2.14)

Dsi
um(P, S) , Dum(P, P×S) (2.15)

Table 2.2.: Sound, maximal, and smallest maximal controllers: Equations (2.1)–(2.3);
language based supremal closed loops: Equations (2.6)–(2.9); DES based
supremal closed loops: Equations (2.12)–(2.15). Sets of controllers obtained by
suprema over languages (DES) are denoted here by L(D) with markers.

18/113

2.4.1 Language-Based Characterization by Suprema

Ramadge and Wonham have, based on the supremum over languages in Equation (2.6),
introduced the desired marked language of the desired closed loop and by assuming
language-blockfreeness also the unmarked language of the desired closed loop in [14] .
In Equation (2.6) we have given the marked-maximal solution Lmm in our notation which
is based on the supremum over the marked languages of controller candidates. While
Equation (2.6) has the advantage to be compact and obviously sound (being directly
related to, for example, Definition 17) we propose the alternative characterization in
Equation (2.7) which is based on a supremum over the unmarked language of the desired
closed loop. Primary differences are the translation from marked to unmarked languages
using the prefix-closure operator and the different enforcement of blockfreeness. Both
characterizations of the desired closed loop are equivalent and produce the desired closed-
loop behavior. The alternative characterization is advantageous because, e.g., the effective
solver in the DFA-setting (presented in [17, Lemma 5.1]) removes unmarked words with
controllability and blocking problems. The supremal characterization Lum(P, S) thereby
describes the operation of the fixed-point algorithms more precisely.

Theorem 6
Lmm(P, S) = Lum(P, S) ⊆ Smax(P, S)

Effective solvers usually produce deterministically a unique result which is the smallest
maximal sound controller. This is achieved by simplifying the input by restricting the
specification to the behavior of the plant: this is done in Equations (2.8) and (2.9) where
the simple input marked maximal and simple input unmarked maximal solutions Lsi

mm
and Lsi

um are defined. Incidentally, the controllers described with this restriction are all
contained in Smin

max.

Theorem 7
Lsi

mm(P, S) = Lsi
um(P, S) ∈ Smin

max(P, S)

Furthermore, the controllers in Lsi
mm and Lsi

um produce identical closed loops as the
controllers in Lmm and Lum.

A commonality of the four characterizations in Equations (2.6)–(2.9) is that they are
based on characterizations of the closed loop and not on the controller. In Equations (2.10)
and (2.11) we explain that the actual result as obtained by Lsi

mm and Lsi
um is the controller

and the closed loop which basically follows from the adherence of the closed loop to the
specification due to its intersection with the plant.

2.4.2 DES-Based Characterization by Suprema

Furthermore, the characterizations in Equations (2.6)–(2.9) do not properly reflect the
execution of iterative solvers which modify both, the marked and the unmarked language
(using operations from Figure 2.6). In our formal approach we handle the modifications
to both languages explicitly, in contrast to [14] who focus on the modifications to the
marked language exclusively, by including the statements on the unmarked (in the case
of Lmm) and marked language (in the case of Lum) into the supremum statement using
the lattice of DES.

Proposition 2 Dmm(P, S) = Dum(P, S) = Lmm(P, S) 2

19/113

The results on the set-based characterization can easily be transferred to the DES-based
characterization. In the next section we decompose a supremum into a greatest fixed
point of a composed operation.

2.5 SCP Characterizations via Greatest Fixed-Points

Usually, the desired controller is calculated by iterative application of a function F :
DES→DES. Let F denote the set of all these iterators (F = DESDES). Good iterators
have the property that they do not skip beyond greatest fixed points which is achieved
by including the last property (v) in the next definition. If F ∈ G(Finp, Ffp, Fout) in the
following definition, then

(i) Finp specifies the set of DES to which F should only be applied to,
(ii) Ffp specifies the set of DES (from Finp) for which F returns its input, and

(iii) Fout specifies the set of DES which are returned by F (when executed on a DES from
Finp).

Definition 18 (Good Iterator)
F ∈ F is a good iterator on Finp, Ffp, Fout ⊆ DES (written F ∈ G(Finp, Ffp, Fout)) iff whenever
X, Y ∈ Finp then

(i) F(X) ≤ X,
(ii) X ∈ Ffp iff F(X) = X,

(iii) F(X) ∈ Fout,
(iv) if X ≤ Y then F(X) ≤ F(Y), and
(v) if F(X) < X, Y < X, F(Y) = Y, then Y ≤ F(X).

Good iterators are closed under unconditional ◦ and conditional 3 composition, used to
obtain fixed point algorithms computing the desired solutions in Section 2.5.1.

Lemma 3 (Composition of Good Iterators using ◦)
Let F ∈ G(Finp, Ffp, Fout).
Let G ∈ G(Ginp, Gfp, Gout).
If Fout ⊆ Ginp, then G ◦ F ∈ G(Finp, Ffp ∩ Gfp, Gout).

Definition 19 (Conditional Composition)
Let F, G ∈ F .
Then G 3 F = λx. if F(x) = x then x else G(F(x)).

Lemma 4 (Composition of Good Iterators using 3)
Let F ∈ G(Finp, Ffp, Fout).
Let G ∈ G(Ginp, Gfp, Gout).
If Fout ⊆ Ginp and Finp ⊆ Gfp, then G 3 F ∈ G(Finp, λX. if F(X) = X then X ∈ Ffp ∩
Finp else X ∈ Ffp ∩ Gfp, (Finp ∩ Ffp ∩ Fout) ∪ Gout).

Good iterators do not skip beyond greatest fixed points.

Corollary 3 (Good Iterators do not Skip a GFP)
Let F ∈ G(DES, Ffp, DES) and Y ∈ DES.
Then gfp(λX.F(X×Y)) = gfp(λX.F(X×F(Y))).

The actual synthesis computation is then given by the following algorithm U .

20/113

opcw(w, U) = ∀u ∈ U . w·u ∈ Lum(P)→ w·u ∈ Lum(C)
opc(A, U) = ∀w′ ∈ A . opcw(w′, U, Lum(P), Lum(C))

where A = ∪{A | A = A ∧ A ⊆ Lum(D)}
Fbf(D) = Lm(D), Lm(D)

Fc1(D) = A, Lm(D) ∩ A

where A = {w ∈ Lum(D) | opc({w}, Σ∗uc)}
Fc2(D) = A, Lm(D) ∩ A

where A = {w ∈ Lum(D) | opc({w}, Σuc)}
Fc3(D) = A, B

where B = {w ∈ Lm(D) | opc({w}, Σuc)}

and A = {w ∈ Lum(D) |
(
∧opc({w} \ {w}, Σuc)
∧(¬ opcw(w, Σuc)→ w /∈ B)

)
}

Fspec(D) = D×S

Figure 2.6.: The iterators Fbf, Fc1, Fc2, Fc3, and Fspec where the plant P and the specification
S are omitted parameters.

Definition 20 (Universal Computation)
Let F ∈ F and D ∈ DES.
Then U (F, D) = (if D = F(D) then D else U (F, F(D))).

Then, greatest fixed points are calculated (assuming termination) as follows.

Theorem 8 (U computes the GFP)
Let F ∈ G(DES, Ffp, DES).
If U (F,>) terminates, then U (F,>) = Sup(Ffp) = gfp(F).

We conclude that it is sufficient for concrete applications (e.g., DFA and DPDA) to verify
the goodness of the used iterator to prove that the generated controller solves the SCP.
Furthermore, the composition lemmas above give a proof-strategy by composition of
a good iterator from multiple good iterators: this is exemplified in the next subsection
where we introduce concrete iterators. As demonstrated in Section 2.5.1, it is occasionally
advantageous to execute the universal algorithm on some value different from the >
element.

Theorem 9 (Initialized U computes the GFP)
Let F ∈ G(DES, Ffp, Fout).
If U (F, S) terminates,
then U (F, S) = Sup({X | X ∈ Ffp, X ≤ S}) = gfp(λX.F(X×S)).

2.5.1 Examples of Good Iterators

The iterators to be discussed are given in Table 2.6.

21/113

IBlockfreeness: The iterator Fbf generates the least restrictive DES that is blockfree and
contained in the input. An implementation of this iterator is presented in [17, Lemma
5.1] for DFA and in Chapter 4 for DPDA. Let Φbf(D) = Lum(D) ⊆ Lm(D).

Lemma 5
Fbf ∈ G(DES, DES∩Φbf, DES∩Φbf).

I?-Controllability: The iterator Fc1 generates the least restrictive DES that is controllable
and contained in the input. Let Φcont(D) = LCont(Lum(D), Lum(P), Σuc).

Lemma 6
Given a plant P ∈ DES over the uncontrollable symbols Σuc.
Fc1 ∈ G(DES, DES∩Φcont, DES∩Φcont).

I1-Controllability: The difference between ?-controllability and the 1-controllability is
that Fc1 removes controllability problems for every finite sequence of uncontrollable
symbols whereas Fc2 only removes single-step controllability problems. Thereby, Fc2
may produce “new” controllability problems which are not removed in the single ap-
plication of Fc2. Therefore, iterative application of Fc2 always produces Fc1: Formally,
gfp(λX.Fc2(X×Y)) = Fc1(Y). An implementation of this iterator is presented in [17,
Lemma 5.1] for DFA.

Lemma 7
Given a plant P ∈ DES over the uncontrollable symbols Σuc.
Fc2 ∈ G(DES, DES∩Φcont, DES).

IM-Controllability: Fc3 requires a blockfree input to ensure the welldefinedness of the
resulting DES. For Fc3, an unmarked word (which is not also a marked word) with a
controllability problem (but where all strict prefixes are controllable) is not removed, if it
cannot be extended to the created marked language. Therefore, Fc3 is equivalent to Fc2
up to blockfreeness: Fbf ◦ Fc3 = Fbf ◦ Fc2. An implementation of this iterator is presented
in Chapter 3 for DPDA.

Example 2 (Differences between Fc1, Fc2 and Fc3)
Let D = {aua}, {aua} and P as given in Figure 2.1. Then Fc1(D) = {λ}, ∅ , Fc2(D) =

{a}, ∅ , and Fc3(D) = {au}, ∅ . For Fc3: the word au is not removed because all its strict
prefixes are controllable and even though it is not controllable it can also not be extended into the
created marked language ∅.

Lemma 8
Given a plant P ∈ DES over the uncontrollable symbols Σuc.
Fc3 ∈ G(DES∩Φbf, DES∩Φcont, DES).

ISatisfaction of the Specification: Finally, the iterator Fspec generates the least restrictive
DES that is contained in the input and the specification. Let Φspec(D) = D ≤ S.

Lemma 9
Given a specification S ∈ DES.
Then Fspec ∈ G(DES, DES∩Φspec, DES∩Φspec)

22/113

Using the above properties on the individual good iterators, we can compose three good
iterators.
Theorem 10 (Computation of Dsi

mm)
Given a plant P ∈ DES and a specification S ∈ DES.
Let Fc ∈ {Fc1, Fc2, Fc3}.
Let F = Fc ◦ Fbf ◦ Fspec.
Then F ∈ G(DES, { A, A | Φmm(A, Lm(S))}, DES).
Finally, if U (F,>) terminates, then U (F,>) = Dsi

mm(P, S).

That is, we have verified an approach, up to termination and fixed-point-detection, which
synthesizes a least restrictive controller. However,

(i) while the operation Fspec is neutral from the second iteration onwards, this cannot
be formally captured in the context of the complete lattice and therefore an imple-
mentation which follows the universal computation strictly has to re-execute Fspec
in every iteration and

(ii) as Fc3 requires a blockfree input, we are forced to operate with the input assumption
of blockfree DES.

While there is a decision procedure ([15]) to determine whether our implementation
of Fbf modifies its input, we are using the 3-composition in Theorem 11 to avoid the
execution of such a computationally expensive equivalence test. We obtain the following
result, which is also adequate for the DFA setting.

Theorem 11 (DPDA-Computation of Dsi
mm)

Given a plant P ∈ DES and a specification S ∈ DES.
Let I = Fbf(Fspec(P)) where the restricted specification P×S is used.
Let F = Fbf 3 Fc3.
Then F ∈ G(DES∩Φbf, DES∩Φbf ∩Φcont, DES∩Φbf).
Finally, if U (F, I) terminates, then U (F, I) = Dsi

mm(P, S).

The last theorem states that the universal algorithm, started with the initial argument I
and iteratively executing the implementations of Fbf and Fc3 presented in Chapter 4 and
Chapter 3, determines (up to termination) the smallest maximal controller defined by the
suprema-based characterization Dsi

mm(P, S).

2.6 Conclusion

We have introduced a methodology for the extension of the SCP to domains broader
than DFA. The technical problems resulting in such extensions are exemplified by
considering DPDA-specifications which allow for λ-steps which are unobservable (when
part of finite sequences) or observable (when part of infinite sequences). By means of
nondeterminism and finalization (using an end-of-output marker �) we have shown that
the operational criteria (specifically operational blockfreeness) are more suitable than
the trace-abstract criteria as they are strictly more demanding and adequate w.r.t. the
task of characterization of the desired observable operational behavior (see Remark 2).
While we have investigated how the operational criteria are satisfied by using certain
encodings of the involved finite automata models, future research may also allow for the
direct extension of the SCP by additional trace-abstract criteria. This work may also be
extended by

23/113

(i) adding further operational criteria as for example worst-case-execution times and
(ii) by establishing initial results on size-optimal realizations of constructed controllers.

Finally, we intend to prove the results on the encodings in Sections 2.2 and 2.3 in the
interactive theorem prover Isabelle/HOL [13] as it is already done for automata models
from Section 2.1 and the results of Sections 2.4 and 2.5.

24/113

3. Enforcing Controllability Least
Restrictively for DPDA

This chapter presents an algorithm to calculate the largest controllable marked sub-
language of a given deterministic context free language (DCFL) by least restrictively
removing controllability problems in a DPDA realization of this DCFL.

3.1 Introduction

Ramadge and Wonham ([17]) presented an implementable fixed point algorithm to calcu-
late the desired marked closed loop language Lclm using finite automaton representations
of the involved languages and therefore restricting its applicability to regular plant and
specification languages. This fixed point algorithm iteratively executes the following:

(i) it removes controllability problems, i.e., situations where the controller attempts to
prevent uncontrollable events.

(ii) It resolves blocking issues, i.e., situations where the closed loop cannot reach a
marking state.

Obviously, step (i) may generate new blocking issues, while step (ii) may lead to new
controllability problems. The algorithm terminates iff no more controllability problems
or blocking situations are present. In this chapter an algorithm which realizes step (i) for
DPDA is given.

The chapter is structured as follows. After introducing all required notation in Sec-
tion 3.2, we summarize the necessary parts of SCT in Section 3.3. In Section 3.4, we
present an algorithm working on DPDA, realizing step (i) of the fixed point algorithm.

3.2 Preliminaries

Let Σ be the external alphabet. Then Σ∗ denotes the set of all finite-length strings
over symbols from Σ. Furthermore, we use the abbreviations Σ+ = Σ∗ \ {λ} and
Σ≤1 = Σ ∪ {λ}, where λ is the empty string. Throughout this chapter, we denote
elements of the set Σ≤1 by σ, i.e., σ can also be the empty string. We denote the projection
of a tuple or string a on its ith element by πi(a) and the concatenation of two strings
w, w′ ∈ Σ∗ by w·w′, meaning that w′ is appended to w. The prefix relations on strings
are defined by w v w′ if ∃w′′ ∈ Σ∗ . w·w′′ = w′ and by w < w′ if ∃w′′ ∈ Σ+ . w·w′′ = w′.
Any subset of Σ∗ is called a language. The prefix closure of a language L is defined
by L = {w ∈ Σ∗ | ∃w′ ∈ L . w v w′}. A language L1 is nonblocking w.r.t. a language
L2 iff L1 ⊆ L2. On an alphabet Σ partitioned into controllable (in the sense of preventable)
and uncontrollable events, i.e., Σ = Σc ∪ Σuc, Σc ∩ Σuc = ∅, a prefix-closed language
L1 = L1 is controllable w.r.t. a prefix-closed language L2 = L2 iff (L1·Σuc) ∩ L2 ⊆ L1. In

25/113

particular, a word w ∈ L1 is controllable w.r.t. L2 (written ContW(L1, L2, Σuc, w)) iff

∀µ ∈ Σuc . wµ ∈ L2 → wµ ∈ L1. (3.1)

A discrete event system (DES) is a tuple D = (Σc, Σuc, Lum, Lm), where Lum = Lum ⊆ Σ∗ is
the prefix closed unmarked language modeling the step by step evolution of the system
while the marked language Lm ⊆ Lum models only the satisfactory words. Since all DES
in this chapter evolve on the same external alphabet Σ = Σc ∪ Σuc, we can characterize D
by its marked and unmarked language only and write D = Lum, Lm . We say that D is
nonblocking, iff Lum is nonblocking w.r.t. Lm.

A pushdown automaton (PDA) is a tuple

M := (Q, Σ, Γ, δ, q0,2, F)

s.t.
(i) the state set Q, the external alphabet Σ, the stack alphabet Γ, and the set of transitions

δ are finite,
(ii) δ ⊆ Q× Σ≤1 × Γ× Γ∗ ×Q,

(iii) the end-of-stack marker 2 is contained in Γ,
(iv) the set of marking states F and the initial state q0 are contained in Q and
(v) 2 is never removed from the stack (i.e., (q, σ,2, s, q′) implies1 ∃s′ ∈ Γ∗ . s = s′·2).

Example 3
Consider the external alphabet Σ = {a, b, c, d, u}, the stack alphabet Γ = {2, •}, the state set
Q = {q0, . . ., q5} and the set of marking states F = {q2, q5}. Then MO in Figure 3.1 is a PDA,
and the transition (q, σ, γ, s, q′) ∈ δ is depicted by an edge from q to q′ labeled by σ, γ, s, denoting
that by taking this transition, σ ∈ Σ≤1 is generated, γ ∈ Γ (called “stack-top”) is popped from
the top of the stack, and s ∈ Γ∗ is pushed onto the stack (with the right-most symbol first). Two
transitions with the same pre and post state are depicted by one edge with two labels.

q0 q1 q2 q3 q4 q5

a,2,•2
a,•,••

c,•,•

d,•,•

λ,•,λ
λ,•,λ

λ,2,2

b,•,λ

b,•,λ
b,2,2

u,•,•

Figure 3.1.: PDA MO in Example 3.

Note that M can do silent moves (called λ-transitions), possibly modifying the stack but
not generating an external symbol (e.g., see Figure 3.1, from q1 to q2). We collect the
starting states of all λ-transitions in the set

Qλ(M) , {q ∈ Q | (q, λ, γ, s, q′) ∈ δ}.

A PDA M is life-lock free (written M ∈ LLF) iff there exists no reachable infinite sequence
of λ-transitions. Since life-lock free PDA and PDA are equally expressive, we only
consider M ∈ LLF.

1s is always pushed onto the stack with the right-most symbol first.

26/113

From a system theoretic point of view, a system state would be a pair (q, s), where
q ∈ Q and s ∈ Γ∗ represents the current stack content. Hence, from this point of view,
a PDA with |Q| < ∞ has infinite state space since the stack is not restricted. The pair
(q, s) is sometimes referred to as a configuration. For our purposes, it turns out to be
convenient to add the string of generated external symbols to this pair. We therefore
define the set of configurations of M = (Q, Σ, Γ, δ, q0,2, F) ∈ PDA by

C(M) , Q× Σ∗ × Γ∗

where (q, w, s) ∈ C(M), consists of a state q, a history variable w (storing the external
symbols generated), and a stack variable s (storing the current stack content). The initial
configuration is (q0, λ,2). Now observe that a transition from one configuration to
another occurs when M takes a transition e ∈ δ. To make this step visible we choose to
include the taken transition e into the definition of a transition from one configuration to
another. The single-step transition relation `M⊆ ((δ ∪ {⊥})× C(M))2 is therefore defined
by

(e, (q, w, γ·s′)) `M (e′, (q′, w·σ, s·s′)) for e′ = (q, σ, γ, s, q′),

where ⊥ denotes an undefined2pre-transition.
The set D(M) contains all finite-length3 derivations f : N⇀ ((δ ∪ {⊥})× C(M)) s.t.

∀n < max(dom(f)) . f (n) `M f (n + 1)

with dom(f) being the domain of f . The set DI(M) contains all elements of D(M)
starting with the initial element f (0) = (⊥, (q0, λ,2)). Furthermore, the set Dmax(M, w)
of maximal finite-length derivations of a word w ∈ Σ∗ is defined by

Dmax(M, w) :=
{

f ∈ DI(M)

∣∣∣∣(∧∃e, q, s . f (max(dom(f))) = (e, (q, w, s))
∧@e′, q′, s′ . (e, (q, w, s)) `M (e′, (q′, w, s′))

)
.
}

The set of reachable configurations is defined by

Creach(M) , {c ∈ C(M)|∃d ∈ DI(M), e, n . d(n) = (e, c)} .

Using this definition, we define the marked and the unmarked languages generated by
M = (Q, Σ, Γ, δ, q0,2, F) ∈ PDA by

Lm(M) , {w | (q, w, s) ∈ Creach(M) ∧ q ∈ F} and (3.2)

Lum(M) , {w | (q, w, s) ∈ Creach(M)}, (3.3)

respectively. The class of languages generated by PDA is the class of context free
languages (CFL). We say that a PDA M realizes a DES D = Lum, Lm , iff Lm(M) = Lm
and Lum(M) = Lum and, with some abuse of terminology, we say D ∈ CFL iff Lum, Lm ∈
CFL.

2We use the dummy symbol ⊥ to define the initial transition, and, occasionally, when the pre-
transition is irrelevant for the context.

3since M ∈ LLF

27/113

A PDA M is a deterministic pushdown automaton (DPDA) (written M ∈ DPDA) iff
distinct steps from a reachable configuration append distinct elements of Σ to the history
variable. Note that this implies that the existence of an outgoing λ-transition in state q
requiring stack-top γ prevents other outgoing transition in q requiring stack-top γ. The
class of languages generated by DPDA is the class of deterministic context free languages
(DCFL).

Example 4
The PDA MO depicted in Figure 3.1 is also a DPDA since all required properties hold. Further-
more, the marked and unmarked language of MO are given by

Lm(MO) =
{

ac, aac, a2k+1c(bb)l , a2k+2c(bb)l ,

a2k+3c(bb)lbu, a2k+2c(bb)lbu,

ad, a2kd(bb)l , a2k+1d(bb)l , a2k+2d(bb)lbu,

a2k+1d(bb)lbu
∣∣ k, l ∈ N, k > 0, l ≤ k− 1

}
and Lum(MO) = Lm(MO), since no blocking situations occur in MO. This can be verified in
Figure 3.1

(i) by checking that in every non-marking state q̃ either
(a) an outgoing transition exists for both stack-tops 2 and •, or
(b) the configuration (q̃, ·, γ) is not reachable if no outgoing transition with stack-top γ

exists (e.g., (q1, ·,2) is not reachable) and
(ii) observing that no dead locks or infinite loops visiting only non-marking states exist.

A nondeterministic finite automaton (NFA) can be viewed as a special PDA which does
neither have λ-transitions, nor a stack (see Figure 3.2). Therefore, we can formally
define a PDA M = (Q, Σ, Γ, δ, q0,2, F) to be an NFA (written M ∈ NFA) iff whenever
(q, σ, γ, s, q′) ∈ δ, then γ = s = 2 and σ ∈ Σ. Additionally, deterministic finite automata
(DFA) are NFA which are deterministic. The class of languages generated by DFA is the
class of regular languages (REG)4.

Example 5
Consider the input alphabet Σ = {a, b, c, d, u}, the state set Q = {p0, p1, p2, p3}, the set of
marking states F = {p1, p3} and the initial state p0. Then the automaton MP in Figure 3.2 is a
DFA. The transition (p, σ,2,2, p′) ∈ δ is depicted by an edge from p to p′ labeled by σ.

p0 p1 p2 p3

a

c, d
b

b
u

Figure 3.2.: DFA MP in Example 5.

The marked and unmarked languages of MP are given by5

Lm(MP) = {an(c + d), an(c + d)(bb)m(bu + λ) | n, m ∈ N}
4Note that for every language Lum generated by a NFA, there also exists a DFA generating Lum (see

[10, p.22]). However, this is not true for PDA and DPDA, implying DCFL ⊂ CFL.
5The term (x + y) denotes “x or y”.

28/113

and Lum(MP) = Lm(MP), since no blocking situations occur in MP.

3.3 Supervisory Control Revisited

In the context of SCT, a controller DC = LCum, LCm is a proper minimally restrictive
supervisor for a plant DP = LPum, LPm and a specification DS = LSum, LSm , if DC

(i) is not preventing uncontrollable events (i.e., ((LPum ∩ LCum)·Σuc)∩ LPum ⊆ (LPum ∩
LCum)),

(ii) generates a closed loop Dcl = Lclum, Lclm , defined by Lclum = LPum ∩ LCum and
Lclm = LPm ∩ LCm, which contains as many words generated by the plant as possible
while respecting the specification, and

(iii) always guides the system to a marking state (i.e., Lclum ⊆ Lclm).
In this case Lclm is the so called marked supremal controllable (nonblocking) sublanguage
of LPm ∩ LSm (see [17]). Since different controllers can generate the same closed loop,
there exists no unique minimally restrictive supervisor for DP and DS. Obviously, the
closed loop itself is a proper supervisor, giving DC = Lclum, Lclm .

Ramadge and Wonham introduced the monotonic operator Ω : Σ∗→Σ∗ in [17, Lemma
2.1] defined by

Ω(Lm) = {w ∈ Lm | ∀w′ v w . ContW(Lm, LPum, Σuc, w′)}
⊆ Lm. (3.4)

By iteratively applying Ω, starting with LSm ∩ LPm, one obtains the (unique) greatest fixed
point Lclm. Ramadge and Wonham showed in [17, Lemma 2.1] that for LSm, LPm ∈ REG
an implementable algorithm working on DFA to calculate Lclm ∈ REG exists.

Now consider plant DP = LPum, LPm ∈ REG and specification DS = LSum, LSm ∈
DCFL. In this case we have LSum ∩ LPum, LSm ∩ LPm ∈ DCFL (see [10, p.135]), realizable
by a DPDA. Now observe the following: in one iteration of the fixed-point algorithm the
language Lm is needed to calculate Ω(Lm). When implementing this algorithm using a
DPDA-realization of the DES D = Lum, Lm , the language Lm is (in general) not easily
obtained. However, if D is nonblocking, we can use Lum = Lm. Therefore, to implement
the iterative calculation of Ω, starting with LSm ∩ LPm ∈ DCFL, one has to iteratively

(i) construct a DPDA M′O from a nonblocking DPDA MO s.t. Ω(Lm(MO)) = Lm(M′O)
and

(ii) make M′O nonblocking.
The connection between the language characterization of the supervisory control problem
and its automaton based construction using these two basic subfunctions is investigated
in detail in the Chapter 2. There, explicit fixed-point constructions and soundness proofs
are given and it is shown that the resulting controller can be realized by a DPDA. Note
that the controller is only implementable if its stack is bounded, which is to be expected
for many applications.

We show in the remainder of this chapter that there exists an algorithm working on
DPDA which realizes step (i) and returns a DPDA. An algorithm realizing step (ii) is
presented in Chapter 4.

Remark 3
The implementable algorithm to calculate Lclm ∈ REG presented in [17, Lemma 5.1] iteratively

29/113

calculates the unmarked controllable sublanguage of Lum = Lm, i.e.,

Ω(Lum) = {w ∈ Lum | ContW(Lum, LPum, Σuc, w)},

and its nonblocking sublanguage Ω(Lm) ∩ LSm ∩ LPm. In contrast, the algorithm introduced in
the next section iteratively calculates the marked controllable sublanguage Ω(Lm) and its prefix
closure.

