

Leen Lambers, Hartmut Ehrig, Annegret Habel,
Fernando Orejas, and Ulrike Golas

Bericht-Nr. 2010/7
ISSN 1436-9915

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DepositOnce

https://core.ac.uk/display/326320939?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Local Confluence for Rules with Nested
Application Conditions based on a New Critical

Pair Notion

Leen Lambers1, Hartmut Ehrig2, Annegret Habel3, Fernando Orejas4, and
Ulrike Golas2

1 Hasso Plattner Institut, Universität Potsdam, Germany
Leen.Lambers@hpi.uni-potsdam.de

2 Technische Universität Berlin, Germany
{ehrig,ugolas}@cs.tu-berlin.de

3 Carl v. Ossietzky Universität Oldenburg, Germany
habel@informatik.uni-oldenburg.de

4 Technical University of Catalonia, Spain
orejas@lsi.upc.edu

Abstract. Local confluence is an important property in many rewriting
systems. The notion of critical pairs is central for being able to verify
local confluence of rewriting systems in a static way. Critical pairs are
defined already in the framework of graphs and adhesive rewriting sys-
tems. These systems may hold rules with or without negative application
conditions. In this paper however, we consider rules with more general
application conditions — also called nested application conditions —
that are known to be equivalent to finite first-order graph conditions.
The classical critical pair notion denotes conflicting transformations in a
minimal context satisfying the application conditions. This is no longer
true for combinations of positive and negative application conditions —
an important special case of nested ones — where we allow that critical
pairs do not satisfy the application conditions. This leads to a new notion
of critical pairs which allows to formulate and prove a Local Confluence
Theorem for rules with nested application conditions in the framework
of adhesive rewriting systems based on the DPO-approach. It builds
on a new Embedding Theorem and Completeness Theorem for critical
pairs based on rules with nested application conditions. We demonstrate
this new theory on the modeling of an elevator control by a typed graph
transformation system with positive and negative application conditions.

1 Introduction

Confluence is a most important property for many kinds of rewriting systems.
For instance, in the case of rewriting systems that are used as a computation
model, confluence is the property that ensures the functional behaviour of a
given system[1]. This is important in the case of graph transformation systems

2

(GTS) that are used to specify the functionality of a given software system or
to describe model transformations (see, e.g. [2]). Unfortunately, confluence of
rewriting systems is, in general, undecidable. A special case is local confluence
which, in the case where the rewriting system is terminating, coincides with con-
fluence. In addition, local confluence is also interesting in the sense that it shows
the absence of some kinds of conflicts in the application of rules. The standard
approach for proving local confluence was originally developed by Knuth and
Bendix [3] for term rewriting systems (TRS) [1]. The idea of this approach is to
check the joinability (or confluence) of critical pairs, which represent conflicting
rules in a minimal context, the minimal possible sources of non-confluence.

This technique has also been applied to check local confluence for GTS (see, e.g.
[4,5,2]). Unfortunately, the results for TRS cannot be adapted straightforwardly
to the case of GTS. In general, joinability or confluence of critical pairs does not
ensure the local confluence of a GTS. Instead, a stronger notion of strict conflu-
ence of a critical pair, had to be defined as a sufficient condition for having local
confluence. This condition is semi-decidable (resp. decidable for a terminating
GTS), because each critical pair can be computed statically and moreover, if
there exists some strict solution for the critical pair, then it can be found at
some point. For a terminating GTS, the complete state space starting from the
critical pair is computable and can be scanned for strict solutions. In this way,
although showing confluence for GTS is undecidable [4] in general, at least for
showing local confluence there exists a semi-decidable sufficient condition (resp.
decidable condition for terminating GTS).

In standard rewriting systems, whenever we find a valid match of the left-hand
side of a rule into a given object, that rule can be applied to that object. However,
in many occasions, we want to limit the applicability of rules. This leads to the
notion of conditional rewriting system, where a rule can only be applied to a
given object if some conditions, which are part of the rule, are satisfied. In the
case of conditional TRS, conditions are (logical) equalities that must be proved
before the given rule can be applied. In this case, critical pair techniques to
check local confluence can be extended to cover this case (see, e.g. [6]). In GTS,
conditions to restrict the applicability of rules are very different. In this case,
application conditions (AC) constrain the context of the match of the rule. For
instance, an important case of an application condition is a negative application
condition (NAC), as introduced in [7], which is just a graph N that extends
the left hand side of the rule. Then, that rule is applicable to a graph G if
— roughly spoken — N is not present in G. Unfortunately, the use of this
kind of application conditions poses additional problems for constructing critical
pairs and checking local confluence. Actually, the first results on checking local
confluence for GTS with ACs are quite recent and are restricted to the case
of these NACs [8]. Although NACs are quite useful already, they have limited
expressive power: we cannot express forbidden contexts which are more complex
than just a graph embedding, nor can we express positive requirements on the
context of applications, i.e. positive application conditions. The running example

3

used in this paper, describing the specification of an elevator system, shows that
this increase of descriptive power is needed in practical applications.

To overcome the expressive limitations of NACs, in [9] a very general kind of
conditions, called nested application conditions, is studied in detail. In particu-
lar, in the graph case, this class of conditions has the expressive power of the
first-order fragment of Courcelle’s logic of graphs [10]. Moreover, in this work
conditions are not defined for any specific kind of graph, but for objects of
any adhesive category [11]. This means that the results apply to a large class
of graphical structures. Following that work, in this paper, we study the local
confluence of rewriting systems over adhesive categories, where the rules may
include arbitrary nested application conditions. Dealing with this general kind
of conditions poses new difficulties with respect to previous results. In particular,
due to the fact that a nested condition may include combinations of positive and
negative conditions, we defined a new notion of critical pairs in order to obtain
a corresponding Local Confluence Theorem for the nested case.

The paper is organized as follows: In Section 2, we review the notions of graphs
and high-level structures in the context of adhesive categories. In Section 3, we
introduce our running example on an elevator control using nested application
conditions (ACs) and introduce the concepts of nested application conditions
and rules. In Section 4, we proof the Embedding and Extension Theorems for
rules with ACs, allowing to extend a transformation to a larger context. In Sec-
tion 5, first we review the notion of parallel dependency for transformations via
rules with ACs. Then, we define our new notion of critical pairs and state a
completeness theorem (Theorem 3) saying that every pair of dependent direct
derivations is an extension of a critical pair. In Section 6, we state as main result
the Critical Pair lemma or Local Confluence Theorem (Theorem 4) for rules
with ACs. The concepts are illustrated by the rule-based modeling of an eleva-
tor control with means of a typed graph transformation system. A conclusion
including related work is given in Section 7.

2 Graphs and High-Level Structures

In this section, we review the definitions of typed graphs and graph morphisms
as well as adhesive categories and some special properties.

