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Abstract

Self-healing (SH-)systems are characterized by an automatic discovery
of system failures, and techniques how to recover from these situations.
In this paper, we show how to model SH-systems using algebraic graph
transformation. These systems are modeled as typed graph grammars
enriched with graph constraints. This allows not only for formal modeling
of consistency and operational properties, but also for their analysis and
verification using the tool AGG. We present sufficient static conditions
for self-healing properties, deadlock-freeness and liveness of SH-systems.
The overall approach is applied to a traffic light system case study, where
the corresponding properties are verified.

1 Introduction

The high degree of variability that characterizes modern systems requires to de-
sign them with runtime evolution in mind. Self-adaptive systems are a variant
of fault-tolerant systems that autonomously decide how to adapt the system
at runtime to the internal reconfiguration and optimization requirements or to
environment changes and threats [7]. A classification of modeling dimensions

∗Some of the authors are partly supported by the European Community’s Seventh Frame-
work Programme FP7/2007-2013 under grant agreement 215483 (S-Cube) and the Italian
PRIN d-ASAP project.
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for self-adaptive systems can be found in [2], where the authors distinguish goals
(what is the system supposed to do), changes (causes for adaptation), mech-
anisms (system reactions to changes) and effects (the impact of adaptation
upon the system). The initial four self-* properties of self-adaptive systems
are self-configuration, self-healing1, self-optimization, and self-protection [22].
Self-configuration comprises components installation and configuration based
on some high-level policies. Self-healing deals with automatic discovery of sys-
tem failures, and with techniques to recover from them. Typically, the run-
time behavior of the system is monitored to determine whether a change is
needed. Self-optimization monitors the system status and adjusts parameters
to increase performance when possible. Finally, self-protection aims to detect
external threats and mitigate their effects [31].

Even with good reactions to both system and context changes a set of high-
level goals “should be maintained regardless of the environment conditions” [11].
In other words, the joint ability to effectively react to changes without degrading
the level of dependability is a key factor for delivering successful systems that
continuously satisfy evolving user requirements. Consequently, a serious solution
to effectively support the consistent evolution of systems at runtime can be
conceived only through a well-defined formalization that provides a solid basis
for verification.

In [9], Bucchiarone et al. modeled and verified dynamic software archi-
tectures and self-healing (SH-)systems (called self-repairing systems in [9]), by
means of hypergraphs and graph grammars. Based on this work, we show in
this paper how to formally model (SH-)systems by using algebraic graph trans-
formations [13] and to prove consistency and operational properties. Graph
transformation has been investigated as a fundamental concept for specifica-
tion, concurrency, distribution, visual modeling, simulation and model transfor-
mation [13, 14].

The main idea is to model SH-systems by typed graph grammars with
three different kinds of system rules, namely normal, environment, and repair
rules. Normal rules define the normal and ideal behavior of the system. Envi-
ronment rules model all possible predictable failures. Finally, for each failure
a repair rule is defined. This formalization enables the specification, analysis
and verification of consistency and operational properties of SH-systems. More
precisely, we present sufficient conditions for two alternative self-healing prop-
erties, deadlock-freeness and liveness of SH-systems. The conditions can be
checked statically for the given system rules in an automatic way using the
AGG2 modeling and verification tool for typed attributed graph transformation
systems.

Summarizing, the contribution of this paper is twofold: (i) we propose a
way to model and formalize SH-systems; (ii) we provide tool-supported static
verification techniques for SH-system models. The theory is presented by use
of a running example, namely an automated traffic light system controlled by
means of electromagnetic spires that are buried some centimeters underneath
the asphalt of car lanes.

The paper is organized as follows: Section 2 motivates the paper comparing
it with related work. Section 3 presents the setting of our running example.

1following [28] we consider self-healing and self-repair as synonymous
2AGG (Attributed Graph Grammars): http://tfs.cs.tu-berlin.de/agg.
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Section 4 introduces typed attributed graph transformation as formal basis to
specify and analyze SH-systems. In Section 5 we define consistency and oper-
ational system properties. Static conditions for their verification are given in
Section 6 and are used to analyze the behavior and healing properties of the
traffic light system. We conclude the paper in Section 7 with a summary and
an outlook on future work.

This technical report is the long version (including full proofs of the technical
theorems and additional details of the traffic light example) accompanying our
contribution at FASE 2010 [15].

2 Motivation and Related Work

Focusing on modeling approaches for SH-systems, the Software Architecture
approach (SA) [25], has been introduced as a high-level view of the structural
organization of systems. Since a self-healing system must be able to change
at runtime, Dynamic Software Architectures (DSAs) have shown to be very
useful to capture SA evolution [23, 17, 18]. Aiming at a formal analysis of
DSAs, different approaches exist, either based on graph transformation [9, 6,
8, 5, 4, 19, 24] or on temporal logics and model checking [21, 1, 27]. In many
cases, though, the state space of behavioral system models becomes too large or
even infinite, and in this case model checking techniques have their limitations.
Note that static analysis techniques, as applied in this paper, do not have this
drawback. In addition to graph transformation techniques, also Petri nets [26]
offer static analysis techniques to verify liveness and safety properties. But in
contrast to Petri nets, graph transformation systems are well suited to model
also reconfiguration of system architectures which is one possible way to realize
system recovery from failures in self-healing (SH-)systems.

