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Abstract

The intention of this paper is to extend the generic component framework to partial
composition. Basic Ideas of partial composition were introduced in [EM90] but we additionally
want to allow component verification based on export-import implications. Import-Export
implications relate sentences of the import stating what the component requires to sentences
of the export stating what the component guarantees. The main result of this paper is the
compatibility of import-export implications are compatible with the partial composition.

The second part illustrates how this abstract concept can be instantiated to Petri net
systems.

1 Introduction

Components are self-contained entities that have a well-defined and mathematically precise syntax
and semantics. In [EOB+02] a generic component framework for system modeling was introduced
for a large class of semi-formal and formal modeling techniques. According to the transformation-
based semantics [EOB+02] the notion of import-export implications characterize the Petri nets
component with respect to its environment. In this report the concept of component based mod-
eling and verification is extended to partial composition of components. A component is given
by three specifications, the body specification, the import and the export interface. Formulating
properties for components requires an adequate logic that allows expressing the desired properties.
A component is then equipped with two temporal logic formulas that denote the import-export
implication. The import assumptions describe in an abstract way the properties the underlying
component needs to have to ensure the desired behavior. Then the export guarantees some prop-
erty denoted by the export statement. Partial composition allows concluding the import-export
implication where the providing component’s import assumption implies only a part of the requir-
ing component’s export statement. In Fig. 1 to components and the result of their composition is
illustrated, where the composition is achieved by gluing together the component bodies (i.e. the
”‘clouds”’) along the interfaces.
According generic component framework [EOB+02] a component consists of a body, an import,
and an export interface, and connections between import and body as well as export and body.
We only require having suitable notions of embeddings and transformations (e.g. refinements)
between specifications. This component technique is generic as it can be instantiated with dif-
ferent specification formalisms. Moreover, the connections can be considered generic as they also
allow a great variety of instantiations. The basic idea for the generic component concept stems
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Figure 1: Illustration of composition

from data type specification, precisely the algebraic module specifications [EM90]. It was used
for various related algebraic specification techniques as e.g. in [CBEO99, JO99]. The transfer
to process description techniques was started in [Sim99] where modules for graph transformation
systems and local action systems were investigated. In [Pad02] Petri net modules were intro-
duced independently of the generic framework, but were shown to be compatible in [PE05]. In
[EOB+02] algebraic high-level nets and in [Pad05] deterministic automata were demonstrated to
be instantiations. In [PEO07] we have extended the component concept with import-export im-
plications of components that are formulas given in that temporal logic. The export statement
given as part of the export interface is guaranteed independently of the component’s environ-
ment provided the import requirement is met. This approach to component verification helps to
guarantee specific properties that are formalized in terms of a temporal logic. So, we have an
assume-guarantee approach to component-based verification that is independent of the underlying
specification technique. This assume-guarantee approach is in model checking one approach to
verification of components. There are various approaches, e.g. [IWY00, dAH01, GPB02] sharing
the basic assumption that the required property can be achieved only in specific environments. In
[GPB02] a framework for assume-guarantee paradigm is introduced that uses labeled transition
systems to model the behavior of communicating components in a concurrent system. In [dAH01]
the interfaces are modeled using input/output automata. The parallel composition of the interfaces
is given and criteria for the compatibility are presented, but this approach merely concerns the
interfaces. In [IWY00] certain properties, as deadlock freedom are checked based on assumptions
that the component makes about the expected interaction behavior of other components.
In [BM07] concurrent automata are introduced that describe the concurrent behavior of input and
output ports in terms of their operations. Considering the automata as the components body and
the input ans output ports as the import and export interfaces, respectively, maybe allows fitting
this approach into the general framework presented in this paper.
The area of controls for discrete event based systems needs an approach of modelling and struc-
turing systems as well as the verification of the systems properties. In [PKA08] we propose to
model and verify system properties of discrete event based systems using Petri nets and structure
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them using multiple interfaces and partial composition in the component-based. We investigate
the approach’s feasibility for controlling a technical system and model the ’Compression Station’
of a model plant for a packing process using Petri net components. The Petri net based sequence
controller is modelled using the tool Netlab [Net07] which is a modelling, analysis and simulation
environment that also supports the design and synthesis of discrete event - or hybrid systems
under Matlab/Simulink. Netlab is a graphic PT net editor, loading and saving in PNML [OKA06].

This report is organized as follows: Next we review the generic component concept in detail and
give the review of the hierarchical composition. Then in Section 3 we extend it by splitting the
interfaces: so we have the possibility to express multiple interfaces. Next we transfer the verifi-
cation results from [PEO07] to split imports. In Section 4 we instantiate the generic approach to
Petri nets, and so have the basic modeling technique for the application in [PKA08], that is for
modeling discrete event based systems and their verification. This application of the generic com-
ponent based verification approach is most important for structuring the Petri nets hierarchically
and to verifying their properties component-wise.

2 Component Verification for Generic Components

As the approaches in [EOB+02, EPB+04, EBK+05] this work employs generic specifications,
embeddings and transformations to form components. Since not all classes of embeddings and
transformations are suitable for this purpose we have to state some general requirements first. In
the concrete specification technique the validity of these requirements needs to be proved when
instantiating the generic concept.