Definition 1 ((typed) graphs and graph morphisms). A graph G =
(GV , GE , s, t) consists of a setGV of vertices, a setGE of edges and two mappings
s, t : GE → GV , assigning to each edge e ∈ GE a source s(e) ∈ GV and
target t(e) ∈ GV . A graph morphism f : G1 → G2 between two graphs Gi =
(Gi,V , Gi,E , si, ti), (i = 1, 2) is a pair f = (fV : GV,1 → GV,2, fE : GE,1 → GE,2)
of mappings, such that fV ◦ s1 = s2 ◦ fE and fV ◦ t1 = t2 ◦ fE . The category
having graphs as objects and graph morphisms as arrows is called Graphs. A
type graph is a distinguished graph TG = (VTG, ETG, sTG, tTG). VTG and ETG
are called the node and the edge type alphabets, respectively. A tuple (G, type)

4

of a graph G together with a graph morphism type : G → TG is then called a
typed graph. Consider typed graphs GT1 = (G1, type1) and GT2 = (G2, type2), a
typed graph morphism f : GT1 → GT2 is a graph morphisms f : G1 → G2 such
that type2 ◦ f = type1. The category having typed graphs as objects and typed
graph morphisms as arrows is called GraphsTG.

The considerations in this paper are based on adhesive categories together with
some specific extra properties. Note that the theory introduced in this paper
can be generalized also to (weak) adhesive high-level replacement (HLR) cat-
egories, describing more structures which are of interest in computer science
and mathematics like Petri nets, (hyper)graphs, and algebraic specifications.
The idea behind the consideration of (weak) adhesive (HLR) categories is to
avoid similar investigations for different instantiations. Readers interested in the
category-theoretic background of these concepts may consult e.g. [2].

Definition 2 (adhesive category [11]). A category C is an adhesive category,
if the following properties hold:

1. C has pushouts along monomorphisms (i.e. pushouts where at least one of
the given morphisms is a monomorphism).

2. C has pullbacks.
3. Pushouts in C along monomorphisms are VK-squares, i.e. for any commu-

tative cube in C where we have a pushout in the bottom and the back faces
are pullbacks, it holds: the top is pushout iff the front faces are pullbacks.

A

B

C

D

m n(1)

A′

A C

C ′

f

cB′

B D

D′

b d
m

Fact 1 (GraphsTG is adhesive [2]). The category GraphsTG of graphs typed
over a type graph TG is an adhesive category.

Adhesive categories have a number of nice properties, called HLR properties
[12].

Fact 2 (properties of adhesive categories [11,2]). For an adhesive category
C, the following properties hold:

1. Pushouts along monomorphisms are pullbacks.
2. Pushout-pullback decomposition. If the diagram (1)+(2) is a pushout, (2) a

pullback, w a monomorphism and (l or c a monomorphism), then (1) and
(2) are pushouts and also pullbacks.

5

3. Cube pushout-pullback decomposition. Given the commutative cube (3) be-
low, where all morphisms in the top and the bottom are monomorphisms,
the top is pullback and the front faces are pushouts, then the bottom is a
pullback iff the back faces of the cube are pushouts.

A C E

B D F

c r

u w

l s v(1) (2)

A′

AC

C ′

B′

BD

D′

(3)

4. Uniqueness of pushout complements. Given a monomorphism c : A→ C and
morphism s : C → D, then there is, up to isomorphism, at most one B with
l : A→ B and u : B → D such that diagram (1) is a pushout.

Definition 3 (unique E-M pair factorization). Given a class of morphism
pairs E with the same codomain and a classM of monomorphisms, an adhesive
category has a unique E-M pair factorization if, for each pair of morphisms
f1 : A1 → C and f2 : A2 → C, there exist a unique (up to isomorphism) object
K and unique (up to isomorphism) morphisms e1 : A1 → K, e2 : A2 → K, and
m : K → C with (e1, e2) ∈ E and m ∈M such that m ◦ e1 = f1 and m ◦ e2 = f2:

K

A1

A2

C
e1

e2

m

f1

f2

3 Rules with Nested Application Conditions

In this section, we reintroduce basic concepts with respect to rules with nested
application conditions. Moreover, we introduce our running example on the mod-
eling of an elevator control by typed graphs and typed graph transformation
rules. The example makes use of rules with nested application conditions.

Example 1 (Elevator). The elevator control is modelled by a typed graph
and typed graph rules. The type of control that we consider is meant to be
used in buildings where the elevator should transport people from or to one
main stop. This occurs, for example, in apartment buildings or multi-storey car
parks [13]. Each floor in the building is equipped with one button in order to
call the elevator. The elevator car stops at a floor for which an internal stop
request is given. External call requests are served by the elevator only if it is in
downward mode in order to transport people to the main stop. The direction of

6

the elevator car is not changed as long as there are remaining requests in the
running direction. External call requests as well as internal stop requests are not
deleted until the elevator car has arrived.

On the right of Fig. 1, a type graph TG for Elevator is depicted. This type
graph expresses that an elevator car of type elevator exists, which can be on a
specific floor. Moreover, the elevator can be in upward or downward mode. Floors
are connected by next up edges expressing which floor is directly above another
floor. Moreover, higher than edges express that a floor is arranged higher in the
building than another floor. Each floor can hold requests of two different types.
The first type is a call request expressing that an external call for the elevator car
on this floor is given. The second type is a stop request expressing that a call in
the elevator car is given for stopping it on this floor. On the left of Fig. 1 a graph
G, typed over this type graph is shown, describing a four-storey building, where
the elevator car is on the second floor in downward mode with a call request on
the ground floor. Note that G contains higher than edges from each floor which
is higher than each other floor (corresponding to transitive closure of opposite
edges of next up), but they are not depicted because of visibility reasons.

Fig. 1. A typed graph of Elevator together with its type graph

In the following, we consider adhesive categories [11,2] with some specific extra
properties. The basic definitions and some specific extra properties are collected
in the appendix. The reader unfamiliar with adhesive categories can safely take
the standard category of typed graphs as considered in our running example.

General Assumption. In the following, we assume that C is an adhesive cat-
egory with an epi-M-factorization (used in Lemma 1) and a unique E-M pair
factorization (used in Thm 3), where M is the class of all monomorphisms and
with initial pushouts over M-morphisms (used in Thm 4).

The category GraphsTG of graphs and morphisms typed over TG is adhesive
and holds the properties in the assumption [2]. In particular, a unique E-M pair
factorization is obtained when E is the class of pairs of jointly surjective graph
morphisms and M is the class of injective morphisms.

7

Application conditions are defined as in [14,9]. Syntactically, application condi-
tions may be seen as a tree of morphisms equipped with certain logical symbols
such as quantifiers and connectives.

Definition 4 (nested application conditions). A (nested) application condi-
tion, short condition or AC, acP over an object P is of the form true or ∃(a, acC),
where a : P → C is a morphism and acC is an application condition over C.
Moreover, Boolean formulas over application conditions over P are application
conditions over P . ∃a abbreviates ∃(a, true), ∀(a, acC) abbreviates ¬∃(a,¬acC).
Every morphism satisfies true. A morphism p : P → G satisfies an application
condition ∃(a, acC) if there exists a morphism q in M such that q ◦ a = p and
q |= acC .

P

G

C,a

p q
=

acC

|=
)∃(

The satisfaction of application conditions over P by morphisms with domain P
is extended to Boolean formulas over application conditions in the usual way.
We write p |= acP to denote that the morphism p satisfies acP . A condition
acL implicates ac′L, written acL ⇒ ac′L, if for all morphisms m : L → G with
m |= acL it follows that m |= ac′L. Two conditions acL and ac′L over L are
equivalent, denoted by acL ≡ ac′L, if for all morphisms m : L → G, m |= acL iff
m |= ac′L.

