-

View metadata, citation and similar papers at core.ac.uk brought to you byf: CORE

provided by DepositOnce

Technische Universitdt Berlin

Forschungsberichte
der Fakultat IV — Elektrotechnik und Informatik

A First Look at OpenFlow Control Plane
Behavior from a Test Deployment

Dan Levin
Andreas Wundsam
Anja Feldmann
Srini Seetharaman
Masayoshi Kobayashi
Guru Parulkar

Technische Universitat Berlin /
Deutsche Telekom Laboratories

Bericht-Nr. 2011 - 13
ISSN 1436-9915

https://core.ac.uk/display/326320944?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A First Look at OpenFlow Control Plane Behavior
from a Test Deployment

Dan Levinx, Andreas Wundsam}, Anja Feldmannx, Srini Seetharamanc, Masayoshi Kobayashif, Guru Parulkary
x: TU Berlin / Deutsche Telekom Laboratories, Germany 1: ICSI, Berkeley
o: Deutsche Telekom Inc., R&D {: Stanford University

Abstract—OpenFlow is widely being deployed across campuses
in the US, Europe, and Asia. However, little is known about
the performance and traffic characteristics of such networks in
practice. In this paper, we present preliminary behavior and
performance observations made from traffic collected at the Stan-
ford experimental OpenFlow network, the first deployment of its
kind operating with user-generated traffic. We base our study on
OpenFlow control plane traffic and data plane measurements,
collected over multiple weeks. We find that control plane traffic,
while typically low, can, at times, make up a significant portion of
overall network traffic. We observe that the flow arrival rate has a
large impact on network performance. Finally, we identify several
tradeoffs and practical limitations in network measurement and
monitoring approaches enabled by OpenFlow.

I. INTRODUCTION

Over the past two years, a growing number of researchers
have adopted OpenFlow into their campus networks as a
means for practically evaluating and experimenting with
the principles of Software-defined Networks (SDNs). Open-
Flow [7] decouples network decision making from forwarding
to enable programmability of the control plane while retaining
the benefits of standardized forwarding hardware. It defines
a standard API that connects the controller (the decision
making component) to switches. The custom programmability
of the controller facilitates evaluation and deployment of new
approaches to traffic control, management, and monitoring.
Example applications include network load-balancing [12],
replay troubleshooting for networks [13], and online traffic
measurement [6], as well as network virtualization [9].

While OpenFlow deployments are expanding across more
campuses, little is known about the behavioral characteristics
of such networks in practice. OpenFlow control plane behavior
in particular — messages exchanged between controller and
OpenFlow switches to install and update the forwarding state
— remains largely unstudied in operational environments. Un-
derstanding OpenFlow control plane behavior is essential for
grasping the fundamental scalability and behavioral aspects
of the applications it enables. Measurements can help guide
expectations for performance metrics like control plane over-
head and flow setup latency. Service disruptions can reveal
important considerations for improving SDN robustness. Also,
as researchers consider using OpenFlow to improve network
visibility [3], [6], we report tradeoffs and limitations of dif-
ferent potential OpenFlow measurement approaches.

The experimental OpenFlow network at Stanford University
is the earliest of the campus networks currently in deployment

Controller

Measurement Collector ///,: :@
Flow Setup %\ N ’ Ctrl Plane Pcap

Switchport Stats »
CPU Counters o
Fig. 1. OpenFlow network and data sources. Dotted lines represent out-

of-band control plane links to switches. Dashed lines show out-of-band data
plane active measurement. Each switch has 2 in-band active measurement
probes “M”. Switch “G” acts as gateway to the public Internet.

and serves as the setting for our study. We base our study on
multiple weeks of recorded OpenFlow control plane traffic
and selected data plane measurements, including switch port
counters, flow-setup time, and CPU utilization from each
of the OpenFlow switches. Our analysis shows that during
times of stable activity, in the first week of July and March,
the OpenFlow control traffic in the Stanford network makes
up 3-4% of the data plane traffic. We also observe service
disruptions, when the control traffic can exceed the data plane
traffic, indicating potential for future work to handle failure
modes and optimization of control traffic. Lastly, our analysis
also illustrates tradeoffs between visibility and overhead in
OpenFlow network monitoring approaches based on observed
control plane flow summary statistics reporting.