3.4 Computability of Ω for DCFL

In this section, using the DFA MP realizing DP = LPum, LPm , we derive a sequence of
automaton manipulations starting with the DPDA MO and generating a DPDA M′O s.t.
Ω(Lm(MO)) = Lm(M′O). We assume that Lm(MO) ⊆ LPm. This is not a restriction of
generality, as Ω is monotonic and its iterative application is initialized with LPm ∩ LSm.
We furthermore assume that MO is nonblocking, i.e., Lum(MO) ⊆ Lm(MO). If this
assumption does not hold, the algorithm introduced in Chapter 4 is applied first.

The first task is to find all controllability problems in MO. Intuitively, a controllability
problem occurs when a word w ∈ Σ∗ is generated by MP and MO reaching states p and
q (by using maximal derivations), respectively, and MP can generate an uncontrollable
symbol µ ∈ Σuc in p while MO cannot generate this symbol in q. To obtain the states
p and q reached when generating the same word w ∈ Σ∗, a product automaton is
constructed, following, e.g., [10, p.135].

Definition 21
Let MP = (QP, Σ, {2}, δP, qP0,2, FP) ∈ DFA.
Let MO = (QO, Σ, Γ, δO, qO0,2, FO) ∈ DPDA.
Then the product automaton M× = MP×MO = (Q×, Σ, Γ, δ×, q×0,2, F×) is given by Q× =
QP ×QO, q×0 = (qP0, qO0), F× = FP × FO and

δ× =

((p, q), σ, γ, s, (p′, q′)) |∧σ ∈ Σ

∧(q, σ, γ, s, q′) ∈ δO
∧(p, σ,2,2, p′) ∈ δP

 ∨
∧σ = λ
∧p = p′

∧(q, λ, γ, s, q′) ∈ δO

.

Lemma 10
Let MP ∈ DFA and MO ∈ DPDA s.t. Lm(MO) ⊆ Lm(MP) and Lum(MO) ⊆ Lm(MO).

Then
(i) Lm(MP×MO) = Lm(MO),

(ii) Lum(MP×MO) = Lum(MO),
(iii) M× = MP×MO ∈ DPDA, and
(iv) × is implementable6.

Proof 1
Since M× = MP×MO is a product automaton, as usual we have that Lm(MP×MO) =
Lm(MP) ∩ Lm(MO) and Lum(MP×MO) = Lum(MP) ∩ Lum(MO).

6We say an algorithm is implementable if it can be realized by a computer program.

30/113

Then Lm(MO) ⊆ Lm(MP), Lum(MO) ⊆ Lm(MO), and Lum(MP) = Lum(MP) are sufficient
to conclude that Lum(MO) ⊆ Lum(MP), which immediately proves (i) and (ii). (iii) and (iv)
follow from [10, p.135].

Example 6
Consider the DPDA MO in Figure 3.1 and the DFA MP in Figure 3.2. It can be easily verified
that Lm(MO) ⊆ Lm(MP), since the state and transition structures of MO and MP are identical
and the usage of a stack only prevents certain transitions. Furthermore, Lum(MO) ⊆ Lm(MO)
from Example 4. The (accessible part of the) product automaton M× = MP×MO is depicted in
Figure 3.3 and does obviously generate the same marked and unmarked language as MO.

(00) (11) (12) (13) (24) (35)

a,2,•2
a,•,••

c,•,•

d,•,•

λ,•,λ
λ,•,λ

λ,2,2

b,•,λ

b,•,λ
b,2,2

u,•,•

Figure 3.3.: DPDA M× in Example 6, where (ij) , (pi, qj).

Unfortunately, in contrast to the DFA algorithm in [17, Lemma 5.1], it is not possible
to remove controllability problems in MO in a minimally restrictive fashion by deleting
states or edges in M×. This is due to the following observations:

(i) it is possible that controllability problems occur in one state for a subset of possible
stack-tops only (e.g., if u ∈ Σuc, M× in Figure 3.3 has a controllability problem in
(p2, q4) for stack-top 2, only). Therefore, removing this state may falsely delete
controllable words.

(ii) It is generally not possible to prevent a certain stack-top symbol in a given state by
removing certain pre-transitions as one incoming transition can generate more than
one stack-top7 (e.g., the transition ((p1, q3), b, •, λ, (p2, q4)) in Figure 3.3 generates
as stack-top the symbol which is currently in the stack underneath •).

(iii) Controllability problems are not easily observable in states (p̃, q̃) ∈ Qλ (for example,
(p1, q1) and (p1, q2) in Figure 3.3) as it is not possible to determine in (p̃, q̃) whether
an uncontrollable event µ ∈ Σuc generated by MP in p̃ is also generated by M× after a
(finite8) sequence of λ-transitions starting in (p̃, q̃). If such a controllability problem
occurs, it will be resolved at the final state (p̃, q̃′) of the λ-transition sequence.
However, observe that (p̃, q̃) ∈ F× and (p̃, q̃′) /∈ F× imply that the word w̃ ∈ Lm(M×)
with ((p̃, q̃), w̃, s), ((p̃, q̃′), w̃, s′) ∈ Creach(M×) (which has a controllability problem)
is not removed from the marked language by removing (p̃, q̃′) in M×. To remove
words w ∈ Lm(M×) with a controllability problem from the marked language, we
will ensure that only its maximal derivation f ∈ Dmax(M×, w) ends in a marking
state.

7That this is the reason why the algorithm presented in [8] does not give a minimally restrictive
controller.

8As MO ∈ LLF.

31/113

We therefore split states and redirect transitions in a particular way, such that deleting
states with a controllability problem deletes all words w ∈ Lm(M×) (and only those) having
a controllability problem, as required by Ω in (3.4). For this purpose we introduce four
new state types: regular (·r) and special (·s) main states

Mr(Q) , {〈q〉r | q ∈ Q}
Ms(Q) , {〈q〉s | q ∈ Q}

and regular (·r) and special (·s) auxiliary states

Ar(Q, Γ) , {〈q, γ〉r | q ∈ Q ∧ γ ∈ Γ}
As(Q, Γ) , {〈q, γ〉s | q ∈ Q ∧ γ ∈ Γ}

whereM(Q) =Mr(Q) ∪Ms(Q) and A(Q, Γ) = Ar(Q, Γ) ∪As(Q, Γ) are the sets of all
main and all auxiliary states, respectively. Hence, every state is split into two entities
consisting of |Γ|+ 1 states each. Using these new states, we define a function splitting
states and redirecting transitions.

Definition 22
Let M = (Q, Σ, Γ, δ, q0,2, F). Then the split automaton MSp = SPLIT(M) is defined by
MSp = (QSp, Σ, Γ, δSp, qSp 0,2, FSp) with QSp = M(Q) ∪ A(Q, Γ), qSp 0 = 〈q0〉r, FSp =
(Ar(F, Γ) ∪As(Q, Γ)) \Qλ(MSp) and

δSp =

{(〈p〉r, λ, γ, γ, 〈p, γ〉r)|p ∈ Q, γ ∈ Γ}
∪{(〈p〉s, λ, γ, γ, 〈p, γ〉s)|p ∈ Q, γ ∈ Γ}

∪
{
(〈p, γ〉r, σ, γ, s, 〈p′〉r)

∣∣∣∣(∧(p, σ, γ, s, p′) ∈ δ
∧(p /∈ F ∨ σ 6= λ)

)}
∪{(〈p, γ〉r, λ, γ, s, 〈p′〉s)|(p, λ, γ, s, p′) ∈ δ ∧ p ∈ F}
∪{(〈p, γ〉s, λ, γ, s, 〈p′〉s)|(p, λ, γ, s, p′) ∈ δ}
∪{(〈p, γ〉s, σ, γ, s, 〈p′〉r)|(p, σ, γ, s, p′) ∈ δ ∧ σ 6= λ}

Example 7
Consider the product automaton M× in Example 6 depicted in Figure 3.3. By using the abbre-
viation in Figure 3.4, its split version MSp = SPLIT(M×) is depicted in Figure 3.5, where all

“obviously useless” entities (i.e., main with corresponding auxiliary states that are not connected
by a path (ignoring the labels) to the initial and a marking state) were removed.

Intuitively, the newly introduced auxiliary states work as a stack-top observer, separating
outgoing transitions by their required stack-top, as shown in Example 7. Therefore, if a
controllability problem occurs for one stack-top, we can delete the respective auxiliary
state without falsely deleting controllable words. Furthermore, observe that all main
states belong to Qλ(MSp) while, due to determinism, auxiliary states can either belong
to the set Qλ(MSp) or do not have outgoing λ-transitions at all. This uniquely defines
the subset of states (i.e., A(Q, Γ) \ Qλ(MSp)) for which controllability can and must
efficiently be tested. Finally, the new special states are used to ensure that only the states
reached by maximal derivations of words w ∈ Lm(MO) are marking . Observe that the

32/113

〈ij〉r
2

•
, 〈(pi,qj)〉r

〈(pi,qj),2〉r

〈(pi,qj),•〉r

λ,2,2

λ,•,•

Figure 3.4.: Graphical abbreviation of one entity.

〈00〉r
2

•
〈11〉r

2

•
〈12〉r

2

•
〈13〉r

2

•
〈24〉r

2

•
〈35〉r

2

•

〈12〉s
2

•
〈13〉s

2

•

a,2,•2

a,•,••

c,•,•

d,•,•

λ,•,λ

λ,•,λ

λ,•,λ

λ,2,2

b,•,λ

λ,2,2

b,•,λ

b,•,λ

u,•,•

b,2,2

Figure 3.5.: DPDA MSp in Example 7. Non-accessible states and transitions are dotted.
The uncontrollable state NCS = {〈(p2, q4),2〉r} is indicated in gray.

33/113

construction in SPLIT ensures, that final states of maximal derivations always end in the
set A(Q, Γ) \Qλ(MSp), formally,

∀ w ∈ Lum(MSp), f ∈ Dmax,MSp(w) .

π1(π2(f (max(dom(f))))) ∈
(
A(Q, Γ) \Qλ(MSp)

)
.

(3.5)

Therefore, shifting the marking into those states ensures that uncontrollable words can
be removed from the marked language by removing states in the set A(Q, Γ) \Qλ(MSp).
Before removing states with controllability problems we show that SPLIT does not change
the marked and unmarked language of its input.

Lemma 11
Let M = (Q, Σ, Γ, δ, q0,2, F) and MSp = SPLIT(M). Then

(i) Lum(MSp) = Lum(M),
(ii) Lm(MSp) = Lm(M),

(iii) SPLIT(M) ∈ DPDA, and
(iv) SPLIT is implementable.

Proof 2
To simplify notation, we collect all states q, reachable by a finite sequence of λ-transitions from a
configuration (q̃, w, s̃) with q̃ ∈ F in the set

Qrlt(M, w) ,

q ∈ Q

∣∣∣∣∣∣∣∣∣
∃ f ∈ DI(M), n ∈ N, q̃ ∈ F .(

∧ f (n) = (ẽ, (q̃, w, s̃))
∧∃n′ > n . f (n′) = (e, (q, w, s))

)
 .

(i) Lum(MSp) = Lum(M): Let q ∈ Q, w ∈ Σ∗, γ ∈ Γ, s ∈ Γ∗ and (q, w, γ·s) be an arbitrary
configuration reachable by the initial derivation f ∈ DI(M), implying w ∈ Lum(M). Observe,
that the state q is mapped to the states {〈q〉r, 〈q, γ〉r | γ ∈ Γ} if q /∈ Qrlt(M, w) and to
{〈q〉s, 〈q, γ〉s | γ ∈ Γ} if q ∈ Qrlt(M, w). Using this, we can easily show that the single-step
relation

(e, (q, w, γ·s)) `M ((q, σ, γ, s′, q′), (q′, w·σ, s′·s)) (3.6)

is mimicked by a sequence of two single-step relations in MSp in four different ways
(a) (q /∈ Qrlt(M, w) ∧ (σ 6= λ ∨ q /∈ F)):

(ĕ, (〈q〉r, w, γ·s)) `MSp ((〈q〉r, λ, γ, γ, 〈q, γ〉r), (〈q, γ〉r, w, γ·s))

`MSp ((〈q, γ〉r, σ, γ, s′, 〈q′〉r), (〈q′〉r, w·σ, s′·s))

(b) (q ∈ F ∧ σ = λ):

(ĕ, (〈q〉r, w, γ·s)) `MSp ((〈q〉r, λ, γ, γ, 〈q, γ〉r), (〈q, γ〉r, w, γ·s))

`MSp ((〈q, γ〉r, σ, γ, s′, 〈q′〉s), (〈q′〉s, w·σ, s′·s))

34/113

(c) (q ∈ Qrlt(M, w) ∧ σ = λ):

(ĕ, (〈q〉s, w, γ·s)) `MSp ((〈q〉s, λ, γ, γ, 〈q, γ〉s), (〈q, γ〉s, w, γ·s))

`MSp ((〈q, γ〉s, σ, γ, s′, 〈q′〉s), (〈q′〉s, w·σ, s′·s))

(d) (q ∈ Qrlt(M, w) ∧ σ 6= λ):

(ĕ, (〈q〉s, w, γ·s)) `MSp ((〈q〉s, λ, γ, γ, 〈q, γ〉s), (〈q, γ〉s, w, γ·s))

`MSp ((〈q, γ〉s, σ, γ, s′, 〈q′〉r), (〈q′〉r, w·σ, s′·s))

Therefore, using induction, we can always construct a derivation f ′ ∈ DI(MSp), n′ ∈ N s.t.
f ′(n′) = (e′, (q′, w, γ·s)) giving w ∈ Lum(MSp) and therefore, Lum(MSp) ⊆ Lum(M). Using
the fact that the relations in case (a)-(d) only occur, iff there exists a matching relation (3.6) in
M and derivations in MSp can only be concatenated iff this is possible in M, the construction of
single-step relations in M matching single-step relations in MSp gives the same cases as before,
implying Lum(M) ⊆ Lum(MSp).
(ii) Show Lm(MSp) = Lm(M): Let w ∈ Lm(M) and f ∈ DI(M), n ∈ N, q ∈ F s.t.
f (n) = (e, (q, w, γ·s)) is the starting configuration in (3.6). If σ 6= λ in (3.6), we know
from part (i) and cases (a) and (d) that there exists a derivation f ′ ∈ DI(MSp), n′ ∈ N s.t.
f ′(n′) = (ĕ, (〈q, γ〉r, w, γ·s)) with 〈q, γ〉r ∈ FSp (since q ∈ F and 〈q, γ〉r /∈ Qλ(MSp)), giving
w ∈ Lm(MSp). Now let σ = λ. Since M ∈ LLF, there exists σ′ 6= λ and a finite chain of
singe-step relations, s.t.

(ĕ, (q, w, γ·s)) `∗M (ẽ, (q̃, w, γ̃·s̃)) `M ((q̃, σ′, γ̃, s̃′, q̃′), (q̃′, w·σ′, s̃′·s̃)) or (3.7)
(ĕ, (q, w, γ·s)) `∗M (ê, (q̂, w, ŝ·s)) 6`M . (3.8)

Then we can combine case (b),(c) and (d) from the proof of part (i) to mimic (3.7) by the finite
chain

(ĕ, (〈q〉, w, γ·s)) `∗MSp
(h̃, (〈q̃, γ̃〉s, w, γ̃·s̃)) `MSp

((〈q̃, γ̃〉s, σ′, γ̃, s̃′, 〈q̃′〉r), (〈q̃′〉r, wσ′, s̃′·s̃))

and (3.8) by the finite chain

(⊥, (〈q〉, w, γ·s)) `∗MSp
(ĥ, (〈q̂, γ̂〉s, w, γ̂·s)) 6`MSp .

Now observe, that all states in As(Q, Γ)∩Qλ(QSp) can only have outgoing λ-transitions, due to
the determinism of Q that is preserved in QSp. Therefore, we have 〈q̃, γ̃〉s ∪ 〈q̂, γ̂〉s 6⊆ Qλ(MSp)
and therefore 〈q̃, γ̃〉s ∪ 〈q̂, γ̂〉s ∈ FSp by definition. This implies that there exists a derivation
f ′ ∈ DI(MSp), n′′ ∈ N s.t. f ′(n′) = (h, (p, w, r)) s.t. p ∈ FSp, implying w ∈ Lm(MSp) and
therefore Lm(SPLIT(M)) ⊆ Lm(M). For the proof of Lm(M) ⊆ Lm(SPLIT(M)) observe, that
if w is accepted by a state 〈q, γ〉r ∈ FSp, it follows from (i) and the construction of FSp that w
is accepted by q ∈ F in M. Now let w be accepted by a state 〈q, γ〉s ∈ FSp. Then it follows
from case (b) in the proof of (i) that there exists some state p ∈ F that accepts w, since otherwise,
〈q, γ〉s ∈ FSp is not reachable by w. This again gives w ∈ Lm(MSp).
Since we only split states, redirect existing transitions and add unique λ-transitions, (iii) and
(iv) follow immediately from the construction.

35/113

Technically, we are now ready, to delete all states that have a controllability problem.
However, both × and SPLIT introduce non-accessible states and transitions. Trimming
the automaton MSp prior to the removal of controllability problems has the advantage
that termination of the fixed point algorithm over Ω can be easily verified, since no
states are removed, if the automaton is trim, nonblocking and no further controllability
problems are present. Therefore, following [7, Thm.4.1], we introduce an algorithm
to remove non-accessible states and transitions in DPDA. Here, in contrast to DFA,
transitions can be non-accessible even if they connect accessible states, since the required
stack-top might not be available at its pre-state.

Definition 23
Let M = (Q, Σ, Γ, δ, q0,2, F). Then the accessible part AC(M) of M is defined by MAc =
(QAc, Σ, Γ, δAc, q0,2, FAc) s.t. QAc = Q \Qna(M), FAc = F \Qna(M) and δAc = δ \ δna(M),
where

Qna(M) , {q ∈ Q \ {q0} | Lm((Q, Σ, Γ, δ, q0,2, {q})) = ∅}

are the non accessible states and

δna(M) ,

e = (q, x, γ, s, q′) ∈ δ

∣∣∣∣∣∣∣
∀ r /∈ Q, δ′ = (δ ∪ {(q, λ, γ, γ, r)}) \ {e} .

Lm((Q ∪ {r}, Σ, Γ, δ′, q0,2, {r})) = ∅

are the non accessible transitions.

Example 8
The accessible part of the automaton MSp in Example 7, depicted in Figure 3.5, is obtained by
removing the dotted states, giving MAc = AC(MSp).

Trimming a DPDA does not change its marked and unmarked languages.

Lemma 12
Let M = (Q, Σ, Γ, δ, q0,2, F). Then

(i) Lm(AC(M)) = Lm(M),
(ii) Lum(AC(M)) = Lum(M),

(iii) AC(M) ∈ DPDA, and
(iv) AC is implementable.

Proof 3
Observe that Qna(M) is the set of states unreachable by derivations of words w ∈ Lum(M) and
δna(M) is the set of transitions that are not part of derivations of words w ∈ Lum(M). Therefore
removing these states and transitions does not change the unmarked language, implying (ii). Since
accessible marking states are preserved, also the marked language (as a subset of the unmarked
language) is left unchanged, implying (i). Since M ∈ DPDA, (iii) immediately follows as we
only remove states and transitions. (iv) follows, as the emptiness of a CFL is decidable9 (see [10,
p.137]).

9 The algorithm testing the emptiness of a CFL is computationally very involving. The more efficient
algorithm used in our libFAUDES implementation is presented in Chapter 4.

36/113

As the final step of our algorithm, we will now identify auxiliary states that have a
controllability problem with respect to the plant, and remove them. This is done in
analogy to the DFA algorithm in [17], while ignoring all states in Qλ.

Definition 24
Let Σuc ⊆ Σ, MP ∈ DFA,
MO ∈ DPDA,
M× = MP×MO = (Q×, Σ, Γ, δ×, q×0,2, F×), and
MAc = AC(SPLIT(M×)) = (QAc, Σ, Γ, δAc, q0,2, FAc).
Then the automaton with removed non-controllable auxiliary states is defined by
RNCS(MAc) = (QR, Σ, Γ, δR, q0,2, FR), where QR = QAc \ NCS, FR = FAc \ NCS and
δR = {(q, x, γ, w, q′) ∈ δ′|q, q′ ∈ QR}, where

NCS :=

〈(p, q), γ〉 ∈ ((QAc ∩A(Q×, Γ)) \Qλ(MAc)) |

∃µ ∈ Σuc .
(
∧∃p′ . (p, µ,2,2, p′) ∈ δP
∧∀s, r . (〈(p, q), γ〉, µ, γ, s, r) /∈ δAc

)

Example 9
Consider the accessible split automaton MAc in Example 8 depicted in Figure 3.5 and let Σuc =
{u}. Then the set of uncontrollable auxiliary states of MAc is given by NCS = {〈(p2, q4),2〉r},
indicated in gray in Figure 3.5. Removing this state and all ingoing and outgoing transitions
generates the automaton M′O = RNCS(MAc). Observe that M′O has a blocking situation in
〈(p2, q4)〉r for all words w whose derivations generate stack-top 2 in 〈(p2, q4)〉r, which are
w ∈ {a2k+1c(bb)k, a2kd(bb)k | k > 0}. Note that removing these words (and their extensions)
from Lum(M′O), i.e., making M′O nonblocking, requires, depending on the number of occurrences
of a and b in the past, the restriction of possible future steps. This implies, that the nonblocking
version of M′O has to be structurally different from MO in a non-obvious manner. This makes the
problem of automatically removing blocking situations in DPDA challenging. This problem is
investigated in Chapter 4.

As our main result, we now prove that the introduced sequence of automaton manip-
ulations removes those (and only those) marked words which have a prefix which is
uncontrollable w.r.t. the plant.

Theorem 12
Let Σ = Σc ∪ Σuc s.t. Σc ∩ Σuc = ∅.
Let MP ∈ DFA.
Let MO ∈ DPDA s.t. Lm(MO) ⊆ Lm(MP) and Lum(MO) ⊆ Lm(MO).
Then Lm(RNCS(AC(SPLIT(MP×MO)))) = Ω(Lm(MO)).

Proof 4
Using MAc = AC(SPLIT(MP×MO)) and M′O = RNCS(MAc), we have the following obser-
vations:
(A) From Lemma 10, 11 and 12, follows that Lum(MAc) = Lum(MO) and Lm(MAc) =

Lm(MO).
(B) Pick an arbitrary w ∈ Lum(MO) satisfying ¬ContW(Lum(MO), LPum, Σuc, w). Using

Equation (3.5), we can fix fw ∈ Dmax,MAc(w) and the final state of fw 〈(p, q), γ〉 ∈

37/113

((QAc ∩A(Q×, Γ)) \Qλ(MAc)). Using Def 21 (p. 30) this implies that MP uniquely
accepts w in p. Now Equations (3.1) and (3.3) and A imply that there exists µ ∈ Σuc

s.t. (p, µ,2,2, p′) ∈ δP and ∀s, r . (〈(p, q), γ〉, µ, γ, s, r) /∈ δAc, giving that 〈(p, q), γ〉 ∈
NCS.

(C) It follows from the construction in Def 22 (p. 32) that there exist derivations generating w
and ending in a main state 〈(p, q)〉 and possibly also in other preceding states in Qλ(MAc).
Observe, that all states reached by generating w, except of 〈(p, q), γ〉, are in Qλ(MAc) and
therefore, by construction, not in FAc.

(D) Def 24 (p. 37) implies that w ∈ Lum(M′O) iff there exists a (possibly non-maximal) derivation
f ′ ∈ D(MAc) with final configuration (r, w, s) s.t. for all n ∈ dom(f ′) preceeding
max(dom(f ′)): π2(f ′(n)) /∈ NCS. MAc ∈ DPDA implies that for all prefixes w′ < w
(but not for w itself) holds that their maximal derivations are a prefix of f ′. Therefore, using
B implies

w ∈ Lum(M′O)→
(
∀w′ < w . ContW(Lum(MO), LPum, Σuc, w′)

)
and(

∀w′ v w . ContW(Lum(MO), LPum, Σuc, w′)
)
→ w ∈ Lum(M′O).

(E) Now assume ¬ContW(Lum(MO), LPum, Σuc, w) and all w′ < w are controllable. From B
follows that 〈(p, q), γ〉 ∈ NCS is removed. This has two consequences:
(a) we still have w ∈ Lum(M′O) from C, D, and
(b) if w ∈ Lm(MO) we have w /∈ Lm(M′O) from C, D.

Combining A, D and E(b) implies

w ∈ Lm(RNCS(AC(SPLIT(MP×MO)))) ↔

∀w′ v w . ContW(Lum(MO), LPum, Σuc, w′),

which proves the statement.

Remark 4
Observation E(a) in the proof of Theorem 12 is the reason why we do not implement the removal of
all uncontrollable unmarked words, i.e., Ω(Lum(MO)), used in [17] as discussed in Remark 3.

3.5 Conclusion

In this chapter, we have presented a first step towards extending SCT to situations, where
the plant is realized by a DFA, but the specification is modeled as a DPDA, i.e., the speci-
fication language is a DCFL. In particular, we have presented an algorithm consisting
of a sequence of automaton manipulations which, starting with a nonblocking DPDA,
removes all (and only those) marked words having a prefix which is uncontrollable w.r.t.
the plant. This algorithm was implemented as a plug-in in [12]. The remaining essential
part of a procedure to obtain a proper minimally restrictive supervisor, namely an algo-
rithm removing blocking situations in DPDA, is presented in Chapter 4. The connection
between a language-theoretic characterization and the automata-based implementation is
investigated in detail in Chapter 2.

38/113

4. Enforcing Operational Properties
including Blockfreeness for DPDA

We present an algorithm which modifies a deterministic pushdown automaton (DPDA)
such that

(i) the marked language is preserved,
(ii) lifelocks are removed,

(iii) deadlocks are removed,
(iv) all states and edges are accessible, and
(v) operational blockfreeness is established (i.e., coaccessibility in the sense that every

initial derivation can be continued to a marking configuration).
This problem can be trivially solved for deterministic finite automata (DFA) but is not
solvable for standard petri net classes. The algorithm is required for an operational
extension of the supervisory control problem (SCP) to the situation where the specification
in modeled by a DPDA.

4.0 Introduction

We are introducing an algorithm to transform a DPDA such that its observable oper-
ational behavior is restricted to its desired fragment. The algorithm decomposes the
problem into three steps: transformation of the DPDA into a Context Free Grammar
(CFG) while preserving the operational behavior, restricting the CFG to enforce opera-
tional blockfreeness, and the transformation of the resulting CFG via Parsers to DPDA
while preserving and establishing the relevant criteria on the operational behavior. The
algorithm presented here is an essential part for the effective solution of the supervisory
control problem for DFA plants and DPDA specifications which is reduced (in Chapter 2)
to the effective implementability of ensuring blockfreeness (solved in this chapter) and
ensuring controllability (solved in Chapter 3).

In Section 4.1 we define abstract transition systems (ATS) as a basis for the systems
involved in the algorithm and give a formal problem statement to be solved for DPDA.
In Section 4.2 we define the concrete transition systems appearing in the algorithm as
instantiations of ATS. In Section 4.3 we present the extensive algorithm due to space
restrictions mostly informally using a running example before we discuss the formal
verification and possible improvements of the approach. The formal constructions of the
algorithm are contained in Appendix A.2. We summarize our results in Section 4.4 and
outline our next steps in Section 4.5.

4.1 Abstract Transition Systems

The concrete systems used in this chapter (including DPDA, CFG, and Parsers) are
instantiations of the subsequently defined class of Abstract Transition Systems (ATS).

39/113

Thus, they will inherit the uniform definitions of derivations, languages, and the problem
to be solved from the ATS definitions.

Throughout the chapter we use the following notations.

Notation 2
Let A be an alphabet and let B be a set. Then

(i) A∗ denotes the set of all finite words over A,
(ii) A≤1 = A ∪ {λ},

(iii) Aω∗ denotes the set of all finite and infinite words over A,
(iv) · is the (sometimes omitted) concatenation operation on words (and languages),
(v) v is the prefix relation,

(vi) A is the prefix-closure of A,
(vii) w is the suffix relation, and
(viii) k:w denotes the k-Prefix of w ∈ A∗ which is defined by (if w = α·w′ ∧ k > 0 then

α·((k− 1):w′) else λ), and
(ix) z(A, B) denotes (A ∪ {⊥})× B where ⊥ represents undefinedness.

