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Abstract

FinitaryM-adhesive categories areM-adhesive categories with �nite objects only,

where the notionM-adhesive category is short for weak adhesive high-level replace-

ment (HLR) category. We call an object �nite if it has a �nite number of M-

subobjects. In this paper, we show that in �nitary M-adhesive categories we do

not only have all the well-known properties of M-adhesive categories, but also all

the additional HLR-requirements which are needed to prove the classical results for

M-adhesive systems. These results are the Local Church-Rosser, Parallelism, Con-

currency, Embedding, Extension, and Local Con�uence Theorems, where the latter is

based on critical pairs. More precisely, we are able to show that �nitaryM-adhesive

categories have a unique E-M factorization and initial pushouts, and the existence

of anM-initial object implies in addition �nite coproducts and a unique E ′-M′ pair
factorization. Moreover, we can show that the �nitary restriction of eachM-adhesive

category is a �nitaryM-adhesive category and �nitariness is preserved under functor

and comma category constructions based onM-adhesive categories. This means that

all the classical results are also valid for corresponding �nitaryM-adhesive systems

like several kinds of �nitary graph and Petri net transformation systems. Finally, we

discuss how some of the results can be extended to non-M-adhesive categories.

1 Introduction

The concepts of adhesive [1] and (weak) adhesive high-level-replacement (HLR) [2] cat-
egories have been a break-through for the double pushout approach (DPO) of algebraic
graph transformations [3]. Almost all main results in the DPO-approach have been for-
mulated and proven in these categorical frameworks and instantiated to a large variety
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of HLR systems, including di�erent kinds of graph and Petri net transformation systems.
These main results include the Local Church-Rosser, Parallelism, and Concurrency Theo-
rems, the Embedding and Extension Theorem, completeness of critical pairs, and the Local
Con�uence Theorem.

However, in addition to the well-known properties of adhesive and (weak) adhesive HLR
categories (C,M), also the following additional HLR-requirements have been needed in [2]
to prove these main results: �nite coproducts compatible withM, E ′-M′ pair factorization
usually based on suitable E-M factorization of morphisms, and initial pushouts. It is an
open question up to now under which conditions these additional HLR-requirements are
valid in order to avoid an explicit veri�cation for each instantiation of an adhesive or (weak)
adhesive HLR category. In [4], this has been investigated for comma and functor category
constructions of weak adhesive HLR categories, but the results hold only under strong
preconditions. In this paper, we close this gap showing that these additional properties are
valid in �nitaryM-adhesive categories. We use the notion �M-adhesive category� as short
hand for �weak adhesive HLR category� in the sense of [2]. Moreover, an object A in an
M-adhesive category is called �nite, if A has (up to isomorphism) only a �nite number of
M-subobjects, i. e., only �nite manyM-morphisms m : A′ → A up to isomorphism. The
category C is called �nitary, if it has only �nite objects. Note, that the notion ��nitary�
depends on the classM of monomorphisms and �C being �nitary� must not be confused
with �C being �nite� in the sense of a �nite number of objects and morphisms. In the
standard cases of Sets and Graphs where M is the class of all monomorphisms, �nite
objects are exactly �nite sets and �nite graphs, respectively.

Although in most application areas for the theory of graph transformations only �nite
graphs are considered, the theory has been developed for general graphs, including also
in�nite graphs, and it is implicitly assumed that the results can be restricted to �nite
graphs and to attributed graphs with �nite graph part, while the data algebra may be
in�nite. Obviously, not only Sets and Graphs are adhesive categories but also the full
subcategories Setsfin of �nite sets and Graphsfin of �nite graphs. But to our knowledge
it is an open question whether for each adhesive category C also the restriction Cfin to
�nite objects is again an adhesive category. As far as we know this is true, if the inclusion
functor I : Cfin → C preserves monomorphisms, but we are not aware of any adhesive
category, where this property fails, or whether this can be shown in general. In this paper,
we consider M-adhesive categories (C,M) with restriction to �nite objects (Cfin,Mfin),
whereMfin is the restriction ofM to morphisms between �nite objects. In this case, the
inclusion functor I : Cfin → C preserves M-morphisms, such that �nite objects in Cfin

w. r. t. Mfin are exactly the �nite objects in C w. r. t. M. More generally, we are able
to show that the �nitary restriction (Cfin,Mfin) of any M-adhesive category (C,M) is a
�nitaryM-adhesive category. Moreover, �nitariness is preserved under functor and comma
category constructions based onM-adhesive categories.