2.1 General Assumptions of the Transformation based Approach

Our generic technique requires a defined class of specifications together with transformations
and embeddings. The transformations define a class of refinements for the specifications, so
they are used for the connection between export interface and the component body. Since there
exist so many notions of refinement, even for a single specification technique, this assumption
should not be further formalized at the abstract level. Nevertheless, it has to be spelled out
for the instantiation of the concept.We now present the work concerning the generic concept of
components in a categorical frame. In this framework a component consists of an import, an
export and the body. The import states the prerequisites the component assumes. The body
represents the internal functionality. The export gives an abstraction of the body that can be
used by the environment. In [PE05] we present a categorical formalization of the concepts of the
generic framework using specific kinds of pushout properties.

Definition 2.1 (Generic framework T for components)
A generic framework for components T = (Cat, I, E) consists of an arbi-
trary category and two classes of morphisms I, called import morphisms and
E , called export morphisms such that the following extension conditions hold:
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1. Existence of Extension Diagrams:
Extension diagrams are commutative squares as (1) that are
pushouts.

2. E-I-Pushout Condition:
Given the morphisms A

e−→ B with e ∈ E and A
i−→ C with

i ∈ I, then there exists the pushout D in Cat with morphisms

B
i′−→ D and C

e′

−→ D as depicted adjacently.

3. E and I are stable under pushouts:
Given a E-I-pushout as (1) above, then we have i′ ∈ I and
e′ ∈ E as well.

A

i

��

e //

(1)

B

i′

��
C

e′
// D

3

Note that this definitions differs slightly from [PE05], since here we made explicit the existence of
extension diagrams as specific pushouts.

Definition 2.2 (Import-export implication for components)
Given a component Comp = (IMP,EXP,BOD, imp, exp) then an import-export implication
ρ⇒⇒⇒ γ consists of ρ ∈ Sen(IMP ) and γ ∈ Sen(EXP ). 3

The import-export implication provides information on the component’s body at its interfaces.
This information concerns the assumptions and guarantees of a component in an arbitrary environ-
ment. So, satisfaction of the import-export implications is formulated with respect to an arbitrary
environment, formalized by an arbitrary transformation of the import interface. Then we re-
quire that if this environment satisfies the translated import assumption, then the corresponding
extension will satisfy the translated export statement.

Definition 2.3 (Satisfaction of an import-export implication)
Given a component Comp = (IMP,EXP,BOD, imp, exp) then
the import-export implication ρ⇒⇒⇒ γ with ρ ∈ Sen(IMP ) and
γ ∈ Sen(EXP ) is satisfied if we have
SPEC |= Ttrafo(ρ)⇒⇒⇒ SPEC ′ |= Ttrafo′◦exp(γ)
for all extension diagrams:

EXP

exp

��
IMP

imp //

trafo

��

BOD

trafo′

��
SPEC

imp′
// SPEC ′

3

A component with guarantees is a component that ensures the export statement for any possible
environment provided the import assumptions are met.

Definition 2.4 (Component with guarantees)
A component with guarantees Comp = (IMP,EXP,BOD, imp, exp, ρ, γ) consists of a component
(IMP,EXP,BOD, imp, exp) together with the import-export implication ρ⇒⇒⇒ γ that has to be
satisfied. 3

Then hierarchical composition allows the propagation of the export statements, provided the
export statement of the imported component implies the import requirement of the importing
component. This is defined by the connecting condition.

Definition 2.5 (Connecting condition)
Given components Compi = (IMPi, EXPi, BODi, impi, expi, γi, ρi) for i ∈ {1, 2} and a connec-
tion transformation con : IMP1 =⇒ EXP2 then the connecting condition is satisfied if we have
for all transformations trafo : EXP2 =⇒ SPEC:

SPEC |= Ttrafo(γ2)⇒⇒⇒ SPEC |= Ttrafo◦con(ρ1)

3
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Definition 2.6 (Hierarchical Composition)
Given components Compi = (IMPi, EXPi, BODi, impi, expi, γi, ρi) for i ∈ {1, 2} and a con-
nection transformation con : IMP1 =⇒ EXP2 then the hierarchical composition Comp3 of
Comp1 and Comp2 via con : IMP1 =⇒ EXP2 is defined by Comp3 := Comp1 ◦con Comp2 =
(IMP3, EXP3, BOD3, imp3, exp3, γ1, ρ2) with imp3 := imp′1 ◦ imp2 and exp3 := h ◦ exp1 as de-
picted below where (1) is an extension diagram :

EXP3 = EXP1

exp1

��

exp3

��

IMP1
imp1 //

con

��
(1)

BOD1

h

��

EXP2

exp2

��
IMP3 = IMP2

imp2 //

imp3

44BOD2

imp′
1 // BOD3

3

In order to have a compositional approach to component verification we now need to ensure that
the hierarchical composition preserves the components guarantees in a suitable way.

