-

View metadata, citation and similar papers at core.ac.uk brought to you byﬁ CORE

provided by DepositOnce

Technische Universitdt Berlin

Forschungsberichte
der Fakultat IV — Elektrotechnik und Informatik

Controller Synthesis for Deterministic
Context Free Specification Languages

Sven Schneider, Anne-Kathrin Schmuck

December 11, 2013

Technische Universitat Berlin
Bericht-Nr. 2013 - 09
ISSN 1436-9915

https://core.ac.uk/display/326320957?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Contents

1 Introduction 5

2 Reducing an Operational Supervisory Control Problem by Decomposition for
DPDA 6
2.0 INTRODUCTION 6
2.1 MODELS OF BEHAVIOR 7
2.1.1 Labeled Graphs 7
2.1.2 Discrete Event Systems 8
2.1.3 Finalizing Pushdown Automata (FPDA) 10
2.2 AbpEQuacy of DES w.r.T. FPDA 11
2.2.1 Adequate Encoding for DFA 12
2.2.2 Adequate Encoding for DPDA 13
2.2.3 Adequate Encodings for FPDA 15
2.3 (OPERATIONAL) SUPERVISORY CONTROL PROBLEM 15
2.4 SCP CHARACTERIZATIONS VIA SUPREMA 17
2.4.1 Language-Based Characterization by Suprema 19

2.4.2 DES-Based Characterization by Suprema 19

2.5 SCP CHARACTERIZATIONS VIA GREATEST FIXED-POINTS 20
2.5.1 Examples of Good Iterators 21

2.6 CONCLUSION 23

3 Enforcing Controllability Least Restrictively for DPDA 25
3.1 INTRODUCTION 25

3.2 PRELIMINARIES 25
3.3 SUPERVISORY CONTROL REVISITED 29
3.4 ComruTAaBILITY OF () FOR DCFL 30

3.5 CONCLUSION 38

2/113

4 Enforcing Operational Properties including Blockfreeness for DPDA
4.0 INTRODUCTION 39

4.1 ABSTRACT TRANSITION SYSTEMS 39

4.2 CONCRETE TRANSITION SYSTEMS 41
4.2.1 EPDA and DPDA 41
4.2.2 CFG and LR(1) 42
4.2.3 Parser 43

4.3 APPROACH 44
4.3.1 Approximating Accessibility 46
4.3.2 Step 1 46
4.3.3 Step 2 48
4.3.4 Step 3 & Step 4 48
4.3.5 Step 5 & Step 6 & Step 7 50
4.3.6 Step 8 52
4.3.7 Step 9 54
4.3.8 Step 10 54
4.3.9 Step 11 54
4.3.10 Step 12 54
4.3.11 Verification 55
4.3.12 Testing 55
4.3.13 Optimizations 55

4.4 CONCLUSION 56
4.5 FUTURE WORK 57

References 57

A Appendix
A.1 COUNTEREXAMPLE 60

A.2 FORMAL DEFINITIONS FOR THE CONSTRUCTIONS 63
A.2.1 Split Read 63
A.2.2 Remove No Operation 64
A.2.3 Split Push Pop 65
A.2.4 Remove Multiple Push 66
A.2.5 DPDA to SDPDA 67
A.2.6 No Double Acceptance 67
A.2.7 SDPDA to LR1 68
A.2.8 Dollar Augmentation 70
A.2.9 Valid-Operations 70
A.2.10 LR1-Machine 71
A.2.11 Remove Nonproductive Productions 72

39

60

3/113

A.2.12 First 73

A.2.13 Step and Step-Sequences for EPDA 74
A.2.14 LR1-Parser 75

A.2.15 Drop Input Bottom Rules 76
A.2.16 Remove Top Rules 77

A.2.17 Remove Top Rule 78

A.2.18 Replace Zero-Popping Edges 79
A.2.19 Replace Multiple-Popping Edges 79
A.2.20 Convert EDPDA to DPDA 8o
A.2.21 Symbolising 8o

A.2.22 Restrict to Edges 81

A.2.23 Restrict to States 81

A.2.24 Accessibility 82

A.2.25 Ensure Blockfreeness 83

A.2.26 Split 83

A.2.27 Remove Noncontrollable States 86
A.2.28 Product Automaton 86

A.2.29 Ensure Controllability 87

A.2.30 Synthesize 87

A.3 Goop ITERATORS 89

A.3.1 Language Basics 89

A.3.2 Complete Lattice Basics 9o

A.3.3 Complete Lattice of DES 92

A.3.4 Synthesis Basics 93

A.3.5 Operation Fdes 94

A.3.6 Operation Fbf 94

A.3.7 Operation Fcont 95

A.3.8 Operation Fcontz 95

A.3.9 Operation Fcont3 96

A.3.10 Operation Fspec 96

A.3.11 Composition of Fspec, Fcont, Fbf, and Fdes 97

A.3.12 Composition of Fspec, Fcont2, Fbf, and des 98

A.3.13 Composition of Fspec, Fcont2, Fbf, and Fdes 99

A.3.14 Function Computation of Fixedpoint 101

A.3.15 Validity of Initialised Fixedpoint 103

A.3.16 Function Computations for Instances (Classic Approach) 107

A.3.17 Verification of Fixedpoint Algorithm (with Precomputation and Conditional Composi-
tion) 108