In Section 2, we introduce basic notions of �nitary M-adhesive categories including
�nite coproducts compatible with M, M-initial objects, �nite objects, and �nite inter-
sections, which are essential for the theory of �nitary M-adhesive categories. The �rst
main result, showing that the additional HLR-requirements mentioned above are valid
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for �nitary M-adhesive categories, is presented in Section 3. In Section 4, we show as
second main result that the �nitary restriction of anM-adhesive category is a �nitaryM-
adhesive category such that the results of Section 3 are applicable. In Section 5, we show
that functorial constructions, including functor and comma categories, applied to �nitary
M-adhesive categories are again �nitaryM-adhesive categories under suitable conditions.
In Section 6, we analyze how some of the results in Section 3 can be shown in a weaker
form for (�nitary) non-M-adhesive categories, like the category of simple graphs with
all monomorphismsM. Especially, we consider the construction of weak initial pushouts
which are the basis for the gluing condition in order to construct (unique) minimal pushout
complements in such categories, while initial pushouts are the basis for the construction of
(unique) pushout complements in (�nitary)M-adhesive categories. In the conclusion, we
summarize the main results and discuss open problems for future research. A short version
of this paper can be found in [5].

2 Basic Notions of FinitaryM-Adhesive Categories

Adhesive categories have been introduced by Lack and Soboci«ski in [1] and generalized
to (weak) adhesive HLR categories in [6, 2] as a categorical framework for various kinds of
graph and net transformation systems.

AnM-adhesive category (C,M), called weak adhesive HLR category in [2], consists of
a category C and a classM of monomorphisms in C, which is closed under isomorphisms,
composition, and decomposition (g ◦ f ∈ M and g ∈ M imply f ∈ M), such that C has
pushouts and pullbacks along M-morphisms, M-morphisms are closed under pushouts
and pullbacks, and pushouts alongM-morphisms are weak van Kampen (VK) squares.

A′

B′C ′

D′ A

BC

D

mf

gn

a

b
c

d

m′f ′

g′n′

Figure 1: (Weak) van Kampen square

A weak VK square is a pushout as at the bottom of the cube in Figure 1 with m ∈M,
which satis�es the weak VK property, i. e., for any commutative cube, where the back faces
are pullbacks and (f ∈ M or b, c, d ∈ M), the following statement holds: The top face
is a pushout if and only if the front faces are pullbacks. In contrast, the (non-weak) VK
property does not assume (f ∈M or b, c, d ∈M).

Well-known examples of M-adhesive categories are the categories (Sets,M) of sets,
(Graphs,M) of graphs, (GraphsTG ,M) of typed graphs, (ElemNets,M) of elementary
Petri nets, (PTNets,M) of place/transition nets, where for all these categoriesM is the
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class of all monomorphisms, and (AGraphsATG ,M) of typed attributed graphs, whereM
is the class of all injective typed attributed graph morphisms with isomorphic data type
component (see [2]).

The compatibility of the morphism classM with (�nite) coproducts was required for
the construction of parallel rules in [2], but in fact �nite coproducts (if they exist) are
always compatible withM inM-adhesive categories.

Fact 1 (Finite Coproducts Compatible withM). For each M-adhesive category (C,M)
with �nite coproducts, �nite coproducts are compatible with M, i. e., fi ∈ M for
i = 1, . . . , n implies that f1 + · · ·+ fn ∈M.

Proof. It su�ces to show this for the binary case n = 2. For f : A → A′ ∈ M, we
have pushout (1) in Fig. 2 with (f + idB) ∈ M, since M-morphisms are closed under
pushouts. Similarly, we have (idA′ + g) ∈ M in pushout (2) for g : B → B′. Hence,
(f + g) = (idA′ + g) ◦ (f + idB) ∈M by composition ofM-morphisms.

A A′

A + B A′ + B

B B′

A′ + B′

(1) (2)inA inA′

f

f+idB

inB inB′

g

idA′+g

Figure 2: Finite coproducts compatible withM
For the construction of coproducts, it often makes sense to use pushouts overM-initial

objects in the following sense.

De�nition 1 (M-Initial Object). An initial object I in (C,M) is called M-initial if for
each object A ∈ C the unique morphism iA : I → A is inM.

Note that if (C,M) has anM-initial object then all initial objects areM-initial due
toM being closed under isomorphisms and composition.

In the M-adhesive categories (Sets,M), (Graphs,M), (GraphsTG ,M),
(ElemNets,M), and (PTNets,M) we haveM-initial objects de�ned by the empty set,
empty graphs, and empty nets, respectively. But in (AGraphsATG ,M), there is no M-
initial object. The initial attributed graph (∅, TDSIG) with term algebra TDSIG of the data
type signature DSIG is notM-initial because the data type part of the unique morphism
(∅, TDSIG)→ (G, D) is, in general, not an isomorphism.

The existence of anM-initial object implies that we have �nite coproducts.

Fact 2 (Existence of Finite Coproducts). For eachM-adhesive category (C,M) withM-
initial object, (C,M) has �nite coproducts, where the injections into coproducts are in
M.