Definition 25 (Abstract Transition System)
S = (E, C, S, πS, R, c0, A, O, om, oum) ∈ ATS iff

(i) E is a set of step-edges,
(ii) C is a set of configurations,

(iii) S is a set of states,
(iv) πS maps each configuration to at most one state,
(v) R is a binary step-relation on z(E, C),

(vi) c0 ∈ C is the initial configuration,
(vii) A is the marking subset of C,
(viii) O is the set of outputs, and
(ix) oum : C→ 2O and om : A→ 2O define the unmarked and marked outputs for configurations.

For these ATS we define their derivations, generated languages, and subsequently the
properties to be enforced.

Definition 26 (Semantics of ATS)
(i) the set of derivations D(S) contains all elements fromz(E, C)ω∗ starting in a configuration

of the form (⊥, c) where all adjacent (c1, e1), (c2, e2) ∈ z(E, C) satisfy (c1, e1) R (c2, e2),
(ii) the set of initial derivations DI(S) contains all elements of D(S) starting with (⊥, c0),

(iii) the reachable configurations Creach(S) are defined by {c ∈ C | ∃d ∈ DI(S) . d(n) =
(e, c)},

(iv) the marked language Lm(S) is defined by ∪om(F ∩ Creach(S)), and
(v) the unmarked language Lum(S) is defined by ∪oum(Creach(S)).
The concatenation of derivations d1, d2 ∈ D(S) is given by (d1·nd2)(i) = (if i ≤ n then

d1(i) else d2(i− n)).

Definition 27 (Properties of ATS)
(i) S has a deadlock iff for some finite d ∈ DI(S) of length n ∈ N which is not marking (i.e.,

for all k, d(k) = (e, c) implies c /∈ A) there is no c′ such that d(n) R c′,
(ii) S has a lifelock iff for some infinite d ∈ DI(S) there is an N ∈ N such that the unmarked

language of d is constant after N (i.e., for all k ≥ N, oum(d(N)) = oum(d(k))),

40/113

(iii) S is accessible iff for each p ∈ S there is c ∈ Creach(S) such that πS(c) = p and for each
e ∈ E there is d ∈ DI(S) such that d(n) = (e, c), and

(iv) S is operational blockfree iff for any finite di ∈ DI(S) of length n ∈ N ending in di(n) =
(e, c) there is a continuation dc ∈ D(S) such that di·ndc is a marking derivation and di and
dc match at the gluing point n (i.e., dc(0) = (⊥, c)).

By definition, for operational blockfree ATS the absence of deadlocks is guaranteed.
Finally, we present the problem of enforcing the desired properties on an ATS, which
will be solved for DPDA by the algorithm presented in Section 4.3.

Definition 28 (Problem Statement for ATS)
Let S ∈ ATS. How to find S ′ ∈ ATS such that

(i) Lm(S) = Lm(S ′),
(ii) S ′ is accessible,

(iii) S ′ has no deadlocks,
(iv) S ′ has no lifelocks, and
(v) S ′ is operational blockfree?

In the DFA-setting: lifelocks can not occur and the other aspects of the problem are
solved by simple and efficient graph-traversal algorithms pruning out states which are
either not reachable from the initial state or from which no marking state can be reached1.

4.2 Concrete Transition Systems

Every deterministic context free language can be properly represented by at least three
different types of finite models: a deterministic EPDA, a context free grammar (CFG)
satisfying the LR(1) determinism property, and a deterministic Parser. These three types
occur at intermediate steps of our algorithm which solves the problem stated in Defini-
tion 28. Therefore, the following subsections contain their definitions as instantiations of
the ATS. In each of the three cases we proceed in three steps:

1. definition of EPDA, CFG, and Parser as tuples,
2. instantiation of the ATS-scheme by defining each of the ten components, and
3. characterization of the determinism conditions.

Remark 5
We provide the slightly nonstandard branching semantics2 for EPDA and Parsers which utilize
a history variable in the configurations to greatly simplify the definition of the operational-
blockfreeness from Definition 27. Furthermore, this branching semantics corresponds to the
intuition that the finite state realizations are generators rather than acceptors of languages, as it is
customary in the context of supervisory control theory.

4.2.1 EPDA and DPDA

We introduce EPDA, which are NFA enriched with a variable on which the stack-
operations top, pop, and, push can be executed.

1The trivial handling of an ATS with empty marked language obtained at some point of the
calculation is kept implicit in this chapter (in this case, no solution exists and the calculation can be
aborted).

2The branching interpretation is already the standard for CFG.

41/113

EPDA PDA DPDA NFA DFA

1-popping X X X X
deterministic X X
λ-step-free X X
stack-free X X

Table 4.1.: Subclasses of EPDA.

Definition 29 (Extended Pushdown Automata (EPDA))
M = (Q, Σ, Γ, δ, q0,2, F) ∈ EPDA iff

(i) the states Q, the output alphabet Σ, the stack alphabet Γ, and the set of edges δ are finite (Q,
Q∗, Σ, Σ∗, Γ, Γ∗ range over p, p̃, α, w, γ, s, respectively),

(ii) δ : Q× Σ≤1 × Γ∗ × Γ∗ ×Q,
(iii) the end-of-stack marker 2 is contained in Γ,
(iv) the marking states F and the initial state p0 are contained in Q, and
(v) 2 is never removed from the stack (i.e., (p, σ, s, s′, p′) ∈ δ and s w 2 imply s′ w 2).

We proceed with the ATS instantiation for EPDA.

Definition 30 (EPDA—ATS Instantiation)
An EPDA M = (Q, Σ, Γ, δ, q0,2, F) instantiates
the ATS scheme (E, C, S, πS, R, c0, A, O, om, oum) via:

(i) E δ

(ii) C C(M) , Q× Σ∗ × Γ∗ where (p, w, s) ∈ C(M) consists of a state p, a history variable
w (storing the symbols generated), and the stack-variable s

(iii) S Q
(iv) πS(p, w, s) p
(v) R `M : z(δ, C(M))2 defined by (e, (p, w, s′·s)) `M ((p, σ, s′, s′′, p′), p′, w·σ, s′′·s)

(vi) c0 (p0, λ,2)
(vii) A {(p, w, s) ∈ C(M) | p ∈ F}
(viii) O Σ∗

(ix) om(p, w, s), oum(p, w, s) {w}

The well known sub-classes of EPDA having one or more of the properties below are
defined in Table 4.1.

Definition 31 (Sub-classes of EPDA)
An EPDA is 1-popping iff every edge pops precisely one element from Γ from the stack. An EPDA
is deterministic iff for every reachable configuration all two distinct steps append distinct elements
of Σ to the history variable3. An EPDA is λ-step-free iff no edge is of the form (p, λ, s, s′, p′). An
EPDA is stack-free iff every edge is of the form (p, α,2,2, p′).

4.2.2 CFG and LR(1)

A CFG (e.g., defined in [4]) is a term-replacement system replacing a nonterminal with a
word over output symbols4 and nonterminals.

3Thus, λ-steps may not be enabled simultaneously with other steps.
4The output symbols of a CFG are usually called terminals.

42/113

Definition 32 (Context-Free Grammars (CFG))
G = (N, Σ, P, S) ∈ CFG iff

(i) the nonterminals N (ranging over A, B), the output alphabet Σ, and the productions P are
finite

(ii) P : N × (N ∪ Σ)∗, and
(iii) the initial nonterminal S is contained in N.
N ∪ Σ and (N ∪ Σ)∗ range over κ and v, respectively. Productions (A, v) are written A→ v.

Definition 33 (CFG—ATS Instantiation)
A CFG G = (N, Σ, P, S) instantiates the ATS scheme (E, C, S, πS, R, c0, A, O, om, oum) via:

(i) E P
(ii) C C(G) = (N ∪ Σ)∗

(iii) S N
(iv) πS take the first nonterminal (if present) of the configuration
(v) R `G: z(P, C(G))2 given by (e, (v1·A·v2)) `G ((A, v), v1·v·v2)

(vi) c0 S
(vii) A Σ∗

(viii) O Σ∗

(ix) om(v) {v}
(x) oum(v) {v}

The LR(1)-condition below, which corresponds to the determinism property of EPDA,
depends on the restriction of the step-relation to the replacement of the right-most
nonterminal which will be denoted by the index rm.

Definition 34 (LR(1)-Condition)
According to [16] (page 52)5, LR(1) is the set of all CFG for which (assuming x ∈ Σ∗)

(i) (⊥, S) `rm*
G (e1, v′1·A1·w1) `rm

G ((A1, v1), v′1·v1·w1),
(ii) (⊥, S) `rm*

G (e2, v′2·A2·w2) `rm
G ((A2, v2), v′2·v2·w2),

(iii) v′2·v2 = v′1·v1·x, and
(iv) 1:w1 = 1:(x·w2), imply
(v) v′1 = v′2, A1 = A2, and v1 = v2.

Intuitively, if a parser for a CFG has generated the shorter prefix v′1·v1 it must be able to
decide by fixing the next symbol (1:w1 and 1:(x·w2), respectively) whether (A1, v1) is to
be applied backwards or whether for x 6= λ another symbol of x should be generated or
for x = λ the production (A2, v2) is to applied backwards6.

4.2.3 Parser

Intuitively, a Parser is an EPDA with mild modifications7:
1. the parser may fix the next output-symbol (without generating it) and
2. the parser may terminate the generation of symbols (by fixing the end-of-output

marker �).
5The here relevant section 6.6 of the monograph [16] is based primarily on the work of Knuth [11]

which was later extended in [1].
6E.g., ({S, A, B}, {a}, {(S, A), (S, B), (A, a), (B, a)}, S) /∈ LR(1).
7An equivalent linear/scheduled definition of Parser is given in [16].

43/113

Definition 35 (Parser)
M = (N, Σ, S, F, P, �) ∈ Parser iff

(i) the stack alphabet N, the output alphabet Σ, the marking stack-tops F, and the rules P are
finite, (N, N∗, Σ, Σ∗, range over p, p̃, α, w, respectively)

(ii) P : N+ × Σ≤1 × N+ × Σ≤1,
(iii) the initial stack symbol S and the marking stack-tops F are contained in N,
(iv) the end-of-output marker � is contained in Σ,
(v) the parser may not modify the output (i.e., (s·p, w, s′·p′, w′) ∈ P implies w w w′ (i.e., w

ends with w′)), and
(vi) the end-of-output marker � may not be generated (i.e., (s·p, w·w′, s′·p′, w′) ∈ P and w w �

imply w′ w �).
Rules (s·p, w·w′, s′·p′, w′) are written s·p|w·w′→s′·p′|w′.

Intuitively, a rule s·p|w·w′→s′·p′|w′ is changing the state from p to p′, pops s from the
stack, pushes s′ to the stack, fixes the output w′, and generates w to the output.

Definition 36 (Parser—ATS Instantiation)
A Parser M = (N, Σ, S, F, P, �) instantiates
the ATS scheme (E, C, S, πS, R, c0, A, O, om, oum) via:

(i) E P
(ii) C C(M) , N+ × Σ∗ × Σ∗ where (s·p, w, f) ∈ C(M) contains the stack fragment s, the

current state p, a history variable w, and the fixed part f ∈ Σ≤1 which the parser fixed
without generating it.

(iii) S {p ∈ N | (s·p, w·w′, s′·p′, w′) ∈ P ∧ p ∈ {p, p′}}
(iv) πS(s·p, w, f) {p}
(v) R `M: z(P, C(M))×z(P, C(M)) given by

(e, (s·s1·p, w, f)) `M ((s1·p, w1, s2·p′, w2), s·s2·p′, w′, f ′) where
(a) w1 v f ∨ f v w1,
(b) w′ = w·drop(| f |, delbot(2, w1)),8 and finally
(c) f ′ = w2·drop(|w1|, f).

(vi) c0 (S, λ, λ)
(vii) A {(s·p, w, f) | f ∈ {λ, �} ∧ p ∈ F}
(viii) O Σ∗

(ix) om(s·p, w, f) {w}
(x) oum(s·p, w, f) {w}.

A Parser is deterministic iff for all reachable configuration all two distinct steps
(i) append distinct symbols to the history variable, or

(ii) one step adds a symbol to the history variable and the other step completes the
output-generation by fixing the end-of-output marker �9.

4.3 Approach

IMotivation:: For example, the DPDA G0 in Figure 4.1 exhibits

8Here delbot(2, w) removes a potential � from the end of w and drop(n, w) drops the first n symbols
from w.

9A parser may (depending on the other rules) be deterministic if (p1, w·α, λ) and (p2, w, �) are
successors of the same reachable configuration (p, w, λ).

44/113

p0G0 p1 p2

p3p4
a,2,•2; a,•,••

b,•,•; b,2,2 b,•,λ

d,•,λ
λ,2,2λ,2,•2

λ,•,λ

a,2,2

p0GInt

p′0

p1 p2

p3

a,2,•2; a,•,••a,•,••

b,•,•; b,2,2 b,•,λ

d,•,λλ,2,2

Figure 4.1.: DPDA G0 and GInt generating {a2nb(bd)n | n ∈ N}.

G0 ∈ DPDA
G1 ∈ SDPDA
G2 ∈ SDPDA+no double acceptance
G3 ∈ CFG
G4 ∈ LR(1)
G5 ∈ LR(1)+�-augmented

G6 ∈ DFA
G7 ∈ Parser+deterministic
G8 ∈ Parser+deterministic+�-free
G9 ∈ Parser+essentially EDPDA
G10 ∈ EDPDA
G11 ∈ DPDA
G12 ∈ DPDA+accessible

Step 0 (Input):
Step 1:
Step 2:
Step 3:
Step 4:
Step 5:
Step 6:
Step 7:
Step 8:
Step 9:
Step 10:
Step 11:
Step 12 (Output): Bl

oc
kf

re
e

an
d

Li
fe

lo
ck

fr
ee

Figure 4.2.: Visualization of the algorithm.

• a lifelock generating the output b reaching p1, p3 arbitrarily often,
• a lifelock (and blocking situations) generating the output abb reaching p2 arbitrarily

often,
• a non accessible state p4 (along with the edge leading to it), but
• no deadlock.

Observe that the cause (G0 does not properly distinguish between an even or odd number
of generated as) is structurally separated from the lifelock at p2. Thus, the intuitive
solution GInt (see Figure 4.1) is obtained by splitting the state p0 and by removing junk.
Any formal construction must

• detect the states with a deadlock, a lifelock, or a blocking situation,
• determine the cause of that problem, and
• make a decision on how to fix the problem.

ISolution:: In Figure 4.2 we have depicted our approach in the subsequently explained
12 steps. The basic idea is to

• (Steps 1–3) transform the DPDA G0 into a CFG G3,
• (Step 4) obtain an LR(1) grammar G4 by restricting G3 to establish operational

blockfreeness and absence of lifelocks,
• (Steps 5–11) transform the LR(1) grammar into a DPDA G11 preserving the desired

properties, and finally
• (Step 12) remove all inaccessible states and edges.

Steps 1–4 and 7–12 preserve the marked language. Steps 1–3 and 7–12 preserve the
unmarked language while step 4 restricts the unmarked language to the prefix closure of
the marked language. Steps 5 and 6 are not meant to preserve the (un)marked language

45/113

as they are only intermediate results of the translation in Step 7.

4.3.1 Approximating Accessibility

Throughout the following presentation we omit states and edges which are obviously
inaccessible: such states and edges are detected by overapproximating the possible
≤k-length prefixes of stacks in reachable configurations. The k-overapproximation
R : Q→Q→ 2Γ≤k

is the least function satisfying the following rules:
(i) initial configuration: k:2 ∈ R(p0, p0),

(ii) closure under steps: if γs ∈ R(p, p) and (p, σ, γ, s′, p′) ∈ δ then k:(s′·s) ∈ R(p, p′)
and k:(s′·s) ∈ R(p′, p′), and

(iii) transitivity: if s ∈ R(p, p′) and s′ ∈ R(p′, p′′) then s′ ∈ R(p, p′′).10

For example, in G0 the state p4 is obviously inaccessible because the set of all ≤1-length
prefixes of stacks of reachable configurations with state p4 is empty. However, we would
obtain λ to be a ≤0-length prefix of a reachable configuration with state p4; i.e., by
increasing the parameter for the length of the calculated prefixes a better result may be
obtained. For DFA and k = 0 the standard DFA-accessibility-operation is obtained. For
arbitrary DPDA step 12 alone enforces accessibility.

Applying this approximation implicitly in the running example, we now describe the
steps of the algorithm solving the problem stated in Definition 28.

4.3.2 Step 1

We transform the DPDA into a simple DPDA (called SDPDA subsequently) such that
every edge is of one of three forms: a generating edge (p, α, γ, γ, p′), a pop edge
(p, λ, γ, λ, p′), or a push edge (p, λ, γ, γ′γ, p′). The operation consists of four steps:

(i) split each edge of the form (p, α, γ, s, p′) into the two edges (p, α, γ, γ, p′′) and
(p′′, λ, γ, s, p′),

(ii) split each neutral edge of the form (p, λ, γ, γ, p′) into the two edges (p, λ, γ, ◦γ, p′′)
and (p′′, λ, ◦, λ, p′) for a unique fresh stack symbol ◦ ∈ Γ,

(iii) split each rule of the form (p, λ, γ, sγ′, p′) with γ 6= γ′ into (p, λ, γ, λ, p′′) and
(p′′, λ, γ′′, sγ′γ′′, p′) for every γ′′ ∈ Γ, and

(iv) split every rule of the form (p, λ, γ, sγ, p′) into |s| steps which push a single symbol
of s in each step.

Note that the fresh states to be used in each of the four steps contain the edge for which
they have been constructed (i.e., p′′ in the first step is (p, σ, γ, s, p′)). The operation has
been adapted from [11] by

1. correcting the handling of neutral edges involving the 2 symbol (for example, the
self loop at p2 in G0 would have been handled incorrectly), and by

2. logging the involved edges in the fresh states as explained before.
For the DPDA G0 from Figure 4.1 the SDPDA G1 in Figure 4.3 results (up to renaming of
the states).

10 Without using the transitivity rule we obtain the 0- and 1-overapproximations R0 and R1 of G0
(where we omit empty sets):
R0 = {p0 7→ {p1 7→ {λ}, p0 7→ {λ}}, p1 7→ {p2 7→ {λ}, p1 7→ {λ}, p3 7→ {λ}}, p2 7→ {p2 7→ {λ}, p1 7→
{λ}}, p3 7→ {p1 7→ {λ}, p4 7→ {λ}, p3 7→ {λ}}, p4 7→ {p4 7→ {˘}}}
R1 = {p0 7→ {p1 7→ {2, •}, p0 7→ {2, •}}, p1 7→ {p2 7→ {λ}, p1 7→ {λ,2, •}, p3 7→ {•}}, p2 7→ {p2 7→
{λ,2}, p1 7→ {λ}}, p3 7→ {p1 7→ {λ}, p3 7→ {•}}}

46/113

p0G1

p′0

p′′0

p1 p′1

p2p′2 p′′2

p3p4

a,2,2 λ,2,•2

a,•,•λ,•,••

b,•,•; b,2,2 b,•,•

λ,•,λ

d,•,•
λ,2,◦2

λ,◦,λ
λ,•,λ

λ,2,•2λ,•,λ

a,2,2

p0G2

p′0

p′′0

p1 p′1

p2p′2 p′′2

p3p4

p1p3

a,2,2

a,•,•

b,•,•; b,2,2 b,•,•

d,•,•

a,2,2 b,•,•

a,2,2

λ,2,◦2

λ,◦,λ

λ,2,•2

λ,•,λ

λ,2,•2

λ,•,••

λ,•,λλ,•,λ

λ,2,•2

λ,•,λ

G4 with initial symbol Lp0,2

1:Lp0,2 →a·Lp′0,2 8 :Lp0,2 →b·Lp1,2

2:Lp′0,2 →Lp0,•,p1 ·Lp1,2 9 :Lp0,•,p1→a·Lp′′0 ,•,p1

3:Lp1,2 →Lp3,• 10:Lp3,• →λ
4:Lp′′0 ,•,p1

→Lp0,•,p2 ·Lp2,•,p1 11:Lp0,•,p2→a·Lp′′0 ,•,p2

5:Lp0,•,p2→b·Lp1,•,p2 12:Lp1,•,p2→b·Lp′1,•,p2

6:Lp′1,•,p2
→λ 13:Lp′′0 ,•,p2

→Lp0,•,p1 ·Lp1,•,p2

7:Lp2,•,p1→d·Lp′2,•,p1
14:Lp′2,•,p1

→λ

renamed G4 with initial symbol S

1 :S→aA 2 :A→BC 3 :C→D 4 :E→FJ 5 :F→bG
6 :H→λ 7 :J →dK 8 :S→bC 9 :B→aE 10:D→λ
11:F→aI 12:G→bH 13:I →BG 14:K→λ

Figure 4.3.: The simple DPDA G1, the simple DPDA G2 not exhibiting double marking,
and the LR(1)-grammar G4.

47/113

4.3.3 Step 2

We transform the SDPDA G1 into an SDPDA G2 such that once the SDPDA G2 has
generated an output, it has to generate another symbol before entering a marking state
again. For the example automaton G1 this means that the lifelock at p2, p3 is problematic.
We are reusing the construction from [11]: Every state is duplicated (the duplicated states
are neither initial nor marking). Then, the edges are defined such that the automaton G2
operates on the original states until it reaches a marking state. Once this happens, the
automaton either remains in the original states by using a generating edge or it switches
to the duplicated states. The automaton remains in the duplicated states until switching
to the original states using any generating edge. For the SDPDA G1 from Figure 4.3 the
SDPDA G2 in the same figure results. Note, the lifelock in p1, p3 has been removed by
the cost of another lifelock in p1, p3 generating the same output b.

4.3.4 Step 3 & Step 4

We transform the SDPDA G2 in step 3 into the CFG G3 using a construction from [11].
We restrict the CFG G3 in step 4 to the LR(1) grammar G4 (see Figure 4.3) by removing
all productions from G3 which do not appear in any marking derivation of G3. That is,
the accessible and coaccessible part is constructed using a fixed-point algorithm in each
case. For the accessible part: the accessible nonterminals are the least set of nonterminals
A such that the initial nonterminal is contained in A and for any production A→ v: if
A ∈ A, then the nonterminals of v are contained in A. For the coaccessible part: the
coaccessible nonterminals are the least set of nonterminals A such that for any production
A→ v: if the nonterminals of v are contained in A then A ∈ A. The equivalence of G2
and G4 w.r.t. the marked language can best be understood by comparing the derivations
in Figure 4.4. The following three properties explain the correctness of the construction:

(i) The nonterminals of the form Lp,A (for example Lp1,2) guarantee a marking deriva-
tion of the SDPDA starting in p not modifying the stack starting with A.

(ii) The nonterminals of the form Lp,A,p′ (for example Lp0,•,p2) guarantee a derivation of
the SDPDA starting in p not modifying the stack starting with A and reaching a
configuration in which the A is removed and the state p′ is reached.

(iii) For any configuration (p1, w, γ1 . . . γn) there are p2 . . . pn such that the configuration
(p, w, γ1 . . . γn) is reachable by G2 iff w·Lp1,γ1,p2 . . . Lpn−1,γn−1,pn Lpn,γn is reachable by
G4.

Once step 4 has been completed, for the given DPDA a marked language equivalent CFG
has been constructed which is lifelockfree, accessible, and operational blockfree (and by that
deadlockfree).

48/113

SDPDA G2 LR(1) G4

(p0, λ,2) Lp0,2
`G2 (p′0, a,2) `G4 a·Lp′0,2
`G2 (p0, a, •2) `G4 a·Lp0,•,p1 ·Lp1,2
`G2 (p′′0 , aa, •2) `G4 aa·Lp′′0 ,•,p1

·Lp1,2

`G2 (p0, aa, • •2) `G4 aa·Lp0,•,p2 ·Lp2,•,p1 ·Lp1,2
`G2 (p1, aab, • •2) `G4 aab·Lp1,•,p2 ·Lp2,•,p1 ·Lp1,2
`G2 (p′1, aabb, • •2) `G4 aabb·Lp′1,•,p2

·Lp2,•,p1 ·Lp1,2

`G2 (p2, aabb, •2) `G4 aabb·Lp2,•,p1 ·Lp1,2
`G2 (p′2, aabbd, •2) `G4 aabbd·Lp′2,•,p1

·Lp1,2

`G2 (p1, aabbd,2) `G4 aabbd·Lp1,2
`G2 (p3, aabbd, •2) `G4 aabbd·Lp3,•

`G4 aabbd

Figure 4.4.: Corresponding initial derivations of the SDPDA G2 and the LR(1) grammar
G4.

49/113

0 [S′→ λ � �S�, λ]G6

1

[S′→� � S�, λ]
[S→�bC, �]
[S→�aA, �]

2

[S→ a � A, �]
[A→�BC, �]
[B→�aE, �]

3

[S→ b � C, �]
[C→�D, �]
[D→�, �]

5 [S→ bC�, �]

4 [C→D�, �]

10 [A→ BC�, �]

6 [S′→�S � �, λ]

11 [S′→�S � �, λ]

7 [S→ aA�, �] 8

[A→ B � C, �]
[C→�D, �]
[D→�, �]

9

[B→ a � E, �]
[E→�FJ, �]
[F→�bG, d]
[F→�aI, d]

12 [B→ aE�, �]

13

[E→ F � J, �]
[J→�dK, �]

15

[F→ a � I, d]
[I→�BG, d]
[B→�aE, b]

16 [E→ FJ�, �]

17

[J→ d � K, �]
[K→�, �]

18 [J→ dK�, �]

23

[I→ B � G, d]
[G→�bH, d]

24

[B→ a � E, b]
[E→�FJ, b]
[F→�aI, d]
[F→�bG, d]

14

[F→ b � G, d]
[G→�bH, d]

26

[G→ b � H, d]
[H→�, d] 27 [G→ bH�, d]

22 [F→ aI�, d]

25 [I→ BG�, d]

28 [B→ aE�, b]

30 [E→ FJ�, b]

29

[E→ F � J, b]
[J→�dK, b]

31

[J→ d � K, b]
[K→�, b]

32 [J→ dK�, b]

19 [F→ bG�, d]

�

�
a

b D

C

S

A
B

a

C

D

E

F

ba

J

d

K

G

b

I
B

a

G b
H

E

F

a

b

J

d

K

Figure 4.5.: The LR(1)-machine G6. Edges generating terminals (relevant for shift-rules)
and items with marker � at the beginning of the right hand side (relevant for
reduce rules) are printed in red.

4.3.5 Step 5 & Step 6 & Step 7

In these steps we are following, with some modifications, the constructions in [16].
In step 5 we are constructing the �-augmented version G5 of G4: A new initial nonter-

minal S′ and the production S′→�S� are added where S is the old nonterminal. This
modification allows for a simpler construction procedure of the LR(1)-machine and the
LR(1)-parser in steps 6 and 7.