We, first, in Section II, discuss the environment and dataset
on which our study is based, and the methodology used to
collect it and verify its integrity. In Section III, we present
three main findings of our analysis: Control traffic overhead
properties, the impact of flow arrival rate on flow setup
time, and observed tradeoffs and limitations in flow summary
reporting. We place our study into context of other related
work in Section IV, and conclude in Section V.

II. DATA AND METHODOLOGY

Our study is based on data from the OpenFlow experi-
mental network deployed at Stanford University. Conducting
measurements on this experimental network poses challenges
which shape the methodology we use in both gathering and
subsequently analyzing our data.

A. Stanford University Experimental Network

The Stanford OpenFlow experimental wired network exists
within the 3A wing of the William Gates Building and han-
dles all workstation traffic for approximately 20 individuals.
The deployment uses OpenFlow v1.0 switch hardware and a
single commodity server running a different controller at two
different time periods, whose logics we later describe.

At any time, the network includes up to 7 OpenFlow
switches and hardware devices, representing multiple vendors.
The topology is consistent with a workgroup network as found
within a campus or enterprise. Figure 1 shows a schematic of
the network during presented measurement periods along with
relevant measurement points and data sources.

B. Analysis Requirements and Data Sources

To perform our analysis, we take advantage of the exper-
imental nature of the network. Its extensive instrumentation
includes the ability to passively and actively measure both
control plane traffic and monitor data plane activity, and thus
enables us to correlate events over time and by device. At
the OpenFlow controller, we collect a complete packet-level
trace using the venerable tcpdump tool [2]. This trace provides
a complete overview of all OpenFlow messages exchanged
between any switch and the controller.

From this trace, we determine flow-level statistics such as
per-flow forwarding table updates, flow duration, flow size
(packets or bytes), flow arrival rate, and total number of active
flows. In order to reconstruct OpenFlow control messages
from raw packet traces, we use a custom tool built on the
oftrace [1] library.

Additionally, the measurement server collects, through a
dedicated measurement network (dashed lines in Figure 1),
several switch health and performance metrics, such as CPU
utilization, and port counters. The switches are queried via
SNMP in 2 minute intervals.

At the dataplane, measurement probes actively monitor the
flow setup time (FST). We define FST as the latency experi-
enced by the first packet of a new flow while its forwarding
configuration is determined and installed. To measure the FST,
we send a ping through the switch in regular 10 second
intervals. Depending on the controller logic, the ICMP request
and its ICMP response may each incur a FST above the known
baseline link latency.

Certain challenges arise due to the experimental prototype
nature of the network and devices, complicating approaches
to obtain a consistent view of the network and capture the
data necessary for analysis. Our foremost challenge is that
the network serves primarily as a testbed for OpenFlow
experimentation. Devices regularly come and go, topologies
change, and firmware and configurations are often updated.
Over 94 days of network activity, 64 days show at least one
link topology change for a single switch and 40 days incur link
topology changes at two or more switches. Note, also, that
different OpenFlow-enabled devices support different types
of monitoring. Some switches, for example, do not support
SNMP which prevents us from validating OpenFlow control
traffic overhead and measuring overall network data rates.
Devices which cannot support a required measurement are
excluded from the respective analysis.

Depending on the particular analysis, we process, compare,
and correlate different data sources. To compute control plane
overhead, we use control plane pcap traces processed with
oftrace to reveal active switches and switch ports. We then

validate traffic rates derived from these pcap traces against
discovered active switch port counters, collected via SNMP.
Similarly, to analyze the performance as experienced by the
user, we correlate flow setup latency measurements, switch
CPU utilization, and oftrace control plane traces. Oftrace and
SNMP counters enable our analysis of flow summary statistic
monitoring tradeoffs and limitations.