In the community of Service Oriented Computing, various approaches sup-
porting self-healing have been defined, e.g. triggering repairing strategies as
a consequence of a requirement violation [30], and optimizing QoS of service-
based applications [10, 32]. Repairing strategies could be specified by means of
policies to manage the dynamism of the execution environment [3, 12] or of the
context of mobile service-based applications [29].

In [20], a theoretical assume-guarantee framework is presented to efficiently
define under which conditions adaptation can be performed by still preserving
the desired invariant. In contrast to our approach, the authors of [20] aim to
deal with unexpected adaptations.

In contrast to the approaches mentioned above, we abstract from particu-
lar languages and notations. Instead, we aim for a coherent design approach
allowing us to model important features of SH-systems at a level of abstraction
suitable to apply static verification techniques.

3 Running Example: An Automated Traffic Light
System

In an automated Traffic Light System (TLS), the technology is based upon
electromagnetic spires that are buried some centimeters underneath the asphalt
of car lanes. The spires register traffic data and send them to other system
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components. The technology helps the infraction system by making it incon-
testable. In fact, the TLS is connected to cameras which record videos of the
violations and automatically send them to the center of operations. In addition
to the normal behavior, we may have failures caused by a loss of signals be-
tween traffic light or camera and supervisor. For each of the failures there are
corresponding repair actions, which can be applied after monitoring the failures
during runtime.

The TLS is responsible for regulating the traffic lights in a “smart” way. In
particular, it provides the following functionalities:
Switching the traffic light signal : The spires send signals created by the
passing vehicles to an Electronic Control Unit (ECU) which registers the medium
speed of the cars, hence the intensity of traffic. The ECU component sends the
data to a component called Supervisor. The Supervisor imparts a cadence to
the green and the red lights of several traffic lights in the same street. The
system gives a priority if more cars are in line in the same direction.
Management of infractions: Each camera is connected to the Supervisor,
which constantly controls the traffic light signal and the ECU. If a vehicle tran-
sits upon the spires while the street light is red, the Supervisor triggers the
camera, which starts recording. When the light is green, it ignores the spires
and does not trigger the cameras. Contextually with the infraction event, the
camera sends the records to the video recorder of the CenterOfOperations, which
stores date, time and Supervisor ID in order to avoid legal challenges.
Error management : In regular time intervals, the system is monitored for
errors or failures which are sent to the CenterOfOperations. Errors can be the
breakdown of components as well as the loss of connection from one of the
components of the TLS to the rest of the system. The CenterOfOperations
triggers a repairing procedure to recover from system faults.

Figure 1 presents the use case diagram showing the functional requirements
for the TLS. Car is an actor of the TLS while Data send is the use case that
represents the gathering of the data related to the traffic flow. It activates the
use case traffic light and, if there is an infraction, it also activates the infraction
management use case. The traffic light management administrates the switching
of the traffic lights, while the infraction management activates the cameras when
there is an infraction going on in a cross road. Both use cases activate error
management use case whenever there is an error in the system. Use case error
management handles the case of an error in the TLS.

In this scenario the dynamism is given by the traffic flow. Cars join and leave
the system continuously and there is no way to predict it, so we cannot predict
the traffic light behavior. In the following we give the TLS requirements:
• Traffic flow: As the cars get to the cross road, the traffic flow is stored in the
Spire component and sent to the ECU component. Then, the ECU component
forwards the information to the Supervisor component which will manage it;
• Light: For each system configuration, each crossroad has at most one green
light turned on.
• Broken camera: the Supervisor component checks in regular time intervals if
there is an error signal linked to the Camera component, and the CenterOfOp-
erations component takes care to repair it;
• Broken traffic light: if there is a loss of a traffic light signal, the system handles
it in order to repair it;
• No traffic flow: when there is no traffic flow then every traffic light must be
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Figure 1: Use case diagram: Functional requirements for the TLS

turned to red;
• No traffic blocking: when there is traffic then it must be avoided that all traffic
lights are red.

The aim of our TLS model is to ensure suitable self-healing properties by
applying repair actions. What kind of repair actions are useful and lead
to consistent system states without failures? What kind of safety and liveness
properties can be guaranteed? We will tackle these questions in the next sections
by providing a formal modeling and analysis technique based on algebraic graph
transformation and continue our running example in Examples 1 – 6 below.

4 Formal Modeling of Self-Healing Systems by
Algebraic Graph Transformation

In this section, we show how to model SH-systems in the formal framework
of algebraic graph transformation [13]. The main concepts of this framework
which are relevant for our approach are typed graphs, graph grammars, trans-
formations and constraints. Configurations of an SH-System are modeled by
typed graphs.

Definition 1 (Typed Graphs) A graph G = (N,E, s, t) consists of a set of
nodes N , a set of edges E and functions s, t : E → N assigning to each edge
e ∈ E the source s(e) ∈ N and target t(e) ∈ N .

A graph morphism f : G → G′ is given by a pair of functions f = (fN :
N → N ′, fE : E → E′) which is compatible with source and target functions.

A type graph TG is a graph where nodes and edges are considered as node
and edge types, respectively. A TG-typed, or short typed graph G = (G, t) con-
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sists of a graph G and a graph morphism t : G→ TG, called typing morphism
of G. Morphisms f : G→ G′ of typed graphs are graph morphisms f : G→ G′

which are compatible with the typing morphisms of G and G′, i.e. t′ ◦ f = t.