In step 6 we are constructing the LR(1)-machine G6 (depicted in Figure 4.5) for the
LR(1)-grammar G5. The output alphabet of the DFA G6 is the union of the output
alphabet and the nonterminals of G5. The steps of the parser (between two states p, p′ of
G6) will depend on the elements of p: these elements are called items which are formally
four-tuples containing a production with a marker splitting the right hand side of the
production and a lookahead symbol. The DFA G6 has two kinds of edges: the edges
labeled with an output symbol α represent the action where the parser generates α, the
edges labeled with nonterminals are required for the actions where the parser concludes
(based on its stack and the lookahead of the items) that it has generated a word derivable

50/113

Reduce Rules

1·3·5|�→ 1·6|� 1·2·7|�→ 1·6|�
2·8·10|�→ 2·7|� 2·9·12|�→ 2·8|�

3·4|�→ 3·5|� 3|�→ 3·4|�
8·4|�→ 8·10|� 8|�→ 8·4|�

9·13·16|�→ 9·12|� 13·17·18|�→13·16|�
17|�→17·18|� 9·14·19|d→ 9·13|d

9·15·22|d→ 9·13|d 14·26·27|d→14·19|d
15·23·25|d→15·22|d 15·24·28|b→15·23|b
23·26·27|d→23·25|d
24·29·30|b→24·28|b 24·15·22|d→24·29|d
24·14·19|d→24·29|d 26|d→26·27|d
29·31·32|b→29·30|b 31|b→31·32|b

Shift Rules

1|a→ 1·2|
1|b→ 1·3|
2|a→ 2·9|
9|a→ 9·15|
9|b→ 9·14|

13|d→13·17|
14|b→14·26|
15|a→15·24|
23|b→23·26|
24|a→24·15|
24|b→24·14|
29|d→29·31|

Figure 4.6.: The rules of the LR(1)-parser G7 with initial state 1 and marking set {6}.

by a nonterminal.
Every edge (p, κ, p′) in G6 satisfies that p′ is the least set satisfying the following

conditions: p′ contains all items of p where the marker � has been shifted over κ.
Furthermore, if an item of the form [A→ v � B·v′, σ] is obtained, then the so-called “first”-
symbols σ′ are determined11 for which there is a w satisfying v′·σ `*

G5
w with σ′ = 1:w

and for all such (possibly empty) σ′ and all productions of the form B→ v′′, the item
[B→�v′′, σ′] is contained in p′12.

For example (in Figure 4.5), the a-successor of state 9 is state 15: [F→ a � I, d] ∈ 15 is
the result of the shifting of the � over the a in the item [F→�aI, d] ∈ 9; [I→�BG, d] ∈ 15
because [F→ a � I, d] ∈ 15 and d is (trivially) derivable to d; [B→�aE, b] ∈ 15 because
[I→�BG, d] ∈ 15 and Gd is derivable to bd.

In step 7 we are constructing the LR(1)-parser G7 (depicted in Figure 4.6) for G5 and
G6. The parser consists of shift rules (generating a symbol and changing the stack and
state) and reduce rules (which only modify the stack and state). The shift rules are
obtained from the LR(1)-machine by selecting the edges in G6 which are labeled with
an output symbol: an edge (p, α, p′) would result in the shift rule p|α→ p·p′|λ (e.g.,
the edge (1, a, 2) results in the rule 1|a→ 1·2|λ). The reduce rules are constructed for
every item of the form [A→�v, α] ∈ p (i.e., the marker � is at the beginning of the right
hand side): let p̃ (by construction p̃ is also a word over the stack alphabet of G7) be
the sequence of states visited by generating v starting in p in G6 and let p′ be the state
reached by generating A in p in G6. Then the reduce rule p· p̃|λ→ p·p′|λ is added to the
parser (e.g., the item [J→�dK, b] ∈ 29 results in the rule 29·31·32|b→ 29·30|b).

Remark 6
According to [16], the parser G7 is a correct prefix parser. However, that is a too weak assertion:
their definition of the unmarked language considers a symbol the parser has fixed but not generated
not to be part of the generated unmarked word. Since the mode of operation we are interested

11While in [16] no effective algorithm is presented for this operation we have been able to verify such
a construction.

12The state with no items has been removed from the visualization in Figure 4.5.

51/113

Reduce Rules

9·14·19|d→ 9·13|d 24·14·19|d→24·29|d
9·15·22|d→ 9·13|d 24·15·22|d→24·29|d

15·23·25|d→15·22|d 26|d→26·27|d
14·26·27|d→14·19|d 23·26·27|d→23·25|d
15·24·28|b→15·23|b 24·29·30|b→24·28|b

31|b→31·32|b 29·31·32|b→29·30|b

Shift Rules

1|a→ 1·2|
1|b→ 1·3|
2|a→ 2·9|
9|a→ 9·15|
9|b→ 9·14|

13|d→13·17|
14|b→14·26|
15|a→15·24|
23|b→23·26|
24|a→24·15|
24|b→24·14|
29|d→29·31|

Figure 4.7.: The rules of the LR(1)-parser G8 with initial state 1 and marking set {3, 17}
(the nonterminals {4, 5, 7, 8, 10, 12, 16, 18} are no longer reachable)

(control of (embedded) discrete event systems), we had to find new proofs to verify that our stronger
condition is also satisfied by the generated parser G7.

4.3.6 Step 8

Since DPDA are not capable of terminating the generation by fixing an end-of-output
marker, we are modifying the parser G7 by removing all rules involving the end-of-
output marker � and by changing the set of marking states such that G8 (depicted in
Figure 4.7) marks in (s·p, w, f) iff some edge s′·p| � → s′′|� has been removed. While
it is not mentioned in [16], we discovered that this drastic removal of rules preserves
the (un)marked language because the parser reaches a configuration in which such an
edge is enabled if and only if the stack can be entirely reduced by subsequently executed
reduce rules. This optimization also speeds up the parsing process using the presented
construction in any other context (e.g., parsing of programming languages for which it
has originally been designed).

52/113

Reduce Rules

9·14·(19, λ)|d→ 9·(13, d)|λ 9·14·(19, d)|λ→ 9·(13, d)|λ
24·14·(19, λ)|d→24·(29, d)|λ 24·14·(19, d)|λ→24·(29, d)|λ
9·15·(22, λ)|d→ 9·(13, d)|λ 9·15·(22, d)|λ→ 9·(13, d)|λ

24·15·(22, λ)|d→24·(29, d)|λ 24·15·(22, d)|λ→24·(29, d)|λ
15·23·(25, λ)|d→15·(22, d)|λ 15·23·(25, d)|λ→15·(22, d)|λ

(26, λ)|d→26·(27, d)|λ (26, d)|λ→26·(27, d)|λ
14·26·(27, λ)|d→14·(19, d)|λ 14·26·(27, d)|λ→14·(19, d)|λ
23·26·(27, λ)|d→23·(25, d)|λ 23·26·(27, d)|λ→23·(25, d)|λ
15·24·(28, λ)|b→15·(23, b)|λ 15·24·(28, b)|λ→15·(23, b)|λ
24·29·(30, λ)|b→24·(28, b)|λ 24·29·(30, b)|λ→24·(28, b)|λ

(31, λ)|b→31·(32, b)|λ (31, b)|λ→31·(32, b)|λ
29·31·(32, λ)|b→29·(30, b)|λ 29·31·(32, b)|λ→29·(30, b)|λ

Shift Rules

(1, λ)|a→ 1·(2, λ)|λ (1, a)|λ→ 1·(2, λ)|λ
(1, λ)|b→ 1·(3, λ)|λ (1, b)|λ→ 1·(3, λ)|λ
(2, λ)|a→ 2·(9, λ)|λ (2, a)|λ→ 2·(9, λ)|λ
(9, λ)|a→ 9·(15, λ)|λ (9, a)|λ→ 9·(15, λ)|λ
(9, λ)|b→ 9·(14, λ)|λ (9, b)|λ→ 9·(14, λ)|λ
(13, λ)|d→13·(17, λ)|λ (13, d)|λ→13·(17, λ)|λ
(14, λ)|b→14·(26, λ)|λ (14, b)|λ→14·(26, λ)|λ
(15, λ)|a→15·(24, λ)|λ (15, a)|λ→15·(24, λ)|λ
(23, λ)|b→23·(26, λ)|λ (23, b)|λ→23·(26, λ)|λ
(24, λ)|a→24·(15, λ)|λ (24, a)|λ→24·(15, λ)|λ
(24, λ)|b→24·(14, λ)|λ (24, b)|λ→24·(14, λ)|λ
(29, λ)|d→29·(31, λ)|λ (29, d)|λ→29·(31, λ)|λ

Figure 4.8.: The rules of the LR(1)-parser G9 with initial state 1 and marking set
{(3, λ), (17, λ)}.

53/113

4.3.7 Step 9

Since DPDA are not capable of fixing output symbols without generating them, we
add the fixed output component of a configuration into the state of the configura-
tion. For every shift rule of the form p|α→p·p′|λ the rules (p, λ)|α→p·(p′, λ)|λ and
(p, α)|λ→p·(p′, λ)|λ are used. For every reduce rule of the form s·p|α→s′·p′|α the rules
s·(p, λ)|α→s′·(p′, α)|λ and s·(p, α)|λ→s′·(p′, α)|λ are used. The resulting parser G9 is
depicted in Figure 4.8.

It is then possible to verify, that all reachable configurations of the resulting parser G9 have an
empty fixed output component. We call the parser G9 essentially EDPDA because it uses none of
the extra capabilities of the parser formalism.

4.3.8 Step 10

The essentially EDPDA parser G9 can be translated into the EDPDA G10 (depicted in
Figure 4.9) by using for every rule of the form s·p|σ→s′·p′|λ the edge (p, σ, s−1, s′−1, p′).
Marking and initial states of G10 are taken from G9.

4.3.9 Step 11

Since DPDA are not capable of popping strictly more than one symbol from the stack,
we split such edges into multiple edges to obtain the DPDA G11. To preserve deter-
minism, the splitting of edges with the same source entails the merging of partially
identical edges until the recursive split identifies their distinctness. For example, the
edges (p, σ, s·s′, s1, p1) and (p, σ, s·s′′, s2, p2) share a common prefix s on the popping
component.

Since DPDA are not capable of popping strictly less than one symbol from the stack,
we modify the automaton by replacing any edge (p, σ, λ, s, p′) with (p, σ, γ, s·γ, p) for
any γ of the stack alphabet of G10. For soundness, recall that the stack-bottom-marker
can never be removed from the stack.

4.3.10 Step 12

Finally, accessibility of states and edges can be enforced by reusing the already presented
steps 1–4. For a DPDA we are executing steps 1–4. From the productions obtained
by step 4 we can determine by executing the steps 1–3 backwards (which are by our
construction injective in the sense that for each constructed production/edge x a unique
edge e can be determined for which x has been constructed). Using this backwards
computation, we are able to determine the accessible edges of a DPDA. The accessible
states are the sources and edges of any of the accessible edges. The inaccessible states
and edges are then removed to obtain the DPDA G12 from Figure 4.10.

We are not aware of comparable constructions ensuring accessibility of DPDA, however,
using the decidability of emptiness from [10] it is possible to test a single (and by that
every) edge for accessibility; this approach has been used in [7]. Our approach is superior
as we are executing a single test on all edges simultaneously.

54/113

1λ

G10

2λ 9λ 15λ 24λ

14λ26λ27d

19d

3λ

17λ

13d

25d

29d 31λ

22d

32b 30b

28b23b

b,λ,1

a,λ,1 a,λ,2 a,λ,9
a,λ,15

a,λ,24
b,λ,9

b,λ,24

b,λ,14d,λ,26

λ,26·14,14

λ,26·23,23

λ,14·9,9

λ,λ,13
λ,14·24,24

λ,λ,29

λ,23·15,15

λ,15·9,9

λ,15·24,24
b,λ,31 λ,31·29,29

λ,29·24,24

λ,24·15,15

λ,λ,23

Figure 4.9.: The resulting EDPDA G10 where obviously unreachable states have been
removed.

4.3.11 Verification

The soundness of the presented algorithm (w.r.t. the problem Definition 28) has been
verified in the interactive theorem prover Isabelle/HOL [13] apart from the following
steps for which only pen-and-paper proofs exist yet and which are to be completed in
Isabelle/HOL in the near future:

(i) the CFG obtained in step 4 is an LR(1) grammar (satisfied according to [11]),
(ii) the Parser obtained in step 7 is deterministic if G5 is an LR(1) grammar (satisfied

according to [16]),
(iii) step 11, and
(iv) step 12.

From these tasks however, only the first appears to be complicated.

4.3.12 Testing

The presented algorithm has been implemented in Java for rapid prototyping and in C++
as a plugin to the libFAUDES tool [12]. The implementations have been used successfully
for many examples including the running example of this chapter.

4.3.13 Optimizations

The algorithm can be optimized in different ways.
(i) The runtime of the algorithm depends primarily on the steps 3 and 4 because G3

would have an enormous amount of productions. We can greatly restrict the set of
productions to be generated by exploiting the structure of the input DPDA using
the reachability overapproximation presented on page 46.

55/113

G12

b,1,3·1

a,1,3·1 a,3,6·3 a,6,7·6
a,7,2·7; a,5,2·5

a,2,5·2

b,2,5·2

b,6,7·6

b,5,4·5; b,7,4·7

d,0,λλ,2,λ

λ,7,7

λ,7,8·7

d,4
,λ

λ,5,5

b,5,λ

λ,2,0·2

λ,5,5

λ,7,7

Figure 4.10.: The resulting DPDA G12.

(ii) Furthermore, steps 3 and 4 can be merged such that only productions are generated
which are coaccessible. This alternative trades runtime for space-requirements (the
size of G4 is usually not much greater than G1 but the runtime is increased by the
length of the longest derivation necessary in G2 to reach all states).

(iii) Another optimization merges adjacent edges in EDPDA which are intermediate
results. This optimization decreases the runtime of the subsequently executed
operations.

The formal definition and verification in Isabelle/HOL of such intermediate operations
is left for future work.

4.4 Conclusion

The algorithm presented in this chapter optimizes the behavior of a DPDA whilst
preserving its marked language by first translating the DPDA into another model (LR(1)
grammars) in which the desired properties can be enforced using simple constructions
and by translating the obtained solution back into DPDA while preserving the desired
properties.

The algorithm guarantees accessibility (every state and every edge is required for some
marking derivation), lifelockfreeness (there is no initial derivation executing infinitely
many steps without generating an output symbol), deadlockfreeness (non-extendable
initial derivations are ending in marking states), and finally the operational blockfreeness
(every initial derivation can be extended into a marking derivation).

The operational blockfreeness is sufficient to conclude that the unmarked language is
the prefix closure of the marked language of the resulting DPDA.

The algorithm does not minimize the size of the automaton, in fact, the size of the
resulting DPDA is usually increased and is growing according to [3] in some cases
exponentially.

56/113

The algorithm presented here is a crucial part of the presented solution of the super-
visory control problem for DFA plants and DPDA specifications which is reduced (in
Chapter 2) to the effective implementability of ensuring blockfreeness (solved in this
chapter) and ensuring controllability (solved in Chapter 3).

4.5 Future Work

Petri nets Since the problem of establishing blockfreeness is unsolvable for standard
Petri net classes [5, 6], we intend to determine Petri net classes P that can be translated
(preserving the marked language) into a DPDA G such that the DPDA generated by our
algorithm G′ can be translated back into a Petri net from P to solve the problem for such
a Petri net class.

Visibly Pushdown Tree Automata (VPTA) VPTA introduced in [2] are the greatest
known subclass of DPDA which are closed under intersection. For the context of the
Supervisory Control Theory we intend to determine an algorithm which solves the
problem from Definition 28 for VPTA because

(i) plant and controller can then be generated by VPTA, while this decreases the
expressiveness for the controller language it also increases the expressiveness for
the plant language, and

(ii) the closed loop is again a VPTA, which allows for the iterative restriction of a plant
language by horizontal composition of controllers.

The algorithm presented here may be reusable: the output of the algorithm, when
executed on a VPTA, may be (convertible) into a VPTA. Therefore, when using VPTA
for plants, specifications, and controllers, the supervisory controller synthesis can be
extended to yet another domain.

Nondeterminism For the context of the Supervisory Control Theory there is no reason
to restrict oneself to deterministic controllers. However, for these systems the desired
property of operational blockfreeness is not guaranteed for language blockfree controllers.
Therefore, when extending the domain of the algorithm to PDA the proofs will become
more complex as the preservation of marked and unmarked language is no longer
sufficient for the preservation of the operational blockfreeness as discussed in Chapter 2.

57/113

Bibliography

[1] Alfred V. Aho and Jeffrey D. Ullman. The theory of parsing, translation, and compiling.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1972.

[2] Jacques Chabin and Pierre Réty. Visibly pushdown languages and term rewriting.
In Boris Konev and Frank Wolter, editors, FroCoS, volume 4720 of Lecture Notes in
Computer Science, pages 252–266. Springer, 2007.

[3] Matthew M. Geller, Harry B. Hunt III, Thomas G. Szymanski, and Jeffrey D. Ullman.
Economy of descriptions by parsers, dpda’s, and pda’s. In FOCS, pages 122–127.
IEEE Computer Society, 1975.

[4] Seymour Ginsburg and Sheila A. Greibach. Deterministic context free languages.
Information and Control, 9(6):620–648, 1966.

[5] A. Giua and F. DiCesare. Blocking and controllability of petri nets in supervisory
control. IEEE Transactions on Automatic Control, 39(4):818–823, 1994.

[6] A. Giua and F. DiCesare. Decidability and closure properties of weak petri net
languages in supervisory control. IEEE Transactions on Automatic Control, 40(5):906–
910, 1995.

[7] C. Griffin. A note on deciding controllability in pushdown systems. IEEE Transactions
on Automatic Control, 51(2):334 – 337, feb. 2006.

[8] C. Griffin. A note on the properties of the supremal controllable sublanguage in
pushdown systems. IEEE Transactions on Automatic Control, 53(3):826 –829, apr. 2008.

[9] Christopher Griffin. Decidability and optimality in pushdown control systems: A new
approach to discrete event control. PhD thesis, The Pensylvania State University, 2007.

[10] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, languages and
computation. Addison-Wesley Publishing company, 1979.

[11] Donald E. Knuth. On the translation of languages from left to rigth. Information and
Control, 8(6):607–639, 1965.

[12] libFAUDES. Software library for discrete event systems., 2006-2013.

[13] Larry Paulson, Tobias Nipkow, and Makarius Wenzel. Isabelle/HOL, 2011.

[14] P.J. Ramadge and W.M. Wonham. Supervisory control of a class of discrete event
processes. In A. Bensoussan and J.L. Lions, editors, Analysis and Optimization of
Systems, volume 63 of Lecture Notes in Control and Information Sciences, pages 475–498.
Springer Berlin Heidelberg, 1984.

58/113

[15] Géraud Sénizergues. The equivalence problem for deterministic pushdown au-
tomata is decidable. In Pierpaolo Degano, Roberto Gorrieri, and Alberto Marchetti-
Spaccamela, editors, ICALP, volume 1256 of Lecture Notes in Computer Science, pages
671–681. Springer, 1997.

[16] Seppo Sippu and Eljas Soisalon-Soininen. Parsing Theory, volume II: LR(k) and LL(k)
Parsing of EATCS Monographs on Theoretical Computer Science. Springer-Verlag, 1990.

[17] W. M. Wonham and P. J. Ramadge. On the supremal controllable sublanguage of
a given language. In SIAM Journal on Control and Optimization, volume 25, pages
637–659, 1987.

59/113

A. Appendix

A.1 Counterexample

In this section, the algorithm presented in [8, p.827] and [9, p.64] is applied to an example.
It will be shown that this represents a counterexample to [8, Theorem 3.5] and [9, Theorem
5.2.5] since the final DPDA does not realize the supremal controllable sublanguage of the
given prefix closed deterministic context free specification language (which is required to
be a subset of the given prefix closed regular plant language). Therefore we claim that
the problem of automatically calculating a supremal controllable sublanguage of a DCFL
was not solved by [9, 8].
The algorithm is initialized with a DFA G and a DPDA M realizing the plant and the
specification, respectively, s.t. Lm(G) = Lum(G), Lm(M) = Lum(M) and Lm(M) ⊆
Lm(G). Observe that the DFA G and the DPDA M depicted in Figure A.1 satisfy these
requirements since their languages are given by

Lm(G) = Lum(G) = {an, anb, anbu|n ∈ N} and

Lm(M) = Lum(M) =
{

an, amb, akbu
∣∣∣n, m, k ∈ N, m>0, k>1

}
.

p0 p1 p2

a

b u q0 q1 q2

a,2,•2; a,•,••

b,•,λ u,•,•

Figure A.1.: DFA G (left) and DPDA M (right) realizing plant and specification, respec-
tively.

Using these automata, the construction follows seven steps.
1. Construct M′, depicted in Figure A.2, by making M scan its entire input, using the

algorithm by [10, Lem.10.3.].

q0 q1 q2 qd

a,2,•2; a,•,••

b,•,λ u,•,•

b,2,2; u,2,2; u,•,•

Ψ
Φ

Φ

Figure A.2.: DPDA M′, with Ψ = Φ \ u,•,• and Φ = {a,2,2; a,•,•; b,2,2; b,•,•; u,2,2; u,•,•}.

60/113

2. Construct a DPDA M′′ that accepts the complement of Lm(M) using the algorithm
by [10], Thm.10.1. Here M′′ is identical to M′ in Figure A.2 but with exchanged
non-marking and marking states, i.e., F′′ = {qd}.

3. Construct a DPDA M′′′ that accepts Lc
m(M) ∩ Lm(G), i.e., calculate the cross product

of G and M′′ using the algorithm by [10], Thm.6.5.
4. Construct M1, depicted in Figure A.3, as the accessible part of M′′′, using the algorithm

by [7], Thm.4.1.

(00) (11) (22) (1d) (2d)

a,2,•2; a,•,••

b,•,λ u,•,• u,2,2

b,2,2 u,2,2

Figure A.3.: DPDA M1, with (ij) , (pi, qj)

5. Construct a predicting machine to observe so called µ-reverse paths using the algo-
rithm by [10], p.240. Here, the construction simply defines an additional stack symbol
µγ, ∀γ ∈ Γ s.t.

µγ :=

q ∈ Q1\F1

∣∣∣∣∣∣∣
∃ q′ ∈ F1, v ∈ Σ∗uc .

(⊥, (q, w, γ·s)) `∗M1
(⊥, (q′, w·v, s′))

which denotes the set of unmarked states in M1 from which a derivation starting with
stack-top γ, generating a sequence of uncontrollable symbols v ∈ Σ∗uc and reaching a
marking state q′ (i.e., a so called µ-reverse path), exists. For M1, depicted in Figure A.3,
this gives µ2 = {(p1, q1)} and µ• = ∅. The predicting machine Mµ

1 , depicted in
Figure A.4, is then identical to M1 but uses pairs [γ, µγ] as stack.

(00) (11) (22) (1d) (2d)

a,[2,µ2],[•,µ•][2,µ2]
a,[•,µ•],[•,µ•][•,µ•]

b,[•,µ•],λ u,[•,µ•],[•,µ•] u,[2,µ2],[2,µ2]

b,[2,µ2],[2,µ2] u,[2,µ2],[2,µ2]

Figure A.4.: DPDA Mµ
1 with µ2 = {q2} and µ• = ∅. The set of µ-reverse paths is

depicted in red (dashed) while the set of edges in δcp is depicted in blue
(dotted).

6. Construct M2, depicted in Figure A.5, by deleting all transitions

δcp , {(q, σ, γ, γ′·s, q′) ∈ δM |
(
∧(q, σ, γ, [γ′, µγ′]·s, q′) ∈ δMµ

1

∧σ ∈ Σc ∧ q′ ∈ µγ′

)
}

in M which produce a stack-top in q′ which enables a µ-reverse path starting in
q′. For M and Mµ

1 , depicted in Figure A.1 and A.4, respectively, observe that e =

61/113

((p0, q0), b, [•, µ•], λ, (p1, q1)) ∈ δMµ
1

is the only ingoing transition to (p1, q1) (where the
only µ-reverse path starts for stack-top 2, since µ2 = {(p1, q1)}) and, since M1 is trim,
eventually leads to the stack-top 2 in (p1, q1). Using the corresponding transition to e
in M, this gives δcp = {(q0, b, •, λ, q1)}. By deleting δcp in M, we obtain M2, depicted
in Figure A.5.

7. Construct M3, depicted in Figure A.6, as the accessible part of M2, using the algorithm
by [7], Thm.4.1. If δcp in step 6 is empty, the algorithm terminates. Otherwise, the
algorithm is restarted with M = M3.

q0 q1 q2

a,2,•2; a,•,••

u,•,•

Figure A.5.: DPDA M2

q0

a,2,•2; a,•,••

Figure A.6.: DPDA M3

Obviously, M3 does not have further controllability problems. Therefore, the algorithm
would redo steps 1-6 and then return M3.
Now observe that the specification language Lm(M) restricts the plant language Lm(G)
such that u cannot occur after exactly one a. This generates a controllability for the word
ab only. Using (3.4) in Section 3.3, the supremal controllable sublanguage of Lm(M) for
this example is given by

Lclm = {w ∈ Lm(M) | ∀w′ v w . w′ 6= ab} (A.1)
= Lm(M) \ {ab}

=
{

an, amb, akbu
∣∣∣n, m, k ∈ N, m, k > 1

}
implying that Lm(M3) = {an | n ∈ N} is a strict subset of Lclm which is an obvious
contradiction to [8, Thm.3.5]. Furthermore, Lclm in (A.1) cannot be realized using the
state and transition structure of M and only deleting existing transitions.
The automatic synthesis of a DPDA realizing Lclm for this example is provided as an
example within our pushdown-plug-in for [12].