C. Dataset selection

Our analysis is based on data collected between May 2010
and April 2011. For consistent analysis, we sub-select time pe-
riods from our collected data when the network link topology
remains stable. We base the selection on topology information
inferred from the OpenFlow Control Plane itself, as well as
weekly deployment status reports [10]. To this end, we collect
the active switches and ports from the OpenFlow PKT_IN
messages received at the controller. Furthermore, we infer
link connectivity by comparing per-switch port inbound and
outbound traffic rates over the switch ports of every switch.
This gives us confidence that for a given period, we understand
the topology, even when documentation is incomplete.

Consequently, we choose 3 time periods for further analysis:
a full week from July 1st, 2010 (T'41), and two three-day
periods starting July 8th, 2010 (T%910), and March 24th, 2011
(T5011), respectively. According to the status reports, T,y
represents a period of higher activity with a service disruption,
while T5g19 and 1911 represent periods of normal operation.

Table I summarizes the control and data plane network and
traffic characteristics observed for these time periods. During
T'tun and Top10, SNAC acts as the controller, while during
T5011 Bigswitch is used. SNAC uses purely reactive end-
to-end L2 shortest-path routing, while Bigswitch uses hop-
by-hop shortest-path routing with proactively installed table
entries for reverse flow direction.

In 2010, the network comprises 7 switches, 5 of which can
be monitored via SNMP. In 2011, 4 switches are active, 2
of which are monitored via SNMP. During all periods, we
observe more than 200 unique MAC addresses active on the
network, and around 50 unique internal IP addresses. The
number of external IP addresses varies. Average data-plane
throughput, as measured via SNMP from the active switch
ports drops from 2.7 Mbit/s during T,y to 1.40 Mbit/s
during 75919, and 0.982 Mbit/s during T5011. The OpenFlow
control plane traffic, as recorded at the controller, drops more
significantly: from 0.479 Mbit/s and 388 msgs/s (T'r.) to
0.315 Mbit/s and 263 msgs/s (I5019) and 0.110 Mbit/s and
81.6 msgs/s (T5911)- Note that overall control plane and data
plane traffic volumes can not be compared directly, as the
control plane also includes traffic from switches that cannot
not be monitored via SNMP, hence the need for dataset sub-
selection. Furthermore, averaging control traffic overhead over
long time periods can be misleading, as we observe that some
periods show relatively low overhead, while other periods, e.g.,
during service disruptions, show greatly increased overhead.

[Label [Time period [Controller / Switches [% unique addresses [DP traffic [CP traffic [OF msgs]
T 2010-07-01 00:00:00 SNAC IP: 129 int / 17476 ext | 211.24 GB 36.22 GB 234,625,394
full 1 2010-07-07 23:59:59 | 7 Switches (4 SNMP) 552 MACs 2.79 Mbit/s | 0.479 Mbit/s | 388 msgs/s
T 2010-07-08 00:00:00 SNAC IP: 65 int / 4295 ext 4544 GB 10.234 GB 68,362,186
20101 2010-07-10 23:59:59 | 7 switches (4 SNMP) 295 MACs 1.40 Mbit/s | 0315 Mbit/s | 263 msgs/s
T 2011-03-24 00:00:00 Bigswitch IP: 50 int / 14404 ext 31.82 GB 3.589 GB 21,144,775
2011 1 2011-03-26 23:59:59 | 4 switches (2 SNMP) 202 MACs 0.982 Mbit/s | 0.110 Mbit/s | 81.6 msgs/s
TABLE I

DATA AND MEASUREMENT PERIODS (DP: DATA PLANE, CP: CONTROL PLANE, OF: OPENFLOW).

III. ANALYSIS

We now characterize the traffic observed in our measure-
ments. Then, we discuss 3 aspects in which the OpenFlow
control plane differs from that in legacy network devices: 1)
control communication overhead, 2) flow-level user perfor-
mance, and 3) visibility. We analyze tradeoffs and limitations
in data plane monitoring via control plane flow summary
statistics.