Fact 2.7 (Hierarchical composition propagates guarantees)
Given components Comp1 and Comp2 with guarantees and a connection con : IMP1 =⇒ EXP2

satisfying the connecting condition, then the result of the hierarchical composition Comp3 =
Comp1 ◦con Comp2 is again a component with guarantees. 3

So, we have to show that the hierarchical composition Comp3 = Comp1 ◦con Comp2 satisfies the
import-export implication ρ2⇒⇒⇒ γ1.
Proof:
We need to show that SPEC |= Ttrafo(ρ2)⇒⇒⇒ SPEC ′ |= Ttrafo′◦exp3(γ1) for any extension (1) in
the diagram below:

EXP3 = EXP1

exp1

��
IMP1

imp1 //

con

��

BOD1

h

��

EXP2

exp2

��
IMP3 = IMP2

imp2 //

trafo

��
(1)

BOD2

imp′
1 // BOD3

trafo′

��
SPEC

i
// SPEC ′
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Due to pushout decomposition we have the three extension diagrams (2), (3) and (4) with i =
i1 ◦ i2:

EXP3 = EXP1

exp1

��
IMP1

imp1 //

con

��
(2)

BOD1

h

��

EXP2

exp2

��
IMP3 = IMP2

imp2 //

trafo

��
(3)

BOD2

imp′
1 //

trafo′′

��
(4)

BOD3

trafo′

��
SPEC

i2 //

i

44SPEC ′′ i1 // SPEC ′

So, we have:
SPEC |= Ttrafo(ρ2)⇒⇒⇒ SPEC ′′ |= Ttrafo′′◦exp2(γ2)

as Comp2 has guarantees,
SPEC ′′ |= Ttrafo′′◦exp2(γ2)⇒⇒⇒ SPEC ′′ |= Ttrafo′′◦exp2◦con(ρ1)

due to the connecting condition, and
SPEC ′′ |= Ttrafo′′◦exp2◦con(ρ1)⇒⇒⇒ SPEC ′ |= Ttrafo′◦h◦exp1(γ1)

as Comp1 has guarantees and due to composition of pushouts

So, we directly conclude:

SPEC |= Ttrafo(ρ2)⇒⇒⇒ SPEC ′ |= Ttrafo′◦h′◦exp1(γ1)

X

3 Components and Partial Composition

Accordingly, we have to require for a component that the import and export connection are of the
right class of morphisms.

Definition 3.1 (Component)
A component specification Comp = (IMP,EXP,BOD, imp, exp) consists of a

body specification BOD, an import specification IMP with an em-
bedding IMP

imp−→ BOD and an export specification EXP with a
transformation EXP

exp
=⇒ BOD.

EXP

exp

��
IMP

imp // BOD

3

Here, we give examples of components and their partial composition in terms of Petri net compo-
nents as defined in Section 4. Figure 2 gives the component COMP1 consisting of export EXP1,
import IMP1 and body BOD1.
Then partial composition allows the splitting of the import into two (or more) import parts,
provided the imported component’s import can be glued adequately to those import parts that
are not used. for the gluing of the import interface we need a specific morphisms, so called gluing
morphisms. Fig. 3 illustrates the partial connection based on a pushout in the category of PT net
systems.
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Figure 2: Component Comp1

Figure 3: Partial Connection of two Components

Definition 3.2 (Generic framework T for components with split imports)
A generic framework TP = (Cat, I, E ,G) for components with split imports is a generic frame
work (Cat, I, E) and additionally consists of a class of gluing morphisms G ⊆ I – denoted by

//___ such that the following conditions hold:

1. For g ∈ G and f ∈ I we have (f ◦ g) ∈ G as well, and

2. the induced import condition holds: imp3 ∈ I in the diagram of Def. 3.5.

3

Definition 3.3 (Split Import)
Given the component Comp = (IMP,EXP,BOD, imp, exp) then a split import is given by the
pushout IMP = IMP1 +I IMP2, where I //___ IMP1.1 and I //___ IMP1.2 are in G. We call
this pushout a G-pushout. 3

Definition 3.4 (Partial Composition Connection)
Given components Compi = (IMPi, EXPi, BODi, impi, expi) for i ∈ {1, 2} with a split import
given by the G-pushout IMP1 = IMP1.1 +I1 IMP1.2,
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then a connection is given by a transformation con : IMP1.1 =⇒ EXP2 and G-morphism hI :

I1 → IMP2, so that I1
//___ IMP1.1

con◦exp2=⇒ BOD2 = I1
hI //___ IMP2 → BOD2 3

Fact 3.5 (Partial Composition)
Given components Compi = (IMPi, EXPi, BODi, impi, expi) for i ∈ {1, 2} with the split import
given by the G-pushout IMP1 = IMP1.1 +I1 IMP1.2 and a connection

– given by a transformation con : IMP1.1 =⇒ EXP2 and hI ∈ G : I1 → IMP2 –
then the partial composition Comp3 of Comp1 and Comp2 via (con, hI) given by Comp3 :=
Comp1 ◦con,hI

Comp2 = (IMP3, EXP3, BOD3, imp3, exp3) is a well-defined component as de-
picted below with a split import given by IMP3 = IMP1.2 +I1 IMP2 :

EXP3 = EXP1

exp1

��

exp3

�	

IMP1
imp1 // BOD1

h

��

IMP1.2

99sssssssss

��

I1
//____oo_ _ _ _

hI

�
�
�

���
�
�

PO

PO

IMP1.1

eeKKKKKKKKK

con

��
EXP2

exp2

��
IMP3

imp3

66IMP2
imp2//oo BOD2

imp′
1 // BOD3

imp3 ∈ I due to condition 2 of Definition 3.2. 3

Proof:
Due to the fact that Comp3 = (IMP3, EXP3, BOD3, imp3, exp3) is a component with exp3 ∈ E
and imp3 ∈ I. X

Remark: Disjointly split imports
The disjointly split import is merely a special case of the split import, provided the underlying
category has initial objects an the induced morphisms are in G. 4

Figure 4 illustrates the construction of the new import interface IMP3 of the component
COMP3 = COMP1 ◦ COMP2 and the component itself in Figure 3.