62/113

A.2 Formal Definitions for the Constructions

We present the formal definitions of the constructions which constitute the synthesis
algorithm as an output from Isabelle/HOL.
theory FUNCTION-definitions

imports
I-epda-lemmas
INTER-CFGRM
I-kparser-lemmas
Fundamentals
LaTeXsugar

begin

A.2.1 Split Read

datatype (′q, ′a, ′b) SDPDA1State =
old ′q
| new (′q, ′a, ′b)EDGE

definition FUNSR-E1 :: (′q, ′a, ′b)EDGE
⇒ ((′q, ′a, ′b) SDPDA1State, ′a, ′b)EDGE
where
FUNSR-E1 e ≡
(|edge-src=old (edge-src e),
edge-read=edge-read e,
edge-pop=edge-pop e,
edge-push=edge-pop e,
edge-trg=new e|)

definition FUNSR-E2 :: (′q, ′a, ′b)EDGE
⇒ ((′q, ′a, ′b) SDPDA1State, ′a, ′b)EDGE
where
FUNSR-E2 e ≡
(|edge-src=new e,
edge-read=None,
edge-pop=edge-pop e,
edge-push=edge-push e,
edge-trg=old (edge-trg e)|)

definition FUNSR-read :: (′q, ′a, ′b)EDGE
⇒ ((′q, ′a, ′b) SDPDA1State, ′a, ′b)EDGE set
where
FUNSR-read e ≡ {FUNSR-E1 e,FUNSR-E2 e}

definition FUNSR-E :: (′q, ′a, ′b)EDGE
⇒ ((′q, ′a, ′b) SDPDA1State, ′a, ′b)EDGE
where
FUNSR-E e ≡
(|edge-src=old (edge-src e),
edge-read=edge-read e,

63/113

edge-pop=edge-pop e,
edge-push=edge-push e,
edge-trg=old (edge-trg e)|)

definition FUNSR-else :: (′q, ′a, ′b)EDGE
⇒ ((′q, ′a, ′b) SDPDA1State, ′a, ′b)EDGE set
where
FUNSR-else e ≡ {FUNSR-E e}

definition MixedReadEdge :: (′a, ′b, ′c)EDGE
⇒ bool
where
MixedReadEdge e ≡ edge-read e 6=None ∧ (edge-pop e 6=edge-push e)

definition FUNSR :: (′q, ′a, ′b)EPDA
⇒ ((′q, ′a, ′b) SDPDA1State, ′a, ′b)EPDA
where
FUNSR G ≡
(|epda-states=old ‘ (epda-states G) ∪ new ‘ (epda-delta G),
epda-sigma=epda-sigma G,
epda-gamma=epda-gamma G,
epda-delta=

⋃
(λe. if (MixedReadEdge e) then FUNSR-read e

else FUNSR-else e)‘(epda-delta G),
epda-initial=old (epda-initial G),
epda-box=epda-box G,
epda-final=old ‘ (epda-final G)|)

A.2.2 Remove No Operation

definition FUNRNoOp-else :: (′q, ′a, ′b)EDGE
⇒ ((′q, ′a, ′b) SDPDA1State, ′a, ′b)EDGE where
FUNRNoOp-else e ≡
(|edge-src=old (edge-src e),
edge-read=edge-read e,
edge-pop=edge-pop e,
edge-push=edge-push e,
edge-trg=old (edge-trg e)|)

definition FUNRNoOp-ON :: (′q, ′a, ′b)EDGE
⇒ ′b
⇒ ((′q, ′a, ′b) SDPDA1State, ′a, ′b)EDGE
where
FUNRNoOp-ON e PB ≡
(|edge-src=old (edge-src e),
edge-read=None,
edge-pop=edge-pop e,
edge-push=[PB] @ (edge-pop e),
edge-trg=new e|)

definition FUNRNoOp-NO :: (′q, ′a, ′b)EDGE
⇒ ′b
⇒ ((′q, ′a, ′b) SDPDA1State, ′a, ′b)EDGE
where

64/113

FUNRNoOp-NO e PB ≡
(|edge-src=new e,
edge-read=None,
edge-pop=[PB],
edge-push=[],
edge-trg=old(edge-trg e)|)

definition FUNRNoOp-NoOp :: (′q, ′a, ′b)EDGE
⇒ ′b
⇒ ((′q, ′a, ′b) SDPDA1State, ′a, ′b)EDGE set
where
FUNRNoOp-NoOp e PB ≡ {FUNRNoOp-ON e PB,FUNRNoOp-NO e PB}

definition FUNRNoOp :: (′q, ′a, ′b)EPDA
⇒ ′b
⇒ ((′q, ′a, ′b) SDPDA1State, ′a, ′b)EPDA
where
FUNRNoOp G PB ≡
(|epda-states=old ‘ (epda-states G) ∪ new ‘ (epda-delta G),
epda-sigma=epda-sigma G,
epda-gamma=epda-gamma G ∪ {PB},
epda-delta=

⋃
(λe. if NoOpEdge e then FUNRNoOp-NoOp e PB

else {FUNRNoOp-else e})‘(epda-delta G),
epda-initial=old (epda-initial G),
epda-box=epda-box G,
epda-final=old ‘ (epda-final G)|)

A.2.3 Split Push Pop

definition FUNSPP-ON :: (′q, ′a, ′b)EDGE
⇒ ((′q, ′a, ′b) SDPDA1State, ′a, ′b)EDGE
where
FUNSPP-ON e ≡
(|edge-src=old (edge-src e),
edge-read=None,
edge-pop=edge-pop e,
edge-push=[],
edge-trg=new e|)

definition FUNSPP-NO :: (′q, ′a, ′b)EDGE
⇒ ′b set
⇒ ((′q, ′a, ′b) SDPDA1State, ′a, ′b)EDGE set
where
FUNSPP-NO e S ≡ {
(|edge-src=new e,
edge-read=None,
edge-pop=[X],
edge-push=edge-push e @ [X],
edge-trg=old(edge-trg e)|)| X.
X∈S}

definition FUNSPP-NoOp :: (′q, ′a, ′b)EDGE
⇒ ′b set

65/113

⇒ ((′q, ′a, ′b) SDPDA1State, ′a, ′b)EDGE set
where
FUNSPP-NoOp e S ≡ {FUNSPP-ON e} ∪ FUNSPP-NO e S

definition PushPopEdge :: (′q, ′a, ′b)EDGE
⇒ ′b⇒ bool
where
PushPopEdge e BOX ≡ (edge-read e = None ∧ (∃w b. edge-push e = w@[b] ∧ edge-pop e 6= [b]))

definition FUNSPP-else :: (′q, ′a, ′b)EDGE
⇒ ((′q, ′a, ′b) SDPDA1State, ′a, ′b)EDGE
where
FUNSPP-else e ≡
(|edge-src=old (edge-src e),
edge-read=edge-read e,
edge-pop=edge-pop e,
edge-push=edge-push e,
edge-trg=old (edge-trg e)|)

definition FUNSPP :: (′q, ′a, ′b)EPDA
⇒ ((′q, ′a, ′b) SDPDA1State, ′a, ′b)EPDA
where
FUNSPP G ≡
(|epda-states=old ‘ (epda-states G) ∪ new ‘ (epda-delta G),
epda-sigma=epda-sigma G,
epda-gamma=epda-gamma G,
epda-delta=

⋃
(λe. if PushPopEdge e (epda-box G) then FUNSPP-NoOp e (epda-gamma G)

else {FUNSPP-else e})‘(epda-delta G),
epda-initial=old (epda-initial G),
epda-box=epda-box G,
epda-final=old ‘ (epda-final G)|)

A.2.4 Remove Multiple Push

datatype (′q, ′a, ′b) SDPDA2State =
old ′q
| new (′q, ′a, ′b)EDGE nat

definition FUNRMP-else :: (′q, ′a, ′b)EDGE
⇒ ((′q, ′a, ′b) SDPDA2State, ′a, ′b)EDGE
where
FUNRMP-else e ≡
(|edge-src=old (edge-src e),
edge-read=edge-read e,
edge-pop=edge-pop e,
edge-push=edge-push e,
edge-trg=old (edge-trg e)|)

definition FUNRMP-state :: (′q, ′a, ′b)EDGE
⇒ nat
⇒ (′q, ′a, ′b) SDPDA2State option
where
FUNRMP-state e n ≡

66/113

(if n=0 then Some (old (edge-src e))
else (if Suc n<length(edge-push e) then Some(new e n)
else (if Suc n=length(edge-push e) then Some(old (edge-trg e))
else None)))

definition FUNRMP-steps :: (′q, ′a, ′b)EDGE
⇒ ((′q, ′a, ′b) SDPDA2State, ′a, ′b)EDGE set
where
FUNRMP-steps e ≡ ⋃ (λi. {
(|edge-src=the(FUNRMP-state e i),
edge-read=None,
edge-pop=[(rev(edge-push e))!i],
edge-push=[(rev(edge-push e))!(Suc i)]@[(rev(edge-push e))!i],
edge-trg=the(FUNRMP-state e (Suc i))|)
}) ‘ {i. 0≤i ∧ Suc i<length(edge-push e)}

definition FUNRMP :: (′q, ′a, ′b)EPDA
⇒ ((′q, ′a, ′b) SDPDA2State, ′a, ′b)EPDA
where
FUNRMP G ≡
(|epda-states=(old ‘ (epda-states G))
∪ ⋃ ((λe. (λi. the(FUNRMP-state e i))
‘ {i. 0≤i ∧ Suc i≤length(edge-push e)})
‘ (epda-delta G)),

epda-sigma=epda-sigma G,
epda-gamma=epda-gamma G,
epda-delta=

⋃
(λe. if MultiPushEdge e then FUNRMP-steps e

else {FUNRMP-else e})‘(epda-delta G),
epda-initial=old (epda-initial G),
epda-box=epda-box G,
epda-final=old ‘ (epda-final G)|)

A.2.5 DPDA to SDPDA

definition FUN-2SDPDA :: (′q, ′a, ′b symbol)EPDA
⇒ (((((′q, ′a, ′b symbol) SDPDA1State, ′a, ′b symbol) SDPDA1State, ′a, ′b symbol) SDPDA1State,
′a, ′b symbol) SDPDA2State, ′a, ′b symbol) EPDA

where
FUN-2SDPDA G ≡
(let G2 = FUNSR G;
G3 = FUNRNoOp G2 (FUNfreshSymbol (epda-gamma G2));
G4 = FUNSPP G3;
G5 = FUNRMP G4 in G5)

A.2.6 No Double Acceptance

datatype ′q NDAState =
old ′q
| new ′q

definition FUNNDA-EAnn :: (′q, ′a, ′b)EDGE
⇒ (′q⇒ ′q NDAState)
⇒ (′q⇒ ′q NDAState)

67/113

⇒ (′q NDAState, ′a, ′b)EDGE
where
FUNNDA-EAnn e s t ≡
(|edge-src=s(edge-src e),
edge-read=edge-read e,
edge-pop=edge-pop e,
edge-push=edge-push e,
edge-trg=t(edge-trg e)|)

definition FUNNDA-Edges :: (′q, ′a, ′b)EDGE
⇒ ′q set
⇒ (′q NDAState, ′a, ′b)EDGE set
where
FUNNDA-Edges e FS ≡
if ReadEdge e then {FUNNDA-EAnn e old old,FUNNDA-EAnn e new old}
else ({FUNNDA-EAnn e new new}∪(

if edge-src e ∈ FS then {FUNNDA-EAnn e old new}
else {FUNNDA-EAnn e old old}))

definition FUNNDA :: (′q, ′a, ′b)EPDA
⇒ (′q NDAState, ′a, ′b)EPDA
where
FUNNDA G ≡
(|epda-states=old ‘ (epda-states G) ∪ new ‘ (epda-states G),
epda-sigma=epda-sigma G,
epda-gamma=epda-gamma G,
epda-delta=

⋃
(λe. FUNNDA-Edges e (epda-final G))‘(epda-delta G),

epda-initial=old (epda-initial G),
epda-box=epda-box G,
epda-final=old ‘ (epda-final G)|)

A.2.7 SDPDA to LR1

datatype (′q, ′b) LR1State =
l2 ′q ′b
| l3 ′q ′b ′q

definition FUN2LR1-EAnnRead1 :: (′q, ′a, ′b)EDGE
⇒ ′q set
⇒ ((′q, ′b) LR1State, ′a)PRODUCTION set
where
FUN2LR1-EAnnRead1 e Q ≡ {
(|prod-lhs=l3 (edge-src e) ((edge-pop e)!0) qt,
prod-rhs=[beB (the(edge-read e))]@[beA(l3 (edge-trg e) ((edge-pop e)!0) (qt))]|)
| qt. qt ∈ Q}

definition FUN2LR1-EAnnPop1 :: (′q, ′a, ′b)EDGE
⇒ ((′q, ′b) LR1State, ′a)PRODUCTION set
where
FUN2LR1-EAnnPop1 e ≡ {
(|prod-lhs=l3 (edge-src e) ((edge-pop e)!0) (edge-trg e),
prod-rhs=[]|)
}

68/113

definition FUN2LR1-EAnnPush1 :: (′q, ′a, ′b)EDGE
⇒ ′q set
⇒ ((′q, ′b) LR1State, ′a)PRODUCTION set
where
FUN2LR1-EAnnPush1 e Q ≡ {
(|prod-lhs=l3 (edge-src e) ((edge-pop e)!0) (qt),
prod-rhs=[beA(l3 (edge-trg e) ((edge-push e)!0) (qs))]@[beA(l3 (qs) ((edge-pop e)!0) (qt))]|)
| qs qt. qs ∈ Q ∧ qt ∈ Q}

definition FUN2LR1-Edges1 :: (′q, ′a, ′b)EPDA
⇒ ((′q, ′b) LR1State, ′a)PRODUCTION set
where
FUN2LR1-Edges1 G ≡⋃
(λe. case edge-read e of None⇒ {} |

Some A⇒ FUN2LR1-EAnnRead1 e (epda-states G))‘(epda-delta G)
∪ ⋃

(λe. case edge-push e of a#y⇒ {} | []⇒ FUN2LR1-EAnnPop1 e)‘(epda-delta G)
∪ ⋃

(λe. case edge-push e of []⇒ {} |
a#y⇒ (case edge-read e of Some A⇒ {} |

None⇒ FUN2LR1-EAnnPush1 e (epda-states G)))‘(epda-delta G)

definition FUN2LR1-EAnnRead2 :: (′q, ′a, ′b)EDGE
⇒ ′q set
⇒ ((′q, ′b) LR1State, ′a)PRODUCTION set
where
FUN2LR1-EAnnRead2 e Q ≡ {
(|prod-lhs=l2 (edge-src e) ((edge-pop e)!0),
prod-rhs=[beB (the(edge-read e))]@[beA(l2 (edge-trg e) ((edge-pop e)!0))]|)}

definition FUN2LR1-EAnnFinal2 :: ′q set
⇒ ′b set
⇒ ((′q, ′b) LR1State, ′a)PRODUCTION set
where
FUN2LR1-EAnnFinal2 F S ≡ {(|prod-lhs=l2 i A,prod-rhs=[]|)| i A. i ∈ F ∧ A ∈ S}

definition FUN2LR1-EAnnPush2 :: (′q, ′a, ′b)EDGE
⇒ ′q set
⇒ ((′q, ′b) LR1State, ′a)PRODUCTION set
where
FUN2LR1-EAnnPush2 e Q ≡ {
(|prod-lhs=l2 (edge-src e) ((edge-pop e)!0),
prod-rhs=[beA(l2 (edge-trg e) ((edge-push e)!0))]|)
}∪{
(|prod-lhs=l2 (edge-src e) ((edge-pop e)!0),
prod-rhs=[beA(l3 (edge-trg e) ((edge-push e)!0) (qs))]@[beA(l2 (qs) ((edge-pop e)!0))]|)
| qs. qs ∈ Q}

definition FUN2LR1-Edges2 :: (′q, ′a, ′b)EPDA
⇒ ((′q, ′b) LR1State, ′a)PRODUCTION set
where
FUN2LR1-Edges2 G ≡⋃
(λe. case edge-read e of None⇒ {} |
Some A⇒ FUN2LR1-EAnnRead2 e (epda-states G))‘(epda-delta G)

69/113

∪ (FUN2LR1-EAnnFinal2 (epda-final G) (epda-gamma G))
∪ ⋃

(λe. case edge-push e of []⇒ {} |
a#y⇒ (case edge-read e of Some A⇒ {} |

None⇒ FUN2LR1-EAnnPush2 e (epda-states G)))‘(epda-delta G)

definition FUN2LR1 :: (′q, ′a, ′b)EPDA
⇒ ((′q, ′b) LR1State, ′a)CFG
where
FUN2LR1 G ≡
(|cfg-nonterms={l2 q A| q A. q ∈ epda-states G ∧ A ∈ epda-gamma G}
∪{l3 q1 A q2| q1 A q2. q1 ∈ epda-states G ∧ q2 ∈ epda-states G ∧ A ∈ epda-gamma G},
cfg-sigma=epda-sigma G,
cfg-initial=l2 (epda-initial G) (epda-box G),
cfg-prods=FUN2LR1-Edges1 G ∪ FUN2LR1-Edges2 G|)

A.2.8 Dollar Augmentation

definition FUNDollarAugment :: (′a, ′b)CFG
⇒ ′a
⇒ ′b
⇒ (′a, ′b)CFG
where
FUNDollarAugment G S ′Do ≡
(|cfg-nonterms=cfg-nonterms G∪{S ′},
cfg-sigma=cfg-sigma G∪{Do},
cfg-initial=S ′,
cfg-prods=cfg-prods G∪{(|prod-lhs=S ′,prod-rhs=[beB Do,beA (cfg-initial G),beB Do]|)}|)

A.2.9 Valid-Operations

definition FUNdesc11 :: (′a, ′b) CFG
⇒ nat
⇒ (′a, ′b)ITEM
⇒ (′a, ′b)ITEM set
where
FUNdesc11 G k I = {x. ∃B w z β. x =
(|item-lhs = B,
item-rhs1 = [],
item-rhs2 = w,
item-la = z|)
∧ (|prod-lhs = B,prod-rhs = w|) ∈ cfg-prods G
∧ item-rhs2 I = beA B # β
∧ (z ∈ FIRST G k (β @ (Set2Conv (item-la I))))}
∪{I}

definition FUNdesc1 :: (′a, ′b) CFG
⇒ nat
⇒ (′a, ′b)ITEM set
⇒ (′a, ′b)ITEM set
where
FUNdesc1 G k S = {I. ∃ x ∈ S. I ∈ FUNdesc11 G k x}

function (domintros) FUNdesc :: (′a, ′b) CFG

70/113

⇒ nat
⇒ (′a, ′b)ITEM set
⇒ (′a, ′b)ITEM set
where
FUNdesc G k S = (
if (FUNdesc1 G k S = S)then S
else FUNdesc G k (FUNdesc1 G k S))

by pat-completeness auto

definition FUNpassesX :: (′a, ′b)biElem
⇒ (′a, ′b)ITEM
⇒ (′a, ′b)ITEM
⇒ bool
where
FUNpassesX X I1 I2 ≡
item-lhs I1 = item-lhs I2
∧ item-la I1 = item-la I2
∧ (∃ β. item-rhs2 I1 = X # β ∧ item-rhs1 I2 = item-rhs1 I1 @ [X] ∧ item-rhs2 I2 = β)

definition FUNBASIS :: (′a, ′b)biElem
⇒ (′a, ′b)ITEM set
⇒ (′a, ′b)ITEM set
where
FUNBASIS X S ≡ {I2. ∃ I1∈S. FUNpassesX X I1 I2}

definition FUNGOTO :: (′a, ′b)CFG
⇒ nat
⇒ (′a, ′b)biElem
⇒ (′a, ′b)ITEM set
⇒ (′a, ′b) ITEM set
where
FUNGOTO G k X S ≡ FUNdesc G k (FUNBASIS X S)

definition FUNdescInitial :: (′a, ′b)CFG
⇒ (′a, ′b)ITEM set
where
FUNdescInitial G ≡ {I. ∃ p∈cfg-prods G.
prod-lhs p=cfg-initial G
∧ item-lhs I=cfg-initial G
∧ item-rhs1 I=[]
∧ item-rhs2 I = prod-rhs p
∧ item-la I = []}

definition FUNValidEmpty :: (′a, ′b)CFG
⇒ nat
⇒ (′a, ′b)ITEM set
where
FUNValidEmpty G k ≡ FUNdesc G k (FUNdescInitial G)

A.2.10 LR1-Machine

definition FUNLRM-once :: (′a, ′b)CFG
⇒ nat

71/113

⇒ ((′a, ′b)ITEM set)set
⇒ ((′a, ′b)ITEM set,(′a, ′b)biElem,nat)EDGE set
where
FUNLRM-once G k S ≡ (λ(q,X).
(|edge-src=q,
edge-read=Some X,
edge-pop=[0::nat],
edge-push=[0::nat],
edge-trg=FUNGOTO G k X q|)
) ‘ (S×(biElemSet (cfg-nonterms G) (cfg-sigma G)))

function (domintros) FUNLRM-loop :: (′a, ′b)CFG
⇒ nat
⇒ ((′a, ′b)ITEM set,(′a, ′b)biElem,nat)EDGE set
⇒ ((′a, ′b)ITEM set)set⇒ ((′a, ′b)ITEM set)set
⇒ (((′a, ′b)ITEM set)set × ((′a, ′b)ITEM set,(′a, ′b)biElem,nat)EDGE set)
where
FUNLRM-loop G k E V S = (
if FUNLRM-once G k S = {} then (V,E)
else FUNLRM-loop G k

(E∪(FUNLRM-once G k S))
(V∪S)
((edge-trg ‘ (FUNLRM-once G k S))−(V∪S)))

by pat-completeness auto

definition FUNLRM :: (′a, ′b)CFG
⇒ nat
⇒ ((′a, ′b)ITEM set,(′a, ′b)biElem ,nat)EPDA
where
FUNLRM G k ≡
(|epda-states=fst(FUNLRM-loop G k {} {} {FUNValidEmpty G k}),
epda-sigma=biElemSet (cfg-nonterms G) (cfg-sigma G),
epda-gamma={0::nat},
epda-delta=snd(FUNLRM-loop G k {} {} {FUNValidEmpty G k}),
epda-initial=FUNValidEmpty G k,
epda-box=0::nat,epda-final={}|)

A.2.11 Remove Nonproductive Productions

definition FUNRNPP1 :: (′a, ′b)CFG
⇒ ′a set
⇒ ′a set
where
FUNRNPP1 GI N = N∪{A. ∃ p∈cfg-prods GI. prod-lhs p=A ∧ Set1BiElem (prod-rhs p) ⊆ N}

function (domintros) FUNRNPPL :: (′a, ′b)CFG
⇒ ′a set
⇒ ′a set
where
FUNRNPPL GI N = (
if FUNRNPP1 GI N = N then N
else FUNRNPPL GI (FUNRNPP1 GI N))

apply(auto)

72/113

done

definition FUNRNPP :: (′a, ′b)CFG
⇒ (′a, ′b)CFG option
where
FUNRNPP G ≡ (
if cfg-initial G ∈ FUNRNPPL G {} then Some
(|cfg-nonterms=FUNRNPPL G {},
cfg-sigma=cfg-sigma G,
cfg-initial=cfg-initial G,
cfg-prods={p∈cfg-prods G. Set1BiElem ((beA (prod-lhs p))#(prod-rhs p)) ⊆ FUNRNPPL G {}}|)

else None)

A.2.12 First

definition FUNFirstDS :: (′a, ′b) CFG
⇒ (′a, ′b) biElem list set
where
FUNFirstDS G = {As. ∃ e A. prod-lhs e = A ∧ [beA A] = As ∧ e ∈ cfg-prods G}
∪ {ws. ∃ e w. prod-rhs e = w ∧ e ∈ cfg-prods G ∧ ws ∈ PostCl w}

definition FUNfirst1 :: (′a, ′b) CFG
⇒ ((′a, ′b) biElem list
⇒ (′b option)set)
⇒ ((′a, ′b) biElem list
⇒ (′b option) set)
where
FUNfirst1 G f = (λw.
if w /∈ FUNFirstDS G then {}
else f w ∪ (

case w of []⇒ {None} |
beA A # w ′⇒

f [beA A]
− (if w ′ 6= [] then {None} else {})
∪ (if None ∈ f [beA A] then f w ′ else {})
∪ ({b. ∃ x. b ∈ f x ∧ (|prod-lhs = A, prod-rhs = x|) ∈ cfg-prods G}
− (if w ′ 6= [] then {None} else {})) |

beB a # w ′⇒ {Some a}))

function (domintros) FUNfirstL :: (′a, ′b) CFG
⇒ ((′a, ′b) biElem list⇒ (′b option)set)
⇒ ((′a, ′b) biElem list⇒ (′b option)set)
where
FUNfirstL G f = (
if FUNfirst1 G f = f then f
else FUNfirstL G (FUNfirst1 G f))

by pat-completeness auto

definition FUNfirstA :: (′a, ′b) CFG
⇒ (′a, ′b) biElem list
⇒ ′b option set
where
FUNfirstA G w = FUNfirstL G (λx. {}) w

73/113

function FUNfirst :: (′a, ′b) CFG
⇒ (′a, ′b) biElem list
⇒ ′b option set
where
FUNfirst G w = (
case w of []⇒ {None} |
beA A # w ′⇒
(FUNfirstA G [beA A] − {None})
∪ (if None ∈ FUNfirstA G [beA A] then FUNfirst G w ′ else {}) |

beB b # w ′⇒ {Some b})
by pat-completeness auto
termination by lexicographic-order

primrec BiElemFirst1 :: (′a, ′b) biElem list
⇒ ′a option
where
BiElemFirst1 [] = None
| BiElemFirst1 (x#w) = (case x of beA A⇒ Some A | beB x⇒ BiElemFirst1 w)

definition FUNfirstReduced :: (′a, ′b)CFG
⇒ (′a, ′b) biElem list
⇒ ′b option set
where
FUNfirstReduced G w ≡ (
if Set1BiElem w ⊆ cfg-nonterms G then FUNfirst G w
else {})

definition FUNfirstAll :: (′a, ′b)CFG
⇒ (′a, ′b) biElem list
⇒ ′b option set
where
FUNfirstAll G w ≡
if (Set1BiElem w={})then FUNfirst G w
else (

case BiElemFirst1 w of None⇒ {} |
Some A⇒ (

case (FUNRNPP (G(|cfg-initial:=A|))) of Some G ′⇒ FUNfirstReduced G ′ w |
None⇒ {}))

definition FUNfirst-leq1 :: (′a, ′b) CFG
⇒ nat
⇒ (′a, ′b) biElem list
⇒ ′b list set
where
FUNfirst-leq1 G k w ≡ (
if k=0 then (if FUNfirstAll G w 6={} then {[]} else {})
else (if k=Suc 0 then (λx. case x of None⇒ [] | Some a⇒ [a]) ‘ (FUNfirstAll G w)
else {}))

A.2.13 Step and Step-Sequences for EPDA

definition FUNEPDAGOTO :: (′q, ′a, ′b)EPDA

74/113

⇒ ′q
⇒ ′a
⇒ ′q set
where
FUNEPDAGOTO M q X ≡ {q ′.
(|edge-src=q,
edge-read=Some X,
edge-pop=[epda-box M],
edge-push=[epda-box M],
edge-trg=q ′|)
∈epda-delta M}

primrec FUNEPDAGOTOseq :: (′q, ′a, ′b)EPDA
⇒ ′q
⇒ ′a list
⇒ ′q list set
where
FUNEPDAGOTOseq M q [] = {[]}
| FUNEPDAGOTOseq M q (X#w) = {p#p-seq|p p-seq.

p∈FUNEPDAGOTO M q X
∧ p-seq ∈ FUNEPDAGOTOseq M p w}

definition DFAGOTO :: (′q, ′a, ′b)EPDA
⇒ ′q
⇒ ′a
⇒ ′q
where
DFAGOTO M q X ≡ (THE-default q (λx. x∈(FUNEPDAGOTO M q X)))

definition DFAGOTOseq :: (′q, ′a, ′b)EPDA
⇒ ′q
⇒ ′a list
⇒ ′q list
where
DFAGOTOseq M q w ≡ (THE-default [] (λx. x∈(FUNEPDAGOTOseq M q w)))

A.2.14 LR1-Parser

definition FUNLRP-Rules :: (′a, ′b)CFG
⇒ (′a, ′b)CFG
⇒ ((′a, ′b)ITEM set,(′a, ′b)biElem,nat)EPDA
⇒ nat
⇒ (((′a, ′b)ITEM set, ′b)RULE × (′a, ′b) PRODUCTION option) set
where
FUNLRP-Rules G G ′M k =
{(
(|rule-lpop=q#q-seq,
rule-rpop=y,
rule-lpush=[q,qA],
rule-rpush=y|),
Some (|prod-lhs=item-lhs I,
prod-rhs=(item-rhs1 I)@(item-rhs2 I)|))
| q q-seq (I::(′a, ′b) ITEM) y qA.