Proof. It su�ces to show this for the binary case. The coproduct A + B of A and B can
be constructed by the pushout (1) in Fig. 3, which exists because of iA, iB ∈ M. This
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I A

B A + B

(1)iB inA

iA

inB

Figure 3: Coproducts byM-initial object

also implies inA, inB ∈ M, sinceM-morphisms are closed under pushouts inM-adhesive
categories.

Note that anM-adhesive category may still have coproducts even if it does not have
an M-initial object. The M-adhesive category (AGraphsATG ,M), e. g., has �nite co-
products as shown in [2].

Now we are going to consider �nite objects in M-adhesive categories. Intuitively, we
are interested in those objects where the graph or net part is �nite. This can be expressed
in a general M-adhesive category by the fact that we have only a �nite number of M-
subobjects. An M-subobject of an object A is an isomorphism class of M-morphisms
m : A′ → A, where M-morphisms m1 : A′1 → A and m2 : A′2 → A belong to the same
M-subobject of A if there is an isomorphism i : A′1

∼→ A′2 with m1 = m2 ◦ i (cf. Fig. 4).

A′1

A′2

A(=)
m1

i
m2

Figure 4: M-subobject

De�nition 2 (Finite Object and FinitaryM-Adhesive Category). An object A in anM-
adhesive category (C,M) is called �nite if A has �nitely manyM-subobjects.
AnM-adhesive category (C,M) is called �nitary, if each object A ∈ C is �nite.

In (Sets,M), the �nite objects are the �nite sets. Graphs in (Graphs,M) and
(GraphsTG ,M) are �nite if the node and edge sets have �nite cardinality, while TG
itself may be in�nite. Petri nets in (ElemNets,M) and (PTNets,M) are �nite if the
number of places and transitions is �nite. A typed attributed graph AG = ((G, D), t) in
(AGraphsATG ,M) with typing t : (G, D) → ATG is �nite if the graph part of G, i. e.,
all vertex and edge sets except the set VD of data vertices generated from D, is �nite,
while the attributed type graph ATG or the data type part D may be in�nite, because
M-morphisms are isomorphisms on the data type part.

In the following, we will use �nite M-intersections in various constructions. Finite
M-intersections are a generalization of pullbacks to an arbitrary, but �nite number of
M-subobjects and, thus, a special case of limits.

De�nition 3 (FiniteM-Intersection). Given an M-adhesive category (C,M) and mor-
phisms mi : Ai → B ∈ M (i ∈ I for �nite I) with the same codomain object B, a �nite
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M-intersection of mi (i ∈ I) is an object A with morphisms ni : A → Ai (i ∈ I), such
that mi ◦ ni = mj ◦ nj (i, j ∈ I) and for each other object A′ and morphisms n′i : A′ → Ai

(i ∈ I) with mi ◦ n′i = mj ◦ n′j (i, j ∈ I) there is a unique morphism a : A′ → A with
ni ◦ a = n′i (i ∈ I).

A′ A

Ai

Aj

B

(=)

(=)

(=)

n′i

mi

n′j

mj

∃ !a

ni

nj

Note that �niteM-intersections can be constructed by iterated pullbacks and, hence,
always exist inM-adhesive categories. Moreover, since pullbacks preserveM-morphisms,
the morphisms ni are also inM.

3 Additional HLR-Requirements for Finitary

M-adhesive Categories

In order to prove the main classical results forM-adhesive systems based onM-adhesive
categories additional HLR-requirements have been used in [2]. For the Parallelism The-
orem, binary coproducts compatible with M are required in order to construct parallel
rules. Initial pushouts are used in order to de�ne the gluing condition and to show that
consistency in the Embedding Theorem is not only su�cient, but also necessary. In con-
nection with the Concurrency Theorem and for completeness of critical pairs, an E ′-M′

pair factorization is used such that the class M′ satis�es the M-M′ pushout-pullback
decomposition property. Moreover, a standard construction for E ′-M′ pair factorization
uses an E-M factorization of morphisms in C, where E ′ is constructed from E using binary
coproducts.

As far as we know, these additional HLR-requirements cannot be concluded from the
axioms ofM-adhesive categories, at least we do not know proofs for non-trivial classes E ,
E ′, M, and M′. However, in the case of �nitary M-adhesive categories (C,M) we are
able to show that these additional HLR-requirements are valid for suitable classes E and
E ′, and M′ = M. Note that for M′ = M, the M-M′ pushout-pullback decomposition
property is the M pushout-pullback decomposition property which is valid already in
generalM-adhesive categories.

The reason for the existence of an E-M factorization of morphisms in �nitary M-
adhesive categories is the fact that we only need �nite intersections ofM-subobjects and
not in�nite intersections as would be required in generalM-adhesive categories. Moreover,
we �x the choice of the class E to extremal morphisms w. r. t.M.