3.1 Import-Export Implications

Components are self-contained units with a well-defined syntax and semantics. In [EOB+02] se-
mantics of components are defined by considering each possible environment expressed by each
possible transformation of the component’s import. According to the transformation-based se-
mantics the notion of import-export implications characterize the component with respect to its
environment. Based on an adequate logic calculus that allows the formulation of formulas and
their translation along transformations, import-export implications can be defined for components.
To define a logic over a specification we need to relate the vocabulary of the logic to the specification
SPEC, so we need some signature Σ for SPEC. Then SPEC ∈ Σ the set of all specifications
with signature Σ.
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Figure 4: Construction of IMP3

Figure 5: Component COMP3

Definition 3.6 (Underlying logic)
The underlying logic (Sen(Σ), |=) over the signature Σ consists of the set of formulas over that
signature Sen(Σ) and a relation |=Σ⊆ Σ × Sen(Σ) where Σ denotes the set of all specifications
with signature Σ. 3

Definition 3.7 (Translation of the underlying logic)
Given the underlying logic (Sen(Σ), |=) then for each transformation trafo : SPEC1 =⇒ SPEC2

there has to be a translation of sentences Ttrafo : Sen(Σ1) → Sen(Σ2) with SPECi ∈ Σi for
1 ≤ i ≤ 2.
The translation has to be compatible with the morphism composition, i.e. for transformations
trafoi : SPECi =⇒ SPECi+1 with i ≤ i ≤ 2 there is the translation Ttrafo1◦trafo2 = Ttrafo1 ◦
Ttrafo2 : Sen(Σ1)→ Sen(Σ3) for SPECi ∈ Σi.
The translation along an identity has to yield an identical translation, i.e.Tid = ID. 3

Note that SPEC |= ϕ then SPEC ′ |= Ttrafo(ϕ) is not demanded as it is too strong for most
process specification. E.g. liveness considered as a temporal logic formula over some process
specification is usually not preserved by morphisms.
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3.2 Component with guarantees for split imports

Definition 3.8 (Import-export implication for components with split import)
Given a component Comp = (IMP,EXP,BOD, imp, exp, ρ1 ∧ρ2, γ) with a split import given by
the G-pushout IMP = IMP1 +I IMP2 then the split import-export implication with ρ1 ∧ρ2⇒⇒⇒ γ
has to consist of ρ1 ∈ Sen(IMP1), ρ2 ∈ Sen(IMP2) and γ ∈ Sen(EXP ). 3

Definition 3.9 (Satisfaction of a split import-export implication)
Given a component Comp = (IMP,EXP,BOD, imp, exp, ρ1 ∧ρ2, γ) with a split import given by
the G-pushout IMP = IMP1 +I IMP2,
then split import-export implication ρ1 ∧ρ2⇒⇒⇒ γ consisting of ρ1 ∈ Sen(IMP1), ρ2 ∈ Sen(IMP2)
and γ ∈ Sen(EXP ) is satisfied if

SPEC1 |= Ttrafo1(ρ1) ∧ SPEC2 |= Ttrafo2(ρ2)⇒⇒⇒ SPEC ′ |= Ttrafo′◦exp(γ)

for all extension diagrams:

EXP

exp

��
IMP

imp //

trafo

��

BOD

trafo′

��

IMP2

99rrrrrrrrrr

trafo2

��

I //_____oo_ _ _ _ _

���
�

�
�

�
�

�
�

��<
<

<
<

<
<

<
<

(=) (=)

IMP1

eeLLLLLLLLLL

trafo1

��
SPEC2

%%LLLLLLLLLL SPEC1

yyssssssssss

SPEC
imp′

// SPEC ′

where we have the G-pushout SPEC = SPEC1 +I SPEC2, the induced E-morphism IMP =⇒
SPEC and the extension pushout SPEC ′ = SPEC +IMP BOD.

3

A component with guarantees is a component that ensures the export statement for any possible
environment provided the import assumptions are met.

Definition 3.10 (Split Component with guarantees)
Shortly, we denote a component with split import and split import-export implication by Comp =
(IMP1 +I IMP2, EXP,BOD, imp, exp, ρ1 ∧ ρ2, γ) and assume the G-pushout IMP = IMP1 +I

IMP2 and that ρ1 ∈ Sen(IMP1) and ρ2 ∈ Sen(IMP2). Moreover, we say that Comp is a split
component with guarantees if it satisfies the split import-export implication. 3

Definition 3.11 (Connecting condition)
Given a component Comp1 = (MP1.1 +I1 IMP1.2, EXP1, BOD2, imp1, exp2, ρ1.1∧ρ1.2, γ1) and a
component Comp2 = (IMP2, EXP2, BOD2, imp2, exp2, ρ2, γ2) and a connection transformation
con : IMP1.1 =⇒ EXP2 and hI : I1 → IMP2 then the connecting condition is satisfied if we have
for all transformations trafo : EXP2 =⇒ SPEC:

SPEC |= Ttrafo(γ2)⇒⇒⇒ SPEC |= Ttrafo◦con(ρ1)

3
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In order to have a compositional approach to component verification we now need to ensure that
the partial composition preserves the components guarantees in a suitable way.