4/113

1. Introduction

Ramadge and Wonham [14] established supervisory control theory (SCT) for controller
synthesis on formal languages. Given a plant and a specification, SCT defines a proper
minimally restrictive supervisor as a controller which generates a closed loop system (i.e.,
a plant restricted by a controller) that contains as many words allowed by the plant as
possible while respecting the specification, not preventing uncontrollable events and
always guiding the system to a satisfactory (marking) state. Wonham and Ramadge
[17] presented an implementable fixed point algorithm to calculate the desired marked
controller language C, formally defined by the above stated supervisory control problem
(SCP), for regular plant and specification languages (P and S, respectively), by operating
on their DFA representations, generating a DFA representation of C. This fixed point
algorithm iteratively ensures

(i) controllability, and

(ii) blockfreeness.
Obviously, step (i) may generate new blocking issues, while step (ii) may lead to new
controllability problems. The algorithm terminates iff no more controllability problems
or blocking situations are present. We perceive the languages P, S, and C involved in the
SCP as trace abstractions of the finite operational DFA-models used in the fixed-point
algorithm.

The applicability of SCT is significantly increased if larger specification language
classes can be used. In this report we investigate the case of deterministic context
free specification languages. The class of deterministic context free languages (DCFL)
contains the class of regular languages, and DCFL can be represented by deterministic
pushdown automata (DPDA). Therefore, to obtain a constructive algorithm to solve this
generalized supervisory control problem, steps (i) and (ii) of the fixed point algorithm
must be implementable for DPDA.

Before discussing effective procedures for ensuring controllability and blockfreeness
for DPDA in Chapter 3 and Chapter 4, respectively, we investigate the overall iteration
outlined above for the setting of DPDA specifications more closely in Chapter 2. This
is necessary because the operational computation of the fixed-point algorithm for the
DFA setting in [14], outlined above, does not correspond well to their trace-abstract
characterization of the desired closed-loop behavior used in the SCP. Furthermore, while
the standard trace abstraction is sufficient for DFA and observable Petri nets we show in
Chapter 2 that it is insufficient for DPDA with their unobservable A-steps. This insight
enforces the perspective of synthesizing automata realizations instead of languages, taken
in this report.

Note that Griffin suggested an algorithm for the more restrictive setting of a prefix
closed regular plant and a prefix closed deterministic context free specification language
in [8]. However, as shown by the counterexample in Appendix A.1, Griffin’s algorithm
does not construct the minimally restrictive supervisor in general.

5/113

2. Reducing an Operational Supervisory

Control Problem by Decomposition for
DPDA

The purpose of Supervisory Control Theory (SCT) is to synthesize a controller for a plant
and a specification such that the desired closed-loop behavior is enforced. Effective solvers
have been constructed in the past for the setting of plants and specifications modeled
by Deterministic Finite Automata (DFA). We extend the domain of the specification to
Deterministic Pushdown Automata (DPDA) and verify an effective solver (up to two
basic building blocks which ensure controllability and blockfreeness, effectively solved
for this setting in Chapter 4 and Chapter 3). We verify the enforcement of desired
operational criteria, which are, in contrast to the setting of DFA, partly oblivious to the
(un)marked language of the closed loop. Our general approach trivially covers the setting
of DFA and can be reused and adapted to develop effective solvers for other settings as
the realizability of solutions to the supervisory control problem (SCP) is considered on
an abstract level.

2.0 INTRODUCTION

The SCP was introduced and solved for plants and specifications modeled by DFA in
[14, 17]. Subsequently, the SCP was considered for other settings including certain Petri
nets by, e.g., [5, 6]. Later, [8, 9] addressed the SCP for DFA plants and DPDA specifications
with prefix-closed marked languages. However, one key criterion of the SCP, namely
minimal restrictiveness, is violated by his approach as explained in Chapter 3.

Wonham and Ramadge synthesize the desired controller language C, formally defined
by the SCP, for regular plant and specification languages (P and S, respectively), by
operating on their DFA representations, generating a DFA representation of C in [17]. We
perceive the involved languages P, S, and C as trace abstractions of the finite operational
DFA-models. While this standard trace abstraction is sufficient for DFA and observable
Petri nets we show that it is insufficient for DPDA with their unobservable A-steps.
This insight enforces the perspective of synthesizing automata realizations instead of
languages.

In Section 2.1, the models, relevant to this chapter, including DPDA, are introduced.
Afterwards we define trace abstractions for DPDA and analyze their basic properties in
Section 2.2. In Section 2.3 we provide operational criteria of the desired (least restric-
tive) controller, and formally define a reduction of synthesizing a controller satisfying
these constraints to the SCP by introducing an operational SCP (OSCP) based on trace
abstractions introduced before.

The operational computation of the concrete solver for the DFA setting of [14], which
is extensively used in the control of discrete event systems, does not correspond well to

6/113

their trace-abstract characterization of the desired closed-loop behavior. To bridge this

&ap,

(i) in Section 2.4, we formalize the correspondence between operational and trace-
abstract solutions by suitably characterizing satisfactory controllers and verify their
equivalence to the standard SCP solutions; and

(ii) in Section 2.5, we introduce adequate fixed-point algorithms which
(a) determine only satisfactory controllers and
(b) are constructed over operations ensuring controllability and blockfreeness for
the underlying finite state models.

These fixed-point algorithms constitute solvers for the SCP for DFA plants and DPDA

specifications when using the effective procedures for ensuring controllability and block-

freeness for DPDA, discussed in Chapter 4 and Chapter 3. In summary, we consider the
implications of choosing DPDA as specifications on SCT

(a) by formalizing operational criteria for the desired controllers,

(b) by reducing the synthesis problem to the standard SCP by means of an OSCP
using adequate trace abstractions which guarantee the desired criteria for controller
realizations,

(c) by expressing the SCP by supremal elements of a complete lattice over our trace
abstractions, and

(d) by decomposing the suprema-based characterization into fixed-point algorithms
consisting of basic building blocks implemented in Chapter 4 and Chapter 3.