Remark 1. The definition of application conditions generalizes those in [7,15,16].
Negative (positive) application conditions [7,8], short NACs (PACs), correspond
to nested application conditions of the form @a (∃a).

Example 2. Examples of ACs are given below, where the first one is of standard
type considered already in [7], while the second one is properly nested.

∃(
1 2

↪→
1 2

) There is an edge from the image of 1 to that of 2.
∃(

1
↪→

1 2
,

∀(
1 2

↪→
1 2 3

,
∃(

1 2 3
↪→

1 2 3
)))

For the image of node 1, there exists an outgoing
edge such that, for all edges outgoing from the
target, the target has a loop.

Application conditions can be shifted over morphisms into corresponding ACs
over the codomain of the morphism.

Lemma 1 (shift of ACs over morphisms [17]). There is a transformation
Shift such that, for all application conditions acP over P and all morphisms
b : P → P ′, n : P ′ → H, we have n ◦ b |= acP ⇔ n |= Shift(b, acP).

8

Rules are defined as in [16,9]. They are specified by a span of monomorphisms
with an application condition on the left-hand side of the rule5. We consider
the classical semantics based on the double-pushout (DPO) construction [2,18].
Thereby, we distinguish between transformations via rules with ACs, where ap-
plication conditions may have to be fulfilled or may also be disregarded.

Definition 5 (rules and transformations with ACs). A rule ρ = 〈p, acL〉
consists of a plain rule p =

〈
L ←↩ I ↪→ R

〉
with I ↪→ L and I ↪→ R monomor-

phisms and an application condition acL over L. L and R are called the left-
and the right-hand side (LHS and RHS) of p and I the interface; acL is the
application condition of p.

L I R

DG H

m (1) (2)

acL

=|

A direct transformation consists of two pushouts (1) and (2), called DPO, such
that m |= acL. We write G ⇒ρ,m,m∗ H and say that m : L → G is the match
of ρ in G and m∗ : R → H is the comatch of ρ in H. We also write G ⇒ρ,m H
or G⇒ρ H to express that there is an m∗ or there are m and m∗, respectively,
such that G⇒ρ,m,m∗ H. A plain direct transformation via a plain rule p consists
of DPO (1) and (2). We write G ⇒p,m,m∗ H. An AC-disregarding direct trans-
formation G⇒ρ,m,m∗ H consists of DPO (1) and (2), where m (resp. m∗) does
not necessarily need to fulfill acL (resp. acR). A sequence of (plain resp. AC-
disregarding) direct transformations G0 ⇒ G1 ⇒ G2 · · ·Gn−1 ⇒ Gn is called a
(plain resp. AC-disregarding) transformation and is denoted by G0 ⇒∗ Gn. For
n = 0, we have the identical transformation G0 ⇒0 G′0 for G0

∼= G′0, because
PO’s and hence also transformations are only unique up to isomorphism.

Example 3 (typed graph rules of Elevator). Exemplarily, we show three
rules modeling part of the elevator control as given in Example 1. First, we have
rule move down in Fig. 2 with combined AC on L, consisting of three PACs
(posi : L→ Pi, i = 1, . . . , 3) and a NAC (neg : L→ N). This rule describes that
the elevator car moves down one floor under the condition that the elevator car
is in downward mode (∃pos3), that no request is present on the elevator floor
(@neg), and that some request is present on the next lower floor (∃pos2) or some
other lower floor (∃pos1). Note that only L and R of the rules are depicted.
Thereby, the intermediate graph I and span monomorphisms can be derived as
follows. Graph I consists of all nodes and edges occurring in L and R that are
labeled by the same number. The span monomorphisms map nodes and edges
according to the numbering. Analogously, the morphisms of the ACs consist of
mappings according to the numbering of nodes and edges. As a second rule, we

5 Note that in [16,9] also application conditions on the right-hand side of a rule are al-
lowed, but because of Lemma 2 this case can be reduced to rules with left application
conditions only.

9

Fig. 2. Rules for Elevator

consider rule stop request, describing that an internal stop request is made on
some floor under the condition that no stop request is already given for this floor.
Rule process stop down describes that a stop request is processed for a specific
floor under the condition that the elevator is on this floor and it is in downward
mode.

Application conditions of a rule can be shifted from right to left and vice versa.

Lemma 2 (shift of ACs over rules [9]). There are transformations L and
R such that, for every application condition acR on R and every application
condition acL on L of a rule ρ and every direct transformation G ⇒ρ,m,m∗ H,
we have m |= L(ρ, acR)⇔ m∗ |= acR and m |= acL ⇔ m∗ |= R(ρ, acL).

4 Embedding and Extension Theorems

In this section, we present Embedding and Extension Theorems, which allow us
to extend a transformation to a larger context.

An extension diagram describes how a transformation t : G0 ⇒∗ Gn can be
extended to a transformation t′ : G′0 ⇒∗ G′n via the same rules and an extension

10

morphism k0 : G0 → G′0 that maps G0 to G′0 as shown in the following diagram.

G0 Gn

G′0 G′n

k0 kn

∗

∗
(1)

We first introduce the notion of a derived application condition (resp. derived
rule) of a transformation t : G0 ⇒∗ Gn, which is needed for the notion of
consistency of an extension morphism as given in Def. 7 as well as for AC-
compatibility in Def. 11 in Section 6.

Definition 6 (derived application condition, derived rule). Given an
(AC-disregarding) transformation t : G0⇒∗Gn, the derived application condition
ac(t) over G0 is defined inductively as follows: For t of length 0 with G0

∼= G′0,
let ac(t) = true. For t : G0 ⇒ρ1,m1

G1, let ac(t) = Shift(m1, acL1
). For t : G0 ⇒∗

Gn−1 ⇒ Gn with n ≥ 2, let ac(t) = ac(G0 ⇒∗ Gn−1) ∧ L(p∗, ac(Gn−1 ⇒ Gn)),
where p∗ =

〈
G0 ←↩ D ↪→ Gn−1

〉
is the plain derived rule [2] of G0 ⇒∗ Gn−1

defined by the DPO for n = 2 and by iterated pullback construction for n > 2.
The derived rule ρ(t) = 〈p(t), ac(t)〉 of an (AC-disregarding) transformation
t : G0⇒∗Gn consists of the plain derived rule p(t) and the derived application
condition ac(t) of t.

Gn−1D′G0 Dn Gn

D

(PB)= =

Definition 7 (AC-consistency, consistency). Given an (AC-disregarding)
transformation t : G0⇒∗Gn with derived rule ρ(t) = 〈p(t), ac(t)〉 and a mor-
phism k0 : G0 → G′0. k0 is boundary consistent with respect to t, if there exist
an initial pushout (1) over k0 and a morphism b ∈ M with d0 ◦ b = b0. k0 is
AC-consistent with respect to t, if k0 |= ac(t). k0 is consistent with respect to t,
if k0 is boundary and AC-consistent with respect to t.

DG0 Gn

B

C

G′0

d0 dn

b0 b
k0

(1)

ac(t)

Theorem 1 (Embedding Theorem with ACs). Given an (AC-disregarding)
transformation t : G0⇒∗Gn and an extension morphism k0 : G0 → G′0 consistent
with respect to t, then there is an extension diagram (1) over t and k0 as shown

11

below, where t′ : G′0 ⇒∗ G′n is a transformation via the same rules satisfying the
corresponding ACs.