Fact 3.12 (Partial composition propagates guarantees)
Given a split component Comp1 = (IMP1.1 +I1 IMP1.2, EXP1, BOD2, imp1, exp2, ρ1.1∧ρ1.2, γ1)
with guarantees and a component Comp2 = (IMP2, EXP2, BOD2, imp2, exp2, ρ2, γ2) with
guarantees and a connection

– given by a transformation con : IMP1.1 =⇒ EXP2 and a G-morphism hI : I1 → IMP2 –
satisfying the connecting condition

then the partial composition Comp3 of Comp1 and Comp2 is defined by

Comp3 := Comp1 ◦con,hI
Comp2 = (IMP3, EXP3, BOD3, imp3, exp3, ρ2 ∧ ρ1.2, γ1)

where
IMP3 is given by the G-pushout IMP3 = IMP1.2 +I1 IMP2,
BOD3 = BOD1 +IMP1.1 BOD2 is pushout,
imp3 is indued pushout morphism imp3 : IMP3 → BOD3 and
ρ1.2 ∈ Sen(IMP1.2), ρ2 ∈ Sen(IMP2) and γ1 ∈ Sen(EXP1)

is again a split component with guarantees. 3

Proof:
We have the following construction:

EXP3 = EXP1

exp1

��

exp3

�	

IMP1
imp1 // BOD1

h

��

IMP1.2

99sssssssss

��

I1
//____oo_ _ _ _

hI

�
�
�

���
�
�

PO

PO

IMP1.1

eeKKKKKKKKK

con

��
EXP2

exp2

��
IMP3

imp3

66IMP2
imp2//oo BOD2

imp′
1 // BOD3

We need to show that for Comp3 = (IMP3, EXP3, BOD3, imp3, exp3, ρ2 ∧ ρ1.2, γ1) the import-
export implication ρ2 ∧ ρ1.2 ⇒⇒⇒ γ1 consisting of ρ1.2 ∈ Sen(IMP1.2), ρ2 ∈ Sen(IMP2) and γ1 ∈
Sen(EXP1) is satisfied:

SPEC1.2 |= Ttrafo1(ρ1.2) ∧ SPEC2 |= Ttrafo2(ρ2)⇒⇒⇒ SPEC ′
3 |= Ttrafo3◦exp3(γ1)

We have by the assumptions the following situation and the following pushouts:
SPEC1.2 |= ρ1.2 and SPEC2 |= ρ2 by assumption
PO1: IMP1 = IMP1.1 +I1 IMP1.2

PO2: IMP3 = IMP2 +I1 IMP1.2

PO3: BOD3 = BOD1 +IMP1.1 BOD2

PO4: SPEC ′
3 = SPEC3 +IMP3 BOD3

11



EXP3 = EXP1

exp1

��

exp3

�


IMP1
imp1

%%
IMP1.2

33ggggggggggggggggggggg

��7
77

77
77

77
77

77
77

77
77

77

trafo1

��

I1
//____oo_ _ _ _ _ _ _ _ _ _ _ _

hI

�
�
�
�

���
�
�
�

PO1

PO2

IMP1.1

ffMMMMMMMM

con
��

//

PO3

BOD1

h

��

EXP2

exp2

��
IMP3imp3

.33

((

��

IMP2 imp2

//oo

trafo2
��

BOD2
imp′

1

// BOD3

trafo3

��

SPEC1.2

''OOOOOOOOOO SPEC2

wwpppppppppp

SPEC3
// SPEC ′

3

We now construct:
PO5: SPEC ′

2 = SPEC2 +IMP2 BOD2 due to E-I pushout condition
PO6: ̂SPEC1 := SPEC1.2 +I1 SPEC ′

2 a G-pushout
PO7: ̂SPEC2 := BOD3 +BOD2 SPEC ′

2and obtain:
SPEC2 |= ρ2⇒⇒⇒ SPEC ′

2 |= γ2 as Comp2 has guarantees
SPEC ′

2 |= γ2⇒⇒⇒ SPEC ′
2 |= ρ1.1 due to the connecting condition

if additionally PO8 SPEC ′
3 = BOD1 +IMP1

̂SPEC1 then
SPEC1.2 |= ρ1.2 ∧ SPEC ′

2 |= ρ1.1⇒⇒⇒ SPEC ′
3 |= γ1

due to the split import-export satisfaction of Comp1

EXP3 = EXP1

exp1

��

exp3

�


IMP1
imp1

%%
IMP1.2

33hhhhhhhhhhhhhhhhhhh

��4
44

44
44

44
44

44
44

44
44

4

trafo1

��

I1
//____oo_ _ _ _ _ _ _ _ _ _

hI

�
�
�
�

���
�
�
�

PO1

PO2

IMP1.1

ffMMMMMMMMM

con
��

////

PO3

BOD1

h

��

EXP2

exp2

��
IMP3

imp3

((

��

IMP2
imp2//oo

trafo2

��

BOD2

imp′
1 //

trafo′
2

��

BOD3

trafo3

~�

��
SPEC1.2

%%LLLLLLLLLL

,,XXXXXXXXXXXXXXXXXXXXXXXXXXXXX SPEC2

yysssssssss
// SPEC ′

2

��

// ̂SPEC2

��
SPEC3

// ̂SPEC1
// SPEC ′

3
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We obtain IMP1 → ̂SPEC1 by PO1 and PO6. Due to uniqueness of induced pushout morphism,
for we have

• IMP1.1 → IMP1 → BOD1 =⇒ SPEC ′
3 = IMP1.1 =⇒ SPEC ′

2 → SPEC ′
3

• IMP1.1 → IMP1 =⇒ ̂SPEC1 → SPEC ′
3 = IMP1.1 =⇒ SPEC ′

2 → SPEC ′
3

• IMP1.2 → IMP1 → BOD1 =⇒ SPEC ′
3 = IMP1.2 =⇒ SPEC1.2 → SPEC ′

3

• IMP1.2 → IMP1 =⇒ ̂SPEC1 → SPEC ′
3 = IMP1.2 =⇒ SPEC1.2 → SPEC ′

3

there is the communicating square (8)
IMP1 → BOD1 =⇒ SPEC ′

3 = IMP1 =⇒ ̂SPEC1 → SPEC ′
3.