The dependencies are shown in Fig. 5, where the additional assumptions of �nitariness
andM-initial objects are shown in the top row, the HLR-requirements shown in this paper
in the center and the classical theorems in the bottom row.
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Existence of an

M-Initial Object

Finitariness

of (C,M)

Compatibility

of Finite

Coproducts

withM
(Fact 1)

Existence

of Finite

Coproducts

with

Injections in

M (Fact 2)

Uniqueness

of Extremal

E-M Fac-

torizations

(Fact 3)

Existence

of Extremal

E-M Fac-

torizations

(Fact 4)

Construction

of Initial

Pushouts

(Fact 6)

E ′-M Pair Factor-

izations (Fact 5)

Parallelism

Theorem

Construction

of E-Related

Transfor-

mations

Completeness

of Critical

Pairs

Embedding

Theorem

Figure 5: Dependency graph

De�nition 4 (Extremal E-M Factorization). Given anM-adhesive category (C,M), the
class E of all extremal morphisms w. r. t.M is de�ned by
E := {e in C | for all m, f in C with m ◦ f = e : m ∈M implies m isomorphism}.
For a morphism f : A→ B in C an extremal E-M factorization of f is given by an object
B̄ and morphisms e : A→ B̄ ∈ E and m : B̄ → B ∈M, such that m ◦ e = f .

Remark 1. Although in several example categories the class E consists of all epimorphisms,
we will show below that the class E of extremal morphisms w. r. t.M is not necessarily a
class of epimorphisms. But if we require M to be the class of all monomorphisms and e
and f in the de�nition of E in De�nition 4 to be epimorphisms then E is the class of all
extremal epimorphisms in the sense of [7].

Fact 3 (Uniqueness of Extremal E-M Factorizations). Given an M-adhesive category
(C,M), then extremal E-M-factorizations are unique up to isomorphism, i. e., for each
morphism f : A→ B in C with extremal E-M-factorizations m◦e = f via B̄ and m′◦e′ = f
via B̄′ we have mutually inverse isomorphisms i : B̄ → B̄′ and i−1 : B̄′ → B̄ with i ◦ e = e′,
m ◦ i−1 = m′, i−1 ◦ e′ = e and m′ ◦ i = m.

Proof. Since m ∈ M and m′ ∈ M and M-adhesive categories have pullbacks along
M-morphisms, we can construct the pullback (1) in Fig. 6, where p ∈ M and p′ ∈ M,
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because M-morphisms are closed under pullbacks. By m ◦ e = f = m′ ◦ e′, the univer-
sal property of the pullback induces a unique morphism q : A → P with p ◦ q = e and
p′ ◦ q = e′.
Now, because of e ∈ E and e′ ∈ E with factorizations p ◦ q = e and p′ ◦ q = e′ with
p ∈ M and p′ ∈ M, we have that p and p′ are isomorphisms with corresponding inverses
p−1 : B̄ → P and (p′)−1 : B̄′ → P .
Finally, the required isomorphisms can be constructed by i := p′ ◦ p−1 and i−1 := p ◦ (p′)−1

with i ◦ e = p′ ◦ p−1 ◦ p ◦ q = p′ ◦ q = e′, m ◦ i−1 = m ◦ p ◦ (p′)−1 = m′ ◦ p′ ◦ (p′)−1 = m′,
i−1 ◦ e′ = p ◦ (p′)−1 ◦ p′ ◦ q = p ◦ q = e and m′ ◦ i = m′ ◦ p′ ◦ p−1 = m ◦ p ◦ p−1 = m.

A P

B̄

B̄′

B

(=)

(=)

(1)

e

m

e′

m′

∃ !q

p

p′

Figure 6: Uniqueness of E-M-factorizations

Fact 4 (Existence of Extremal E-M Factorizations). Given a �nitaryM-adhesive category
(C,M), then we can construct an extremal E-M factorization m◦e = f for each morphism
f : A→ B in C.
Construction: The morphism m : B̄ → B is constructed as M-intersection of all M-
subobjects mi : Bi → B for which there exists ei : A → Bi with f = mi ◦ ei, leading to a
suitable �nite index set I, and e : A→ B̄ is the induced unique morphism with m̄i ◦ e = ei

for all i ∈ I.

A

B

BiB̄
(=)

(=)
(=) f

ei

mi

e

m

m̄i

Proof. TheM-subobjects mi : Bi → B with ei : A→ Bi and f = mi ◦ ei contain at least
the trivial subobject given by Bi = B, mi = idB ∈ M and ei = f . Since each object
B is �nite in (C,M), the intersection of allM-subobjects mi : Bi → B as de�ned above
exists. This also shows m̄i ∈ M and m ∈ M, because M is closed under pullbacks and
composition.
It remains to show that e ∈ E . Let e = m′ ◦ e′ be a factorization of e with m′ ∈ M.
Then we have that m ◦ m′ is an M-subobject of B and m ◦ m′ ◦ e′ = f , and, hence,
B′ = Bi, m ◦ m′ = mi and e′ = ei for some i ∈ I. This implies that there exists
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m̄i : B̄ → Bi = B′ with mi ◦ m̄i = m. Now, mi ◦ m̄i ◦m′ = m ◦m′ = mi and mi ∈M being
a monomorphism implies that m̄i ◦m′ = idB′ , and m ◦m′ ◦ m̄i = mi ◦ m̄i = m and m ∈M
being a monomorphism implies that m′ ◦ m̄i = idB̄. Hence, m′ and m̄i are mutually inverse
isomorphisms and e ∈ E .