For simplicity, we abbreviate G = (G, t) by G in the following. Moreover,
the approach is also valid for attributed and typed attributed graphs where nodes
and edges can have data type attributes [13], as used in our running example.

Example 1 (Traffic Light System) The type graph TG of our traffic light
system TLS is given in Fig. 2. The initial state is the configuration graph in
Fig. 3 which is a TG-typed graph where the typing is indicated by correspond-
ing names, and the attributes are attached to nodes and edges. The initial

Figure 2: TLS type graph TG

state shows two traffic lights (TL), two cameras, a supervisor, and a center of
operations, but no traffic up to now.

The dynamic behavior of SH-systems is modeled by rules and transformations
of a typed graph grammar in the sense of algebraic graph transformation [13].

Figure 3: TLS initial state Ginit

Definition 2 (Typed Graph Grammar) A typed graph grammar GG =
(TG,Ginit,Rules) consists of a type graph TG, a TG-typed graph Ginit, called
initial graph, and a set Rules of graph transformation rules. Each rule r ∈
Rules is given by a span (L← I → R), where L, I and R are TG-typed graphs,
called left-hand side, right-hand side and interface, respectively. Moreover,
I → L, I → R are injective typed graph morphisms where in most cases I
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can be considered as intersection of L and R. A rule r ∈ Rules is applied to
a TG-typed graph G by a match morphism m : L → G leading to a direct

transformation G
r,m
=⇒ H via (r,m) in two steps: at first, we delete the match

m(L) without m(I) from G to obtain a context graph D, and secondly, we glue
together D with R along I leading to a TG-typed graph H.
More formally, the direct transformation

G
r,m
=⇒ H is given by two pushout diagrams

(1) and (2) in the category GraphsTG of TG-
typed graphs, where diagram (1) (resp. (2))
corresponds to gluing G of L and D along I
(resp. to gluing H of R and D along I).

N

q
|

@@@@

  @@@@

L

(1)m

��

nacoo I

(2)

loo r //

��

R

m∗

��
G Doo // H

Note that pushout diagram (1) in step 1 only exists if the match m satisfies a glu-
ing condition w.r.t. rule r which makes sure that the deletion in step 1 leads to a
well-defined TG− typed graph D. Moreover, rules are allowed to have Negative
Application Conditions (NACs) given by a typed graph morphism nac : L→ N .
In this case, rule r can only be applied at match m : L → G if there is no
injective morphism q : N → G with q ◦ nac = m. This means intuitively that r
cannot be applied to G if graph N occurs in G. A transformation G0

∗
=⇒ Gn via

Rules in GG consists of n ≥ 0 direct transformations G0 =⇒ G1 ⇒ ... ⇒ Gn

via rules r ∈ Rules. For n ≥ 1 we write G0
+

=⇒ Gn.

Example 2 (Rules of TLS) A rule r = (L ← I → R) of TLS with NAC
nac : L → N is given in Fig. 4 (interface I is not shown and consists of
the nodes and edges which are present in both L and R, as indicated by equal
numbers). For simplicity, we only show the part of the NAC graph N which
extends L. All graph morphisms are inclusions. Rule r can be applied to graph
G in Fig. 3 where the node (1:TL) in L is mapped by m to the upper node TL in
Ginit. This leads to a graph H where the attributes of TL are changed and the
node Cars of R is attached to TL. Altogether, we have a direct transformation

G
r,m
=⇒ H.

Figure 4: TLS rule ArrivalCarsOne

In order to model consistency and failure constraints of an SH-system, we use
graph constraints. A TG-typed graph constraint is given by a TG-typed graph C
which is satisfied by a TG-typed graph G, written G |= C, if there is an injective
graph morphism f : C → G. Graph constraints can be negated or combined
by logical connectors (e.g. ¬C). Now we are able to define SH-systems in the
framework of algebraic graph transformation (AGT). An SH-system is given
by a typed graph grammar where four kinds of rules are distinguished, called
system, normal, environment and repair rules. Moreover, we have two kinds of
TG-typed graph constraints, namely consistency and failure constraints.
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Definition 3 (Self-healing System in AGT-Framework) A Self-healing sys-
tem (SH-system) is given by SHS = (GG, Csys), where:

• GG = (TG, Ginit, Rsys) is a typed graph grammar with type graph TG,
a TG-typed graph Ginit, called initial state, a set of TG-typed rules Rsys

with NACs, called system rules, defined by Rsys = Rnorm ∪ Renv ∪ Rrpr,
where Rnorm (called normal rules), Renv (called environment rules) and
Rrpr (called repair rules) are pairwise disjoint.

• Csys is a set of TG-typed graph constraints, called system constraints, with
Csys = Cconsist ∪ Cfail, where Cconsist are called consistency constraints
and Cfail failure constraints.

For an SH-system, we distinguish reachable, consistent, failure and normal
states, where reachable states split into normal and failure states.