A. Control Traffic Characterization

The breakdown of control plane traffic by OpenFlow mes-
sage type is shown in Table II. For all measured switches' dur-
ing 'y, we observe that the control traffic is made up almost
exclusively by four message types: PKT_IN (23%) toward
the controller to obtain forwarding state, FLOW_MOD (35%)
toward a switch to install forwarding state, PKT_OUT (28%)
toward a switch, and FLOW_EXPIRED (14%) toward the
controller to report statistics for an expired flow entry. Further
investigation into the control plane message sources reveals a
similar distribution for each individual switch. Comparing the
values from T,y with T for the gateway switch switch 5
we note higher percentage of FLOW_MOD messages. The data
from T5p11 on switch 3 exhibits more significant differences,
due to different controller logic in use. No FLOW_EXPIRED
messages are observed, and 47% of messages are PKT_IN.

Returning to Ty, we further break down the control
plane traffic. We note that many OpenFlow control messages
are triggered by ARP (6.7%) and UDP (> 45%). Of the
UDP triggered messages, most are caused by DNS2. When
considering all 25,506,658 flows installed during Ty, we
observe 57% of these flows to be UDP, 33% to be TCP,
and 5.7% to be ARP. Of the UDP flows, 85.3% flows are
DNS (port 53). Of the TCP flows, 61.5% are HTTP (port
80), 19.56% are SSH (port 22), and 9.3% HTTPS (port 443).
This large fraction of ARP and DNS traffic separate work
paper [14], indicates a substantial potential for optimization to
reduce control overhead, e.g., by anticipating and preinstalling
flow table entries, or by handling ARP traffic locally at the OF
controller. Furthermore, we observe the controller regularly
sends PKT_OUT messages containing LLDP datagrams to fa-
cilitate discovery of link topology. These messages contribute
to roughly 5-6% of the overall overhead. Rearchitecting the
topology discovery process may lead to additional overhead
reduction in OpenFlow networks.

!Only those with SNMP port counters, given in Table I
2Network-enabled power meters were found to generate significant ARP
and DNS traffic.

B. Overhead Analysis

The control traffic overhead, i.e., control traffic as a per-
centage of data plane traffic, can be seen as an important
performance and scalability factor for OpenFlow networks.
Here, we present three different perspectives on the OpenFlow
control overhead measured in an unoptimized experimental
network: (i) Overhead aggregated across all switches for
period Ty, (ii) Overhead from just the gateway switch July
T5010 and compare against overhead at the gateway switch in
March Thg11, (iii) Gateway switch overhead during a service
disruption in July, a subset of T't;.

(i) Looking at overall network overhead, we choose the first
week of July 2010, as this week includes both long periods of
normal operation as well as a service disruption incident. The
mean overhead for input and output switch traffic during that
time is thus 17.3% and 12.9% for this particular week. Note,
however, further investigation reveals that the distribution is
heavily skewed between the time period of normal operation
and the period with the disruption.

(i) Next, we compare traffic from two time periods, mea-
sured just at the gateway switch, starting with period Tsp19,
over three days in July. Figure 2(a) shows a time series of
data plane, control plane, and overall traffic rate measurements,
aggregated into bins of approximately 15 minutes. Over this
period, we observe the network to exhibit stable behavior. We
also see a weak diurnal usage pattern in the data plane traffic,
while the control traffic remains relatively constant with mean
0.036 Mbit/s throughput. The average control overhead for
this period is 3.9%. We also observe that the relative control
overhead decreases as data plane throughput increases and
vice-versa, supporting our expectations of a control traffic
baseline.

When comparing outbound and inbound data rates, shown
in Figure 2(b), we note control plane traffic exhibits low rates,
as expected. We observe more incoming than outgoing control
plane traffic at the switch. This bias is explained by the higher
percentage (58%) of PKT_OUT and FLOW_MOD messages, see
Table II — both message types are sent from the controller to
the switch. The data plane is slightly skewed towards out-
bound traffic, especially for low throughput periods, since low
throughput periods are dominated by broadcast traffic, e.g.,
ARP. As data plane traffic increases, the correlation between
inbound and outbound traffic at the switch increases, as most
traffic observed at higher data rates is unicast.