A B

B′ = Bi

B̄
(=)

(=)
(=)

f

e m

e′=ei m′ m̄i

mi

Figure 7: M-intersection factorization is extremal E-M-factorization

In the categories (Sets,M), (Graphs,M), (GraphsTG,M), (ElemNets,M), and
(PTNets,M), the extremal E-M factorization f = m ◦ e for f : A → B with �nite A
and B is nothing else but the well-known epi-mono factorization of morphisms, which
also works for in�nite objects A and B, because these categories have not only �nite but
also general intersections. For (AGraphsATG,M), the extremal E-M factorization of
(fG, fD) : (G, D) → (G′, D′) with �nite (or also in�nite) G and G′ is given by (fG, fD) =
(mG, mD) ◦ (eG, eD) with (eG, eD) : (G, D) → (Ḡ, D̄) and (mG, mD) : (Ḡ, D̄) → (G′, D′),
where eG is an epimorphism, mG a monomorphism and mD an isomorphism. In general,
eD and, hence, also (eG, eD) is not an epimorphism, since mD is an isomorphism and,
therefore, eD has to be essentially the same as fD. This means that the class E , which
depends onM, is not necessarily a class of epimorphisms.

Given an E-M′ factorization and binary coproducts, we are able to construct an E ′-
M′ pair factorization in a standard way (see [2]), where we will consider the special case
M′ =M. First we recall E ′-M′ pair factorizations.

De�nition 5 (E ′-M′ Pair Factorization). Given a morphism class M′ and a class E ′
of morphism pairs with common codomain in a category C, then C has an E ′-M′ pair
factorization if for each pair of morphisms fA : A→ D, fB : B → D there is, unique up to
isomorphism, an object C and morphisms eA : A → C, eB : B → C, and m : C → D with
(eA, eB) ∈ E ′, m ∈M′, m ◦ eA = fA and m ◦ eB = fB.

A

DC

B

fA

fB

eA

eB

m
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Fact 5 (Construction of E ′-M′ Pair Factorization). Given a category C with an E-M′

factorization and binary coproducts, then C has also an E ′-M′ pair factorization for the
class E ′ = {(eA : A→ C, eB : B → C) | eA, eB ∈ C with induced e : A + B → C ∈ E}.

Proof. Given fA : A → D and fB : B → D with induced f : A + B → D, we consider
the E-M′ factorization f = m ◦ e of f with e ∈ E and m ∈ M′, and de�ne eA = e ◦ inA

and eB = e ◦ inB. Then (eA, eB) ∈ E ′ and m ∈ M′ de�nes an E ′-M′ pair factorization of
(fA, fB) which is unique up to isomorphism, since each other E ′-M′ pair factorization also
leads to an E-M′ factorization via the induced morphism in E and E-M′ factorizations are
unique up to isomorphism.

A

D

C

B

A + B

f

inA inB

fA fB

eA eB

m

e

Figure 8: Construction of E ′-M′-pair factorization

Remark 2. With the previous facts, we have extremal E-M factorizations and correspond-
ing E ′-M pair factorizations for all �nitaryM-adhesive categories withM-initial objects
and these factorizations are unique up to isomorphism.

Finally, let us consider the construction of initial pushouts in �nitary M-adhesive
categories. Similar to the extremal E-M factorization, we are able to construct initial
pushouts by �nite M-intersections of M-subobjects in �nitary M-adhesive categories,
but not in general ones. First we recall the de�nition.

De�nition 6 (Initial Pushout). A pushout (1) over a morphism m : L→ G with b, c ∈M
in anM-adhesive category (C,M) is called initial if the following condition holds: for all
pushouts (2) over m with b′, c′ ∈ M there exist unique morphisms b∗, c∗ ∈ M such that
b′ ◦ b∗ = b, c′ ◦ c∗ = c, and (3) is a pushout.

B B′ L

C C ′ G

B L

C G

(3) (2)(1)

b∗

c∗

b′

c′

a a′ m

b

c

a m

b

c
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Remark 3. As shown in [2], the initial pushout allows to de�ne a gluing condition, which
is necessary and su�cient for the construction of pushout complements. Given m : L→ G
with initial pushout (1) as shown in Fig. 9 and l : K → L ∈ M, which can be considered
as the left-hand side of a rule. The gluing condition is satis�ed if there exists b∗ : B → K
with l ◦ b∗ = b. In this case, the pushout complement object D in (2) is constructed as
pushout object of a and b∗.