Definition 4 (Classification of SH-System States) Given an SH-system SHS
= (GG,Csys) as defined above, we have

1. Reach(SHS ) = {G | Ginit
∗

=⇒ G via Rsys }, the reachable states consist-
ing of all states reachable via system rules,

2. Consist(SHS ) = {G | G ∈ Reach(SHS ) ∧ ∀C ∈ Cconsist : G � C}, the
consistent states, consisting of all reachable states satisfying the consis-
tency constraints,

3. Fail(SHS ) = {G | G ∈ Reach(SHS ) ∧ ∃C ∈ Cfail : G � C}, the failure
states, consisting of all reachable states satisfying some failure constraint,

4. Norm(SHS ) = {G | G ∈ Reach(SHS ) ∧ ∀C ∈ Cfail : G 2 C}, the
normal states, consisting of all reachable states not satisfying any failure
constraint.

Example 3 (Traffic Light System as SH-system) We define the Traffic Light
SH-system TLS = (GG,Csys) by the type graph TG in Fig. 2, the initial state
Ginit in Fig. 3, and the following sets of rules and constraints:

• Rnorm = {ArrivalCarsOne, ArrivalCarsTwo, RemoveCarsOne, Remove-
CarsTwo, InfractionOn, InfractionOff },

• Renv = {FailureTL,FailureCam},

• Rrpr = {RepairTL,RepairCam},

• Cconsist = {¬allGreen, ¬allRed,TLCamSupInfractionTrue ∨ TLCamSup-
InfractionFalse},

• Cfail = {TLSupFailure,CamSupFailure}.

The normal rule ArrivalCarsOne is depicted in Fig. 4 and models that one
or more cars arrive at a traffic light (1:TL) while all of the crossing’s lights are
red. The NAC in Fig. 4 means that in this situation, no cars arrive at the
other direction’s traffic light (3:TL). Applying this rule, the traffic light in the
direction of the arriving cars (1:TL) switches to green. Rule ArrivalCarsTwo
(see Fig. 5) models the arrival of one or more cars at a red traffic light (2:TL)
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where no cars have been before, while at the same time the traffic light for the
other direction (3:TL) shows green and there are already cars going in this di-
rection. This rule causes a change of the traffic light colors in both directions.
Rules RemoveCarsOne and RemoveCarsTwo are the inverse rules (with L and

Figure 5: TLS rule ArrivalCarsTwo

R exchanged) of the arrival rules in Fig. 4 and 5, and model the reduction of
traffic at a traffic light. Rule InfractionOn is shown in Fig. 6 and models the
situation that a car is passing the crossroad at a red light: the signal infraction
of both the supervisor and the center of operations is set to true and the corre-
sponding camera is starting to operate. The rule ensures that the corresponding
camera is connected, using the edge attribute signal = true for edge 13:CamSup.
Rule InfractionOff (not depicted) models the inverse action, i.e. the infraction
attribute is set back to false, and the camera stops running.

Figure 6: Normal rule InfractionOn of TLS

The environment rules are shown in Fig. 7. They model the signal disconnec-
tion of a traffic light and a camera, respectively. The repair rules (not depicted)
are defined as inverse rules of the environment rules and set the signal attributes
back to true.

Figure 7: Environment rules FailureTL and FailureCam of TLS

The consistency constraints model the desired properties that we always want
to have crossroads with at least one direction showing red lights (¬ allGreen)
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and avoiding all traffic lights red when there is traffic (¬ allRed). More-
over, in infraction mode we want the attributes infraction of Supervisor and
CenterOfOperations and the attribute onCamera to be true all at once, and
in normal mode (no infraction), we want them all to be false. The constraint
TLCamSupInfractionTrue ∨ TLCamSupInfractionFalse models that our system
is either in infraction mode or in normal mode. The corresponding constraint
graphs (without negation) are shown in Fig. 8. The failure constraints TL-
SupFailure and CamSupFailure express that either a traffic light or a camera
is disconnected (the constraint graphs correspond to the right-hand sides of the
environment rules in Fig. 7).

Figure 8: Consistency constraint graphs of TLS

5 Consistency and Operational Properties of SH-
Systems

In this section, we define desirable consistency and operational properties of
SH-Systems. We distinguish system consistency, where all reachable states are
consistent, and normal state consistency, where the initial state Ginit and all
states reachable by normal rules are normal states. Environment rules, however,
may lead to failure states, which should be repaired by repair rules. We start
with consistency properties:

Definition 5 (Consistency Properties) An SH-System SHS is called

1. system consistent, if all reachable states are consistent, i.e.
Reach(SHS) = Consist(SHS);

2. normal state consistent, if the initial state is normal and all normal rules
preserve normal states, i.e.

Ginit ∈ Norm(SHS) and ∀G0
p

=⇒ G1 via p ∈ Rnorm

[ G0 ∈ Norm(SHS)⇒ G1 ∈ Norm(SHS) ]
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Example 4 (Consistency Properties of TLS) The SH-System TLS is sys-

tem consistent, because for all C ∈ Cconsist Ginit |= C and for all G0
p

=⇒ G1

via p ∈ Rsys and G0 ∈ Consist(SHS) we also have G1 ∈ Consist(SHS). Sim-
ilarly, TLS is normal state consistent, because Ginit ∈ Norm(SHS) and for all

G0
p

=⇒ G1 via p ∈ Rnorm for all C ∈ Cfail [ G0 6|= C ⇒ G1 6|= C ]. In both
cases this can be concluded by inspection of the corresponding rules, constraints
and reachable states. Moreover, there are also general conditions, which ensure
the preservation of graph constraints by rules, but this discussion is out of scope
for this paper.