G0 Gn

G′0 G′n

k0 kn

∗

∗
(1)

Proof. Let t : G0⇒∗Gn be a (AC-disregarding) transformation via rules with
application conditions and k0 : G0 → G′0 be consistent with respect to t. Then the
underlying transformation t0 via rules without application conditions is bound-
ary consistent with respect to t0 and, by the Embedding Theorem for rules
without application conditions [2], there is a plain extension diagram t′0 over
t0 and k0. Moreover, by the Extension Theorem for rules without application
conditions [2] the following DPO diagram exists:

G0

G′0

D

D′

Gn

G′n

k0 kn(1) (2)

By assumption, k0 |= ac(t). It remains to show that the transformation via rules
with application conditions is an extension diagram, i.e., ki−1◦mi |= acLi

for i =
1, . . . , n. This is proved by induction over the number of direct transformation
steps n.
Basis. For a transformation t : G0 ⇒0 G′0 of length 0, k0 |= ac(t) = true. For
a transformation t : G0 ⇒ρ1,m1

G1 of length 1, k0 |= ac(t) = Shift(m1, acL1
) ⇔

k0 ◦m1 |= acL1
.

Induction hypothesis. For a transformation t : G0 ⇒∗ Gi of length i ≥ 1,
k0 |= ac(G0 ⇒∗ Gi)⇔ kj−1 ◦mj |= acLj for j = 1, . . . , i.
Induction step. Consider now the transformation t : G0 ⇒∗ Gi ⇒ Gi+1 and
the following DPO diagram:

G0

G′0

D

D′

Gi

G′i

k0 ki(1) (2)

Then

k0 |= ac(G0 ⇒∗ Gi+1)
⇔ k0 |= ac(G0 ⇒∗ Gi) ∧ L(p(G0 ⇒∗ Gi), ac(Gi ⇒ Gi+1)) Definition of ac
⇔ k0 |= ac(G0 ⇒∗ Gi) ∧ ki |= ac(Gi ⇒ Gi+1) Shift-Lemma 2
⇔ k0 |= ac(G0 ⇒∗ Gi) ∧ ki |= Shift(mi+1, acLi+1) Definition of ac
⇔ k0 |= ac(G0 ⇒∗ Gi) ∧ ki ◦mi+1 |= acLi+1 Shift-Lemma1
⇔ kj−1 ◦mj |= acLj

for j = 1, . . . , i+ 1 Ind hypothesis

2

12

Remark 2. Note that the Embedding Theorem is valid for t satisfying ACs and
for t disregarding ACs.

The consistency condition is also necessary for the construction of extension
diagrams, provided that we have initial pushouts overM′-morphisms. Moreover,
we are able to give a direct construction ofG′n in the extension diagram (1) below.
This avoids the need to give an explicit construction of t′ : G′0 ⇒∗ G′n.

Theorem 2 (Extension Theorem). Given a (AC-disregarding) transforma-
tion t : G0⇒∗Gn with derived rule ρ(t) and an extension diagram (1),

G0 Gn

G′0 G′n

B

C

k0 kn

b0 ∗

∗
(1)(2)

with an initial pushout (2) over k0 ∈ M′ for some class M′, closed under
pushouts and pullbacks alongM-morphisms and with initial pushouts overM′-
morphisms, then we have the following, shown in the diagram below:

1. k0 is consistent with respect to t : G0 ⇒∗ Gn with b : B → D.
2. There is a direct transformation t′ : G′0⇒G′n via ρ(t) and k0 given by the

pushouts (3) and (4) with k, kn ∈M′.
3. There are initial pushouts (5) over k ∈ M′ and (6) over kn ∈ M′, respec-

tively, with same boundary-context morphism B → C.

G0 D Gn

D′G′0 G′n

k0 k kn(3) (4)

ac(t) D B Gn

CD′ G′n

k kn(5) (6)

Proof. Let t : G0⇒∗Gn be a transformation via rules with application condi-
tions with derived rule ρ(t) and an extension diagram (1), with an initial pushout
(2) over k0 ∈M′. By the Extension Theorem for rules without application con-
ditions [2], k0 is boundary consistent with respect to t : G0⇒∗Gn, with the
morphism b : B → D and properties (2) and (3) are satisfied. It remains to show
that k0 is consistent with respect to t : G0⇒∗Gn, with the morphism b : B → D.
By assumption, (1) is an extension diagram, i.e., t′ : G′0⇒∗G′n is a transforma-
tion via (ρ1, . . . , ρn), and ki ◦mi |= acLi

for i = 1, . . . , n. Then k0 |= ac(t), i.e.
k0 is AC-consistent and hence consistent with respect to t : G0⇒∗Gn with the
morphism b : B → D. 2

5 Critical Pairs and Completeness

We now present the new concept of critical pairs, which will finally lead to the
Local Confluence Theorem. First, we recall from [17] that a pair H1 ⇐ρ1,m1

13

G⇒ρ2,m2
H2 is called parallel independent if it is plain parallel independent in

the sense of [2] and that the induced matches satisfy the application conditions
of ρ1 and ρ2, respectively. Note that given a parallel dependent (i.e. not parallel
independent) pair H1 ⇐ρ1,m1 G⇒ρ2,m2 H2 via (ρ1, ρ2) with ACs, the standard
construction in [2] for the corresponding critical pair via (E ,M) pair factorization
leads to a weak critical pair P1 ⇐ρ1,o1 K ⇒ρ2,o2 P2, which is AC-disregarding
and not necessarily plain parallel dependent, but minimal. It will later be used
to define a new notion of critical pairs, which is used in the Local Confluence
Theorem in Section 6 for the case of nested application conditions.

Definition 8 (parallel independence with ACs). A pair of direct transfor-
mations H1 ⇐ρ1,o′1

G⇒ρ2,o′2
H2 with ACs is parallel independent if there exists

a morphism d′12 : L1 → D′2 such that k′2 ◦ d′12 = o′1 and c′2 ◦ d′12 |= acL1 and there
exists a morphism d′21 : L2 → D′1 such that k′1 ◦ d′21 = o′2 and c′1 ◦ d′21 |= acL2

.

GD′1H1p∗1 :

R1p1 : I1 L1

D′2 H2

R2I2L2

k′1c′1

o′1

k′2 c′2

o′2
d′21 d′12

acL1 acL2

Definition 9 (weak critical pair). Given rules ρ1 = 〈p1, acL1
〉 and ρ2 =

〈p2, acL2
〉, a weak critical pair for 〈ρ1, ρ2〉 is a pair P1 ⇐ρ1,o1 K ⇒ρ2,o2 P2 of

AC-disregarding transformations, where (o1, o2) ∈ E . Every weak critical pair
induces the following application conditions acK and acK∗ on K:
acK = Shift(o1, acL1) ∧ Shift(o2, acL2), called extension AC, and
ac∗K = ¬(ac∗K,d12 ∧ ac∗K,d21), called conflict-inducing AC, with

if (∃ d12 with k2◦d12=o1) then ac∗K,d12 = L(p∗2,Shift(c2◦d12, acL1
)) else false

if (∃ d21 with k1◦d21=o2) then ac∗K,d21 = L(p∗1,Shift(c1◦d21, acL2
)) else false

where p∗1 = 〈K k1←↩ D1
c1
↪→P1〉 and p∗2 = 〈K k2←↩ D2

c2
↪→P2〉 are defined by POs.