B L K

C G D

(1) (2)

b

c

l

f

a m k

b∗

c∗

Figure 9: Pushout complement construction

Fact 6 (Initial Pushouts in FinitaryM-Adhesive Categories). Each �nitary M-adhesive
category has initial pushouts.
Construction: Given m : L→ G, we consider all thoseM-subobjects bi : Bi → L of L and
ci : Ci → G of G such that there is a pushout (Pi) over m. Since L and G are �nite this
leads to a �nite index set I for all (Pi) with i ∈ I. Now construct b : B → L as the �nite
M-intersection of (bi)i∈I and c : C → G as the �niteM-intersection of (ci)i∈I. Then there
is a unique a : B → C such that (Qi) commutes for all i ∈ I and the outer diagram (1) is
the initial pushout over m.

B Bi L

C Ci G

B L

C G

(Qi) (Pi) (1)

ui

vi

bi

ci

a ai m

b

c

a m

b

c

Proof. We have to show that (1) is the initial pushout over m. As mentioned already, I is
�nite, but we also have that card(I) ≥ 1 using the trivial pushout (4) over m in Fig. 10.
Since �nite M-intersections can be constructed by iterated pullbacks we start with
I = {1, 2} and pushouts (Pi) and show that (Qi) and, hence, (Qi) + (Pi) are pushouts for
i ∈ I.
In the cube in Fig. 11, the top and bottom faces are pullbacks byM-intersection construc-
tion. The right back and right front faces are pushouts (P1) and (P2) with b1, b2 ∈M and,
hence, also pullbacks inM-adhesive categories. By pullback composition and decomposi-
tion also the left back and left front faces and hence all squares are pullbacks. Since the
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L L

G G

m m

idL

idG

(4)

Figure 10: Trivial pushout over m

right back face is pushout (P1) along b1 ∈ M and also u1, v1, b2, c2 ∈ M, the weak VK
property implies that also the left front square (Q12) is a pushout. Similarly, also the left
back square (Q11) becomes a pushout, and, hence, also the compositions (Q11) + (P1) and
(Q12) + (P2) are pushouts.

B1

L
B12

B2 C1

G
C12

C2

v1

v2

c1

c2

a1

m
a12

a2

u1

u2

b1

b2

Figure 11: Weak VK cube for n = 2

For the case n = 3, the M-intersections B123 and C123 are given by the top and bottom
faces of the cube in Fig. 12, where the right back square is the pushout (Q11) + (P1) along
b12 = b1 ◦ u1 : B12 → L constructed above and the right front face is pushout (P3). Hence,
we have the same assumptions as above for the case n = 2 and can conclude that also the
left back and left front faces are pushouts.

B12

L
B123

B3 C12

G
C123

C3

v3

c12

c3

a12

m
a123

a3

u3

b12

b3

Figure 12: Weak VK cube for n = 3

For card(I) = n we use this iterated construction to obtain B = B1...n and C = C1...n with
pushouts (Qi) de�ned by composition. Now (1) = (Q1) + (P1) is a pushout along b ∈ M

12



and also initial, because every other pushout (1′) over m with b′ ∈M is equal to (Pi0) for
some i0 ∈ I. Hence, the initiality property is given by the pushout (Qi0) as constructed
above.

B L B′ = Bi0

C G C ′ = Ci0

b

c

b′

c′

a m a′(1) (1′)

Figure 13: Initiality of pushout (1)

The following theorem summarizes that the additional HLR-requirements mentioned
above are valid for all �nitaryM-adhesive categories.

Theorem 1 (Additional HLR-Requirements in FinitaryM-adhesive Categories). Given a
�nitaryM-adhesive category (C,M), the following additional HLR-requirements are valid:

1. (C,M) has initial pushouts.

2. (C,M) has a unique extremal E-M factorization, where E is the class of all extremal
morphisms w. r. t.M.

If (C,M) has anM-initial object, we also have that:

3. (C,M) has �nite coproducts compatible withM.

4. (C,M) has a unique E ′-M′ pair factorization for the classesM′ =M and E ′ induced
by E.

Proof. Requirement 1 follows from Fact 6, Requirement 2 from Facts 3 and 4, Requirement
3 from Facts 2 and 1, and, �nally, Requirement 4 from Fact 5.

4 Finitary Restriction ofM-Adhesive Categories

In order to construct M-adhesive categories it is important to know that (Sets,M)
is an M-adhesive category, and that M-adhesive categories are closed under product,
slice, coslice, functor, and comma category constructions, provided that suitable condi-
tions are satis�ed (see [2]). This allows to show that (Graphs,M), (GraphsTG,M),
(ElemNets,M), and (PTNets,M) are alsoM-adhesive categories. However, it is more
di�cult to show similar results for the additional HLR-requirements considered in Sec-
tion 3, especially there are only weak results concerning the existence and construction of
initial pushouts [4].