While outlining the process of verifying the adequacy of the trace abstractions of

Section 2.2, we have verified the automata foundations of Section 2.1 and the central

results of Section 2.4 and Section 2.5 in the interactive theorem prover Isabelle/HOL [13].

2.1 MODELS OF BEHAVIOR

We assume a fixed set of possible events ¥ shared by all models contained in this

chapter. This set is, as usual, partitioned into a set of controllable events > and a set of

uncontrollable events X,,c. In examples we assume % = {a,b,¢,d,e} and X,c = {u,v}.
We use the following notation throughout the chapter.

Notation 1
Let A be a set. Then
(i) A* denotes the set of finite words over A,
(ii) A“* denotes the set of finite and infinite words over A,
(iii) single symbols are denoted by greek letters (except for A, the empty word),
(iv) words are denoted by s, w,
(v) - is the (usually omitted) concatenation operation on words (and languages),
(vi) T is the prefix relation,
(vii) A is the prefix-closure of A,
(viii) is the suffix relation, and
(ix) Ax.f(x) is the nameless function equal to f (e.g., f(x) = x? implies f = Ax.x?).

2.1.1 Labeled Graphs

We use labeled graphs as representations of discrete (operational) behavior, where edges
correspond to steps.

7/113

Definition 1 (Labelled Graphs)
G = (V,E,L,s,t,1) € LGraph iff
(i) V is a set of vertices,
(ii) E is a set of edges,
(iii) L is a set of labels,
(iv) s : E— V maps each edge to its source-vertex,
(v) t: E—V maps each edge to its target-vertex, and
(i) 1:V — 2L maps each vertex to the set of its labels.

Two operational behaviors (given as LGraphs) are equivalent iff they are renamings of
each other.

Definition 2 (LGraph-Isomorphisms)
Let G1 = (V4,Eq, L, s1,t1,11) and Gy = (Va, Ea, L, s, t2, 1) be two LGraphs with identical sets
of labels.
Then f = (fv : Vi = Vo, f£ : E1 = Ep) : G — Gy containing mappings for vertices and edges is
an LGraph-isomorphism iff
(i) fy and fg are bijections,
(ii) sources are preserved: sy o fp = fy o sy,
(iii) targets are preserved: ty o fp = fy o ty, and
(iv) labels are preserved: Iy =1 o fy.

51
El Vl ll
Jf 1 f J \ L
E = Jv| =
52
E Vs /lz

)
Furthermore, G1 = G iff there is an LGraph-isomorphism f : G1 — Go.

2.1.2 Discrete Event Systems

We introduce Discrete Event Systems (DES) as a denotational model which is entirely
decoupled from the syntax and semantics of concrete (e.g., automata) realizations. The
DES is given by the sets of

(i) all (possible) observations—the unmarked language L, and

(ii) all (possible) desired observations—the marked language L,,.

Definition 3 (Discrete Event System)
D - qLum,LmD S DES iffLm g Lum - Lum g Z*.
Lum(D) and Ly (D) denote the two components of D.

We repeat the well known notions of language-blockfreeness and language-controlla-
bility of DES which are central to the standard SCT (cf. [14]).

Definition 4 (Blockfree and Controllable DES)
Let Dy, D, € DES. Then

(i) Dy is language-blockfree” iff Lym(D1) € Lm(D1) and

'Every observation is a prefix of a desired observation.

8/113

A i—a—au aua auau, f

auu, f

Figure 2.1.: P = ({auau,auu},{auau,auu}) € DES is represented as an LGraph: the
names of the vertices in the visualization are the labels of the vertices.

(ii) Ds is language-controllable’ w.r.t Dy (denoted by LCont(Lym(D1), Lum(D2), Zuc)) iff
(Lum(Dl)'Zuc) N Lum(DZ) g Lum(Dl)'

We will use the following complete lattice in Section 2.4 to characterize important DES.
Suprema and infima of sets of languages are denoted using U and N in this chapter.

Lemma 1 (Complete Lattice of DES)
DES forms a complete lattice using the following operations where { A, B} UM C DES.
(i) the least element: 1 = (D, D),
(ii) the greatest element: T = (¥X*,X*),
(iii) the inclusion: A < B iff Lym(A) € Lum(B) and L (A) € L (B).
(iv) the strict inclusion: A < Biff A < Band A # B.
(v) the synchronous (infimal) composition (denoted by A X B in the rest of this report):
inf(A,B) = (Lum(A) NLum(B),Lm(A) NLm(B)),
(vi) the alternative (supremal) composition:
sup(A, B) = (Lum(A) ULym(B),Lm(A) ULk (B)),
(vii) the maximal DES included in all DES from M?: Inf(M) = (N Lym (M), "Ly (M)), and
(viii) the least DES which includes all DES from M: Sup(M) = (U Lym (M), ULy (M)).

We give the natural operational behavior of a DES.

Definition 5 (Natural Operational Behaviour of DES)

Let D € DES.

Then [DIt&, = (V, E, L,s,t,1) is the (natural) LGraph-representation of D iff
(i) V =Lum(D),
(ii) E = {(w,w-0) | w-o € Lym(D)},

(iii)) L ={i,f} ULym(D),

(iv) s(w,w') = w,
(v) t(w,w'") =w', and

(i) (w) ={w}U{i|w=A}U{f|weLn(D)}.