KD1P1p∗1 :

R1p1 : I1 L1

D2 P2 : p∗2

R2 : p2I2L2

k1c1

o1

k2 c2

o2
d21 d12

acL1 acL2

Note that, given direct transformations H1 ⇐ρ1,m1 G ⇒ρ2,m2 H2 with ACs,
there is already a weak critical pair as above with a monomorphism m : K → G
and m |= acK . Parallel dependency of the given pair implies in addition m |= ac∗K
(see Lemma 4). For this reason acK and ac∗K are called extension and conflict-
inducing AC, respectively.

14

Example 4 (weak critical pair). Consider the parallel dependent pair of
direct transformations H1 ⇐ρ1,m1

G ⇒ρ2,m2
H2 with ACs in Fig.3. Note that

Fig. 3. Parallel dependent pair of direct transformations with ACs of Elevator

these transformations are plain parallel independent. In particular, they are par-
allel dependent because rule move down can not be applied to H2 since rule
stop request (see Fig. 2) adds a stop request to the elevator floor, which is for-
bidden by the AC of rule move down. We construct the weak critical pair with
ACs P1 ⇐ρ1,o1 K ⇒ρ2,o2 P2 for the rules ρ1 =move down and ρ2 =stop request
by zooming in to the overlapping of the corresponding LHSs of these rules lead-
ing to K, being identical to the LHS of move down. It is depicted on the left
in Fig. 5 at the end of Section 4. Note that this weak critical pair consists of a
pair of AC-disregarding transformations. In particular, acL of rule move down
is not fulfilled in K, because e.g. the PAC ∃pos3 is not satisfied by o1 = idL.
The extension condition acK of this weak critical pair is shown in Fig. 4. It is
equal to the conjunction of the AC of rule move down and @neg2, stemming
from the NAC of rule stop request by shifting over morphism o2 (see Lemma 1).
The conflict-inducing AC ac∗K is a bit more tedious to compute, but it turns out
to be equivalent to true for each monomorphic extension morphism, because it
holds a PAC of the form ∃idK .

Fig. 4. acK for critical pair of Elevator

Lemma 3 (completeness of weak critical pairs with ACs). For each pair
of parallel dependent direct transformations H1 ⇐ρ1,m1

G⇒ρ2,m2
H2 with ACs,

15

there is a weak critical pair P1 ⇐ρ1,o1 K ⇒ρ2,o2 P2 with induced acK and ac∗K
and an extension diagram with m ∈M and m |= acK ∧ ac∗K .

KP1 P2

GH1 H2

m

ρ1, o1 ρ2, o2

ρ1,m1 ρ2,m2

Proof. First, we show that there is an extension diagram with m ∈ M and
m |= acK : Let H1 ⇐ρ1,m1

G ⇒ρ2,m2
H2 be a pair of parallel dependent direct

transformations and H1 ⇐p1,m1
G ⇒p2,m2

H2 be the underlying pair without
ACs. From the E-M pair factorization for m1 and m2 there exists an object K
and morphisms m ∈ M, o1 : L1 → K, o2 : L2 → K with (o1, o2) ∈ E such that
m1 = m ◦ o1 and m2 = m ◦ o2.

K

L1 L2

G

o1 o2

m

m1 = m2=

acL1
acL2

acK

By the Restriction Theorem without ACs [2], there is a pair of direct transfor-
mations P1 ⇐p1,o1 K ⇒p2,o2 P2 leading to the following extension diagram:

KP1 P2

GH1 H2

m

p1, o1 p2, o2

ρ1,m1 ρ2,m2

By assumption, m1 |= acL1
and m2 |= acL2

. By the Shift-Lemma 1, we have

m1 = m ◦ o1 |= acL1
⇔ m |= Shift(o1, acL1

)
m2 = m ◦ o2 |= acL2

⇔ m |= Shift(o2, acL2
)

Consequently, m |= Shift(o1, acL1
) ∧ Shift(o2, acL2

) = acK . It remains to show
that m |= ac∗K . According to parallel dependence of H1 ⇐ρ1,m1

G ⇒ρ2,m2
H2,

we have four cases.

1. @ d′12 : k′2 ◦ d′12 = m1.
2. ∃ d′12 : k′2 ◦ d′12 = m1,but c′2 ◦ d′12 6|= acL1

.
3.+4. Symmetric cases for d′21.

16

By definition of ac∗K , we have m |= ac∗K ⇔ m 6|= ac∗K,d12 or m 6|= ac∗K,d21 .

KD1P1

R1 I1 L1

D2 P2

R2I2L2

H1 D′1 G D′2 H2

o1

m1 k2 c2

o2
d12

m d2d′12 p2

k′2 c′2

Case 1. @ d′12 : k′2 ◦ d′12 = m1. Then @d12 : k2 ◦ d12 = o1. By definition, ac∗K,d12 =
false, i.e. m 6|= ac∗K,d12 . Thus, m |= ac∗K .
Case 2. ∃ d′12 : k′2 ◦ d′12 = m1, but c′2 ◦ d′12 6|= acL1

.
Case 2.1. @ d12 : k2 ◦ d12 = o1. Then m |= ac∗K as in Case 1.
Case 2.2. ∃ d12 : k2◦d12 = o1. By definition, ac∗K,d12 = L(p∗2,Shift(c2◦d12, acL1

))
and d2 ◦ d12 = d′12 because k′2 ◦ d2 ◦ d12 = m ◦ k2 ◦ d12 = m ◦ o1 = k′2◦d′12 and
k′2 is in M. By the Shift-Lemmas 1 and 2, c′2 ◦ d′12 = p2 ◦ c2 ◦ d12 |= acL1 ⇔
p2 |= Shift(c2 ◦ d12, acL1

)⇔ m |= L(p∗2,Shift(c2 ◦ d12, acL1
)) = ac∗K,d12 . By Case

2, c′2 ◦ d′12 6|= acL1
and therefore, m 6|= ac∗K,d12 . Thus, m |= ac∗K .

Case 3 and 4 are symmetric using m 6|= ac∗K,d21 . Thus, m |= ac∗K . 2

Lemma 4 (characterization of parallel dependency with ACs). Given
a general pair H1 ⇐ρ1,m1 K ⇒ρ2,m2 H2 with weak critical pair P1 ⇐ρ1,o1

K ⇒ρ2,o2 P2, acK , ac∗K , and extension diagram with m ∈ M and m |= acK ,
then we have:

H1 ⇐ρ1,m1
G⇒ρ2,m2

H2 is parallel dependent ⇐⇒ m |= ac∗K .

Proof. “⇒”. By completeness of weak critical pairs.
“⇐”. If the general pair is plain parallel dependent, then it is also parallel depen-
dent and we are done. Otherwise, the general pair is plain parallel independent
and we have both properties 1. and 2. below:

(1) ∃ d′12 : k′2 ◦ d′12 = m1.

(2) ∃ d′21 : k′1 ◦ d′21 = m2.

17

From property (1) and the PB-property of D2, we obtain a unique d12 : L1 → D2

with k2 ◦ d12 = o1 and d2 ◦ d12 = d′12 using k′2 ◦ d′12 = m1 = m ◦ o1.