Now we consider the operational properties: one of the main ideas of SH-
Systems is that they are monitored in regular time intervals by checking, whether
the current system state is a failure state. In this case one or more failures have
occurred in the last time interval, which are caused by failure rules, provided
that we have normal state consistency. With our self-healing property below we
require that each failure state can be repaired leading again to a normal state.
Moreover, strongly self-healing means that the normal state after repairing is
the same as if no failure and repairing would have been occurred.

Definition 6 (Self-healing Properties) An SH-System SHS is called

1. self-healing, if each failure state can be repaired, i.e.
∀Ginit ⇒∗ G via (Rnorm ∪Renv) with G ∈ Fail(SHS)
∃ G⇒+ G′ via Rrpr with G′ ∈ Norm(SHS)

2. strongly self-healing, if each failure state can be repaired strongly, i.e.
∀Ginit ⇒∗ G via (p1 . . . pn) ∈ (Rnorm ∪Renv)∗ with G ∈ Fail(SHS)
∃ G⇒+ G′ via Rrpr with G′ ∈ Norm(SHS) and
∃ Ginit ⇒∗ G′ via (q1 . . . qm) ∈ R∗norm,
where (q1 . . . qm) is subsequence of all normal rules in (p1 . . . pn).

Remark 1 By definition, each strongly self-healing SHS is also self-healing, but
not vice versa. The additional requirement for strongly self-healing means, that
the system state G′ obtained after repairing is not only normal, but can also be
generated by all normal rules in the given mixed sequence (p1 . . . pn) of normal
and environment rules, as if no environment rule would have been applied. We
will see that our SH-System TLS is strongly self-healing, but a modification of
TLS, which counts failures, even if they are repaired later, would only be self-
healing, but not strongly self-healing.

Another important property of SH-Systems is deadlock-freeness, meaning
that no reachable state is a deadlock. A stronger liveness property is strong
cyclicity, meaning that each pair of reachable states can be reached from each
other. Note that this is stronger than cyclicity meaning that there are cycles in
the reachability graph. Strong cyclicity, however, implies that each reachable
state can be reached arbitrarily often. This is true for the TLS system, but
may be false for other reasonable SH-Systems, which may be only deadlock-
free. Moreover, we consider “normal deadlock-freeness” and “normal strong
cyclicity”, where we only consider normal behavior defined by normal rules.

Definition 7 (Deadlock-Freeness and Strong Cyclicity Properties) An
SH-System SHS is called

11



1. deadlock-free, if no reachable state is a deadlock, i.e.

∀G0 ∈ Reach(SHS) ∃ G0
p

=⇒ G1 via p ∈ Rsys

2. normal deadlock-free, if no state reachable via normal rules is a (normal)

deadlock, i.e. ∀Ginit ⇒∗ G0 via Rnorm ∃ G0
p

=⇒ G1 via p ∈ Rnorm

3. strongly cyclic, if each pair of reachable states can be reached from each
other, i.e. ∀G0, G1 ∈ Reach(SHS) ∃ G0 ⇒∗ G1 via Rsys

4. normally cyclic, if each pair of states reachable by normal rules can be
reached from each other by normal rules, i.e.
∀Ginit ⇒∗ G0 via Rnorm and Ginit ⇒∗ G1 via Rnorm we have ∃ G0 ⇒∗ G1

via Rnorm

Remark 2 If we have at least two different reachable states (rsp. reachable by
normal rules), then “strongly cyclic” (rsp. “normally cyclic”) implies “deadlock-
free” (rsp. “normal deadlock-free”). In general properties 1 and 2 as well as 3
and 4 are independent from each other. But in Thm. 3 we will give sufficient
conditions s.t. “normal deadlock-free” implies “deadlock-free” (rsp. “normally
cyclic” implies “strongly cyclic” in Thm. 4).

6 Analysis and Verification of Operational Prop-
erties

In this section, we analyze the operational properties introduced in section 5
and give static sufficient conditions for their verification.

First, we define direct and normal healing properties, which imply the strong
self-healing property under suitable conditions in Thm. 1. In a second step we
give static conditions for the direct and normal healing properties in Thm. 2,
which by Thm. 1 are also sufficient conditions for our self-healing properties.
Of course, we have to require that for each environment rule, which may cause
a failure there are one or more repair rules leading again to a state without this
failure, if they are applied immediately after its occurrence. But in general,
we cannot apply the repair rules directly after the failure, because other normal
and environment rules may have been applied already, before the failure is mon-
itored. For this reason we require in Thm. 1 that each pair (p, q) of environment
rules p and normal rules q is sequentially independent. By the Local Church-
Rosser theorem for algebraic graph transformation [13](Thm 5.12) sequential
independence of (p, q) allows one to switch the corresponding direct derivations
in order to prove Thm. 1. For the case with nested application conditions in-
cluding NACs we refer to [16]. Moreover, the AGG tool can calculate all pairs
of sequential independent rules with NACs before runtime.

Definition 8 (Direct and Normal Healing Properties) An SH-System SHS
has the

1. direct healing property, if the effect of each environment rule can be re-

paired directly, i.e. ∀G0
p

=⇒ G1 via p ∈ Renv ∃ G1
p′

=⇒ G0 via p′ ∈ Rrpr
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2. normal healing property, if the effect of each environment rule can be re-

paired up to normal transformations, i.e. ∀G0
p

=⇒ G1 via p ∈ Renv ∃
G1 ⇒+ G2 via Rrpr s.t. ∃ G0 ⇒∗ G2 via Rnorm

Remark 3 The direct healing property allows one to repair each failure caused
by an environment rule directly by reestablishing the old state G0. This is not
required for the normal healing property, but it is required only that the repaired
state G2 is related to the old state G0 by a normal transformation. Of course,
the direct healing property implies the normal one using G2 = G0.