An example of this encoding is given in Figure 2.1 where a DES is visualized as an
LGraph.

Obviously, there is an isomorphism between the LGraph-representations of two DES
iff the DES are identical.

Lemma 2 (Sound Encoding)
Let D1, D, € DES.
Then [[Dlﬂll?gfaph g [[Dz]]ngaph l,ffDl - DZ'

2Whenever D, has the observation w, D; does not prevent w, and w-u is an observation of D, (for an
uncontrollable event u), then w-u is not prevented by D;.

3Remark: Ly and Lym are here computing images, i.e., the sets of the (un)marked languages of DES
from M.

9/113

ae0; 0000 o,/\

o:)\oo cO0
_)& 7 4 77 @

(L, (g0,1,8)) Fm ((g0,0,0,00,q0), (QO,LI,'D)) Fm ((g0,2,0,00,00), (go,a0,000))
Fum ((q0.4,0,0,01), (q1,80,000)) g ((91,0,0,4,01), (q1,8ab,00))
Fum ((91,0,0,0,01), (q1,8abb,0)) Far ((91,6,5,5,492), (92,4abbe,0))

Figure 2.2.: M € FPDA with Ly(M) = {a"*'b"*1c | n € N} and an exemplary initial
derivation in which edges are printed in gray.

2.1.3 Finalizing Pushdown Automata (FPDA)

FPDA, introduced here, are DFA enriched with a single stack-variable which can be
used to remember aspects for later reuse of a generated word. An example of FPDA
generating a language unacceptable by any DFA is given in Figure 2.2: The FPDA M
operates by remembering the number of generated a as an equally long sequence of e
in its stack—then, for any generated b one e is popped from the stack. Furthermore,
we additionally assume that the automaton can decide to stop generating symbols by
“generating” the end-of-output marker ¢. This intuitive explanation is formalized in the
following definition of FPDA and their operational semantics.

Definition 6 (Finalizing Pushdown Automata (FPDA))
M= (Q,%T,é,q9,0,F,¢) € FPDA iff
(i) the states Q, the output alphabet ¥, the stack alphabet T, and the set of edges ¢ are finite,
(i) 6: Qx (ZU{A0}) xT' xT* xQ,
(iii) the end-of-output marker o is not contained in X,
(iv) the end-of-stack marker O is contained in T,
(v) the end-of-stack marker is never removed from the stack ((q,0,0,s',q") implies s’ J 0),
(vi) the marking states F and the initial state qq are contained in Q.

We provide the slightly nonstandard branching semantics of an FPDA M which utilizes
a history variable in the configurations to greatly simplify the definitions of the trace
abstractions presented in Section 2.2. Furthermore, this branching semantics corresponds
to the intuition that the finite state realizations are generators rather than acceptors of
languages.

Definition 7 (Semantics of FPDA)
(i) the set of configurations C(M) = Q x £*-{A, o} x IT'™ where (q,w,s) € C(M) consists of
a state g, a history variable w (storing the symbols generated), and a stack variable s,
(ii) the initial configuration Cinit(M) is (o, A, O),
(iii) the set of marking configurations Cgn (M) is defined by {(q,w,s) € C(M) | g € F},
(iv) the annotated configurations C°(M) = ((6U{L}) x C(M)) additionally contain “pre-
edges” from §
(v) the single-step relation (operating on the annotated conﬁgumtions) Fp: CO(M) x CO(M) is
defined by (e, (p,w,ss")) Fam ((p,w',s,s,p"), (p/,ww',s'-s")) (ie., q' is the new state,
w' is added to the history variable, and the prefix s of the stack-variable s-s" is replaced by
s') where w J o implies w' = A (i.e., once the end-of-output marker o has been generated,
the history variable cannot be extended),

10/113

FPDA PDA DPDA NFA DFA

deterministic v v
A-step-free v v
o-step-free v v v v
stack-free v v

Table 2.1.: Subclasses of FPDA.

(vi) the set of derivations D(M) contains all elements from C°(M)“* starting in a configuration
of the form (L, c) where all adjacent (e, c1), (ea,c2) € CO(M) satisfy (e1,c1) Fum (e, c2),

(vii) the set of initial derivations Dy(M) contains all elements of D(M) starting with the initial
configuration (i.e., (L, (q0,A,0))),

(viii) the set of reachable configurations Cyeacn (M) is defined by {c € C(M) | 3d € Di(M),n €
N.d(n)=(ec)},

(ix) let out : (C(M)UC’(M)) — X* be defined by out(e, (7, w,s)) = out(q,w,s) = (if w 3
o then butlast(w) else w) (i.e., we drop the possibly contained end-of-output marker o
from the history variable to obtain the output of a configuration),

(x) the marked language Ly (M) is defined by out(Cen (M) N Creach(M)), and

(xi) the unmarked language Lym(M) is defined by out(Creach(M)).

The concatenation of dy,dy € D(M) at index n€N is given by (d1-,dy) = Ai. if i < n then

di(i) else dp(i — n).

An example of an FPDA-derivation is given in Figure 2.2. The well known sub-classes of
FPDA having one ore more of the properties below are defined in Table 2.1.

Definition 8 (Sub-classes of FPDA)

An FPDA is deterministic iff for every reachable configuration all two distinct steps append
distinct elements of © U {o} to the history variable. An FPDA is A-step-free iff no edge in ¢ is of
the form (p,A,s,s', p’). An FPDA is o-step-free iff no edge in & is of the form (p,©,s,s’,p’). An
FPDA is stack-free iff every edge in ¢ is of the form (p,a,0,0,p’).