75/113

q∈epda-states M
∧ I∈q
∧ (|prod-lhs=item-lhs I,prod-rhs=item-rhs2 I|)∈cfg-prods G
∧ (item-rhs1 I=[])
∧ qA = (DFAGOTO M q (beA (item-lhs I)))
∧ q-seq = (DFAGOTOseq M q (item-rhs2 I))
∧ (|item-lhs=item-lhs I,item-rhs1=item-rhs2 I,item-rhs2=[],item-la=y|) ∈ last (q#q-seq)}
∪
{(
(|rule-lpop=[q],
rule-rpop=a#y,
rule-lpush=[q,qA],
rule-rpush=y|),None)
| q a y qA.
(q∈epda-states M)
∧ (∃ I∈q.
(|prod-lhs=item-lhs I,prod-rhs=item-rhs1 I @ item-rhs2 I|)∈cfg-prods G
∧ [beB a] = take (Suc 0) (item-rhs2 I)
∧ qA = (DFAGOTO M q (beB a))
∧ y∈(FUNfirst-leq1 G ′ (k−(1::nat)) ((drop (Suc 0) (item-rhs2 I))@(Set2Conv (item-la I)))))}

definition FUNLRP :: (′a, ′b)CFG
⇒ (′a, ′b)CFG
⇒ ((′a, ′b)ITEM set,(′a, ′b)biElem,nat)EPDA
⇒ nat
⇒ ′b
⇒ ((′a, ′b)ITEM set, ′b,(((′a, ′b)PRODUCTION option)option))PARSER
where
FUNLRP G G ′M k Do =
(|parser-nonterms=(epda-states M) − {epda-initial M, last (DFAGOTOseq M (epda-initial M) [beB

Do,beA (cfg-initial G),beB Do]), DFAGOTO M (epda-initial M) (beA (cfg-initial G))},
parser-sigma=(cfg-sigma G ′),
parser-initial=DFAGOTO M (epda-initial M) (beB Do),
parser-final={last (DFAGOTOseq M (epda-initial M) [beB Do,beA (cfg-initial G)])},
parser-rules=(λ(x,y). x) ‘ (FUNLRP-Rules G G ′M k),
parser-output=(λx. if (∃ !y. (x,y)∈(FUNLRP-Rules G G ′M k))

then Some(THE y. (x,y)∈(FUNLRP-Rules G G ′M k))
else None),

parser-bottom=Do|)

A.2.15 Drop Input Bottom Rules

definition FUNDIBR :: (′a, ′b, ′c option)PARSER
⇒ (′a, ′b, ′c option)PARSER
where
FUNDIBR P = (
let R={r. r∈(parser-rules P) ∧ rule-rpop r 6= [parser-bottom P]} in
(P
(|parser-rules:=R,
parser-final:={n. ∃ r∈parser-rules P. rule-rpop r = [parser-bottom P] ∧ n=last(rule-lpop r)},
parser-output:=(λr. if (r∈R) then parser-output P r else None)|)))

76/113

A.2.16 Remove Top Rules

definition SmapA :: ′a
⇒ ′b
⇒ ′a × ′b
where
SmapA a x ≡ (a,x)

definition WmapA :: ′a list
⇒ ′b list
⇒ (′a × ′b list) list
where
WmapA w x ≡ (
case w of []⇒ [] |
a ′#w ′⇒

map (λa. SmapA a []) (butlast(w)) @
(map (λa. SmapA a x) [last w]))

definition FUNRTR-S1 :: (′a, ′b, ′c option)PARSER
⇒ (′a × ′b list, ′b) RULE set
where
FUNRTR-S1 P ≡ {
(|rule-lpop=WmapA (rule-lpop r) [],
rule-rpop=rule-rpop r,
rule-lpush=WmapA (rule-lpush r) [],
rule-rpush=[]|)
| r. r∈(parser-rules P) ∧ rule-rpush r = []}

definition FUNRTR-S2 :: (′a, ′b, ′c option)PARSER
⇒ (′a × ′b list, ′b) RULE set
where
FUNRTR-S2 P ≡ {
(|rule-lpop=WmapA (rule-lpop r) (rule-rpop r),
rule-rpop=[],
rule-lpush=WmapA (rule-lpush r) [],
rule-rpush=[]|)
| r. r∈(parser-rules P) ∧ rule-rpush r = []}

definition FUNRTR-R1 :: (′a, ′b, ′c option)PARSER
⇒ (′a × ′b list, ′b) RULE set
where
FUNRTR-R1 P ≡ {
(|rule-lpop=WmapA (rule-lpop r) [],
rule-rpop=rule-rpop r,
rule-lpush=WmapA (rule-lpush r) (rule-rpop r),
rule-rpush=[]|)
| r. r∈(parser-rules P) ∧ rule-rpush r = rule-rpop r}

definition FUNRTR-R2 :: (′a, ′b, ′c option)PARSER

77/113

⇒ (′a × ′b list, ′b) RULE set
where
FUNRTR-R2 P ≡ {
(|rule-lpop=WmapA (rule-lpop r) (rule-rpop r),
rule-rpop=[],
rule-lpush=WmapA (rule-lpush r) (rule-rpop r),
rule-rpush=[]|)
| r. r∈(parser-rules P) ∧ rule-rpush r = rule-rpop r}

definition FUNRTR :: (′a, ′b, ′c option)PARSER
⇒ (′a × (′b list), ′b, ′c option)PARSER
where
FUNRTR P = (
let R = (FUNRTR-S1 P) ∪ (FUNRTR-S2 P) ∪ (FUNRTR-R1 P) ∪ (FUNRTR-R2 P) in
let N = {n. ∃ r∈R. n ∈ set (rule-lpop r) ∨ n ∈ set(rule-lpush r)}∪
{SmapA (parser-initial P) []} in

((|parser-nonterms=N,
parser-sigma=parser-sigma P,
parser-initial=SmapA (parser-initial P) [],
parser-final=N ∩ ((λa. SmapA a []) ‘ (parser-final P)),
parser-rules=R,
parser-output=(λr. None),
parser-bottom=parser-bottom P
|)))

A.2.17 Remove Top Rule

definition list2option :: ′a list
⇒ ′a option
where
list2option w = (case w of []⇒ None | a#w ′⇒ Some a)

definition FUNP2A-R :: (′a, ′b)RULE
⇒ (′a, ′b, ′a)EDGE
where
FUNP2A-R e ≡
(|edge-src=last (rule-lpop e),
edge-read=list2option (rule-rpop e),
edge-pop=rev(butlast (rule-lpop e)),
edge-push=rev(butlast (rule-lpush e)),
edge-trg=last (rule-lpush e)|)

definition FUNP2A :: (′a, ′b, ′c)PARSER
⇒ ′a
⇒ (′a, ′b, ′a)EPDA
where
FUNP2A G BOX ≡
(|
epda-states=parser-nonterms G,
epda-sigma=parser-sigma G − {parser-bottom G},
epda-gamma=parser-nonterms G ∪ {BOX},
epda-delta=FUNP2A-R ‘ (parser-rules G),
epda-initial=parser-initial G,

78/113

epda-box=BOX,
epda-final=parser-final G
|)

A.2.18 Replace Zero-Popping Edges

definition FUN-REPZact :: (′q, ′a, ′b)EDGE
⇒ ′b set
⇒ (′q, ′a, ′b)EDGE set
where
FUN-REPZact e X ≡ {
(|edge-src=edge-src e,
edge-read=edge-read e,
edge-pop=[x],
edge-push=(edge-push e)@[x],
edge-trg=edge-trg e|)
| x. x∈X}

definition FUN-REPZ :: (′q, ′a, ′b symbol)EPDA
⇒ (′q, ′a, ′b symbol) EPDA
where
FUN-REPZ G ≡
(|epda-states=epda-states G,
epda-sigma=epda-sigma G,
epda-gamma=epda-gamma G,
epda-delta=

⋃
(λe. if edge-pop e=[] then FUN-REPZact e (epda-gamma G) else {e})‘(epda-delta G),

epda-initial=epda-initial G,
epda-box=epda-box G,
epda-final=epda-final G|)

A.2.19 Replace Multiple-Popping Edges

datatype (′q, ′b) REPMState =
old ′q
| new ′q ′b list

definition FUN-REPMstate :: ′q
⇒ ′b list
⇒ nat
⇒ (′q, ′b)REPMState
where
FUN-REPMstate q w i ≡ (
if i=0 then old q
else new q (take i w))

definition FUN-REPMact :: (′q, ′a, ′b)EDGE
⇒ ((′q, ′b)REPMState, ′a, ′b)EDGE set
where
FUN-REPMact e ≡ {
(|edge-src=FUN-REPMstate (edge-src e) (edge-pop e) i,
edge-read=(if i=length(edge-pop e)then edge-read e else None),
edge-pop=(if i<length(edge-pop e) then [edge-pop e!i] else [edge-pop e!(i − 1)]),
edge-push=if i=length(edge-pop e) then edge-push e

79/113

else (if i=length(edge-pop e) − 1 then [edge-pop e!i]
else []),

edge-trg=if i<length(edge-pop e) then FUN-REPMstate (edge-src e) (edge-pop e) (Suc i)
else FUN-REPMstate (edge-trg e) [] 0|)
| i. i≤length(edge-pop e)}

definition FUN-REPM :: (′q, ′a, ′b symbol)EPDA
⇒ ((′q, ′b symbol)REPMState, ′a, ′b symbol) EPDA
where
FUN-REPM G ≡
(|epda-states={FUN-REPMstate q (edge-pop e) i
| q i e. q∈epda-states G ∧ e∈epda-delta G ∧ i≤length(edge-pop e)},
epda-sigma=epda-sigma G,
epda-gamma=epda-gamma G,
epda-delta=

⋃
(λe. FUN-REPMact e)‘(epda-delta G),

epda-initial=old (epda-initial G),
epda-box=epda-box G,
epda-final=old ‘(epda-final G)|)

A.2.20 Convert EDPDA to DPDA

definition FUN-EDPDA2DPDA :: (′q, ′a, ′b symbol)EPDA
⇒ ((′q, ′b symbol) REPMState, ′a, ′b symbol) EPDA
where
FUN-EDPDA2DPDA G ≡ FUN-REPZ (FUN-REPM (FUN-REPZ G))

A.2.21 Symbolising

definition CFGtoSymbol :: (′a, ′b)CFG
⇒ (′a symbol, ′b symbol)CFG
where
CFGtoSymbol G ≡
(|cfg-nonterms=symbol-atomic ‘ (cfg-nonterms G),
cfg-sigma=symbol-atomic ‘ (cfg-sigma G),
cfg-initial=symbol-atomic (cfg-initial G),
cfg-prods={
(|prod-lhs=symbol-atomic(prod-lhs p),
prod-rhs=map (λx. case x of beA A ⇒ beA (symbol-atomic A) | beB b ⇒ beB (symbol-atomic b))

(prod-rhs p)|)
|p. p∈cfg-prods G}|)

definition EPDAtoSymbol :: (′q, ′a, ′b)EPDA
⇒ (′qx symbol, ′ax symbol, ′bx symbol)EPDA
where
EPDAtoSymbol G ≡
(let fq=SOME f . inj f ; fg=SOME f . inj f ; fs=SOME f . inj f in
(|epda-states=fq ‘ epda-states G,
epda-sigma=symbol-atomic ‘ (fs ‘ epda-sigma G),
epda-gamma=fg ‘ (epda-gamma G),
epda-delta={
(|edge-src=fq (edge-src e),
edge-read=
case edge-read e of None⇒ None |

80/113

Some a⇒ Some (symbol-atomic (fs a)),
edge-pop=map fg (edge-pop e),
edge-push=map fg (edge-push e),
edge-trg=fq(edge-trg e)|)
| e. e ∈ epda-delta G},
epda-initial=fq (epda-initial G),
epda-box=fg (epda-box G),
epda-final=fq‘(epda-final G)|))

definition PARSERtoSymbol :: (′q, ′a, ′b)PARSER
⇒ (′p symbol, ′c symbol,nat option)PARSER
where
PARSERtoSymbol G ≡
(let f=SOME f . inj f ;fs=SOME f . inj f in
(|parser-nonterms=f ‘ (parser-nonterms G),
parser-sigma=symbol-atomic ‘ (fs‘parser-sigma G),
parser-initial=f (parser-initial G),
parser-final=f‘(parser-final G),
parser-rules={
(|rule-lpop=map f (rule-lpop e),
rule-rpop=map (symbol-atomic◦fs) (rule-rpop e),
rule-lpush=map f (rule-lpush e),
rule-rpush=map (symbol-atomic◦fs) (rule-rpush e)|)
| e. e∈parser-rules G},
parser-output=(λx. None),
parser-bottom=symbol-atomic (fs(parser-bottom G))|))

A.2.22 Restrict to Edges

definition FUN-R2E :: (′q, ′a, ′b)EPDA
⇒ (′q, ′a, ′b)EDGE set⇒ (′q, ′a, ′b)EPDA option
where
FUN-R2E G E = (let Q={q∈epda-states G. ∃ e∈E. edge-src e=q ∨ edge-trg e=q} in
(if (epda-initial G) ∈ Q then
Some (|epda-states=Q,
epda-sigma=epda-sigma G,
epda-gamma=epda-gamma G,
epda-delta=E,
epda-initial=epda-initial G,
epda-box=epda-box G,
epda-final=Q ∩ (epda-final G)|)
else None))

A.2.23 Restrict to States

definition FUN-R2Q :: (′q, ′a, ′b)EPDA
⇒ ′q set
⇒ (′q, ′a, ′b)EPDA option
where
FUN-R2Q M Q= (if epda-initial M /∈ Q then None else Some
(|epda-states=Q,
epda-sigma=epda-sigma M,
epda-gamma=epda-gamma M,

81/113

epda-delta={e. e∈epda-delta M ∧ edge-src e ∈ Q ∧ edge-trg e ∈ Q},
epda-initial=epda-initial M,
epda-box=epda-box M,
epda-final=epda-final M ∩ Q|)
)

A.2.24 Accessibility

definition FUN-AC-RevLR1 :: (′q, ′a, ′b)EPDA
⇒ ((′q, ′b) LR1State, ′a)PRODUCTION set
⇒ (′q, ′a, ′b)EDGE set
where
FUN-AC-RevLR1 G X = {e∈epda-delta G. ∃ p∈X.
p ∈ FUN2LR1-EAnnRead1 e (epda-states G)
∨ p ∈ FUN2LR1-EAnnPop1 e
∨ p ∈ FUN2LR1-EAnnPush1 e (epda-states G)
∨ p ∈ FUN2LR1-EAnnRead2 e (epda-states G)
∨ p ∈ FUN2LR1-EAnnPush2 e (epda-states G)}

definition FUN-AC-RevRMP :: (′q, ′a, ′b)EPDA
⇒ ((′q, ′a, ′b) SDPDA2State, ′a, ′b)EDGE set
⇒ (′q, ′a, ′b)EDGE set
where
FUN-AC-RevRMP G X = {e∈epda-delta G. ∃ p∈X.
p ∈ FUNRMP-steps e
∨ p ∈ FUNRMP-steps e}

definition FUN-AC-RevSPP :: (′q, ′a, ′b)EPDA
⇒ ((′q, ′a, ′b) SDPDA1State, ′a, ′b)EDGE set
⇒ (′q, ′a, ′b)EDGE set
where
FUN-AC-RevSPP G X = {e∈epda-delta G. ∃ p∈X.
p ∈ FUNSPP-NoOp e (epda-gamma G)
∨ p = FUNSPP-else e}

definition FUN-AC-RevNoOp :: (′q, ′a, ′b)EPDA
⇒ ′b
⇒ ((′q, ′a, ′b) SDPDA1State, ′a, ′b)EDGE set
⇒ (′q, ′a, ′b)EDGE set
where
FUN-AC-RevNoOp G PB X = {e∈epda-delta G. ∃ p∈X.
p ∈ FUNRNoOp-NoOp e PB
∨ p = FUNRNoOp-else e}

definition FUN-AC-RevSR :: (′q, ′a, ′b)EPDA
⇒ ((′q, ′a, ′b) SDPDA1State, ′a, ′b)EDGE set
⇒ (′q, ′a, ′b)EDGE set
where
FUN-AC-RevSR G X = {e∈epda-delta G. ∃ p∈X.
p ∈ FUNSR-read e
∨ p ∈ FUNSR-else e}

definition FUN-AC-Edges :: (′q, ′a, ′b symbol)EPDA

82/113

⇒ (′q, ′a, ′b symbol) EDGE set
where
FUN-AC-Edges G0 =
(let G02 = FUNSR G0;
PB = FUNfreshSymbol (epda-gamma G02);
G03 = FUNRNoOp G02 PB;
G04 = FUNSPP G03;
G1 = FUNRMP G04;
G2 = FUN2LR1 G1;
G3 = FUNRNPP G2
in (
case G3 of Some G3 ′⇒

FUN-AC-RevSR G0 (
FUN-AC-RevNoOp G02 PB (
FUN-AC-RevSPP G03 (
FUN-AC-RevRMP G04 (
FUN-AC-RevLR1 G1 (cfg-prods G3 ′))))) |

None⇒ {}))

definition FUN-AC :: (′q, ′a, ′b symbol)EPDA
⇒ (′q, ′a, ′b symbol)EPDA option
where
FUN-AC G = FUN-R2E G (FUN-AC-Edges G)

A.2.25 Ensure Blockfreeness

definition FUN-BlockFree :: (′q symbol, ′a symbol, ′q symbol)EPDA
⇒ (′q symbol, ′a symbol, ′q symbol) EPDA option
where
FUN-BlockFree G0 ≡ (
let G1 = FUN-2SDPDA G0;
G2 = FUNNDA G1;
G3 = FUN2LR1 G2;
G4RNPP = FUNRNPP G3
in (
case G4RNPP of None⇒ None
| Some G4RNPPSome⇒ (let
G = CFGtoSymbol G4RNPPSome;
Do = FUNfreshSymbol (cfg-sigma G);
S ′= FUNfreshSymbol (cfg-nonterms G);
G ′= FUNDollarAugment G S ′Do;
M = FUNLRM G ′ (Suc 0);
P0 = FUNLRP G G ′M (Suc 0) Do;
P1 = FUNDIBR P0;
P2 = FUNRTR P1;
P2 ′= PARSERtoSymbol P2;
G4 = FUNP2A P2 ′ (FUNfreshSymbol (parser-nonterms P2 ′))
in FUN-AC G4)))

A.2.26 Split

datatype (′a, ′b) splitstates =
rear ′a ′b

83/113

| sear ′a ′b
| rhead ′a
| shead ′a

definition FUN-lamLeave :: (′q, ′a, ′b)EDGE set
⇒ ′q set
where
FUN-lamLeave E = {q. (∃ e∈E. edge-src e=q ∧ edge-read e=None)}

definition FUN-SPLIT-RH2RE :: (′q, ′a, ′b)EPDA
⇒ ((′q, ′b) splitstates, ′a, ′b) EDGE set
where
FUN-SPLIT-RH2RE M = {
(|edge-src=rhead q,
edge-read=None,
edge-pop=[γ],
edge-push=[γ],
edge-trg=rear q γ|)
| q γ. q∈epda-states M ∧ γ∈epda-gamma M}

definition FUN-SPLIT-SH2SE :: (′q, ′a, ′b)EPDA
⇒ ((′q, ′b) splitstates, ′a, ′b) EDGE set
where
FUN-SPLIT-SH2SE M = {
(|edge-src=shead q,
edge-read=None,
edge-pop=[γ],
edge-push=[γ],
edge-trg=sear q γ|)
| q γ. q∈epda-states M ∧ γ∈epda-gamma M}

definition FUN-SPLIT-RE2RH :: (′q, ′a, ′b)EPDA
⇒ ((′q, ′b) splitstates, ′a, ′b) EDGE set
where
FUN-SPLIT-RE2RH M = {
(|edge-src=rear q γ,
edge-read=x,
edge-pop=[γ],
edge-push=w,
edge-trg=rhead q ′|)
| q γ x w q ′.
(|edge-src=q,
edge-read=x,
edge-pop=[γ],
edge-push=w,
edge-trg=q ′|)
∈epda-delta M ∧ (q/∈epda-final M ∨ x 6=None)}

definition FUN-SPLIT-RE2SH :: (′q, ′a, ′b)EPDA
⇒ ((′q, ′b) splitstates, ′a, ′b) EDGE set
where
FUN-SPLIT-RE2SH M = {
(|edge-src=rear q γ,

84/113

edge-read=None,
edge-pop=[γ],
edge-push=w,
edge-trg=shead q ′|)
| q γ w q ′.
(|edge-src=q,
edge-read=None,
edge-pop=[γ],
edge-push=w,
edge-trg=q ′|)
∈epda-delta M ∧ q∈epda-final M}

definition FUN-SPLIT-SE2SH :: (′q, ′a, ′b)EPDA
⇒ ((′q, ′b) splitstates, ′a, ′b) EDGE set
where
FUN-SPLIT-SE2SH M = {
(|edge-src=sear q γ,
edge-read=None,
edge-pop=[γ],
edge-push=w,
edge-trg=shead q ′|)
| q γ w q ′.
(|edge-src=q,
edge-read=None,
edge-pop=[γ],
edge-push=w,
edge-trg=q ′|)
∈epda-delta M}

definition FUN-SPLIT-SE2RH :: (′q, ′a, ′b)EPDA
⇒ ((′q, ′b) splitstates, ′a, ′b) EDGE set
where
FUN-SPLIT-SE2RH M = {
(|edge-src=sear q γ,
edge-read=x,
edge-pop=[γ],
edge-push=w,
edge-trg=rhead q ′|)
| q γ x w q ′.
(|edge-src=q,
edge-read=x,
edge-pop=[γ],
edge-push=w,
edge-trg=q ′|)
∈epda-delta M ∧ x 6=None}

definition FUN-SPLIT-edges :: (′q, ′a, ′b)EPDA
⇒ ((′q, ′b)splitstates, ′a, ′b)EDGE set
where
FUN-SPLIT-edges M =
FUN-SPLIT-RH2RE M
∪ FUN-SPLIT-SH2SE M
∪ FUN-SPLIT-RE2RH M

85/113

∪ FUN-SPLIT-RE2SH M
∪ FUN-SPLIT-SE2SH M
∪ FUN-SPLIT-SE2RH M

definition FUN-SPLIT :: (′q, ′a, ′b)EPDA
⇒ ((′q, ′b)splitstates, ′a, ′b)EPDA
where
FUN-SPLIT M =
(|epda-states=
(λ(q,X). rear q X) ‘ ((epda-states M)×(epda-gamma M))
∪(λ(q,X). sear q X) ‘ ((epda-states M)×(epda-gamma M))
∪(rhead ‘ (epda-states M))
∪(shead ‘ (epda-states M)),
epda-sigma=epda-sigma M,
epda-gamma=epda-gamma M,
epda-delta=FUN-SPLIT-edges M,
epda-initial=rhead (epda-initial M),
epda-box=epda-box M,
epda-final=(λ(q,X). rear q X) ‘ ((epda-final M)×(epda-gamma M))
∪ (λ(q,X). sear q X) ‘ ((epda-states M)×(epda-gamma M))
−FUN-lamLeave (FUN-SPLIT-edges M)
|)

A.2.27 Remove Noncontrollable States

datatype (′a, ′b) pair = pair ′a ′b

definition NCS :: (((′qa, ′qb)pair, ′b)splitstates, ′a, ′b)EPDA
⇒ (′qa, ′a, ′c)EPDA
⇒ ′a set
⇒ ((′qa, ′qb)pair, ′b)splitstates set
where
NCS M P SigmaUC = {ear. ∃ p q γ.
(ear=rear (pair p q) γ ∨ ear=sear (pair p q) γ)
∧ (ear /∈ FUN-lamLeave (epda-delta M))
∧ (∃ u∈SigmaUC. ∃ ep∈epda-delta P.
edge-src ep=p
∧ edge-read ep=Some u
∧ (¬(∃ em∈epda-delta M. edge-src em=ear ∧ edge-read em=Some u ∧ edge-pop em=[γ])))
}

definition RNCS :: (((′qa, ′qb)pair, ′b)splitstates, ′a, ′b)EPDA
⇒ (′qa, ′a, ′c)EPDA
⇒ ′a set
⇒ (((((′qa, ′qb)pair, ′b)splitstates, ′a, ′b)EPDA option)×bool)
where
RNCS M P SigmaUC = (let Q = NCS M P SigmaUC in (FUN-R2Q M Q,Q={}))

A.2.28 Product Automaton

definition FUNtimes :: (′qa, ′a, ′b)EPDA
⇒ (′qb, ′a,nat)EPDA
⇒ ((′qa, ′qb)pair, ′a, ′b)EPDA

86/113

where
FUNtimes C P =
(|epda-states={pair p q| p q. p∈ epda-states C ∧ q ∈ epda-states P},
epda-sigma=(epda-sigma C)∩(epda-sigma P),
epda-gamma=epda-gamma C,
epda-delta={
(|edge-src=pair (edge-src e) p,
edge-read=None,
edge-pop=edge-pop e,
edge-push=edge-pop e,
edge-trg=pair (edge-trg e) p|)
| e p. p∈epda-states P ∧ e∈epda-delta C ∧ edge-read e = None}∪
{
(|edge-src=pair (edge-src e) (edge-src e ′),
edge-read=edge-read e,
edge-pop=edge-pop e,
edge-push=edge-pop e,
edge-trg=pair (edge-trg e) (edge-trg e ′)|)
| e e ′. e∈epda-delta C ∧ e ′∈epda-delta P ∧ edge-read e = edge-read e ′},
epda-initial=pair (epda-initial C) (epda-initial P),
epda-box=epda-box C,
epda-final={pair p q| p q. p∈ epda-final C ∧ q ∈ epda-final P}
|)

A.2.29 Ensure Controllability

definition FUN-Controllable :: (′q symbol, ′a symbol, ′q symbol)EPDA
⇒ (′q symbol, ′a symbol,nat)EPDA
⇒ ′a symbol set
⇒ ((′q symbol, ′a symbol, ′q symbol)EPDA option)×bool
where
FUN-Controllable G0 P SigmaUC ≡ (
let
Mtimes = FUNtimes G0 P;
Msplit = FUN-SPLIT Mtimes;
Mac = FUN-AC Msplit
in
(case Mac of None⇒ (None,False) | Some Mac ′⇒
case RNCS Mac ′ P SigmaUC of (None,x)⇒ (None,x) |
(Some Mres,x)⇒ (Some (EPDAtoSymbol Mres),x))

)

A.2.30 Synthesize

definition FUN-iterator :: (′q symbol, ′a symbol, ′q symbol)EPDA
⇒ (′q symbol, ′a symbol,nat)EPDA
⇒ ′a symbol set
⇒ ((′q symbol, ′a symbol, ′q symbol)EPDA option)×bool
where
FUN-iterator X P SigmaUC = (
case FUN-Controllable X P SigmaUC of (None,x)⇒ (None,False) |
(Some MCont ′,x)⇒ (

if x then (Some MCont ′,False)

87/113

else (FUN-BlockFree MCont ′,True)))

function FUN-synthesize-loop :: (′q symbol, ′a symbol, ′q symbol)EPDA
⇒ (′q symbol, ′a symbol,nat)EPDA
⇒ ′a symbol set
⇒ (′q symbol, ′a symbol, ′q symbol)EPDA option
where
FUN-synthesize-loop X P SigmaUC = (
case FUN-iterator X P SigmaUC of (None,x)⇒ None |
(Some X ′,x)⇒ (

if x then FUN-synthesize-loop X ′ P SigmaUC
else Some X ′))

apply(force)+
done

definition FUN-synthesize :: (′q symbol, ′a symbol, ′q symbol)EPDA
⇒ (′q symbol, ′a symbol,nat)EPDA
⇒ ′a symbol set
⇒ (′q symbol, ′a symbol, ′q symbol)EPDA option
where
FUN-synthesize S P SigmaUC = (
let Init = FUN-BlockFree (EPDAtoSymbol (FUNtimes S P)) in
(case Init of None⇒ None |
Some Init ′⇒ FUN-synthesize-loop (Init ′) P SigmaUC))

end

88/113

A.3 Good Iterators

We present the lemmas, theorems, and corollary in Isabelle/HOL notation for Section 2.5.
The quite lengthy proofs are omitted here and available from the authors.
theory GFP-SOUND
imports

Fundamentals
LaTeXsugar

begin

A.3.1 Language Basics

lemma preservePrec:
assumes asm:

∧
B. B∈C =⇒ B = prec B

shows
⋃

C = prec (
⋃

C)
〈proof 〉

required by:
lemma: lem1 (page 89)

lemma lem1:⋃ {A:: ′a list⇒ bool. A ⊆ LUM ∧ A = prec A} = LUM
=⇒ prec LUM = LUM
〈proof 〉

depends on:
lemma: preservePrec (page 89)

required by:
theorem: GoodIterator-Fdes (page 94)

definition sconc :: ′a list set⇒ ′a set⇒ ′a list set where
sconc L A = {w@[a]| w a. w∈L ∧ a∈ A}

lemma lem2:
w ′ ∈ prec {w @ [a]}
=⇒ w ′ 6= w @ [a]
=⇒ w ′ /∈ prec {w}
=⇒ Q
〈proof 〉

required by:
theorem: GoodIterator-Fcont (page 95)

lemma prec-closed-sets-closed-under-intersection:
A = prec A
=⇒ B = prec B
=⇒ prec (A ∩ B) = A ∩ B
〈proof 〉

required by:
theorem: GoodIterator-Fspec (page 96)

89/113

A.3.2 Complete Lattice Basics

lemma le-trans:
p≤(q:: ′a::complete-lattice) =⇒ q≤r =⇒ p≤r
〈proof 〉

required by:
theorem: GoodIterator-composeCond (page 91)
theorem: Supremum-to-gfp-initialDec (page 106)
theorem: GoodIterator-compose (page 90)
lemma: computation-via-computeN-initial-hlp (page 104)
lemma: gfp-Decomposition (page 105)
lemma: gfp-mixed-fixed-point (page 103)
lemma: computation-via-computeN-initialDec-hlp (page 105)
lemma: gfp-invariant (page 92)
theorem: Supremum-in-DESSIMMSol (page 112)

definition GoodIterator :: (′a::complete-lattice⇒ ′a)⇒ (′a⇒ bool)⇒ (′a⇒ bool)⇒ (′a⇒ bool)⇒
bool where