We show (8) to be pushout, namely PO8.
Given X with IMP1 → BOD1 =⇒ X = IMP1 =⇒ ̂SPEC1 → X as depicted below
we obtain BOD3 =⇒ X due to PO3.
Due to uniqueness of the pushout morphisms for

• IMP1.2 → IMP3 → BOD3 =⇒ X = IMP1.2 → IMP1 → BOD1 =⇒ X

• IMP1.2 → IMP3 → SPEC3 → ̂SPEC1 =⇒ X = IMP1.2 → IMP1 → BOD1 =⇒ X

• IMP2 → IMP3 → BOD3 =⇒ X = IMP2 =⇒ SPEC2 → SPEC3 → ̂SPEC1 =⇒ X

• IMP2 → IMP3 → SPEC3 → ̂SPEC1 =⇒ X
= IMP2 =⇒ SPEC2 → SPEC3 → ̂SPEC1 =⇒ X

we have IMP3 → BOD3 =⇒ X = IMP3 =⇒ SPEC3 → ̂SPEC1 =⇒ X.
And so PO2 induces SPEC ′

3 =⇒ X that uniquely commutes:
BOD1 =⇒ SPEC ′

3 =⇒ X = BOD1 =⇒ X and ̂SPEC1 → SPEC ′
3 =⇒ X = ̂SPEC1 =⇒ X

IMP1.2

))

��

I //____oo_ _ _ _

���
�
� IMP1.1

//

��

IMP1
//

~�

BOD1

��

��

IMP3

++

��

IMP2
//oo

��

BOD2
//

��

BOD3

��

��

SPEC2
//// SPEC ′

2
//

��

̂SPEC2

��
SPEC3

// ̂SPEC1
//

*2

SPEC ′
3

�'GGGGGGGG

GGGGGGGG

X

So, PO8 is pushout and hence we have:
SPEC1.2 |= ρ1.2 ∧ SPEC ′

2 |= ρ1.1⇒⇒⇒ SPEC ′
3 |= γ1

X

This means Comp3 satisfies the import-export implication.
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4 Instantiation to PT Net Systems

First we give a short intuition of the underlying formalism. We use the algebraic notion of Petri
nets as introduced in [MM90]. Hence, a place/transition (PT) net is given by the set of transitions

and the set of places and the pre and post domain function; N = (T
pre //
post

// P⊕) where P⊕ is the

free commutative monoid over P– or the set of finite multisets over P . So, an element w ∈ P⊕ can
be presented as a linear sum w = Σp∈P λpp and we can extend the usual operations and relations
as ⊕, 	, ≤, and so on. The initial marking (and markings in general) can be understood both as
a linear sum, i.e. m̂ ∈ P⊕ as well as a finitely based mapping, i.e. m̂ : P → N.
We use much simpler morphisms than in [Pad02] that do not preserve any specific properties as
safety or liveness. The import morphism imp is a plain, injective morphism and describes where
the resources of the import are used in the body. The export morphism exp is a t-partial, injective
morphism. So, we have a very loose interpretation of refinement: those transition that are not
mapped represent some not explicitly specified subnet of the target net.

Definition 4.1 (PT net system and morphisms classes)

A place/transition net system is given by PS = (T
pre //
post

// P⊕, m̂)

• where P⊕ is the free commutative monoid over P

• and m̂ ∈ P⊕ is the initial marking.
(it may as well be given as a finitely based mapping, i.e. m̂ : P → N)

We have the subsequent morphism classes:

• A t-partial morphisms h : PS1 → PS2 is a mapping where hP : P1 → P2 is a total function
and hT : T1 → T2 is a partial function such that h is arc preserving; for all t ∈ dom(fT ) we
have: h⊕P ◦ pre1 = pre2 ◦ hT (t) and h⊕P ◦ post1 = post2 ◦ fT (t).

• Morphisms are plain if hT : T1 → T2 is a total function as well. The class of injective plain
morphisms is denoted by I.

• Morphisms are marking strict if m̂1(p) = m̂2(h(p)) for all p ∈ P1. The class of marking
strict t-partial, injective morphisms is denoted by E .

• PT net systems and t-partial morphism comprise the category PStp.

• a gluing morphisms is given by g : PS1 → PS2 is an injective mapping of places only with
hP : P1 → P2 a total function and T1 = ∅ and accordingly gT : ∅ → T2 the empty function.
These morphisms constitute the class G.

3

Based on the category PStp and the above morphisms classes form an instance of the generic
framework for components with split imports and accordingly provide the same results (see Results
4.10).