Theorem 1 (Analysis of Self-healing Properties) An SH-System SHS is

I. strongly self-healing, if we have properties 1, 2, and 3 below

II. self-healing, if we have properties 1, 2 and 4 below

1. SHS is normal state consistent

2. each pair (p, q) ∈ Renv × Rnorm is sequentially independent

3. SHS has the direct healing property

4. SHS has the normal healing property

Proof I. Given Ginit ⇒∗ G via (p1, . . . pn) ∈ (Rnorm ∪ Renv)∗ with G ∈
Fail(SHS) we have n ≥ 1, because Ginit ∈ Norm(SHS) by 1. By sequen-
tial independence in 2. we can switch the order of (p1, . . . pn), s.t. first all
normal rules pi ∈ Rnorm and then all environment rules pi ∈ Renv are applied.
As example let us consider Ginit ⇒+ G via (q1, p1, q2, p2, q3) with qi ∈ Rnorm

and pi ∈ Renv. Then sequential independence leads by the Local Church-Rosser
theorem to equivalent sequences in subdiagram (1), (2), (3) respectively.

Ginit
q1 +3 G1

q2 �%
BBBBB

BBBBB
p1 +3 G2

q2 +3

(1)

G3

q3  (JJJJJJJ

JJJJJJJ
p2 +3 G4

q3 +3

(2)

G

p′2

fnG′2

p1

6>ttttttt
ttttttt

q3  (IIIIII

IIIIII
(3) G′4

p2

;C~~~~~
~~~~~

p′1
iqG′3 = G′
p1

6>uuuuuu
uuuuuu

By the direct healing property of 3, we have p′1, p
′
2 ∈ Rrpr with G′4

p′1=⇒ G′3

and G
p′2=⇒ G′4. With G′ = G′3 we have G ⇒+ G′ via (p′2, p

′
1) ∈ R∗rpr and

Ginit ⇒∗ G′ via (q1, q2, q3) ∈ R∗norm where (q1, q2, q3) is the subsequence of
(q1, p1, q2, p2, q3) of all normal rules and normal state consistency of 1. implies
Ginit, G

′ ∈ Norm(SHS). Note that in the repair sequence (p′2, p
′
1) the (possible)

failures caused by p1, p2 ∈ Renv are repaired in opposite order. In general the
sequence (p1, . . . pn) (n ≥ 1) contains at least one rule in Renv, because otherwise
G 6∈ Fail(SHS) by 1. This implies that we have a repair sequence G ⇒+ G′

via Rrpr of length n ≥ 1. Hence SHS is strongly self-healing.
II. We can proceed as above up to the point that first all normal and then all
environment rules are applied. As shown in our example the normal healing
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property 4 leads first to a repair transformation G⇒+ G5 via Rrpr with G′4 ⇒∗
G5 via Rnorm, then we can switch rules in (4) according to 2. Finally the normal
healing property leads to G5 ⇒+ G6 via Rrpr with G′5 ⇒∗ G6 via Rnorm.

Ginit
q1 +3 G1

q2 �$
BBBBB

BBBBB
p1 +3 G2

q2 +3

(1)

G3

q3 �$
BBBBB

BBBBB
p2 +3 G4

q3 +3

(2)

G
Rrpr + +3 G5

Rrpr ++3 G6 = G′

G′2

p1

:B|||||
|||||

q3 �$
AAAAA

AAAAA
(3) G′4

p2

;C~~~~~
~~~~~

(4)

Rnorm

∗ 8@

G′3

p1

:B}}}}}
}}}}}

Rnorm

∗+3 G′5
Rnorm

∗
DL

p1

BJ
�����������

�����������

Altogether, we obtain for G′ = G6 a repair transformation G ⇒+ G5 ⇒+

G6 = G′ and a normal rule transformation Ginit ⇒∗ G′3 ⇒∗ G′5 ⇒∗ G6 = G′,
which implies G′ ∈ Norm(SHS) by 1. In general G ∈ Fail(SHS) implies that
we have at least one environment rule in the given sequence and hence a repair
transformation G⇒+ G′ of length n ≥ 1. Hence SHS is self-healing. �

In the following Thm. 2 we give static conditions for direct and normal
healing properties. In part 1 of Thm. 2 we require that for each environment
rule p the inverse rule p−1 is isomorphic to a repair rule p′. Two rules are
isomorphic if they are componentwise isomorphic. For p = (L ← I → R) with
negative application condition nac : L → N it is possible (see [13] Remark
7.21) to construct p−1 = (R ← I → L) with equivalent nac′ : R → N ′. In part
2 of Thm. 2 we require as weaker condition that each environment rule p has a
corresponding repair rule p′, which is not necessarily inverse to p. It is sufficient
to require that we can construct a concurrent rule p∗R p′ which is isomorphic to
a normal rule p′′. For the construction and corresponding properties of inverse
and concurrent rules, which are needed in the proof of Thm. 2 we refer to [13].