K

L1

D2

G D′2 H2

o1

d12

m1

d′12

m d2

k2

k′2 c′2

(PB)

In part 2 of the proof of the completeness theorem, we have shown for this case
with d′12 = d2 ◦ d12,

(3) c′2 ◦ d′12 |= acL1
⇔ m |= ac∗K,d12 .

Similarly, property (2) implies

(4) c′1 ◦ d′21 |= acL2 ⇔ m |= ac∗K,d21 .

By assumption we have m |= ac∗K and, by definition of ac∗K ,

(5) m |= ac∗K ⇔ m 6|= ac∗K,d12 or m 6|= ac∗K,d21 .

In case m 6|= ac∗K,d12 , we have by (3) c′2 ◦ d′12 6|= acL1
, which implies parallel

dependence. Similar, in case m 6|= ac∗K,d21 , we have by (4) c′1 ◦ d′21 6|= acL2
, which

also implies parallel dependence. 2

A critical pair is a weak critical pair with an additional condition, ensuring that
there is at least one way to extend the critical pair such that in a larger context
G conflicting transformations arise.

Definition 10 (critical pair). Given rules ρ1 = 〈p1, acL1
〉 and ρ2 = 〈p2, acL2

〉,
a critical pair for 〈ρ1, ρ2〉 is a weak critical pair P1 ⇐ρ1,o1 K ⇒ρ2,o2 P2 with
induced ACs acK and acK∗ on K, provided that there exists a monomorphism
m : K → G such that m |= acK ∧ acK∗ and the morphism mi = m◦oi has a
pushout complement with respect to pi (i = 1, 2), i.e. the matches mi satisfy the
gluing condition.

Remark 3. As proven in [9], nested application conditions are expressively
equivalent to first order graph formulas and therefore, the satisfiability problem
for nested application conditions is undecidable. However in [19,20], techniques
are presented to tackle the satisfiability problem in praxis, which is necessary to
be able to construct the set of critical pairs for rules with ACs effectively.

18

Note that this new critical pair notion is different from the one for rules with
NACs [8], since here the critical pair is AC-disregarding. Moreover, note that
there exists an extension to a parallel dependent pair, but for other extensions
we may obtain parallel independent pairs. In particular, this is the case if the
conflict-inducing application condition acK∗ of the critical pair is not fulfilled by
the extension morphism m into the larger context G.

Lemma 5 (characterization of critical pairs with ACs). Given a weak crit-
ical pair P1 ⇐ρ1,o1 K ⇒ρ2,o2 P2 for (ρ1, ρ2), we have that the weak critical pair is
a critical pair ⇐⇒ there is a parallel dependent pair H1 ⇐ρ1,m1 G⇒ρ2,m2 H2

and monomorphism m : K → G with extension diagram

KP1 P2

GH1 H2

m

ρ1, o1 ρ2, o2

ρ1,m1 ρ2,m2

Proof. “⇒”: Given a weak critical pair P1 ⇐ρ1,o1 K ⇒ρ2,o2 P2 with acK , ac∗K
and m : K → G a monomorphism with m |= acK ∧ ac∗K and m has a pushout
complement with respect to the rules p∗i (see Remark 4) for i = 1, 2, we have
the pushouts (1)–(6) by assumption and can construct pushouts (7) and (8).

KD1P1

R1 I1 L1

D2 P2

R2I2L2

H1 D′1 G D′2 H2

o1 o2

m

(1) (2) (3) (4)

(5) (6)(7) (8)

By definition of acK , m |= acK ⇔ m |= Shift(o1, acL1
) ∧ m |= Shift(o2, acL2

)
and, by the Shift-Lemma 1, mi = m◦oi |= acLi ⇔ m |= Shift(oi, acLi) (i = 1, 2).
Hence m |= acK implies mi |= acLi (i = 1, 2) such that H1 ⇐ρ1,m1 G⇒ρ2,m2 H2

defined by pushouts (1)–(8) is AC-consistent. By Lemma 4, this sequence is
parallel dependent using m |= ac∗K .
“⇐”: Given condition 2, the weak critical pair is a critical pair, because we have
m : K → G a monomorphism such that mi has a pushout complement with
respect to pi by pushouts (2)+(5) and (3)+(6). Moreover m |= acK , because
mi |= acLi (i = 1, 2) by assumption on AC-consistency of H1 ⇐ρ1,m1 G⇒ρ2,m2

H2 and the equivalence shown above. Finally, m |= ac∗K by Lemma 4 using
parallel dependence of the given pair. 2

Remark 4. The condition “mi has a pushout complement with respect to pi”
in the critical pair definition (Def. 10) is equivalent to the condition “m has a
pushout complement with respect to the rule p∗i =

〈
K ←↩ Di ↪→ Pi

〉
” where

p∗i is the derived rule of K ⇒pi,oi Pi (i = 1, 2).

19

Remark 5. Note that in Lemma 5 the pair P1 ⇐ρ1,o1 K ⇒ρ2,o2 P2 is AC-
disregarding, while H1 ⇐ρ1,m1

G ⇒ρ2,m2
H2 satisfies acL1

of ρ1 and acL2
of

ρ2.

Theorem 3 (completeness of critical pairs with ACs). For each pair of
parallel dependent direct transformations H1 ⇐ρ1,m1

G ⇒ρ2,m2
H2 with ACs,

there is a critical pair P1 ⇐ρ1,o1 K ⇒ρ2,o2 P2 with induced acK and ac∗K and an
“extension diagram” with a monomorphism m and m |= acK ∧ ac∗K .

KP1 P2

GH1 H2

m

ρ1, o1 ρ2, o2

ρ1,m1 ρ2,m2

Proof. The proof is based on the completeness of critical pairs without ACs in
[2]. In a first step, we obtain the completeness of weak critical pairs with ACs
by showing m |= acK for acK = Shift(o1, acL1

) ∧ Shift(o2, acL2
) by shift of ACs

over morphisms (Lemma 1) and m |= ac∗K for ac∗K = ¬(ac∗K,d12 ∧ ac∗K,d21) by
shift of ACs over morphisms and rules (Lemma 1 and 2). This proof is shown in
Lemma 3. In a second step, we show that a weak critical pair is a critical pair
iff it can be extended to a parallel dependent pair (Lemma 5), where the proof
of Lemma 5 is based on the fact that m |= ac∗K iff H1 ⇐ρ1,m1

G ⇒ρ2,m2
H2 is

parallel dependent (Lemma 4). 2

Example 5 (critical pair). Because of Theorem 3, the weak critical pair as
described in Example 4 is, in particular, a critical pair. Therefore, the extension
morphism m : K → G as shown in Fig. 5 fulfills the conjunction of the extension
condition acK and the conflict-inducing condition ac∗K .

Example 6 (critical pair with non-trivial ac∗K). As noticed already in
Example 4, the conflict-inducing condition ac∗K is equivalent to true for each
monomorphic extension morphism of the critical pair, leading to conflicting
transformations for each extension of the critical pair. Now we illustrate by
a toy example that, in general, ac∗K may also be of a non-trivial kind. Consider
the rule r1 : • ← • → ••, producing a node, and the rule r2 : • ← • → ••
with NAC @neg : • → • • •, producing a node only if there do not exist already
two other nodes. In this case, acK = @neg : • → • • • and ac∗K = ∃pos1 : • →
• • ∨∃pos2 : • → • • • with K = •. The extension condition acK expresses that
each extension morphism m : K → G into a graph G leads to a pair of valid di-
rect transformations via r1 and r2, whenever G does not contain two additional
nodes to the one in K. The conflict-inducing condition ac∗K expresses that each
extension morphism m : K → G into a graph G leads to a pair of conflicting
transformations via r1 and r2, whenever G contains one additional node to the
one in K. The graph G = ••, holding one additional node to K, demonstrates
that the weak critical pair P1 ⇐r1 K ⇒r2 P2 is indeed a critical pair.