Remark 1

There is no complete lattice over DFA (DPDA, FPDA) since reqular languages (deterministic
context free languages, context free languages) are not closed under infinite union* and intersec-
tion®. Therefore, similarly to [14], we state the SCP over the complete lattice of trace abstractions.
In particular, we are using the complete lattice over DES from Lemma 1.

2.2 AbpEeoquacy ofF DES w.r.T. FPDA

Since we want to express the SCP for FPDA in terms of an SCP over DES it is essential
that DES adequately describe the operational behavior of FPDA. We provide three
variations of encodings of

(i) FPDA into DES and

4A union of infinitely many singletons is not context free: U{{a"b"} | n € N, n prime} = {a"b" | n €
N, n prime}

5 An intersection of infinitely many singletons is not context free: N{X*\ {a"b"} | n € N, n prime} =
¥\ {a"b" | n € N, n prime}

11/113

(ii) FPDA into LGraphs
and investigate in each of the three variations whether the FPDA to DES encoding
preserves the operational behavior, i.e., we compare the operational behavior of the
FPDA and the resulting DES by translating both into LGraphs using the encodings DES
to LGraph and FPDA to LGraph. In fact, we provide adequate encodings for DFA and
DPDA.

2.2.1 Adequate Encoding for DFA

The following encoding defines for an FPDA (and its operational semantics) the observable
operational behavior, expressed as an LGraph. In this variation we expect every step to
be fully observable which is only true for DFA and A-step free DPDA.

Definition 9 (Natural Operational Behaviour of FPDA)

Let M € FPDA.

Then [M]feon, = (E,V, L,s,t,1) is the (natural) LGraph-representation of M iff
(i) V is the smallest set containing Cinit(M) which is closed under Fy;,
(ii) E =Fup,

(iii) L = {i,f} ULum(M),

(iv) s(c1,e,¢2) = c1,
(v) t(cy,e,c2) = o, and

(vi) 1(c) = {out(c)}U{i|c = Cinit(M)} U{f|c € Csn(M)}.

Since each step is observable, two FPDA are equivalent w.r.t. [-[{¢or, iff they are renam-

ings of each other.

Proposition 1 (Sound Encoding) Let M', M? € FPDA be accessible.
Then [[Ml]]ig?;’;h = [[MZ]}EE?%h iff M is a renaming (states, stack-elements, stack-end-marker, and
end-of-output-marker) of M-. O
Observe that the standard /natural encoding [-]5e® is the (implicitly used) trace abstrac-
tion from FPDA into DES used in [17] as a denotational description of the operational
behavior of DFA.
FPDA

Definition 10 (Natural Encoding [-]5%
Let M € FPDA.
Then [M]E2* = (Lym(M), Lin(M)) € DES.

We can conclude that for two FPDA which are DFA or A-step free DPDA the observable
operational behavior coincides iff their DES representations have equivalent observable
operational behaviors, i.e., they have identical (un)marked languages.

Theorem 1 ([-|53* is Fully Abstract w.r.t. [-[[ton,)
Let M', M? € FPDA, deterministic, o-step-free, and A-step-free.
Then, [M'Ti52%, = [MPTEG, if [IM 5 06 = [IM2 15"

Confer to Figure 2.3 for a visualization of Theorem 1. However, since none of the
assumptions of Theorem 1 can be dropped, as stated in the following corollary, the
encodings of FPDA into LGraph and DES are unsatisfactory (e.g., consider DPDA with
A-steps).

12/113

[[FPDA g() [[FPDA

FPDA —1LGmeh . [Graph LGraph <1dLGh _ EppA
[-15es” [-15es”

DES _TIDES
DESM LGraphi LGraph @‘*‘—DES

I

Figure 2.3.: For Theorem 1: (1) holds iff (2) holds.

MO M1 Mz M

A0O
aDDlaDD aDDlODD ad0 _A00

Q—0—0 @—0—0 @—»Q—*& @—>H'D'D.

Figure 2.4.: My, M;, M, and M3 have the same [-]724 image ({A,a}, {a}) which is
language-blockfree. Only M3 is operationally-blockfree.

Corollary 1
Let M' € FPDA which is not deterministic, not o-step-free, or not A-step-free and let M?> € DFA.
Then, [[Ml FPDA v [[MZ]]FI’DAh not if but only if [[[[Ml FPDATDES o~ [[[[MZHFPDA DES

LGraph LGrap! DES lLGraph DES lLGraph*

For example, consider the FPDA in Figure 2.4. When choosing My, M;, or M, for M1

and Mj for M? in Corollary 1 then [[M]ZFRA]PES o [[M2]TRA]RE s satisfied but not

1) DES lLGraph DES lLGrap
FPDA ~~ FPDA
[[M LGraph — [[M]]LGraph‘

2.2.2 Adequate Encoding for DPDA

Corollary 1 states that DES are no sound denotational model for FPDA (including DPDA)
w.r.t. the full observability defined via [-[{¢..,,- The problem stems from the steps which
are invisible in the DES (A-steps, o-steps, and nondeterministic choices (note that this
kind of step is also not explicitly contained in the operational semantics)) but visible to
the behavioral equivalence [M! LComh = [[MZ]]EE?:;}\ These steps could be made visible by
modification of the FPDA, however, this is not reasonable for non-determinism and the
end-of-output marker (see Remark 2 in Section 2.3). In this section we consider FPDA
which are deterministic and o-step-free (i.e., DPDA): as the A-steps represent the internal
steps of the controller, properties on its occurrence in executions of the closed loop may
be of great importance.