Next we focus on the gateway switch during 7511, in
March, and observe some notable differences shown in Fig-
ure 2(c) when compared to the period in July. In March, we see
higher mean data plane traffic and output control at 1.01 Mbit/s

3
8 -
2 O —— Overall traffic
| /\ —— OpenFlow Data
X ——— OpenFlow Ctrl
3 |
) o
2 2
Qo
= o
C)_ 4
o
2
=
© T T
oS ® 3 35% 9% 5 8 8N
Time (in hours) since Thu Jul 8 00:00:00 PDT 2010
(a) Output traffic: gateway (switch 5), July
S
8 -
2 O —— Overall traffic
| /\ —— OpenFlow Data
X —— OpenFlow Ctrl
3 |
o 2 o©
= B oo e
S | wmsumsm st Ra90 RsmaPU A" st SRR SR
S e eIt m@m@m&fﬁ% Aiz
e
=
5
o

S & N b ¥ S b6 4 b ¥ S e &
— — N (3] (] < < 'e) © © M~
Time (in hours) since Thu Mar 24 00:00:00 PDT 2011

(c) Output traffic: gateway (switch 3), March

3
o 4
o
2 O —— Overall traffic
| /\ —— OpenFlow Data
X ——— OpenFlow Ctrl
o
— O
=N
®
5 o
S S
=
21
X
5 |
o T T T T T T
0.01 0.10 1.00 10.00 100.00 1000.00
Mbit/s In
(b) In vs. out traffic: gateway (switch 5), July
S
o 4
o
= O —— Overall traffic
| /A —— OpenFlow Datd
X — OpXenFIow Ctrl
8 | X
o 2
E
=)
O. .
2 ? o
2] B e eancpBRRg
o AAXAAA 25 2;
- ™
O_ .
e e & & & & &

Time (in hours) since Fri Jul 2 00:00:00 PDT 2010

(d) Output traffic: service disruption

Fig. 2. Control plane overhead during normal operation and service disruption

[observed period | switches [total msgs [pktin | pktout | flow mod | flow expired | other |
Trutl switch 2, 3, 4, switch 5 188,774,494 22.89% 28.55% 34.87% 13.51% 0.17%
Ta010 only gateway switch 5 13,913,584 15.63% | 29.84% 28.17% 24.87% 0.5%
T2011 only gateway switch 3 9,344,631 47.38% 18.21% 34.40% None None

TABLE 11

CONTROL PLANE TRAFFIC BROKEN DOWN BY OPENFLOW MESSAGE TYPE

and 0.033 Mbit/s respectively. The average control overhead
for output traffic is 3.3%, lower than the period in July. The
diurnal usage pattern on Thursday and Friday is also more
pronounced in both data plane and control traffic.

Decreased control overhead in March results from the differ-
ent controller in use during this period. Unlike SNAC that uses
exact 12-tuple match in each flow table entry, Bigswitch only
specifies the MAC-layer and IP-layer headers (i.e., wildcards
TCP-layer fields) thus, inserting a lower number of flow table
entries compared to SNAC, reducing control traffic overhead.
Furthermore, these two controllers differ in the forwarding
logic they employ: SNAC uses purely reactive end-to-end
L2 routing, while Bigswitch uses hop-by-hop routing with
proactively installed table entries for reverse flow direction.
Consequently, the nature of the controller traffic differs be-
tween these two time periods. One specific difference under
Bigswitch is that FLOW_EXPIRED messages are disabled
by configuration, reducing control overhead but depriving

us of per-flow summary statistics. Table II shows that the
raw number of OpenFlow messages in T5g1; is lower, and
dominated by PKT_IN messages with 47%.