20

6 Local confluence

In this section, we present the main result of this paper, the Local Confluence
Theorem for rules with ACs based on our new critical pair notion as introduced
in the previous section. In order to show local confluence, we have, roughly
speaking, to require that all critical pairs are confluent. Unfortunately, confluence
of critical pairs is not sufficient to show local confluence. As shown in [4,5] and
discussed in [2], strict confluence of critical pairs is needed. To handle rules with
application conditions, AC-compatibility is needed in addition.

Definition 11 (strict AC-confluence). A critical pair P1 ⇐ρ1,o1 K ⇒ρ2,o2 P2

for 〈ρ1, ρ2〉 with induced acK and ac∗K on K is called strictly AC-confluent, if

1. The pair is plain strictly confluent, i.e. strictly confluent in the sense of [2]
with AC-disregarding transformations t1 and t2.

K

P1

P2

K ′

ρ1, o1

ρ2, o2

∗
t1

∗
t2

(1)

2. The extended AC-disregarding transformations ti = K ⇒pi,oi Pi ⇒∗ti K
′

(i = 1, 2) with derived ACs ac(ti) on K are AC-compatible, i.e. acK ∧ac∗K ⇒
ac(t1) ∧ ac(t2).

Remark 6. It is important to note that the strict confluence diagram (1) in-
cludes AC-disregarding transformations t1 and t2. The ACs occurring in t1 and
t2 are used in the construction of ac(t1) ∧ ac(t2) and in the Local Confluence

Theorem to show that the extended transformations t
′
1 and t

′
2 of t1 and t2 along

m : K → G satisfy ACs.

Now we define adhesive rewriting systems with ACs and prove a Local Conflu-
ence Theorem, also called Critical Pair Lemma, for this case, which generalizes
the Local Confluence Theorem without ACs [2]. It is based on the new notion
of critical pairs and on strict AC-confluence as defined above.

Definition 12 (adhesive rewriting system with ACs). An adhesive rewrit-
ing system with nested application conditions consists of a set of rules with ACs,
where rewriting is defined by DPO transformations as given in Def. 5.

Theorem 4 (Local Confluence with ACs). An adhesive rewriting system
with nested application conditions is locally confluent, if all critical pairs are
strictly AC-confluent.

21

Proof. For parallel independent pairs with ACs, we have local confluence using
the Local Church-Rosser Theorem in [17]. By the Local Confluence Theorem
without ACs [2] and the Completeness Theorem 3 of critical pairs, we have for
each parallel dependent pair H1 ⇐ρ1,m1 G ⇒ρ2,m2 H2 with ACs a critical pair
P1 ⇐p1,o1 K ⇒p2,o2 P2 and embedding diagrams (1) and (2) with a monomor-
phism m |= (acK ∧ac∗K). By plain strict confluence, we have diagram (3) and, by
Local Confluence without ACs, we have corresponding extensions t′1 of t1 and t′2
of t2 in diagrams (4) and (5).

K

P1

P2

K ′G

H1

H2

G′
m

q1

q2

q

ρ1, o1

ρ2, o2

∗
t1

∗
t2

ρ1,m1

ρ2,m2

∗
t′1

∗
t′2

(1)

(2)

(3)

(4)

(5)

It remains to show that t
′
i : G ⇒ρi,mi Hi ⇒∗t′i G

′ for i = 1, 2 satisfies the cor-

responding ACs. For this purpose, we have to extend the Embedding Theorem
without ACs [2] to the case with ACs. This is shown as Theorem 1 of the ap-
pendix based on Lemma 1 and 2. By this Embedding Theorem with ACs an
(AC-disregarding) transformation t : G0 ⇒∗ Gn can be extended by a morphism
k0 : G0 → G′0 to a transformation t′ : G′0 ⇒∗ G′n regarding the ACs if k0 is con-
sistent with respect to t. Consistency means boundary consistency (as in the case
without ACs) and AC-consistency, i.e. k0 |= ac(t), where ac(t) is the derived ap-
plication condition of t (see Def. 6). In our context, AC-consistency means that
we have to show m |= ac(t1) and m |= ac(t2), where ti : K ⇒ρi,oi Pi ⇒∗ti K

′,

(i = 1, 2). Note that AC-satisfaction of t1 and t2 is not required, but that of t
′
1

and t
′
2 is a consequence. Now, by AC-confluence, especially, AC-compatibility,

we have

acK ∧ ac∗K ⇒ ac(t1) ∧ ac(t2).

Since we have already m |= (acK ∧ ac∗K), this implies m |= ac(t1) ∧ ac(t2) and
we are done. 2

Remark 7. Typed graph transformation systems are a valid instantiation of ad-
hesive rewriting systems [11,2]. Therefore, the above Local Confluence Theorem
for rules with ACs, in particular, holds for typed graph rules with ACs.

22

Remark 8. For showing that a strictly confluent critical pair is also AC-
confluent, AC-compatibility of the strict solution needs to be shown. For this
purpose, the following implication problem acK ∧ ac∗K ⇒ ac(t1) ∧ ac(t2) has to
be solved (see Def. 11 of strict AC-confluence). As proven in [9], the implication
problem for nested application conditions is undecidable in general. However in
[21], techniques are shown to tackle the implication problem in praxis. As noted
in the introduction already, showing confluence for GTS without ACs is unde-
cidable in general [4]. It is noted as well that at least the sufficient condition
for local confluence – showing that all critical pairs are strictly confluent – is
semi-decidable. ACs complicate this sufficient condition, since on the one hand,
in general, the set of critical pairs for rules with ACs can not be computed stati-
cally anymore (see Remark 3), and on the other hand, showing AC-compatibility
on top of strict confluence is, in general, undecidable. Concluding, the sufficient
condition of strict AC-confluence of all critical pairs is undecidable in general.
We have seen that the complexity of confluence analysis for transformation sys-
tems with ACs is strongly related with the complexity of solving ACs, which is
quite natural as a result. Therefore, the success of confluence analysis with ACs
depends on the success of solving the implication and satisfiability problem for
ACs [21,19,20], showing once again the importance of this topic.

Example 7 (Local Confluence with ACs). In order to apply Thm 4 note
that the critical pair in Example 4 and 5 is strictly AC-confluent, since rule pro-
cess stop down and then rule move down can be applied to P2 leading toK ′ = P1

(see Fig. 5, where H1 ⇐ρ1,m1 G ⇒ρ2,m2 H2 is shown explicitly in Fig. 3). This
is a strict solution, since neither some floor, nor the elevator is deleted by the
solution, the structure which is commonly preserved by the critical pair. More-
over, this solution is AC-compatible, because of the following argumentation. At
first, we can conclude that acK ⇒ ac(t2) (see acK in Fig. 4), because ac(t2) is, in
particular, equivalent to acK . Therefore, also acK ∧ ac∗K ⇒ ac(t1)∧ ac(t2), since
ac(t1) = Shift(o1, acL1), where acK = Shift(o1, acL1) ∧ Shift(o2, acL2). Conclude
that the pair H1 ⇐ρ1,m1

G⇒ρ2,m2
H2 is locally confluent as shown in the outer

diagram of Fig. 5 by Theorem 4. This means that the elevator in downward mode
in the four-storey building with a request on the lowest floor can first process the
generated stop request and then continue moving downward instead of moving
downward immediately.