We have already shown that these additional HLR-requirements are valid in �nitary
M-adhesive categories under weak assumptions. It remains to show how to construct
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�nitary M-adhesive categories. In the main result of this section, we show that for any
M-adhesive category (C,M) the restriction (Cfin,Mfin) to �nite objects is a �nitaryM-
adhesive category, whereMfin is the corresponding restriction ofM. Moreover, we know
how to construct pushouts and pullbacks in Cfin alongMfin-morphisms, because the inclu-
sion functor Ifin : Cfin → C creates and preserves pushouts and pullbacks alongMfin and
M, respectively.

De�nition 7 (Finitary Restriction ofM-adhesive Category). Given anM-adhesive cate-
gory (C,M) the restriction to all �nite objects of (C,M) de�nes the full subcategory Cfin

of C, and (Cfin,Mfin) withMfin =M∩Cfin is called �nitary restriction of (C,M).

Remark 4. Note, that an object A in C is �nite in (C,M) if and only if A is �nite in
(Cfin,Mfin). IfM is the class of all monomorphisms in C thenMfin is not necessarily the
class of all monomorphisms in Cfin. This means that for an adhesive category C, which
is based on the class of all monomorphisms, there may be monomorphisms in Cfin which
are not monomorphisms in C, such that it is not clear whether the �nite objects in C and
Cfin are the same. This problem is avoided for M-adhesive categories, where �nitariness
depends onM.

In order to prove that with (C,M) also (Cfin,Mfin) is an M-adhesive category, we
have to analyze the construction and preservation of pushouts and pullbacks in (C,M)
and (Cfin,Mfin). This corresponds to the following creation and preservation properties of
the inclusion functor Ifin : Cfin → C.

De�nition 8 (Creation and Preservation of Pushout and Pullback). Given anM-adhesive
category (C,M), the inclusion functor Ifin : Cfin → C creates pushouts alongM if for each
pair of morphisms f, h in Cfin with f ∈Mfin and pushout (1) in C we have already D ∈ Cfin

such that (1) is a pushout in Cfin alongMfin.
Similarly, Ifin creates pullbacks alongM if for each pullback (1) in C with g ∈ Mfin and
B, C,D ∈ Cfin also A ∈ Cfin such that (1) is a pullback in Cfin alongMfin.
Ifin preserves pushouts (pullbacks) along Mfin if each pushout (pullback) (1) in Cfin with
f ∈Mfin (g ∈Mfin) is also a pushout (pullback) in C with f ∈M (g ∈M).

A B

C D

(1)h k

f

g

Fact 7 (Creation and Preservation of Pushout and Pullback). Given anM-adhesive cate-
gory (C,M) the inclusion functor Ifin : Cfin → C creates pushouts and pullbacks alongM
and preserves pushouts and pullbacks alongMfin.
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Proof.

1. Ifin creates pullbacks alongM, because, given pullback (1) in C with B, C,D ∈ Cfin

and g ∈ M also f ∈ M. Moreover, eachM-subobject of A is also anM-subobject
of B, because f ∈M. Hence B ∈ Cfin implies that A ∈ Cfin and (1) is also a pullback
in Cfin with f ∈Mfin.

2. Ifin creates pushouts alongM, because given pushout (1) in C with A, B, C ∈ Cfin

and f ∈M also g ∈M. It remains to show that D ∈ Cfin.
Given morphism m′D : D′ → D ∈ M we obtain morphisms m′B : B′ → B ∈ M
and m′C : C ′ → C ∈ M by pullback constructions in (2) below. By Lemma 1, for
m′D : D′ → D ∈M, m′′D : D′′ → D ∈M with corresponding m′B, m

′
C , m

′′
B and m′′C we

have that m′B
∼
= m′′B and m′C

∼
= m′′C implies that also m′D

∼
= m′′D. This is equivalent to

the injectivity of the M-subobject function Φ: MSub(D) → MSub(B) ×MSub(C)
de�ned by Φ([m′D]) = ([m′B], [m′C ]).
Here, MSub(X) is the set of all M-subobjects of X = D, B, C and m′B, m′C are
constructed by pullbacks of m′D as discussed above. Note, that [m′D] is the subobject
corresponding to m′D. Now B, C ∈ Cfin implies that MSub(B) and MSub(C) are
�nite. Hence also MSub(B) ×MSub(C) is �nite, and injectivity of Φ implies that
also MSub(D) is �nite, and therefore D ∈ Cfin.

A

B

C

D

B′

C ′

D′(2)

f

m′B

m′C

m′D

3. Ifin preserves pushouts alongMfin, because given pushout (1) in Cfin with f ∈ Mfin

also f ∈ M. Since Ifin creates pushouts along M by Item 2, the pushout (1′) of
f ∈ M and h in C is also a pushout in Cfin. By uniqueness of pushouts this means
that (1) and (1′) are isomorphic and hence (1) is also a pushout in C.