We distinguish between two kinds of A-step-sequences: finite sequences and infinite
sequences.
»Finite A-step-sequences do not necessarily need to be observable for DPDA because
DPDA do not have a worst-case-execution-time in generalé. Thus, we assume in this
chapter that there are no properties to be enforced on these finite sequences. Observe
that in DPDA at most finitely many A-steps, which are executed deterministically, occur
between two visible steps. We can therefore replace maximal finite sequences by a single
vertex (with label f iff some vertex in the finite sequence had the label f) by [-[% as
exemplified in Figure 2.5 (page 14).

®Consider {a"b"c" | n,m € N} U {a"b™d™ | n,m € N}: all a and b have to be recorded by the stack:
when reaching a c all records of b have to be removed in an unbounded number of steps.

13/113

a—saq,f—ax a,f—sax

S b—b—>bx yb—>bx

Ai>c—c f—>c—>cx A i>c,f—>cx

Nd<==4,f d<=d,f
e—>fC—>C - > C—>C—> Q>

Figure 2.5.: The operation [-[[(>r transforms the LGraph returned by [-]i¢.,, on the left
into the LGraph on the right.

Definition 11 (Operational Encoding [-[{toa

Let M € DPDA.

Let [M]igon, = (V,E, L,s, t,1).

Then [M]Gomn is the greatest fixed point of the following operation: Whenever

(i) e1,eo € E
(ii) t(er) = s(ep)
(iii) w e X*, 0 € &
(iv) w € 1(s(e1)),
(v) wel(s(e)), and
(vi) wo € 1(t(ez))
then
(i) eq,ep are removed from E,
(ii) s(ep) is removed from V,
(iii) a fresh edge e is added to E s.t. s(e) = s(e1) and t(e) = t(ep), and
(iv) fisaddedtol(s(e)) if f € 1(s(e2)).

»Infinite A-step-sequences represent lifelocks which can be contracted in the operational
semantics into a single step which makes that step visible with the symbol O€ Z,..

Definition 12 (Encoding [-]52**)
Let M € DPDA.
Then [M]52* = (noteLL(Lym(M)), noteLL(Ly (M))) € DES where noteLL(A) = {w O]

DES

we ANTd € Di(M),N € N.Vk > N . out(d(k)) = w}.

We can conclude that when finite sequences of A-steps are not to be observed (by
using [-]icopm) and lifelocks are made visible in the DES (by using [-]5z*), then for two
DPDA the observable operational behavior coincides iff their DES representations have

equivalent observable operational behaviors.

Theorem 2 ([-[2*« is Fully Abstract w.r.t. [-Jftoat
Let M', M? € DPDA.
Then, [M'[iein = [MPIico iff [IM ToRToen = [IM2I5R 156

Finally, since the encodings preserve the observable behavior (except for the O-append-

ing encoding [-[5:**), they preserve in particular the (un)marked languages.

Corollary 2 (Preservation of (un)marked languages)
IFF € {006 [-0Gon [TG, 156"

then Ly (X) = L (F(X)) and Lym (X) = Lum (F(X)).
Furthermore, for [-]5a™<:

Lin(X) = Ln ([X]52*) N Z* and Lym(X) = Lum ([X]5e) N 2",

14/113

2.2.3 Adequate Encodings for FPDA

To determine adequate encodings of all FPDA, the uncovering of lifelocks can be extended
to the uncovering of all formerly invisible steps (then also including non-determinism,
o-steps, and possibly even finite sequences of A-steps which were hidden in the previous
subsection). For such an encoding, a similar soundness theorem can be formulated.
However, we will explain in Remark 2 in Section 2.3 that this encoding fails to be
satisfactory for the task of properly reducing the synthesis problem by means of an OSCP
as some operational criteria are no longer enforced on realizations of controllers.

2.3 (OPERATIONAL) SUPERVISORY CONTROL PROBLEM

According to the previous section, lifelocks (i.e., infinite A-sequences) are observable
when using the trace abstraction [-[52**. This allows us to specify an operational SCP
(OSCP) preventing lifelocks in FPDA realizations of constructed controllers. Before
introducing the OSCP we formalize the SCP as introduced in [17] in our notation using

DES as a fundamental model rather than the marked language alone.

Definition 13 (SCP)
Let P,S € DES be a plant and a specification.
Then SCP(P, S) contains the least restrictive controllers C € DES w.r.t.
(i) Lm(CxP) C Ln(S),
(ii) Cx P is language-X.,.-controllable w.r.t. P, and
(iii) Cx P is language-blockfree.
Least restrictive means that C' x P<CxP for any C' € DES satisfying (i)—(iii).

Based on the SCP, we introduce the following OSCP.

Definition 14 (Operational SCP (OSCP))
Given a plant P € DFA and a specification S € DPDA.
Then OSCP(P, S) is the set of all C € DPDA satisfying [Cp™ € SCP([P]he?, [STheat)-

Since the closed-loop construction relies on the synchronization of a controller C €
DPDA (broader classes for C from FPDA are only considered in Remark 2) and a plant
P € DFA (P € DFA throughout this chapter), we give such a construction which returns
a DPDA. This construction is quite similar to the synchronous composition of DPDA
with DFA from, for example, [10, page 135].