GoodIterator F Qinp Qterm Qout ≡ (
(∀X∈Collect Qinp. F X ≤ X)
∧ (∀X∈Collect Qinp. Qterm X←→ (F X = X))
∧ (∀X∈Collect Qinp. Qout (F X))
∧ (∀X∈Collect Qinp. ∀Y∈Collect Qinp. X ≤ Y −→ F X ≤ F Y)
∧ (∀X∈Collect Qinp. ∀Y∈Collect Qinp. F X < X −→ Y < X −→ F Y = Y −→ Y ≤ F X))

definition GoodIteratorDec :: (′a::complete-lattice⇒ ′a)⇒ (′a⇒ bool)⇒ (′a⇒ bool)⇒ (′a⇒ bool)
⇒ bool where

GoodIteratorDec F Qinp Qterm Qout ≡ (
(∀X. F X ≤ X)
∧ (∀X∈Collect Qinp. Qterm X←→ (F X = X))
∧ (∀X∈Collect Qinp. Qout (F X))
∧ (∀X. ∀Y. X ≤ Y −→ F X ≤ F Y)
∧ (∀X∈Collect Qinp. ∀Y∈Collect Qinp. F X < X −→ Y < X −→ F Y = Y −→ Y ≤ F X))

lemma GoodIteratorDec-to-GoodIterator:
GoodIteratorDec F Qinp Qterm Qout
=⇒ GoodIterator F Qinp Qterm Qout
〈proof 〉

required by:
theorem: Supremum-to-gfp-initialDec (page 106)
lemma: gfp-Decomposition (page 105)

lemma GoodIterator-weakening:
GoodIterator F Qinp Qterm Qout
=⇒ GoodIterator F Qinp Qterm UNIV
〈proof 〉

required by:
theorem: GoodIteratorX-F-spec-cont2-bf-Fdes (page 99)
theorem: GoodIteratorX-F-spec-cont-bf-Fdes (page 98)
theorem: GoodIteratorX-F-spec-cont3-bf-Fdes (page 100)

theorem GoodIterator-compose:
GoodIterator F1 Qinp Qterm1 Qinter1

90/113

=⇒ GoodIterator F2 Qinter2 Qterm2 Qout2
=⇒ (

∧
Q. Qinter1 Q −→ Qinter2 Q)

=⇒ GoodIterator (F2◦F1) Qinp (λX. Qterm1 X∧Qterm2 X) Qout2
〈proof 〉

depends on:
lemma: le-trans (page 90)

required by:
lemma: GoodIterator-F-spec-cont (page 97)
lemma: GoodIterator-F-spec-cont-bf-Fdes (page 97)
theorem: Supremum-to-gfp-initialDec (page 106)
lemma: gfp-Decomposition (page 105)
lemma: GoodIterator-F-spec2-cont-bf (page 99)
lemma: GoodIterator-F-spec-cont3 (page 99)
lemma: GoodIterator-F-spec-cont3-bf (page 100)
lemma: GoodIterator-F-bf-spec (page 110)
lemma: GoodIterator-F-spec-cont2-bf-Fdes (page 99)
lemma: GoodIterator-F-spec2-cont (page 98)
lemma: GoodIterator-F-spec-cont-bf (page 97)
lemma: GoodIterator-F-spec-cont3-bf-Fdes (page 100)
lemma: GoodIterator-F-bf-cont-bf-des (page 110)

definition ifcomp :: (′a⇒ ′a)⇒ (′a⇒ ′a)⇒ (′a⇒ ′a) (- · - 120) where
ifcomp F2 F1 ≡ (λC. if F1 C=C then C else (F2◦F1)(C))

theorem GoodIterator-composeCond:
GoodIterator F1 Qinp Qterm1 Qinter1
=⇒ GoodIterator F2 Qinter2 Qterm2 Qout2
=⇒ (

∧
Q. Qinter1 Q −→ Qinter2 Q)

=⇒ (
∧

Q. Qinp Q −→ Qterm2 Q)
=⇒ GoodIterator (F2·F1) Qinp (λC. if F1 C=C then

Qterm1 C∧Qinp C else Qterm1 C∧Qterm2 C) ((Qinp∩Qinter1∩Qterm1)∪Qout2)
〈proof 〉

depends on:
lemma: le-trans (page 90)

definition GoodIteratorX :: (′a::complete-lattice⇒ ′a)⇒ (′a⇒ bool)⇒ bool where
GoodIteratorX F Qterm ≡ (
(∀X. F X ≤ X)
∧ (∀X. Qterm X←→ (F X = X))
∧ (∀X Y. X ≤ Y −→ F X ≤ F Y)
∧ (∀X Y. F X < X −→ Y < X −→ F Y = Y −→ Y ≤ F X))

lemma GoodIteratorX-vs-GoodIterator:
GoodIteratorX F Qterm= GoodIterator F UNIV Qterm UNIV
〈proof 〉

required by:
theorem: GoodIteratorX-F-spec-cont2-bf-Fdes (page 99)
theorem: GoodIteratorX-F-spec-cont-bf-Fdes (page 98)
theorem: GoodIteratorX-F-spec-cont3-bf-Fdes (page 100)

lemma Supremum-to-gfp:
GoodIteratorX F Qterm
=⇒ Sup{X. Qterm X} = gfp F
〈proof 〉

91/113

required by:
theorem: Supremum-to-gfp-initialDec (page 106)
theorem: computation-via-compute2 (page 109)

lemma gfp-invariant:
GoodIteratorX F Q
=⇒ gfp (λX. F (inf X (F Y))) = gfp (λX. F (inf X Y))
〈proof 〉

depends on:
lemma: le-trans (page 90)

required by:
corollary: decomposition-sound-and-least-restrictive (page 98)

A.3.3 Complete Lattice of DES

datatype ′a DES =
DES ′a list set ′a list set

definition des-langUM :: ′a DES⇒ ′a list set where
des-langUM D = (case D of DES A B⇒ A)

definition des-langM :: ′a DES⇒ ′a list set where
des-langM D = (case D of DES A B⇒ B)

definition IsDES :: ′a DES⇒ bool where
IsDES D ≡ (des-langM D ⊆ des-langUM D
∧ prec (des-langUM D) = des-langUM D)

definition lesseqDES :: ′a DES⇒ ′a DES⇒ bool where
lesseqDES D1 D2 ≡ (
des-langUM D1 ⊆ des-langUM D2
∧ des-langM D1 ⊆ des-langM D2)

definition lessDES :: ′a DES⇒ ′a DES⇒ bool where
lessDES D1 D2 ≡ lesseqDES D1 D2 ∧ D1 6=D2

definition infDES :: ′a DES⇒ ′a DES⇒ ′a DES where
infDES D1 D2 ≡ DES
(des-langUM D1 ∩ des-langUM D2)
(des-langM D1 ∩ des-langM D2)

definition supDES :: ′a DES⇒ ′a DES⇒ ′a DES where
supDES D1 D2 ≡ DES (des-langUM D1 ∪ des-langUM D2) (des-langM D1 ∪ des-langM D2)

definition botDES :: ′a DES where
botDES ≡ DES {} {}

definition topDES :: ′a DES where
topDES ≡ DES UNIV UNIV

definition SupDES :: ′a DES set⇒ ′a DES where
SupDES A ≡ DES (

⋃
(des-langUM ‘A)) (

⋃
(des-langM ‘A))

92/113

definition InfDES :: ′a DES set⇒ ′a DES where
InfDES A ≡ DES (

⋂
(des-langUM ‘A)) (

⋂
(des-langM ‘A))

instantiation DES :: (type)complete-lattice
begin

print-context

definition
bot-DES-ext-def : bot = botDES

definition
inf-DES-ext-def : inf D1 D2 = infDES D1 D2

definition
sup-DES-ext-def : sup D1 D2 = supDES D1 D2

definition
top-DES-ext-def : top = topDES

definition
less-eq-DES-ext-def : less-eq D1 D2 = lesseqDES D1 D2

definition
less-DES-ext-def : less A B = lessDES A B

definition
Sup-DES-ext-def : Sup A = SupDES A

definition
Inf-DES-ext-def : Inf A = InfDES A

instance
〈proof 〉

end

lemma infDES-preserves-IsDES:
IsDES A
=⇒ IsDES B
=⇒ IsDES (infDES A B)
〈proof 〉

required by:
lemma: computeN-Fbf-Fcont3-Fbf-Fdes-eq-Fbf-ifcomp-Fcont3 (page 112)
theorem: Supremum-in-DESSIMMSol (page 112)

A.3.4 Synthesis Basics

definition ContW :: ′a list⇒ ′a list set⇒ ′a list set⇒ ′a list set⇒ bool where
ContW w U Pum Cum ≡ (∀ u∈U. w@u∈Pum −→ w@u∈Cum)

definition Cont :: ′a list set⇒ ′a list set⇒ ′a list set⇒ ′a list set⇒ bool where

93/113

Cont A U Pum Cum ≡ (∀w ′∈A. ContW w ′U Pum Cum)

A.3.5 Operation Fdes

definition Fdes :: ′a DES⇒ ′a DES where
Fdes C = (
let SUPprec = Sup{A. A ⊆ des-langUM C ∧ A=prec A} in
DES SUPprec (SUPprec ∩ (des-langM C)))

lemma Fdes-makes-DES:
IsDES (Fdes D)
〈proof 〉

required by:
theorem: GoodIterator-Fdes (page 94)

lemma Fdes-is-decreasing:
Fdes D ≤ D
〈proof 〉

required by:
theorem: GoodIterator-Fdes (page 94)

theorem GoodIterator-Fdes:
GoodIterator Fdes UNIV IsDES IsDES
〈proof 〉

depends on:
lemma: Fdes-is-decreasing (page 94)
lemma: lem1 (page 89)
lemma: Fdes-makes-DES (page 94)

required by:
lemma: GoodIterator-F-spec-cont-bf-Fdes (page 97)
lemma: computeN-Fbf-Fcont3-Fbf-Fdes-eq-Fbf-ifcomp-Fcont3 (page 112)
lemma: GoodIterator-F-spec-cont2-bf-Fdes (page 99)
lemma: GoodIterator-F-spec-cont3-bf-Fdes (page 100)
lemma: GoodIterator-F-bf-cont-bf-des (page 110)
theorem: compute-DESSIMMSol (page 113)

A.3.6 Operation Fbf

definition Fbf :: ′a DES⇒ ′a DES where
Fbf C = DES (prec (des-langM C)) (des-langM C)

definition PropBF :: ′a DES⇒ bool where
PropBF C = (des-langUM C ⊆ prec (des-langM C))

theorem GoodIterator-Fbf :
GoodIterator Fbf IsDES (IsDES ∩ PropBF) (IsDES ∩ PropBF)
〈proof 〉

required by:
lemma: computeN-Fbf-Fcont3-Fbf-Fdes-eq-Fbf-ifcomp-Fcont3 (page 112)
lemma: GoodIterator-F-spec2-cont-bf (page 99)
lemma: GoodIterator-F-spec-cont3-bf (page 100)

94/113

lemma: GoodIterator-F-bf-spec (page 110)
lemma: GoodIterator-F-spec-cont-bf (page 97)
lemma: GoodIterator-F-bf-cont-bf-des (page 110)
theorem: Supremum-in-DESSIMMSol (page 112)
theorem: compute-DESSIMMSol (page 113)

A.3.7 Operation Fcont

definition Fcont :: ′a DES⇒ ′a set⇒ ′a list set⇒ ′a list set⇒ ′a DES where
Fcont C SigmaUC Pum Cum = (let A = {w. w∈des-langUM C ∧ Cont (prec {w}) (STAR SigmaUC)

Pum Cum} in
DES A (A ∩ (des-langM C)))

definition DESCont :: ′a DES⇒ ′a DES⇒ ′a set⇒ bool where
DESCont C P SigmaUC = ((sconc(des-langUM C)(SigmaUC))∩(des-langUM P)⊆des-langUM C)

lemma lem3:
IsDES (DES PUM PM)
=⇒ IsDES (DES LUM LM)
=⇒ sconc (LUM) SigmaUC ∩ PUM ⊆ LUM
=⇒ x ∈ LUM
=⇒ w ′ ∈ prec {x}
=⇒ set u ⊆ SigmaUC
=⇒ w ′ @ u ∈ PUM
=⇒ w ′ @ u ∈ LUM
〈proof 〉

required by:
theorem: GoodIterator-Fcont2 (page 95)
theorem: GoodIterator-Fcont3 (page 96)
theorem: GoodIterator-Fcont (page 95)

theorem GoodIterator-Fcont:
IsDES P
=⇒ GoodIterator (λC. Fcont C SigmaUC (des-langUM P) (des-langUM C)) IsDES (λC. IsDES C ∧

DESCont C P SigmaUC) (λC. IsDES C ∧ DESCont C P SigmaUC)
〈proof 〉

depends on:
lemma: lem3 (page 95)
lemma: lem2 (page 89)

required by:
lemma: GoodIterator-F-spec-cont (page 97)

A.3.8 Operation Fcont2

definition Fcont2 :: ′a DES⇒ ′a set⇒ ′a list set⇒ ′a list set⇒ ′a DES where
Fcont2 C SigmaUC Pum Cum = (let A = {w. w∈des-langUM C ∧ Cont (prec {w}) (convAL Sig-

maUC) Pum Cum} in
DES A (A ∩ (des-langM C)))

theorem GoodIterator-Fcont2:
IsDES P

95/113

=⇒ GoodIterator
(λC. Fcont2 C SigmaUC (des-langUM P) (des-langUM C))
IsDES
(λC. IsDES C ∧ DESCont C P SigmaUC)
IsDES
〈proof 〉

depends on:
lemma: lem3 (page 95)

required by:
lemma: GoodIterator-F-spec2-cont (page 98)

A.3.9 Operation Fcont3

definition Fcont3 :: ′a DES⇒ ′a set⇒ ′a list set⇒ ′a list set⇒ ′a DES where
Fcont3 C SigmaUC Pum Cum = (let
B = {w. (w∈des-langM C)
∧ (Cont (prec {w}) (convAL SigmaUC) Pum Cum)};
A = {w. (w∈des-langUM C)
∧ (Cont ((prec {w})−{w}) (convAL SigmaUC) Pum Cum)
∧ ((¬(ContW w (convAL SigmaUC) Pum Cum))−→((w/∈ prec B)))} in
DES A B)

theorem GoodIterator-Fcont3:
IsDES P
=⇒ GoodIterator (λC. Fcont3 C SigmaUC (des-langUM P) (des-langUM C)) (IsDES∩PropBF) (λC.

IsDES C ∧ DESCont C P SigmaUC) IsDES
〈proof 〉

depends on:
lemma: lem3 (page 95)

required by:
lemma: GoodIterator-F-spec-cont3 (page 99)
lemma: GoodIterator-F-bf-cont-bf-des (page 110)

A.3.10 Operation Fspec

definition Fspec :: ′a DES⇒ ′a DES⇒ ′a DES where
Fspec C S = DES (des-langUM S ∩ (des-langUM C)) (des-langM S ∩ (des-langM C))

definition PropSpec :: ′a DES⇒ ′a DES⇒ bool where
PropSpec C S =
(des-langUM C ⊆ des-langUM S
∧ des-langM C ⊆ des-langM S)

theorem GoodIterator-Fspec:
IsDES P
=⇒ IsDES S
=⇒ GoodIterator (λC. Fspec C S) IsDES (λC. IsDES C ∧ PropSpec C S) (λC. IsDES C ∧ PropSpec

C S)
〈proof 〉

depends on:
lemma: prec-closed-sets-closed-under-intersection (page 89)

96/113

required by:
lemma: GoodIterator-F-spec-cont (page 97)
lemma: GoodIterator-F-spec-cont3 (page 99)
lemma: GoodIterator-F-bf-spec (page 110)
lemma: GoodIterator-F-spec2-cont (page 98)
theorem: Supremum-in-DESSIMMSol (page 112)

A.3.11 Composition of Fspec, Fcont, Fbf, and Fdes

lemma GoodIterator-F-spec-cont:
IsDES P
=⇒ IsDES S
=⇒ GoodIterator
((λC. Fspec C S)◦(λC. Fcont C SigmaUC (des-langUM P) (des-langUM C)))
IsDES
(λX. (λC. IsDES C ∧ DESCont C P SigmaUC) X ∧ (λC. IsDES C ∧ PropSpec C S) X)
(λC. IsDES C ∧ PropSpec C S)
〈proof 〉

depends on:
theorem: GoodIterator-compose (page 90)
theorem: GoodIterator-Fcont (page 95)
theorem: GoodIterator-Fspec (page 96)

required by:
lemma: GoodIterator-F-spec-cont-bf (page 97)

lemma GoodIterator-F-spec-cont-bf :
IsDES P
=⇒ IsDES S
=⇒ GoodIterator
(((λC. Fspec C S)◦(λC. Fcont C SigmaUC (des-langUM P) (des-langUM C)))◦Fbf)
IsDES
(λX. ((IsDES∩PropBF) X) ∧ ((λC. IsDES C ∧ DESCont C P SigmaUC) X ∧ (λC. IsDES C ∧

PropSpec C S) X))
(λC. IsDES C ∧ PropSpec C S)
〈proof 〉

depends on:
theorem: GoodIterator-compose (page 90)
lemma: GoodIterator-F-spec-cont (page 97)
theorem: GoodIterator-Fbf (page 94)

required by:
lemma: GoodIterator-F-spec-cont-bf-Fdes (page 97)

lemma GoodIterator-F-spec-cont-bf-Fdes:
IsDES P
=⇒ IsDES S
=⇒ GoodIterator
(((λC. Fspec C S)◦(λC. Fcont C SigmaUC (des-langUM P) (des-langUM C)))◦Fbf◦Fdes)
UNIV
(λX. (IsDES X) ∧ (((IsDES∩PropBF) X) ∧ ((λC. IsDES C ∧ DESCont C P SigmaUC) X ∧ (λC.

IsDES C ∧ PropSpec C S) X)))
(λC. IsDES C ∧ PropSpec C S)

97/113

〈proof 〉
depends on:

theorem: GoodIterator-compose (page 90)
lemma: GoodIterator-F-spec-cont-bf (page 97)
theorem: GoodIterator-Fdes (page 94)

required by:
theorem: GoodIteratorX-F-spec-cont-bf-Fdes (page 98)

theorem GoodIteratorX-F-spec-cont-bf-Fdes:
IsDES P
=⇒ IsDES S
=⇒ GoodIteratorX
(((λC. Fspec C S)◦(λC. Fcont C SigmaUC (des-langUM P) (des-langUM C)))◦Fbf◦Fdes)
(λX. (IsDES X) ∧ (((IsDES∩PropBF) X) ∧ ((λC. IsDES C ∧ DESCont C P SigmaUC) X ∧ (λC.

IsDES C ∧ PropSpec C S) X)))
〈proof 〉

depends on:
lemma: GoodIteratorX-vs-GoodIterator (page 91)
lemma: GoodIterator-weakening (page 90)
lemma: GoodIterator-F-spec-cont-bf-Fdes (page 97)

required by:
theorem: computation-of-least-restrictive-maximal-solution-via-compute-for-cont (page 107)
corollary: decomposition-sound-and-least-restrictive (page 98)

corollary decomposition-sound-and-least-restrictive:
IsDES P
=⇒ IsDES S
=⇒ F = (((λC. Fspec C S)◦(λC. Fcont C SigmaUC (des-langUM P) (des-langUM C)))◦Fbf◦Fdes)
=⇒ gfp (λX. F (inf X (F Y))) = gfp (λX. F (inf X Y))
〈proof 〉

depends on:
lemma: gfp-invariant (page 92)
theorem: GoodIteratorX-F-spec-cont-bf-Fdes (page 98)

A.3.12 Composition of Fspec, Fcont2, Fbf, and des

lemma GoodIterator-F-spec2-cont:
IsDES P
=⇒ IsDES S
=⇒ GoodIterator
((λC. Fspec C S)◦(λC. Fcont2 C SigmaUC (des-langUM P) (des-langUM C)))
IsDES
(λX. (λC. IsDES C ∧ DESCont C P SigmaUC) X ∧ (λC. IsDES C ∧ PropSpec C S) X)
(λC. IsDES C ∧ PropSpec C S)
〈proof 〉

depends on:
theorem: GoodIterator-compose (page 90)
theorem: GoodIterator-Fcont2 (page 95)
theorem: GoodIterator-Fspec (page 96)

required by:
lemma: GoodIterator-F-spec2-cont-bf (page 99)

98/113

lemma GoodIterator-F-spec2-cont-bf :
IsDES P
=⇒ IsDES S
=⇒ GoodIterator
(((λC. Fspec C S)◦(λC. Fcont2 C SigmaUC (des-langUM P) (des-langUM C)))◦Fbf)
IsDES
(λX. ((IsDES∩PropBF) X) ∧ ((λC. IsDES C ∧ DESCont C P SigmaUC) X ∧ (λC. IsDES C ∧

PropSpec C S) X))
(λC. IsDES C ∧ PropSpec C S)
〈proof 〉

depends on:
theorem: GoodIterator-compose (page 90)
lemma: GoodIterator-F-spec2-cont (page 98)
theorem: GoodIterator-Fbf (page 94)

required by:
lemma: GoodIterator-F-spec-cont2-bf-Fdes (page 99)

lemma GoodIterator-F-spec-cont2-bf-Fdes:
IsDES P
=⇒ IsDES S
=⇒ GoodIterator
(((λC. Fspec C S)◦(λC. Fcont2 C SigmaUC (des-langUM P) (des-langUM C)))◦Fbf◦Fdes)
UNIV
(λX. (IsDES X) ∧ (((IsDES∩PropBF) X) ∧ ((λC. IsDES C ∧ DESCont C P SigmaUC) X ∧ (λC.

IsDES C ∧ PropSpec C S) X)))
(λC. IsDES C ∧ PropSpec C S)
〈proof 〉

depends on:
theorem: GoodIterator-compose (page 90)
lemma: GoodIterator-F-spec2-cont-bf (page 99)
theorem: GoodIterator-Fdes (page 94)

required by:
theorem: GoodIteratorX-F-spec-cont2-bf-Fdes (page 99)

theorem GoodIteratorX-F-spec-cont2-bf-Fdes:
IsDES P
=⇒ IsDES S
=⇒ GoodIteratorX
(((λC. Fspec C S)◦(λC. Fcont2 C SigmaUC (des-langUM P) (des-langUM C)))◦Fbf◦Fdes)
(λX. (IsDES X) ∧ (((IsDES∩PropBF) X) ∧ ((λC. IsDES C ∧ DESCont C P SigmaUC) X ∧ (λC.

IsDES C ∧ PropSpec C S) X)))
〈proof 〉

depends on:
lemma: GoodIteratorX-vs-GoodIterator (page 91)
lemma: GoodIterator-weakening (page 90)
lemma: GoodIterator-F-spec-cont2-bf-Fdes (page 99)

required by:
theorem: computation-of-least-restrictive-maximal-solution-via-compute-for-cont2 (page 107)

A.3.13 Composition of Fspec, Fcont2, Fbf, and Fdes

lemma GoodIterator-F-spec-cont3:

99/113

IsDES P
=⇒ IsDES S
=⇒ GoodIterator
((λC. Fspec C S)◦(λC. Fcont3 C SigmaUC (des-langUM P) (des-langUM C)))
(IsDES∩PropBF)
(λX. (λC. IsDES C ∧ DESCont C P SigmaUC) X ∧ (λC. IsDES C ∧ PropSpec C S) X)
(λC. IsDES C ∧ PropSpec C S)
〈proof 〉

depends on:
theorem: GoodIterator-compose (page 90)
theorem: GoodIterator-Fcont3 (page 96)
theorem: GoodIterator-Fspec (page 96)

required by:
lemma: GoodIterator-F-spec-cont3-bf (page 100)

lemma GoodIterator-F-spec-cont3-bf :
IsDES P
=⇒ IsDES S
=⇒ GoodIterator
(((λC. Fspec C S)◦(λC. Fcont3 C SigmaUC (des-langUM P) (des-langUM C)))◦Fbf)
IsDES
(λX. ((IsDES∩PropBF) X) ∧ ((λC. IsDES C ∧ DESCont C P SigmaUC) X ∧ (λC. IsDES C ∧

PropSpec C S) X))
(λC. IsDES C ∧ PropSpec C S)
〈proof 〉

depends on:
theorem: GoodIterator-compose (page 90)
lemma: GoodIterator-F-spec-cont3 (page 99)
theorem: GoodIterator-Fbf (page 94)

required by:
lemma: GoodIterator-F-spec-cont3-bf-Fdes (page 100)

lemma GoodIterator-F-spec-cont3-bf-Fdes:
IsDES P
=⇒ IsDES S
=⇒ GoodIterator
(((λC. Fspec C S)◦(λC. Fcont3 C SigmaUC (des-langUM P) (des-langUM C)))◦Fbf◦Fdes)
UNIV
(λX. (IsDES X) ∧ (((IsDES∩PropBF) X) ∧ ((λC. IsDES C ∧ DESCont C P SigmaUC) X ∧ (λC.

IsDES C ∧ PropSpec C S) X)))
(λC. IsDES C ∧ PropSpec C S)
〈proof 〉

depends on:
theorem: GoodIterator-compose (page 90)
lemma: GoodIterator-F-spec-cont3-bf (page 100)
theorem: GoodIterator-Fdes (page 94)

required by:
theorem: GoodIteratorX-F-spec-cont3-bf-Fdes (page 100)

theorem GoodIteratorX-F-spec-cont3-bf-Fdes:
IsDES P
=⇒ IsDES S

100/113

=⇒ GoodIteratorX
(((λC. Fspec C S)◦(λC. Fcont3 C SigmaUC (des-langUM P) (des-langUM C)))◦Fbf◦Fdes)
(λX. (IsDES X) ∧ (((IsDES∩PropBF) X) ∧ ((λC. IsDES C ∧ DESCont C P SigmaUC) X ∧ (λC.