(iii) As an experimental network built on prototype hard-
ware, service disruption are inevitably encountered. On July
2 at the gateway switch, we document the effects of one such
disruption on control and data plane traffic in Figure 2(d). This
plot shows a time series of control and data plane inbound
traffic rates at switch 5, aggregated over roughly 15 minute
intervals. At approximately 18:00 PDT (see first support line)
the volume of control traffic increases more than 10 times its
value during normal operation. At the same time as the control
traffic surges, the total data plane traffic rate drops to roughly
100 kbps. For approximately 12 hours during the disruption,
control traffic surpasses data plane traffic until the switch is
rebooted the following day (see second support line). During
service disruptions, control plane overhead can be significant.
The nature of this disruption (which we soon revisit in more

detail) reveals a positive feedback loop within the OF control
plane implementation. OF control networks should thus be
designed with these failure modes in mind.

C. Flow Setup and Performance from User Perspective

We now examine the impact of service disruption from a
user perspective. Note that flow setup time plays a crucial
factor in the network performance experienced by users.
Depending on the flow definition and routing strategy used by
a given network, many flow entries may need to be installed for
a single user action, e.g., when loading a webpage containing
several objects from different destination addresses. The more
individual flow table entries required for a particular workload,
the higher the overall incurred latency for that workload
will be. This differs significantly from a MAC-learning non-
OpenFlow switch where each object likely is part of the same
source-destination MAC-level flow.

In addition to the propogation delay to the controller, the
flow setup time in practice is tightly coupled to the switch
CPU utilization. Switch CPU load is, in turn, affected by
the rate at which new flows arrive at the switch. Thus, as
the new flow arrival rate increases, the flow setup delay
increases, potentially leading to positive feedback if new flows
are initiated too quickly. This relationship can be seen in the
context of the previously discussed service disruption on July
2, 2010. Figure 3 shows the observed flow arrival rate, CPU
utilization, and flow setup time per switch.

In Figure 3(a), we note that the flow arrival rate peaks for
just one switch (blue ’x’ markers), as this switch is the first
hop traversed by a large influx of new flows. This large influx
of flows results in a spike in PKT__INs sent to the controller.
The controller responds with FLOW_MOD messages to each of
the switches along the path of every flow, triggering a surge
in the CPU utilization across each of the other monitored
switches as seen in Figure 3(b). A switch from Vendor B
(black square markers), must cope with this surge in CPU
utilization and consequently, it exhibits a higher than normal
flow setup time. Figure 3(c) indicates that each new connection
traversing this switch (black square markers) experiences an
additional delay of up to 300ms. This incident illustrates the
relationship between switch CPU load and flow setup time
which, depending on hardware implementation, can impact
the user experience. It also reinforces the need to detect and
limit propogation of local control plane disruptions.

D. Flow Summary Monitoring Tradeoffs and Limitations

Recent work has proposed leveraging OpenFlow to enable
pervasive monitoring at arbitrarily defined flow granularities,
at every switch in the network [6], [4]. The OpenFlow 1.0
switch specification explicitly requires per-flow packet, byte,
and duration counters and defines at two explicit means for
obtaining flow summary statistics from the switches.

FLOW_EXPIRED messages, captured in our control plane
traffic traces, may optionally be reported by a switch on
a per-flow basis, upon flow table entry expiration. Alterna-
tively, STATS_REQUEST and STATS_REPLY messages let

the controller request and collect flow table statistics from a
given switch at any given time in a polling fashion. Given
certain data plane traffic characteristics and monitoring needs,
these complementary monitoring approaches present tradeoffs
between achievable data plane monitoring resolution and in-
curred control traffic overhead. A network with short flows
will reveal higher monitoring resolution via flow expiration
messages. A network with longer flows will reveal higher
monitoring resolution with polling, as long as the polling
frequency is greater than the flow expiration rate.

We observe the mean rate of 44.25 FLOW_EXPIRED mes-
sages per second arriving at our controller for T5g19 with mean
message size of 151 bytes. By comparison the mean message
size of a STATS_REQUEST and STATS_REPLY message
for this same period are 81.5 and 412 bytes respectively.
The median reported flow duration is 5 seconds. Given the
short-duration of most flows, the additional monitoring res-
olution achievable in this network by high-frequency polling
is questionable, and expensive, at over 3 times the messaging
overhead. These observations underscore the need to optimize
the OpenFlow monitoring approach according to data plane
characteristics and monitoring objectives.