7 Conclusion, Related and Future Work

In this paper we have presented a new method for checking local confluence
for graph transformation systems (and, in general, adhesive rewrite systems)
with nested application conditions. This kind of ACs provide a considerable
increase of expressive power with respect to the NACs that were used up to
now. An example describing the specification of an elevator system shows that
this increase of descriptive power is really necessary. The new method is not
just a generalization of the critical pair method introduced in [22,8]to prove

23

Fig. 5. strictly AC-confluent critical pair of Elevator

local confluence of GTS with NACs. In particular, in those papers the critical
pairs were defined using graph transformations that satisfy the given NACs. This
cannot be done when dealing with nested conditions, because they may include
positive conditions which may not be satisfied by the critical pair but only by
the embedding of these transformations into a larger context. As a consequence,
a new kind of critical pairs had to be defined. As main results we have shown a
Completeness and Local Confluence Theorem for the case with ACs.

The use of critical pairs to check confluence in GTS was introduced in [4]. On
the other hand, graph transformation with the important special kind of neg-
ative application conditions was introduced in [7], where it was shown how to
transform right application conditions into left application conditions and graph
constraints into application conditions. These results were generalized to arbi-
trary adhesive HLR categories [16] and a critical pair method to study the local
confluence of a GTS, and in general of an adhesive rewriting system, with this
kind of NACs was presented in [22,8].

Graph conditions with a similar expressive power as nested conditions were in-
troduced in [23], while nested conditions were introduced in [24]. A detailed
account of many results on nested conditions, including their expressive power
can be found in [9]. Finally, some results, in particular the Parallelism and Con-
currency Theorems about graph transformation with nested conditions, which
can be considered a previous step to the results presented in this paper, are
presented in [17].

24

Since critical pairs with NACs are implemented already in the AGG system, an
extension to the case with nested application conditions is planned. However,
before starting this kind of implementation, some aspects of our techniques need
some additional refinement. In particular, additional work is needed on suitable
implementations of satisfiability (resp. implication) solvers [21,19,20] for nested
application conditions.

References

1. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University
Press, Cambridge (1998)

2. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. EATCS Monographs of Theoretical Computer Science. Springer,
Berlin (2006)

3. Knuth, N.E., Bendix, P.B.: Simple word problems in universal algebra. In J. Leech,
editor, Computational Problems in Abstract Algebra (1970) 263–297

4. Plump, D.: Hypergraph rewriting: Critical pairs and undecidability of confluence.
In: Term Graph Rewriting: Theory and Practice. John Wiley, New York (1993)
201–213

5. Plump, D.: Confluence of graph transformation revisited. In: Processes, Terms and
Cycles: Steps on the Road to Infinity: Essays Dedicated to Jan Willem Klop on the
Occasion of His 60th Birthday. Volume 3838 of LNCS., Springer (2005) 280–308

6. Dershowitz, N., Plaisted, D.A.: Rewriting. In A. Robinson and A. Voronkov,
editors, Hanbook of Automated Reasoning, Volume I (2001) 535–610

7. Habel, A., Heckel, R., Taentzer, G.: Graph grammars with negative application
conditions. Fundamenta Informaticae 26 (1996) 287–313

8. Lambers, L., Ehrig, H., Prange, U., Orejas, F.: Embedding and confluence of graph
transformations with negative application conditions. In: Graph Transformations
(ICGT 2008). Volume 5214 of LNCS., Springer (2008) 162–177

9. Habel, A., Pennemann, K.H.: Correctness of high-level transformation systems
relative to nested conditions. Mathematical Structures in Computer Science 19
(2009) 245–296

10. Courcelle, B.: The expression of graph properties and graph transformations in
monadic second- order logic. In: Handbook of Graph Grammars and Computing
by Graph Transformation. Volume 1. World Scientific (1997) 313–400

11. Lack, S., Sobociński, P.: Adhesive categories. In: Foundations of Software Science
and Computation Structures (FOSSACS’04). Volume 2987 of LNCS., Springer
(2004) 273–288

12. Ehrig, H., Habel, A., Kreowski, H.J., Parisi-Presicce, F.: Parallelism and concur-
rency in high level replacement systems. Mathematical Structures in Computer
Science 1 (1991) 361–404

13. Baunetz Wissen: Aufzüge und Fahrtreppen: Einknopf-
Sammelsteuerung. http://www.baunetzwissen.de/standardartikel/Aufzuege-
und-Fahrtreppen Einknopf-Sammelsteuerung 149062.html in German.

14. Habel, A., Pennemann, K.H.: Nested constraints and application conditions for
high-level structures. In: Formal Methods in Software and System Modeling. Vol-
ume 3393 of LNCS., Springer (2005) 293–308

15. Koch, M., Mancini, L.V., Parisi-Presicce, F.: Graph-based specification of access
control policies. Journal of Computer and System Sciences 71 (2005) 1–33

25

16. Ehrig, H., Ehrig, K., Habel, A., Pennemann, K.H.: Theory of constraints and appli-
cation conditions: From graphs to high-level structures. Fundamenta Informaticae
74(1) (2006) 135–166

17. Ehrig, H., Habel, A., Lambers, L.: Parallelism and concurrency theorems for rules
with nested application conditions. In: Manipulation of Graphs, Algebras and
Pictures. Essays Dedicated to Hans-Jörg Kreowski on the Occasion of His 60th
Birthday. (2009)

18. Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R., Löwe, M.: Algebraic
approaches to graph transformation. Part I: Basic concepts and double pushout
approach. In: Handbook of Graph Grammars and Computing by Graph Transfor-
mation. Volume 1. World Scientific (1997) 163–245

19. Pennemann, K.H.: An algorithm for approximating the satisfiability problem of
high-level conditions. In: Proc. Int. Workshop on Graph Transformation for Veri-
fication and Concurrency (GT-VC’07). Volume 213 of ENTCS. (2008) 75–94 Long
version: http://formale-sprachen.informatik.uni-oldenburg.de/pub/index.html.

20. Orejas, F.: Attributed Graph Constraints. In: Graph Transformations (ICGT’08).
Volume 5214 of Lecture Notes in Computer Science., Springer-Verlag (2008) 274–
288

21. Pennemann, K.H.: Resolution-like theorem proving for high-level conditions. In:
Graph Transformations (ICGT 2008). Volume 5214 of LNCS., Springer (2008)
289–304

22. Lambers, L., Ehrig, H., Orejas, F.: Conflict detection for graph transformation
with negative application conditions. In: Graph Transformations (ICGT 2006).
Volume 4178 of LNCS., Springer (2006) 61–76

23. Rensink, A.: Representing first-order logic by graphs. In: Graph Transformations
(ICGT’04). Volume 3256 of LNCS., Springer (2004) 319–335

24. Habel, A., Pennemann, K.H.: Satisfiability of high-level conditions. In: Graph
Transformations (ICGT 2006). Volume 4178 of LNCS., Springer (2006) 430–444