IsDES C ∧ PropSpec C S) X)))
〈proof 〉

depends on:
lemma: GoodIteratorX-vs-GoodIterator (page 91)
lemma: GoodIterator-weakening (page 90)
lemma: GoodIterator-F-spec-cont3-bf-Fdes (page 100)

required by:
theorem: computation-of-least-restrictive-maximal-solution-via-compute-for-cont3 (page 107)

A.3.14 Function Computation of Fixedpoint

function (domintros) compute :: (′a DES⇒ ′a DES)⇒ ′a DES⇒ ′a DES where
compute F D = (if (D=F D)then D else compute F (F D))
〈proof 〉

primrec computeN :: nat⇒ (′a DES⇒ ′a DES)⇒ ′a DES⇒ ′a DES where
computeN 0 F D = D
| computeN (Suc n) F D = computeN n F (F D)

lemma computeN-iterate-vs-pre-apply:
computeN n F (F A) = computeN (Suc n) F A
〈proof 〉

required by:
lemma: computation-via-computeN-initial-hlp (page 104)
lemma: computeN-reaches-Qinter (page 105)
lemma: computation-via-computeN-initialDec-hlp (page 105)
lemma: computation-via-computeN-hlp (page 102)

lemma computeN-iterate-vs-post-apply-hlp:
∀A. F (computeN n F A) = computeN (Suc n) F A
〈proof 〉

required by:
lemma: computation-via-computeN-initial-hlp (page 104)
lemma: computeN-iterate-vs-post-apply (page 101)
lemma: computeN-preserve-prop (page 112)
lemma: computation-via-computeN-initialDec-hlp (page 105)

lemma computeN-iterate-vs-post-apply:
F (computeN n F A) = computeN (Suc n) F A
〈proof 〉

depends on:
lemma: computeN-iterate-vs-post-apply-hlp (page 101)

required by:
theorem: EqualCompute-initial (page 108)
lemma: computeterm-by-computeN-hlp (page 108)
lemma: computation-via-computeN-initial-hlp (page 104)
lemma: computeN-smaller-than-input (page 104)
lemma: computeN-reaches-Qinter (page 105)
lemma: computation-via-computeN-initialDec-hlp (page 105)

101/113

lemma: computeN-invariant-after-fixed-point (page 108)
lemma: computation-via-computeN-hlp (page 102)

lemma compute-by-computeN:
compute-dom (F,A)
=⇒ ∃ n. compute F A = computeN n F A ∧ F (computeN n F A) = computeN n F A
〈proof 〉

required by:
theorem: computation-via-compute-initial (page 104)
theorem: equal-computation-via-compute (page 108)
theorem: computation-via-compute (page 103)
theorem: computation-via-compute2 (page 109)
theorem: Supremum-to-gfp-initialTranslate (page 109)
theorem: computation-via-compute-initialDec (page 106)

lemma computation-via-computeN-hlp1:
GoodIteratorX F Q
=⇒ F A 6= A
=⇒ F (F A) 6= F A
=⇒ gfp F < A
=⇒ gfp F < F A
〈proof 〉

required by:
lemma: computation-via-computeN-hlp (page 102)

lemma computation-via-computeN-hlp2:
GoodIteratorX F Q
=⇒ F A 6= A
=⇒ F (F A) = F A
=⇒ gfp F < A
=⇒ F A = gfp F
〈proof 〉

required by:
lemma: computation-via-computeN-hlp (page 102)

lemma computation-via-computeN-hlp:
GoodIteratorX F Q
=⇒
(F (computeN n F top) = computeN n F top −→ computeN n F top = gfp F)
∧ (F (computeN n F top) 6= computeN n F top −→ computeN n F top > gfp F)
〈proof 〉

depends on:
lemma: computeN-iterate-vs-pre-apply (page 101)
lemma: computeN-iterate-vs-post-apply (page 101)
lemma: computation-via-computeN-hlp1 (page 102)
lemma: computation-via-computeN-hlp2 (page 102)

required by:
lemma: computation-via-computeN (page 102)

lemma computation-via-computeN:
GoodIteratorX F Q
=⇒ F (computeN n F top) = computeN n F top

102/113

=⇒ computeN n F top = gfp F
〈proof 〉

depends on:
lemma: computation-via-computeN-hlp (page 102)

required by:
theorem: computation-via-compute (page 103)

theorem computation-via-compute:
GoodIteratorX F Q
=⇒ compute-dom (F,top)
=⇒ compute F top = (gfp F)
〈proof 〉

depends on:
lemma: compute-by-computeN (page 102)
lemma: computation-via-computeN (page 102)

required by:
theorem: computation-via-compute2 (page 109)
theorem: computation-of-least-restrictive-maximal-solution-via-compute-for-cont3 (page 107)
theorem: computation-of-least-restrictive-maximal-solution-via-compute-for-cont2 (page 107)
theorem: computation-of-least-restrictive-maximal-solution-via-compute-for-cont (page 107)

A.3.15 Validity of Initialised Fixedpoint

lemma gfp-not-fixed-point:
F X 6= X
=⇒ mono F
=⇒ gfp F 6= X
〈proof 〉

required by:
lemma: computation-via-computeN-initial-hlp (page 104)
lemma: computation-via-computeN-initialDec-hlp (page 105)

lemma gfp-fixed-point:
F X = X
=⇒ X ≤ gfp F
〈proof 〉

required by:
lemma: computation-via-computeN-initial-hlp (page 104)
lemma: computation-via-computeN-initialDec-hlp (page 105)

lemma gfp-mixed-fixed-point:
(
∧

X. F X ≤ X)
=⇒ (

∧
X Y. X ≤ Y =⇒ F X ≤ F Y)

=⇒ F (gfp (%X. F (inf X S))) = gfp (%X. F (inf X S))
〈proof 〉

depends on:
lemma: le-trans (page 90)

required by:
lemma: computation-via-computeN-initial-hlp (page 104)
lemma: computation-via-computeN-initialDec-hlp (page 105)
theorem: Supremum-to-gfp-initialDec-instantiate (page 107)

103/113

lemma computeN-smaller-than-input:
(
∧

C. F C ≤ C)
=⇒ computeN n F S ≤ S
〈proof 〉

depends on:
lemma: computeN-iterate-vs-post-apply (page 101)

required by:
lemma: computation-via-computeN-initial-hlp (page 104)
lemma: computation-via-computeN-initialDec-hlp (page 105)

lemma computation-via-computeN-initial-hlp:
GoodIterator F UNIV Qterm Qout
=⇒
(F (computeN n F S) = computeN n F S −→ computeN n F S = gfp (%X. F (inf X S)))
∧ (F (computeN n F S) 6= computeN n F S −→ computeN n F S > gfp (%X. F (inf X S)))
〈proof 〉

depends on:
lemma: le-trans (page 90)
lemma: gfp-not-fixed-point (page 103)
lemma: computeN-iterate-vs-post-apply (page 101)
lemma: gfp-fixed-point (page 103)
lemma: computeN-smaller-than-input (page 104)
lemma: computeN-iterate-vs-pre-apply (page 101)
lemma: gfp-mixed-fixed-point (page 103)
lemma: computeN-iterate-vs-post-apply-hlp (page 101)

required by:
lemma: computation-via-computeN-initial (page 104)

lemma computation-via-computeN-initial:
GoodIterator F UNIV Qterm Qout
=⇒ F (computeN n F S) = computeN n F S
=⇒ computeN n F S = gfp (%X. F (inf X S))
〈proof 〉

depends on:
lemma: computation-via-computeN-initial-hlp (page 104)

required by:
theorem: computation-via-compute-initial (page 104)

theorem computation-via-compute-initial:
GoodIterator F UNIV Qterm Qout
=⇒ compute-dom (F,S)
=⇒ compute F S = (gfp (%X. F (inf X S)))
〈proof 〉

depends on:
lemma: compute-by-computeN (page 102)
lemma: computation-via-computeN-initial (page 104)

required by:
theorem: Supremum-to-gfp-initial (page 104)

theorem Supremum-to-gfp-initial:
GoodIterator F UNIV Qterm Qout

104/113

=⇒ compute-dom (F,S)
=⇒ compute F S = Sup{X. Qterm X ∧ X ≤ S}
〈proof 〉

depends on:
theorem: computation-via-compute-initial (page 104)

required by:
theorem: Supremum-to-gfp-initialTranslate (page 109)

lemma gfp-Decomposition:
GoodIterator G UNIV Qinter Qinter
=⇒ GoodIteratorDec F Qinter QFterm QFout
=⇒ (

∧
X. QFout (F X))

=⇒ (
∧

C. QFout C =⇒ Qinter C)
=⇒ gfp (F ◦ G) = gfp (%X. F (inf X (G top)))
〈proof 〉

depends on:
theorem: GoodIterator-compose (page 90)
lemma: GoodIteratorDec-to-GoodIterator (page 90)
lemma: le-trans (page 90)

required by:
theorem: Supremum-to-gfp-initialDec (page 106)

lemma GoodIterator-to-GoodIteratorX:
GoodIterator F UNIV Qterm Qout
=⇒ GoodIteratorX F Qterm
〈proof 〉

required by:
theorem: Supremum-to-gfp-initialDec (page 106)

lemma computeN-reaches-Qinter:
Qinter S
=⇒ GoodIteratorDec F Qinter QFterm QFout
=⇒ (

∧
C. QFout C =⇒ Qinter C)

=⇒ Qinter (computeN n F S)
〈proof 〉

depends on:
lemma: computeN-iterate-vs-pre-apply (page 101)
lemma: computeN-iterate-vs-post-apply (page 101)

required by:
lemma: computation-via-computeN-initialDec-hlp (page 105)

lemma computation-via-computeN-initialDec-hlp:
Qinter S
=⇒ GoodIteratorDec F Qinter QFterm QFout
=⇒ (

∧
C. QFout C =⇒ Qinter C)

=⇒ Qinter (gfp (λX. F (inf X S)))
=⇒
(F (computeN n F S) = computeN n F S −→ computeN n F S = gfp (%X. F (inf X S)))
∧ (F (computeN n F S) 6= computeN n F S −→ computeN n F S > gfp (%X. F (inf X S)))
〈proof 〉

105/113

depends on:
lemma: le-trans (page 90)
lemma: gfp-not-fixed-point (page 103)
lemma: computeN-iterate-vs-post-apply (page 101)
lemma: gfp-fixed-point (page 103)
lemma: computeN-smaller-than-input (page 104)
lemma: computeN-iterate-vs-pre-apply (page 101)
lemma: computeN-reaches-Qinter (page 105)
lemma: gfp-mixed-fixed-point (page 103)
lemma: computeN-iterate-vs-post-apply-hlp (page 101)

required by:
lemma: computation-via-computeN-initialDec (page 106)

lemma computation-via-computeN-initialDec:
Qinter S
=⇒ GoodIteratorDec F Qinter QFterm QFout
=⇒ (

∧
C. QFout C =⇒ Qinter C)

=⇒ Qinter (gfp (λX. F (inf X S)))
=⇒ F (computeN n F S) = computeN n F S
=⇒ computeN n F S = gfp (%X. F (inf X S))
〈proof 〉

depends on:
lemma: computation-via-computeN-initialDec-hlp (page 105)

required by:
theorem: computation-via-compute-initialDec (page 106)

theorem computation-via-compute-initialDec:
Qinter S
=⇒ GoodIteratorDec F Qinter QFterm QFout
=⇒ (

∧
C. QFout C =⇒ Qinter C)

=⇒ Qinter (gfp (λX. F (inf X S)))
=⇒ compute-dom (F,S)
=⇒ compute F S = (gfp (%X. F (inf X S)))
〈proof 〉

depends on:
lemma: compute-by-computeN (page 102)
lemma: computation-via-computeN-initialDec (page 106)

required by:
theorem: Supremum-to-gfp-initialDec (page 106)

theorem Supremum-to-gfp-initialDec:
GoodIterator G UNIV Qinter Qinter
=⇒ GoodIteratorDec F Qinter QFterm QFout
=⇒ (

∧
C. QFterm C =⇒ Qinter C)

=⇒ (
∧

X. QFout (F X))
=⇒ (

∧
C. QFout C =⇒ Qinter C)

=⇒ Qinter (gfp (λX. F (inf X (G top))))
=⇒ compute-dom (F,G top)
=⇒ compute F (G top) = Sup{X. QFterm X ∧ X ≤ G top}
〈proof 〉

depends on:
theorem: computation-via-compute-initialDec (page 106)

106/113

lemma: gfp-Decomposition (page 105)
theorem: GoodIterator-compose (page 90)
lemma: GoodIteratorDec-to-GoodIterator (page 90)
lemma: Supremum-to-gfp (page 91)
lemma: GoodIterator-to-GoodIteratorX (page 105)
lemma: le-trans (page 90)

required by:
theorem: Supremum-to-gfp-initialDec-instantiate (page 107)

theorem Supremum-to-gfp-initialDec-instantiate:
GoodIterator G UNIV (%C. IsDES C ∧ PropBF C) (%C. IsDES C ∧ PropBF C)
=⇒ GoodIteratorDec F (%C. IsDES C ∧ PropBF C) (%C. IsDES C ∧ PropBF C ∧ DESCont C P

SigmaUC) (%C. IsDES C ∧ PropBF C)
=⇒ compute-dom (F,G top)
=⇒ (

∧
X. IsDES(F X))

=⇒ (
∧

X. PropBF(F X))
=⇒ compute F (G top) = Sup{X. (%C. IsDES C ∧ PropBF C ∧ DESCont C P SigmaUC) X ∧ X ≤

G top}
〈proof 〉

depends on:
theorem: Supremum-to-gfp-initialDec (page 106)
lemma: gfp-mixed-fixed-point (page 103)

A.3.16 Function Computations for Instances (Classic Approach)

theorem computation-of-least-restrictive-maximal-solution-via-compute-for-cont:
IsDES P
=⇒ IsDES S
=⇒ F = (((λC. Fspec C S)◦(λC. Fcont C SigmaUC (des-langUM P) (des-langUM C)))◦Fbf◦Fdes)
=⇒ compute-dom (F,top)
=⇒ compute F top = (gfp F)
〈proof 〉

depends on:
theorem: computation-via-compute (page 103)
theorem: GoodIteratorX-F-spec-cont-bf-Fdes (page 98)

theorem computation-of-least-restrictive-maximal-solution-via-compute-for-cont2:
IsDES P
=⇒ IsDES S
=⇒ F = (((λC. Fspec C S)◦(λC. Fcont2 C SigmaUC (des-langUM P) (des-langUM C)))◦Fbf◦Fdes)
=⇒ compute-dom (F,top)
=⇒ compute F top = (gfp F)
〈proof 〉

depends on:
theorem: computation-via-compute (page 103)
theorem: GoodIteratorX-F-spec-cont2-bf-Fdes (page 99)

theorem computation-of-least-restrictive-maximal-solution-via-compute-for-cont3:
IsDES P
=⇒ IsDES S
=⇒ F = (((λC. Fspec C S)◦(λC. Fcont3 C SigmaUC (des-langUM P) (des-langUM C)))◦Fbf◦Fdes)

107/113

=⇒ compute-dom (F,top)
=⇒ compute F top = (gfp F)
〈proof 〉

depends on:
theorem: computation-via-compute (page 103)
theorem: GoodIteratorX-F-spec-cont3-bf-Fdes (page 100)

A.3.17 Verification of Fixedpoint Algorithm (with Precomputation and Conditional
Composition)

lemma computeN-invariant-after-fixed-point:
computeN n F A = F (computeN n F A)
=⇒ n≤na
=⇒ computeN n F A = computeN na F A
〈proof 〉

depends on:
lemma: computeN-iterate-vs-post-apply (page 101)

required by:
theorem: equal-computation-via-compute (page 108)

theorem EqualCompute-initial:
(
∧

C. Q C =⇒ F C = G C)
=⇒ (

∧
n. Q (computeN n F S))

=⇒ Qinp S
=⇒ (

∧
C. Qout C =⇒ Qinp C)

=⇒ computeN n F S = computeN n G S ∧ Q (computeN n F S)
〈proof 〉

depends on:
lemma: computeN-iterate-vs-post-apply (page 101)

required by:
lemma: computeN-Fbf-Fcont3-Fbf-Fdes-eq-Fbf-ifcomp-Fcont3 (page 112)
lemma: computeterm-by-computeN (page 109)
theorem: equal-computation-via-compute (page 108)

theorem equal-computation-via-compute:
(
∧

C. QFdom C =⇒ F C = G C)
=⇒ (

∧
n. QFdom (computeN n F S))

=⇒ compute-dom (F,S)
=⇒ compute-dom (G,S)
=⇒ compute F S = compute G S
〈proof 〉

depends on:
lemma: compute-by-computeN (page 102)
theorem: EqualCompute-initial (page 108)
lemma: computeN-invariant-after-fixed-point (page 108)

required by:
theorem: computation-via-compute2 (page 109)
theorem: Supremum-to-gfp-initialTranslate (page 109)

lemma computeterm-by-computeN-hlp:

108/113

F (computeN n F S) = computeN n F S
=⇒ computeN n F S = computeN n G S
=⇒ Qinp (computeN n F S)
=⇒ (

∧
C. Qinp C =⇒ F C = G C)

=⇒ m≤n
=⇒ compute-dom (G,computeN (n−m) G S)
〈proof 〉

depends on:
lemma: computeN-iterate-vs-post-apply (page 101)

required by:
lemma: computeterm-by-computeN (page 109)

lemma computeterm-by-computeN:
(
∧

C. Q C =⇒ F C = G C)
=⇒ (

∧
n. Q (computeN n F S))

=⇒ compute F S = computeN n F S
=⇒ F (computeN n F S) = computeN n F S
=⇒ compute-dom (G,S)
〈proof 〉

depends on:
theorem: EqualCompute-initial (page 108)
lemma: computeterm-by-computeN-hlp (page 108)

required by:
theorem: computation-via-compute2 (page 109)
theorem: Supremum-to-gfp-initialTranslate (page 109)

theorem computation-via-compute2:
GoodIteratorX G Q
=⇒ (

∧
C. QFdom C =⇒ F C = G C)

=⇒ (
∧

n. QFdom (computeN n F top))
=⇒ compute-dom (F,top)
=⇒ compute F top = Sup {X. Q X}
〈proof 〉

depends on:
lemma: Supremum-to-gfp (page 91)
theorem: equal-computation-via-compute (page 108)
theorem: computation-via-compute (page 103)
lemma: compute-by-computeN (page 102)
lemma: computeterm-by-computeN (page 109)

theorem Supremum-to-gfp-initialTranslate:
GoodIterator F UNIV Qterm Qout
=⇒ compute-dom (G,S)
=⇒ (

∧
n. computeN n F S = computeN n G S)

=⇒ (
∧

C. QFdom C =⇒ F C = G C)
=⇒ (

∧
n. QFdom (computeN n F S))

=⇒ compute G S = Sup{X. Qterm X ∧ X ≤ S}
〈proof 〉

depends on:
lemma: compute-by-computeN (page 102)
lemma: computeterm-by-computeN (page 109)

109/113

theorem: Supremum-to-gfp-initial (page 104)
theorem: equal-computation-via-compute (page 108)

required by:
theorem: compute-DESSIMMSol (page 113)

lemma GoodIterator-F-bf-spec:
IsDES P
=⇒ IsDES S
=⇒ GoodIterator
(Fbf◦(%C. Fspec C S))
IsDES
(λX. (λC. IsDES C ∧ PropSpec C S)X ∧ (IsDES∩PropBF)X)
(IsDES∩PropBF)
〈proof 〉

depends on:
theorem: GoodIterator-compose (page 90)
theorem: GoodIterator-Fspec (page 96)
theorem: GoodIterator-Fbf (page 94)

required by:
lemma: computeN-Fbf-Fcont3-Fbf-Fdes-eq-Fbf-ifcomp-Fcont3 (page 112)

lemma GoodIterator-F-bf-cont-bf-des:
IsDES P
=⇒ IsDES S
=⇒ GoodIterator
(Fbf◦(λC. Fcont3 C SigmaUC (des-langUM P) (des-langUM C))◦Fbf◦Fdes)
UNIV
(λX. (%C. IsDES C)X ∧ (IsDES∩PropBF)X ∧ (λC. IsDES C ∧ DESCont C P SigmaUC) X ∧

(IsDES∩PropBF)X)
(IsDES∩PropBF)
〈proof 〉

depends on:
theorem: GoodIterator-compose (page 90)
theorem: GoodIterator-Fdes (page 94)
theorem: GoodIterator-Fbf (page 94)
theorem: GoodIterator-Fcont3 (page 96)

required by:
lemma: computeN-Fbf-Fcont3-Fbf-Fdes-eq-Fbf-ifcomp-Fcont3 (page 112)
theorem: compute-DESSIMMSol (page 113)

lemma spec-simplify:
(λX. (%C. IsDES C)X ∧ (IsDES∩PropBF)X ∧ (λC. IsDES C ∧ DESCont C P SigmaUC) X ∧

(IsDES∩PropBF)X) = (%C. IsDES C ∧ DESCont C P SigmaUC ∧ PropBF C)
〈proof 〉

required by:
theorem: compute-DESSIMMSol (page 113)

definition DESMMSol :: ′a DES⇒ ′a DES⇒ ′a set⇒ ′a DES set where
DESMMSol P S SigmaUC = {C. inf C P = Sup{C. IsDES C ∧ DESCont C P SigmaUC ∧ PropBF C
∧ PropSpec C S}}

definition DESSIMMSol :: ′a DES⇒ ′a DES⇒ ′a set⇒ ′a DES set where

110/113

DESSIMMSol P S SigmaUC = DESMMSol P (inf P S) SigmaUC

lemma Fbf-mono:
x≤y
=⇒ Fbf x≤Fbf y
〈proof 〉

required by:
theorem: Supremum-in-DESSIMMSol (page 112)

lemma Fbf-term:
PropBF x
=⇒ IsDES x
=⇒ x=Fbf x
〈proof 〉

required by:
theorem: Supremum-in-DESSIMMSol (page 112)

lemma Sup-DES-contained:
(
∧

X. X∈A =⇒ IsDES X)
=⇒ IsDES (Sup A)
〈proof 〉

required by:
lemma: DESMMSol-contained (page 111)

lemma Sup-Cont-contained:
(
∧

X. X∈A =⇒ DESCont X P SigmaUC)
=⇒ DESCont (Sup A) P SigmaUC
〈proof 〉

required by:
lemma: DESMMSol-contained (page 111)

lemma Sup-BF-contained:
(
∧

X. X∈A =⇒ PropBF X)
=⇒ PropBF (Sup A)
〈proof 〉

required by:
lemma: DESMMSol-contained (page 111)

lemma Sup-Spec-contained:
(
∧

X. X∈A =⇒ PropSpec X S)
=⇒ PropSpec (Sup A) S
〈proof 〉

required by:
lemma: DESMMSol-contained (page 111)

lemma DESMMSol-contained:
IsDES P
=⇒ IsDES S
=⇒ Sup ({ (X:: ′a DES).

(IsDES X ∧ DESCont X P SigmaUC ∧ PropBF X ∧ X ≤ inf P S)})
∈ { (C:: ′a DES).

111/113

(IsDES C ∧ DESCont C P SigmaUC ∧ PropBF C ∧ PropSpec C (inf P S))}
〈proof 〉

depends on:
lemma: Sup-DES-contained (page 111)
lemma: Sup-Cont-contained (page 111)
lemma: Sup-BF-contained (page 111)
lemma: Sup-Spec-contained (page 111)

required by:
theorem: Supremum-in-DESSIMMSol (page 112)

theorem Supremum-in-DESSIMMSol:
IsDES P
=⇒ IsDES S
=⇒ init=(Fbf◦(%C. Fspec C (inf P S)))top
=⇒ Sup{X. (%C. IsDES C ∧ DESCont C P SigmaUC ∧ PropBF C) X ∧ X ≤ init} ∈ DESSIMMSol

P S SigmaUC
〈proof 〉

depends on:
theorem: GoodIterator-Fbf (page 94)
theorem: GoodIterator-Fspec (page 96)
lemma: infDES-preserves-IsDES (page 93)
lemma: le-trans (page 90)
lemma: Fbf-mono (page 111)
lemma: Fbf-term (page 111)
lemma: DESMMSol-contained (page 111)

required by:
theorem: compute-DESSIMMSol (page 113)

lemma computeN-preserve-prop:
Q S
=⇒ (

∧
X. Q X =⇒ Q (F X))

=⇒ Q (computeN n F S)
〈proof 〉

depends on:
lemma: computeN-iterate-vs-post-apply-hlp (page 101)

required by:
lemma: computeN-Fbf-Fcont3-Fbf-Fdes-eq-Fbf-ifcomp-Fcont3 (page 112)

lemma computeN-Fbf-Fcont3-Fbf-Fdes-eq-Fbf-ifcomp-Fcont3:
IsDES P
=⇒ IsDES S
=⇒ Q=(IsDES∩PropBF)
=⇒ computeN n
(Fbf ◦ (λC:: ′a DES. Fcont3 C SigmaUC (des-langUM P) (des-langUM C)) ◦
Fbf ◦
Fdes)
(Fbf (Fspec top (inf P S))) =
computeN n
(Fbf · λC:: ′a DES. Fcont3 C SigmaUC (des-langUM P) (des-langUM C))
(Fbf (Fspec top (inf P S))) ∧ Q (computeN n
(Fbf ◦ (λC:: ′a DES. Fcont3 C SigmaUC (des-langUM P) (des-langUM C)) ◦
Fbf ◦

112/113

Fdes)
(Fbf (Fspec top (inf P S))))
〈proof 〉

depends on:
lemma: GoodIterator-F-bf-spec (page 110)
lemma: infDES-preserves-IsDES (page 93)
theorem: EqualCompute-initial (page 108)
theorem: GoodIterator-Fdes (page 94)
theorem: GoodIterator-Fbf (page 94)
lemma: computeN-preserve-prop (page 112)
lemma: GoodIterator-F-bf-cont-bf-des (page 110)

required by:
theorem: compute-DESSIMMSol (page 113)

theorem compute-DESSIMMSol:
IsDES P
=⇒ IsDES S
=⇒ init=(Fbf◦(%C. Fspec C (inf P S)))top
=⇒ G=Fbf ·(λC. Fcont3 C SigmaUC (des-langUM P) (des-langUM C))
=⇒ compute-dom (G,init)
=⇒ compute G init ∈ DESSIMMSol P S SigmaUC
〈proof 〉

depends on:
theorem: Supremum-in-DESSIMMSol (page 112)
theorem: Supremum-to-gfp-initialTranslate (page 109)
lemma: spec-simplify (page 110)
lemma: GoodIterator-F-bf-cont-bf-des (page 110)
lemma: computeN-Fbf-Fcont3-Fbf-Fdes-eq-Fbf-ifcomp-Fcont3 (page 112)
theorem: GoodIterator-Fdes (page 94)
theorem: GoodIterator-Fbf (page 94)

end

113/113

	Introduction
	Reducing an Operational Supervisory Control Problem by Decomposition for DPDA
	Introduction
	Models of Behavior
	Labeled Graphs
	Discrete Event Systems
	Finalizing Pushdown Automata (FPDA)

	Adequacy of DES w.r.t. FPDA
	Adequate Encoding for DFA
	Adequate Encoding for DPDA
	Adequate Encodings for FPDA

	(Operational) Supervisory Control Problem
	SCP Characterizations via Suprema
	Language-Based Characterization by Suprema
	DES-Based Characterization by Suprema

	SCP Characterizations via Greatest Fixed-Points
	Examples of Good Iterators

	Conclusion

	Enforcing Controllability Least Restrictively for DPDA
	Introduction
	Preliminaries
	Supervisory Control Revisited
	Computability of for
	Conclusion

	Enforcing Operational Properties including Blockfreeness for DPDA
	Introduction
	Abstract Transition Systems
	Concrete Transition Systems
	EPDA and DPDA
	CFG and LR(1)
	Parser

	Approach
	Approximating Accessibility
	Step 1
	Step 2
	Step 3 & Step 4
	Step 5 & Step 6 & Step 7
	Step 8
	Step 9
	Step 10
	Step 11
	Step 12
	Verification
	Testing
	Optimizations

	Conclusion
	Future Work
	References

	Appendix
	Counterexample
	Formal Definitions for the Constructions
	Split Read
	Remove No Operation
	Split Push Pop
	Remove Multiple Push
	DPDA to SDPDA
	No Double Acceptance
	SDPDA to LR1
	Dollar Augmentation
	Valid-Operations
	LR1-Machine
	Remove Nonproductive Productions
	First
	Step and Step-Sequences for EPDA
	LR1-Parser
	Drop Input Bottom Rules
	Remove Top Rules
	Remove Top Rule
	Replace Zero-Popping Edges
	Replace Multiple-Popping Edges
	Convert EDPDA to DPDA
	Symbolising
	Restrict to Edges
	Restrict to States
	Accessibility
	Ensure Blockfreeness
	Split
	Remove Noncontrollable States
	Product Automaton
	Ensure Controllability
	Synthesize

	Good Iterators
	Language Basics
	Complete Lattice Basics
	Complete Lattice of DES
	Synthesis Basics
	Operation Fdes
	Operation Fbf
	Operation Fcont
	Operation Fcont2
	Operation Fcont3
	Operation Fspec
	Composition of Fspec, Fcont, Fbf, and Fdes
	Composition of Fspec, Fcont2, Fbf, and des
	Composition of Fspec, Fcont2, Fbf, and Fdes
	Function Computation of Fixedpoint
	Validity of Initialised Fixedpoint
	Function Computations for Instances (Classic Approach)
	Verification of Fixedpoint Algorithm (with Precomputation and Conditional Composition)