Our analysis also shows that reported flow summary statis-
tics are not always trustworthy. In Table III, we show reported
flow summary statistics inaccuracies for different vendors over
different time periods. Over the first week in July, a significant
number of flows are reported with zero bytes counted from
Vendor A and Vendor B. For both vendors, a small fraction of
flows, 0.06% are reported to have more packets than bytes. In
summary, for this week, less than 82% of flows from Vendor
A and fewer than 22% of flows from Vendor B are reported
with valid byte counts per flow.

IV. RELATED WORK

An earlier work discusses the Stanford OpenFlow-enabled
wireless testbed called OpenRoads [14]. It provides a 1-week
snapshot of the traffic seen in the production slice of the
wireless network that coexists with other experiments. The
authors do not capture a view of the control channel behavior
or user experience. A recent work called DevoFlow [4] echos
our motivation for understanding overhead inherent to SDNGs,
relying on reasoning approaches in the place of our control
plane measurements.

In OpenTM [11], the authors propose to use OpenFlow
to estimate the network traffic matrix, with low overhead,
and more accurately than when relying on coarse port-level
information. This relates to our work in using OpenFlow to
obtain network traffic summaries. Similarly, MeasuRouting [8]
uses the routing control provided by OpenFlow to improve the
monitoring utility of certain subpopulations of the traffic. A
recent proposal to enable online measurement of large traffic
aggregates [6] leverages OpenFlow switch flow-level statistics
collection. Similarly, DDOS [3] detection leveraging flow table
statistics has also been investigated.

Several OpenFlow trial deployments exist as part of the
GENI project [5] which focus on enabling experiments over a

600 100 — 400
+ m
B £ 350]
§ 500F . 1 80t DDDDD DDDDDDDDDDD | ° o
2 00x co o E 300 ° o l
L d) X
§4OO = LIRR00K % 6ol b Xxixx . e | %‘250, o |
Q X X w
© 300/ XX g g e 8 2 200} o S]
% X 3 X « = o DEF‘ 5 a DD
g x 2 40 . 1 S 150} & d]
5200f 1 15 . . 5 o o
= o S B 100t o 1
& 100 *] 2p0n it SN B <]
o 1 . x
g 0RO PO00000O000 O i uisior il OCHON } . 00N @ ;‘E;E‘ngxxgﬂﬁxtﬁfkwtgfw»&;% e st
1100 19:00 03:00 11:00 19:06 19:00 03:00 11:00 19:00 19:00 03:00 11:00
Time Time Time

Fig. 3.

(a) Flow arrival rate

(b) CPU utilization

(c) Flow setup time

Flow-level performance in July, as measured by the flow-setup time, and its correlation to the CPU utilization and the flow arrival rate. Each switch
is marked by a different color, consistently across the 3 sub-figures.

[observed period [Vendor [# Flows [Npytes == 0 [Npytes < Npkts [Nbytes < Npkts * 64]
Full week from July 1 | Vendor A | 17,528,091 2,271,286 (12.96%) 2,281,980 (13.02%) 5,002,190 (28.54%)
Full week from July 1 Vendor B 7,975,170 5,485,542 (68.78%) 5,490,094 (68.84%) 6,239,563 (78.24%)

3 days from July 8 Vendor A 7,639,927 992, 289 (12.99%) 996, 673 (13.05%) 2,128,260 (27.86%)
3 days from July 8 Vendor B 3,599, 089 2,606, 680 (72.43%) 2,608,155 (72.47%) 2,904,512 (80.70%)

TABLE III
PROTOTYPE SWITCH FLOW REPORTING INACCURACIES

substrate that also hosts realistic traffic. Network operators at
Indiana University are working on improving the usability of
the GENI infrastructure by building a GENI Meta-Operations
Center (GMOC) that will monitor networks and provide nec-
essary alerts. Still, the Stanford deployment that we monitor
and analyze is the first and to this day largest of its kind.
Furthermore, no analysis of traffic patterns in an OpenFlow
network has been reported to date.