Theorem 2 (Static Conditions for Direct/Normal Healing Properties) 1.
An SH-System SHS has the direct healing property, if for each environ-
ment rule there is an inverse repair rule, i.e. ∀p ∈ Renv ∃ p′ ∈ Rrpr with
p′ ∼= p−1

2. An SH-System SHS has the normal healing property if for each environ-
ment rule there is a corresponding repair rule in the following sense:
∀p = (L← K → R) ∈ Renv we have

a) repair rule p′ = (L′ ←l′ K ′ →r′ R′) with l′ bijective on nodes, and

b) an edge-injective morphism e : L′ → R leading to concurrent rule
p ∗R p′, and

c) normal rule p′′ ∈ Rnorm with p ∗R p′ ∼= p′′

Proof 1. Given p = (L
l←− K

r−→ R) with NACs naci,L : L → Ni,L(i ∈ I)

the inverse rule is given by p−1 = (R
r←− K

l−→ L) with corresponding NACs

naci,R : R→ Ni,R. Now given p ∈ Renv with G0
p

=⇒ G1, we have by assumption

p′ ∈ Rrpr with p′ ∼= p−1 and by construction of p−1 also G1
p−1

=⇒ G0 and hence

also G1
p′

=⇒ G0.
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2. The concurrent rule p∗ = p ∗R p′ is given by

L
id �� (5)

K
loo r //

id�� (6)

R
id

!!CCCC L′
e

}}zzzz
(7)

K ′
l′oo r′ //

�� (8)

R′

��
L∗ = L Koo // R

(9)

K ′′oo // R∗

K∗

hhPPPPPPPP

66lllllllll

where (5), (6) are trivial pushouts, pushout-complement K ′′ exists in (7) be-
cause e is edge-injective and l′ bijective on nodes (see prop. a)) s.t. the gluing
condition is satisfied. Moreover, (8) is constructed as PO and (9) as pullback
(PB).

Given G0
p,m
=⇒ G1 with m injective (see Remark 4) and p ∈ Renv we have

L
m �� (1)

K
loo r //

�� (2)

R
n
  AAAA L′
eoo
m′

}}||||
(3)

K ′
l′oo r′ //

�� (4)

R′

��
G0 D0
oo // G1 D1

oo // G2

where POs (1), (2) are given, leading to injective comatch n, m′ defined by m′ =
n ◦ e is edge-injective by property b), PO-complement D1 in (3) exists, because
the gluing condition is satisfied, and (4) is constructed as PO. Hence, we have an

R-related transformation sequence G0
p,m
=⇒ G1

p′,m′

=⇒ G2. Using the Concurrency

Theorem (see [13] Thm 5.23) we have a corresponding transformation G0
p∗,m
=⇒

G2 via the concurrent rule p∗. According to property c) we have p
′′ ∈ Rnorm

with p∗ ∼= p
′′

and hence also G0
p
′′

=⇒ G2 via Rnorm. Finally, G1
p′

=⇒ G2 via
p′ ∈ Rrpr is the required transformation G1 ⇒+ G2 via Rrpr. The sequence

G0
p,m
=⇒ G1

p′,m′

=⇒ G2 is R-related because we have the following diagram where
PO (3) splits into

L
id �� (5)

K
loo r //

id�� (6)

R
id

  BBBB L′
e

}}{{{{
(7)

K ′
l′oo r′ //

�� (8)

��

R′

��

��

L∗ = L
m ��

Koo //

��

R
n��

K ′′oo //

��

R∗

��
G0

(1)

D0
oo //

(2)

G1

(9)

D1
oo //

(10)

G2

POs (7) and (9) using the PO-PB decomposition property (see [13]) with n
injective. Finally (4) splits into POs (8) and (10). �

Remark 4 In part 2 of the theorem we require that p ∈ Renv is applied with
injective match m. If all rules in Rsys are required to be applied with injective
matches, then we have to require that e in Condition 2 b) is injective. If p and
p′ have NACs we have to require that m |= NAC(p) implies m′ |= NAC(p′),

where m′ = n ◦ e and n is the comatch in G0
p,m
=⇒ G1 as shown in the proof.

Remark 5 By combining Thm. 1 and Thm. 2 we obtain static conditions en-
suring that an SH-System SHS is strongly self-healing and self-healing, respec-
tively.
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Example 5 (Direct Healing Property of TLS) TLS has direct healing prop-
erty because “RepairTL” rsp. “RepairCam” are inverse to “FailureTL” resp.
“FailureCam” and each pair (p, q) ∈ Renv × Rnorm is sequentially independent
according to the dependency matrix of TLS in Fig. 9.

Figure 9: Dependency Matrix of TLS in AGG

In the following Thm. 3 and Thm. 4 we give sufficient conditions for deadlock-
freeness and strong cyclicity which are important liveness properties. Here we
mainly use a stepwise approach. We assume to have both properties for nor-
mal rules and give additional static conditions to conclude the property for all
system rules. The additional conditions are sequentially and parallel indepen-
dence and a direct correspondence between environment and repair rules, which
should be inverse to each other. Similar to sequential independence, also parallel
independence of rules (p, q) can be calculated by the AGG tool before runtime.