Fact 4.2 (Generic framework PTP for PN-components with split imports)
The category PStp with the morphism classes E , I and G as defined in Definition 4.1 is a generic
framework TP = (Cat, I, E ,G) for components with split imports. 3

Proof:

1. Existence of Extension Diagrams (see Fact 4.4).
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2. E-I-Pushout Condition (see [Pad06])

3. E and I are stable under pushouts (see [Pad06])

4. For g ∈ G we have (f ◦ g) ∈ G as well due to the definition of G morphisms.

5. The induced import condition holds in Set, see Fact 4.6.

X

Fact 4.3 (Pushouts in the category PStp [Pad06])

Given PT systems PSi for 0 ≤ i ≤ 2 and morphisms PS1
h1←− PS0

g1−→ PS2 in the category PStp

then here is a pushout PS1
h2−→ PS3

g2←− PS2 that can be constructed component-wise for places
and transitions and with an arbitrary initial marking for PS3. 3

Fact 4.4 (Extension diagrams of I- and E-morphisms [Pad06])
Given PT nets Ni = (Pi, Ti, prei, posti) and PT systems PSi = (Ni, m̂i) and the morphisms
PS1

h1←− PS0
g1−→ PS2 where h1 ∈ I and g1 ∈ E then there is a pushout PS1

h2−→ PS3
g2←− PS2

with

m̂3(p) =
{

m̂2(p2) ; g2(p2) = p /∈ h2(P1)
m̂1(p1) ;h2(p1) = p

that is an extension diagram with g2 ∈ I and h2 ∈ E . 3

Fact 4.5 (Induced import condition in Set)
3

Proof:
We have in Set, where I is the class of injective and E the class of total functions the following
diagram in Set:

EXP3 = EXP1

exp1

��
exp3

�	

IMP1 imp1

$$
IMP1.2

i′1.2

99sssssssss

i3

��

I1
i1.1 //____i1.2oo_ _ _ _

hI

�
�
�

���
�
�

PO1

PO2

IMP1.1

i′1.1

eeKKKKKKKKK

con

��

i1 // BOD1

h

��

EXP2

exp2

��

PO3

IMP3

imp3

66IMP2
imp2 //i2oo BOD2

imp′
1 // BOD3

We show indirectly that imp3 is injective, using the following cases:

Let be given x 6= y ∈ Imp3 and imp3(x) = imp3(y) with

1. x = i2(x′) and y = i2(y′) for x′, y′ ∈ IMP2

then x′ 6= y′ and – as imp′1 and imp2 are injective – we have imp3(x) = imp3 ◦ i2(x′) =
imp′1 ◦ imp2(x′) 6= imp′1 ◦ imp2(x′) = imp3 ◦ i2(y′) = imp3(y) which contradicts the
assumption  
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2. x = i3(x′) and y = i3(y′) for x′, y′ ∈ IMP1.2 and ¬∃z ∈ IMP2 : i2(z) = x ∨ i2(z) = y

then ¬∃z ∈ I1 : i2(z) = x ∨ i2(z) = y due to pushout PO2 and x′ 6= y′. Hence, there are
imp1 ◦ i′1.2(x

′), imp1 ◦ i′1.2(y
′) ∈ BOD1 with imp1 ◦ i′1.2(x

′), imp1 ◦ i′1.2(y
′) /∈ i1(IMP1.1)

due to pushout PO1.
Due to the construction of semi-injective pushouts h : BOD1|i1(IMP1.1 → BOD3 is injective,
and hence we have
imp3(x) = imp3 ◦ i3(x′) = h ◦ imp1 ◦ i′1.2(x

′) 6= h ◦ imp1 ◦ i′1.2(y
′) = imp3 ◦ i3(y′) = imp3(y)

which contradicts the assumption  

3. x = i3(x′) for x′ ∈ IMP1.2 and ¬∃z ∈ IMP2 : i2(z) = x and y = i2(y′) for y′ ∈ IMP2

Hence imp1◦i′1.2(x
′) ∈ BOD1\(i1(IMP1.1) and imp2(y′) ∈ BOD2. Since BOD3 = BOD2]

BOD1 \ (i1(IMP1.1) we have hcircimp1 ◦ i′1.2(x
′) 6= imp′1 ◦ imp2(y′), and so

imp3(x) = imp3 ◦ i3(x′) = h ◦ imp1 ◦ i′1.2(x
′) 6= imp′1 ◦ imp2(y′) = imp3 ◦ i2(y′) = imp3(y)

which contradicts the assumption  

X

Fact 4.6 (Induced import condition in PStp)
3

Proof:
Since we have the induced import condition in Set and PT net systems and the morphisms are
given ciomponent wise, we can conclude that both imp3,P and imp3,T are both injective. Hence
imp3 ∈ I. X

4.1 Temporal Logic

This subsection coincides with Section 3.2 in [Pad06]. We use a notation closely related to
standard linear time logics (LTL) as e.g. in [MP95] or [GV03]. For each net we assume a set of
atomic propositions AP over the markings of the net. For a marking m ∈ P⊕ the satisfaction of
a atomic proposition is given if the proposition p is true for m.

A LTL formula is an element of the language

f := p |¬ f | f ∧ f |X f | f U f

constructed out of atomic propositions p to which boolean connections ¬ (negation) and ∧ (con-
junction), as well as the temporal operators ”until” U and ”next” X are applied.
Since a LTL requires runs of a system we now define runs of a PT system (N, m̂) as an infinite
sequence of markings δ := m0 ·m1 ·m2 · ... where m0 = m̂ is the initial marking. Either we have
some t ∈ T for each i ≥ 0 so that mi[t > mi+1 or we repeat the last marking, i.e. if there is no
t ∈ T such that mi[t > mi+1 then mj = mi for all j > i.