Definition 15 (FPDA-DFA-Synchronous Composition)
Let M' = (Q,%,T,8',1, 0, F1,0) € FPDA.
Let M2 = (Q2,%,T',82,q3, 0/, F2,0') € DFA.
Then M' x M?> = M = (Q,%,T, 9, 40,0, F,©) is given by
(i) Q=Q'xQ?
(i) ((q1,92),w,s,8,(q},95)) € 6 iff (q1,w,s,8,q}) € 6 and either
(w € T and (g2, w,0', 0, 45)€62) or (w € {A, o} and g2 = q5),
(iii) g0 = (q0,93), and
(iv) F = F! x F2,

The main criteria for reasonability of the OSCP definition are the properties of closed
loops for controllers which are solutions to the OSCP. After giving such relevant criteria
in the following definition, we present our first main result.

15/113

Definition 16 (Properties of FPDA)
Let M', M* € FPDA. Then
(i) M has a lifelock iff for some infinite d € Dy(M") there isan N € N such that the unmarked
language of d is constant after N (i.e., for all k > N: out(d(N)) = out(d(k))),

(ii) M* is operational-blockfree iff for any finite d; € Dy(M') of length n € N ending in
d;(n) = (e,c) there is a continuation d. € D(M") such that d;-,d. is a marking derivation
and d; and d. match at the gluing point n (i.e., d.(0) = (L, c)),

(iii) M is operational-satisfying M? iff for any dy € Dy(M?') of length ny ending in a marking
state, there is some dy € Dy(M?) of length ny ending in a marking state such that
out(dy(n1)) = out(dz(nz)), and

(iv) M is operational-Ec-controllable w.r.t. M? iff whenever di € Dy(M') is of length
n1 € N ending in di(n1) = (e1,c1), do € Di(M?) is of length ny € N, out(dy(ny)) =
out(da(ny)), da(n2) Fppe (e2,c2), out(ey, c2) = out(da(nz))u, and u € X, then there
is a continuation d, € D(M?') of length n3 € N such that out((dy-y,d.)(ny + n3)) =
out(dy(n2))u and dy and d. match at the gluing point ny (i.e., d.(0) = (L, c1)).

Incidentally (mainly due to the determinism), all of the above properties are satisfied for
closed loops generated from solutions to the OSCP from Definition 14.

Theorem 3 (Further Properties of OSCP controllers)
Given a plant P € DFA and a specification S € DPDA.
Let C € OSCP(P,S).
Then

(i) C x P is operational-satisfying S,

(ii) C x P is operational-X,c-controllable w.r.t. P,
(iii) C x P has no lifelocks, and

(iv) C x P is operational-blockfree.

Remark 2 (Nonextendability of Theorem 3)

Theorem 3 cannot be extended to S € NFA or S € FPDA which are not o-step-free since
language-blockfreeness is insufficient for operational-blockfreeness in general (see My and My in
Figure 2.4 page 13).

We have integrated enough information into the DES representations of DPDA and
DFA to be able to reuse the unmodified SCP. The more direct approach, of modifying
the SCP to include conditions enforcing, e.g., lifelockfreeness, operational blockfreeness,
or even more advanced properties where cost-optimal controllers are to be synthesized,
is nontrivial because the validity of the SCP has to be verified as well. Even with extra
conditions, the set of sound controllers must be closed under arbitrary union, which is
not true if for example lifelockfreeness is to be enforced (for example, if T € X represents
a A-step, the supremal language of bounded executions of T allows lifelock executions of
T U{{7"} | n € N} = {1}%).

Using Theorem 2 we can conclude that all closed loops for solutions to the OSCP have
equivalent observable behavior; therefore, the concrete choice of a controller realization
is irrelevant.

Theorem 4 (OSCP Solutions are Equivalent)
Given a plant P € DFA, a specification S € DPDA, and C1,C, € OSCP(P, S).
Then [Cy X P]iebad =2 [Cy x Prebas

LGraph LGraph*

16/113

2.4 SCP CHARACTERIZATIONS VIA SUPREMA

In this section we formalize the SCP over DES by defining sound and maximal (i.e., least
restrictive) controllers and compare this formalization to the supremal characterization
of [14]. The DES based representations are used in Section 2.5 to verify solvers for the
SCP which are also adequate for DPDA specifications. These solvers deterministically
generate the sound and maximal controllers which are additionally smallest (i.e., contain
the least set of words).

Definition 17 (Sound, Maximal, and Smallest Solutions)
Given a plant P € DES and a specification S € DES.
Let C € DES.
Then (by using Equations (2.1)—(2.3) in Table 2.2 on page 18)
(i) C is a sound controller iff the closed loop PxC is safe in the sense of (i)—(iii) from Defini-
tion 13, formally C € Ssat(P, S),
(ii) C is a maximal controller iff the closed loop PxC is sound and less restrictive than any
other safe closed loop, formally C € Smax(P, S), and
(iii) C is a smallest maximal controller iff it is a maximal controller and any strictly smaller
maximal controller produces a more restrictive closed loop, formally C € SRin (P, S).

We explain the basic differences between these types of controllers by an example.

Example 1 (Comparison of Solutions)

Let P be a language-blockfree plant. Let S = (£*,5*) be a specification. The controller C; =
(D, D) is sound but not maximal. The controller C; = S is maximal. The controller C3 = P is
smallest maximal. While Cy is not desirable (and just defined for presentation purposes), there
is no difference between Cy and Cz w.r.t. the overall goal of the SCT to determine a controller
enforcing the desired observable operational behavior on the closed loop. For implementation on a
physical device, C; is for P # S more compact and requires therefore less space. Nevertheless, the
solvers, we are aware of, produce the controller Cs. The problem of determining the size-optimal
automata realization of some sound and maximal controller is left for the future.