V. SUMMARY

This paper presents a preliminary look into OpenFlow con-
trol plane traffic and behavior from the Stanford experimental
deployment. We discuss the challenges of a measurement
study in an evolving prototype environment and present results
comparing periods from July 2010 and March 2011.

During normal operation OpenFlow control plane messages
contributed between 3-4% of the data plane traffic. Exceptional
events, e.g., a switch firmware bug on July 2nd, however
can cause control traffic to exceed data plane traffic. This
network disturbance exemplifies the importance of carefully
managing the control plane behavior and control logic to
ensure robustness. Data from 2011 suggests that control plane
overhead can be significantly reduced by controller logic and
configuration. Indeed, there is need and potential for future
work to optimize control plane communication. The exact
numbers are of course specific to the topology, controller
and workload in the measured deployment. Still, the high
percentage of observed control plane traffic caused by network
support services like ARP, DNS and LLDP topology discovery
suggests that these protocols may need to be handled specially
to improve scalability, e.g., by preinstalling flow entries for
DNS or handling ARP locally at the controller. We also
highlight the need to consider visibility and overhead trade-
offs and limitations of OpenFlow monitoring approaches.

In future work, we plan to further explore the potential of
optimizing OpenFlow control plane traffic by aggregation or
proactive installation of forwarding state as well as further
potential for OpenFlow-based measurement approaches. We
hope that these results may give a first data point for the
community, providing an anecdotal view into control traffic
behavior exhibited by this emerging technology.

REFERENCES

(1]
(2]
(3]

oftrace. http://www.openflow.org/wk/index.php/Liboftrace.

tcpdump. http://www.tcpdump.org/.

R. Braga, E. Mota, and A. Passito. Lightweight ddos flooding attack
detection using nox/openflow. In IEEE Local Computer Networks
(LCN), Oct. 2010.

A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and
S. Banerjee. Devoflow: scaling flow management for high-performance
networks. In ACM Sigcomm, 2011.

GENI: Global Environment for Network Innovations. http://www.geni.
net.

L. Jose, M. Yu, and J. Rexford. Online measurement of large traffic
aggregates on commodity switches. In Proc. USENIX HotICE, 2011.
N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner. Openflow: enabling innovation
in campus networks. SIGCOMM Comput. Commun. Rev., 38:69-74,
March 2008.

S. Raza, G. Huang, C.-N. Chuah, S. Seetharaman, and J. Singh.
MeasuRouting: A framework for routing assisted traffic monitoring. In
Proceedings of IEEE INFOCOM, March 2010.

R. Sherwood, G. Gibb, K. kiong Yap, M. Casado, N. Mckeown, and
G. Parulkar. Can the production network be the testbed. In USENIX
OSDI, 2010.

Stanford OF Network Status Reports. http://tinyurl.com/sofweekly.

A. Tootoonchian, M. Ghobadi, and Y. Ganjali. OpenTM: Traffic Matrix
Estimator for OpenFlow Networks. In Proc. PAM, pages 201-210, 2010.
R. Wang, D. Butnariu, and J. Rexford. Openflow-based server load
balancing gone wild. In Proc. USENIX HotICE, 2011.

A. Wundsam, D. Levin, S. Seetharaman, and A. Feldmann. OFRewind:
Enabling Record and Replay Troubleshooting for Networks. In Proc.
USENIX ATC, June 2011.

K.-K. Yap, M. Kobayashi, D. Underhill, S. Seetharaman, P. Kazemian,
and N. McKeown. The Stanford OpenRoads deployment. In Proceedings
of the 4th ACM International workshop on Experimental evaluation and
characterization (WINTECH), pages 59-66, 2009.

[4]

[5]
[6]
(7]

(8]

(9]

[10]

(1]

[12]

[13]

[14]

	RoteReihe.pdf
	Folie 1