We assume a set of atomic propositions AP on markings, so that for each marking π : P⊕ → 2AP

assigns truth values to the propositions. Thereby we have π(m)(p ) = true for p ∈ AP and
m ∈ P⊕ is denoted by p ∈ π(m).
Then we define inductively for formulas f :

• for an atomic proposition (δ, j) |= p iff p ∈ π(mj) for p ∈ AP

• for the boolean operators (δ, j) |= ¬ f ∈ AP iff not (δ, j) |= f
(δ, j) |= f 1 ∧ f 2 ∈ AP iff (δ, j) |= f 1 and (δ, j) |= f 2

16



• for the until operator (δ, j) |= f 1 U f 2 iff
there is some k ≥ j with (δ, k) |= f 2

and for all j ≤ i ≤ k holds (δ, i) |= f 1

• for the next operator (δ, j) |= X f iff (δ, j + 1) |= f

We abbreviate formulas using the usual boolean operators as they can be defined using the nega-
tion and the conjunction. Analogously we can define further temporal operators as ”eventually”
or ”future” F by F f := trueU f and the operator ”always” or ”globally” G f := ¬F¬ f . The
set of all LTL formulas with respect to the set of atomic propositions AP is denoted by F.

A net system (N, m̂) |= f satisfies an LTL formula f ∈ F if for all runs δ of (N, m̂) we have
(δ, 0) |= f .

Definition 4.7 (Underlying logic for PT system components [Pad06])
The underlying temporal logic (F, |=) over the net N consist of the formulas F over the net N and
the relation |=N⊆ N×F where N = {(N, m̂)|m̂ ∈ P⊕} the set of all PT systems consisting of the
net N and some initial marking m̂ ∈ P⊕. 3

Next we define the translation of LTL formulas based on a mapping of the atomic propositions that
is compatible with the mapping of the places and show then to be compatible with the composition
of morphisms as required in Def. 3.7.

Definition 4.8 (Translation of a formula [Pad06])
Given PT systems (Ni, m̂i) with atomic propositions APi and πi : P⊕

i → APi for 1 ≤ i ≤ 2, a
morphism h : PS1 → PS2, and a mapping of the atomic propositions hAP : AP1 → AP2 that is
compatible with the mapping of the places i.e. π2◦h⊕P = hAP ◦π1, then we define Th : FAP1 → FAP2

inductively:

• for atomic propositions Th(p ) := hAP (p )

• for the boolean operators Th(¬ f ) := ¬Th( f )
Th( f 1 ∧ f 2) := Th( f 1) ∧ Th( f 2)

• for the until operator Th( f 1 U f 2) := Th( f 1)UTh( f 2)

• for the next operator Th(X f ) := XTh( f )

• for the eventually operator Th(F f ) := FTh( f )

• for the always operator Th(G f ) := GTh( f )

3

Fact 4.9 (Composition of Translation [Pad06])
Given mappings of atomic propositions hAP : AP1 → AP2 and gAP : AP2 → AP3 compatible with
h : PS1 → PS2 and g : PS2 → PS3, then we have Tg ◦ Th = Tg◦h. 3

Result 4.10 (Component-based Verification for Split Imports)
We now have

• PT system components with guarantees (see Def. 3.3), and

• partial composition propagating guarantees (see Def. 3.4).

3

17



These results are due to Fact 4.2 that PT systems are an instantiation of the generic component
framework in Section 2.

The following two figures extend the example from section 2 with the corresponding temporal
formulas.

γ1 = G (p1⇒⇒⇒ F p2)
ρ1 = G (p3⇒⇒⇒ F p4)
ρ1.1 = G (p5⇒⇒⇒ F p6)
ρ1.2 = G (p3 ∧ (G (p5⇒⇒⇒ F p6))⇒⇒⇒ p4)
γ2 = G (p5⇒⇒⇒ F p6)
ρ2 = G (p7⇒⇒⇒ F p8) ∧ G (p9⇒⇒⇒ F p10)

γ1 = G (p1⇒⇒⇒ F p2)
ρ1.2 = G (p3 ∧ (G (p5⇒⇒⇒ F p6))⇒⇒⇒ p4)
ρ2 = G (p7⇒⇒⇒ F p8) ∧ G (p9⇒⇒⇒ F p10)

5 Conclusion

To summarize this report, a component is given formally by three specifications, the body specifi-
cation, the import and the export interface. To express properties of components, an appropriate
logic formalism has to be required that allows expressing the desired properties. A component is
then equipped with two additional logic formulas that represent the import-export implication.
The import assumptions describe in an abstract way the properties the underlying component
needs to have to ensure the desired behavior. Then the export guarantees some property denoted
by the export statement. Hierarchical composition allows concluding the import-export impli-
cation where the providing component’s import assumption implies the requiring component’s

18



export statement.
One important application of the instantiation of this generic frame work to PT net systems is
the possibility of structuring nets hierarchically. This is crucial when modelling discrete systems
in practical applications as discussed in [PKA08]. There we sketch the compositional verification
based on this framework. The main issues when applying to the tool Netlab concern the feasibility
in practice and the hiding of th temporal logic without loosing the possibility of verification.
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framework for connector architectures based on components and transformations. In
Proc. First International Workshop on Formal Foundations of Embedded Software and
Component-based Software Architectures (FESCA 2005), Electronic Notes in Theoret-
ical Computer Science 108, pages 53–67, 2004.
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