Theorem 3 (Deadlock-Freeness) An SH-System SHS is deadlock-free, if

1. SHS is normally deadlock-free, and

2. Each pair (p, q) ∈ (Renv ∪ Rrpr) × Rnorm is sequentially and parallel
independent.

Proof Given Ginit ⇒∗ G0 via Rsys we have to show the existence of G0
p

=⇒ G1

via some p ∈ Rsys. Similar to proof of Thm. 1, sequential independence allows
one to construct an equivalent transformation sequence Ginit ⇒∗ G′0 ⇒∗ G1

via Rnorm in the first and via (Renv ∪ Rrpr) in the second part. Now normal
deadlock-freeness

Ginit

Rsys ∗ +3

Rnorm
∗
�&

EEEEEE

EEEEEE
G0

p +3 G1

G′0 p
+3

(Renv∪Rrpr)

∗ :B||||||

||||||
G′1

(Renv∪Rrpr)

∗ :B||||||

||||||
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implies the existence of G′0
p

=⇒ G′1 via some p ∈ Rnorm. Now parallel indepen-

dence allows one to construct by the local Church-Rosser theorem G0
p

=⇒ G1

and G′1 ⇒∗ G0 via (Renv∪Rrpr) for some G1. G0
p

=⇒ G1 with p ∈ Rnorm ≤ Rsys

is the required transformation. �

Theorem 4 (Strong Cyclicity) An SH-System SHS is strongly cyclic, given
I. properties 1 and 2, or
II. properties 1, 3 and 4 below.

1. For each environment rule there is an inverse repair rule and vice versa.

2. For each normal rule there is an inverse normal rule.

3. SHS is normally cyclic.

4. Each pair (p, q) ∈ (Renv ∪Rrpr) × Rnorm is sequentially independent.

Proof I. Given conditions 1 and 2 it is sufficient to show that for each Ginit ⇒∗
Gn via Rsys there is also a reverse sequence Gn ⇒∗ Ginit via Rsys. In fact, for
Ginit ⇒∗ Gn via (p1, . . . , pn) ∈ R∗sys we have Gn ⇒∗ Ginit via (p−1n , . . . , p−11 ) ∈
R∗sys.

II. Given conditions 1, 3 and 4, and Ginit ⇒∗ G1 via Rsys and Ginit ⇒∗ G2

via Rsys. By sequential independence (cond. 4) we can split the sequences as

shown in (1) and (2). For each direct transformation G3
p

=⇒ G4 in G′1 ⇒∗ G1

via (Renv ∪ Rrpr) we have p′ ∈ (Rrpr ∪ Renv) with p ∼= p′−1 leading to a

direct transformation G4
p′

=⇒ G3 with p′ ∈ (Rrpr ∪ Renv). Hence we ob-
tain a transformation sequence G1 ⇒∗ G′1 via (Rrpr ∪ Renv). Since SHS is
normally cyclic (cond. 3), we obtain G′1 ⇒∗ G′2 via Rnorm and altogether
(G1 ⇒∗ G2) = (G1 ⇒∗ G′1 ⇒∗ G′2 ⇒∗ G2) via Rsys.

Ginit

Rsys

∗

(1)

t| rrrrrrrrrrrrrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrr

Rnorm

∗
�� 	

												

													

Rnorm
∗
��

5555555555555

5555555555555

Rsys

∗

(2)

"*LLLLLLLLLLLLLLLLLLLLLLL

LLLLLLLLLLLLLLLLLLLLLLL

G1

(Renv∪Rrpr)

∗
<D
G′1(Renv∪Rrpr)

∗ks
Rnorm

∗ +3 G′2 (Renv∪Rrpr)

∗ +3 G2

This shows that SHS is strongly cyclic. �

Remark 6 In part I of Thm. 4, we avoid the stepwise approach and any kind
of sequential and parallel independence by the assumption that also all normal
rules have inverses, which is satisfied for our TLS.

Example 6 (Strong Cyclicity and Deadlock-Freeness of TLS) We use part
I of Thm. 4 to show strong cyclicity. Property 1 is satisfied because “FailureTL”
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and “RepairTL” as well as “FailureCam” and “RepairCam” are inverse to each
other. Property 2 is satisfied because “ArrivalCarsOne(Two)” and “Remove-
CarsOne(Two)” as well as “InfractionOn” and “InfractionOff” are inverse to
each other. Moreover, deadlock-freeness of TLS follows from strong cyclicity by
remark 2. Note that we cannot use part II of Thm. 4 for our example TLS,
because e.g. (“RepairTL”, “ArrivalCarsOne”) is not sequentially independent.

7 Conclusion

In this paper, we have modeled and analyzed self-healing systems using algebraic
graph transformation and graph constraints. We have distinguished between
consistency properties, including system consistency and normal state consis-
tency, and operational properties, including self-healing, strongly self-healing,
deadlock-freeness, and strong cyclicity. The main results concerning operational
properties are summarized in Fig. 10, where most of the static conditions in
Thms. 1- 4 can be automatically checked by the AGG tool.

Figure 10: Operational properties of self-healing systems

All properties are verified for our traffic light system. Note that in this
paper, the consistency properties are checked by inspection of corresponding
rules, while the operational properties are verified using our main results. Work
is in progress to evaluate the usability of our approach by applying it to larger
case studies. As future work, we will provide analysis and verification of con-
sistency properties using the theory of graph constraints and nested application
conditions in [16]. Moreover, we will investigate how far the techniques in this
paper for SH-systems can be used and extended for more general self-adaptive
systems.
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