Similarly to Theorem 4 we can state that the plant P is consistently restricted by all
controllers C € Spax(P, S).

Theorem 5 (Consistent Restriction)

Given a plant P € DES and a specification S € DES.
Let C,C" € Smax(P, S).

Then PxC = PxC'.

17/113

A® Ly (PxC) C L (S)
C € Sat(P,S) iff A@LCont um(P><C)L m(P), Luc)
A®Lym(PXC) C Ly (PxC)

AOC € Seu(P,S)
€ € Smax(P,) if </\9VC/ € Ssar(P,5) . PxC' < PxC
min NOC e Smax P, S)
C € Sqax(P,) iff <A@vc' € Smax(P 5).C<Co PxC<PxC
2 /\0A CSn
Ponin (Am, Sm) = A@LCont(Am,Lum(P)rZuc)>

A®Am = Aum

NOA,,; C Sm
A /\9 LCOnt(Aum, Lum(P)/ZuC)
cI>um ums S =
AOAm C Aum N S

AOLy(PxC) = U{A | ®mm (A, Lin(S))}
C € Lnm(P,S) iff </\9Lum PxC) = L (PxC)
A® Ly (PxC) = U{A | ®um(A, Lin(S))}
C € Lum(P,S) iff </\9L PxC) = Ln(S) N Lym(PXC)
LS (P,S) £ Lum(P,PxS)
2 Lum(P,PxS)

P,S)
Lim(P,S)
P, S) iff

cecrs (p,S

—-
==

A® Ly (C) = U{A | Pom (A, Ln(PXS))}
</\9 Lum(C) = Lin(PxC))

C € Lim(P,5) iff <Qg£un(1(@): Li{(?) |mq;ﬂ(Ap'>I§g)(sz))}>

C € Dum(P,S) iff PxC = Sup({(A, A) | Pmm (A, Ln(5))})

C € Dum(P,S) iff PxC = Sup({{A, L (S) N A) | ®um (A, Ln(S))})
DS (P,S) £ Dym(P, PxS)
DS (P,S) £ Dym(P,PxS)

(2.10)

(2.11)

(2.12)
(2.13)
(2.14)
(2.15)

Table 2.2.: Sound, maximal, and smallest maximal controllers: Equations (2.1)—(2.3);
language based supremal closed loops: Equations (2.6)-(2.9); DES based
supremal closed loops: Equations (2.12)—(2.15). Sets of controllers obtained by
suprema over languages (DES) are denoted here by £(D) with markers.

18/113

2.4.1 Language-Based Characterization by Suprema

Ramadge and Wonham have, based on the supremum over languages in Equation (2.6),
introduced the desired marked language of the desired closed loop and by assuming
language-blockfreeness also the unmarked language of the desired closed loop in [14] .
In Equation (2.6) we have given the marked-maximal solution £y, in our notation which
is based on the supremum over the marked languages of controller candidates. While
Equation (2.6) has the advantage to be compact and obviously sound (being directly
related to, for example, Definition 17) we propose the alternative characterization in
Equation (2.7) which is based on a supremum over the unmarked language of the desired
closed loop. Primary differences are the translation from marked to unmarked languages
using the prefix-closure operator and the different enforcement of blockfreeness. Both
characterizations of the desired closed loop are equivalent and produce the desired closed-
loop behavior. The alternative characterization is advantageous because, e.g., the effective
solver in the DFA-setting (presented in [17, Lemma 5.1]) removes unmarked words with
controllability and blocking problems. The supremal characterization Lum(P,S) thereby
describes the operation of the fixed-point algorithms more precisely.

Theorem 6
Cmm(Pr S) = Cum(PrS) g Smax(P/ S)

Effective solvers usually produce deterministically a unique result which is the smallest
maximal sound controller. This is achieved by simplifying the input by restricting the
specification to the behavior of the plant: this is done in Equations (2.8) and (2.9) where
the simple input marked maximal and simple input unmarked maximal solutions £ |
and L£$i | are defined. Incidentally, the controllers described with this restriction are all

contained in Smin.

Theorem 7
Lim(P,S) = Lin(P,S) € SRX(P, S)

Furthermore, the controllers in £$ and £ produce identical closed loops as the
controllers in Lmm and Lym.

A commonality of the four characterizations in Equations (2.6)—(2.9) is that they are
based on characterizations of the closed loop and not on the controller. In Equations (2.10)
and (2.11) we explain that the actual result as obtained by £3 = and LS is the controller

and the closed loop which basically follows from the adherence of the closed loop to the
specification due to its intersection with the plant.

2.4.2 DES-Based Characterization by Suprema

Furthermore, the characterizations in Equations (2.6)—(2.9) do not properly reflect the
execution of iterative solvers which modify both, the marked and the unmarked language
(using operations from Figure 2.6). In our formal approach we handle the modifications
to both languages explicitly, in contrast to [14] who focus on the modifications to the
marked language exclusively, by including the statements on the unmarked (in the case
of Lmm) and marked language (in the case of L) into the supremum statement using
the lattice of DES.

Proposition 2 Dym (P, S) = Dum(P,S) = Lmm (P, S) o

19/113

The results on the set-based characterization can easily be transferred to the DES-based
characterization. In the next section we decompose a supremum into a greatest fixed
point of a composed operation.

2.5 SCP CHARACTERIZATIONS VIA GREATEST FIXED-POINTS

Usually, the desired controller is calculated by iterative application of a fu