4. Similarly, we can show that Ifin preserves pullbacks along Mfin using the fact that
Ifin creates pullbacks alongM as shown in Item 1.

It remains to show the following lemma for the above proof of Item 2.

Lemma 1. Given m′D, m′′D and derived m′B, m′′B, m′C, m′′C as above, then m′B
∼
= m′′B and

m′C
∼
= m′′C implies that m′D

∼
= m′′D.
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Proof. From m′B
∼
= m′′B and m′C

∼
= m′′C and uniqueness of pullback constructions up to

isomorphism we can assume w. l. o. g. that m′B = m′′B and m′C = m′′C in diagrams (3) and
(4) corresponding to (2) for m′D and m′′D, respectively. Now let A′ be the pullback in the
top faces of the cubes (3) and (4). Hence the top, bottom, right front, and left back faces
are pullbacks alongM-morphisms. Note, that the top and back faces are equal in (3) and
(4), and the right back square is the pushout (1) along f ∈M.

A

B

C

D

B′

C ′

D′

A

B

C

D

A′

B′

C ′

D′

A

B

C

D

A′

B′

C ′

D′′(2) (3) (4)

f
m′A

m′B

m′C

m′D

f

m′B

m′C

m′D

f
m′A

m′B

m′C

m′′D

Moreover, we have m′A, m′B, m′C , m′D, m′′D ∈ M such that the weak VK property implies
that the left front squares in (3) and (4) are pushouts. Since pushouts are unique up to
isomorphism, it follows that D′

∼
= D′′ and m′D

∼
= m′′D.

Now we are able to show the second main result.

Theorem 2. The �nitary restriction (Cfin,Mfin) of any M-adhesive category (C,M) is
a �nitaryM-adhesive category.

Proof. According to Remark 4, an object A in C is �nite in (C,M) if and only if it is
�nite in (Cfin,Mfin). Hence, all objects in (Cfin,Mfin) are �nite.
Moreover, Mfin is closed under isomorphisms, composition, and decomposition, because
this is valid for M. (Cfin,Mfin) has pushouts along Mfin because (C,M) has pushouts
along M and Ifin creates pushouts along M by Fact 7. This implies also that Mfin is
preserved by pushouts alongMfin in Cfin. Similarly, (Cfin,Mfin) has pullbacks alongMfin

andMfin is preserved by pullbacks alongMfin in Cfin.
Finally, the weak VK property of (C,M) implies that of (Cfin,Mfin) using that Ifin pre-
serves pushouts and pullbacks along Mfin and creates pushouts and pullbacks along M.

A direct consequence of Theorem 2 is the fact that �nitary restrictions of (Sets,M),
(Graphs,M), (GraphsTG,M), (ElemNets,M), (PTNets,M), and (AGraphsATG,
M) are all �nitary M-adhesive categories satisfying not only the axioms of M-adhesive
categories, but also the additional HLR-requirements stated in Theorem 1, where, however,
the existence of �nite coproducts in (AGraphsATG,M) is valid (see [2]), but cannot be
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concluded from the existence ofM-initial objects as required in Items 3 and 4 of Theorem 1.
Note, that I is anMfin-initial object in (Cfin,Mfin) if I is anM-initial object in (C,M).

Remark 5. From Theorem 1 and Theorem 2 we can conclude that the main results for the
DPO approach, like the Local Church-Rosser, Parallelism, Concurrency, Embedding, Ex-
tension, and Local Con�uence Theorems, are valid in all �nitary restrictions ofM-adhesive
categories. This includes also corresponding results with nested application conditions [8],
because shifts along morphisms and rules preserve �niteness of the objects occuring in the
application conditions.

5 Functorial Constructions of FinitaryM-Adhesive

Categories

Similar to general M-adhesive categories, also �nitary M-adhesive categories are closed
under product, slice, coslice, functor, and comma categories under suitable conditions [2].
It su�ces to show this for functor and comma categories, because all others are special
cases.

Fact 8 (Finitary Functor Categories). Given a �nitaryM-adhesive category (C,M) and a
category X with a �nite class of objects then also the functor category (Funct(X,C),MF )
is a �nitaryM-adhesive category, whereMF is the class of allM-functor transformations
t : F ′ → F , i. e., t(X) : F ′(X)→ F (X) ∈M for all objects X in X.

Proof. By Theorem 4.15.3 in [2], (Funct(X,C),MF ) is an M-adhesive category and
it remains to show that each F : X → C is �nite. Since ObjX is �nite, we have objects
X1, . . . , Xn in X. We want to show that there are only �nite manyM-functor transforma-
tions t : F ′ → F up to isomorphism. In each case we have t(Xk) : F ′(Xk)→ F (Xk) ∈ M,
say ik ∈ N di�erent choices using F (Xk) ∈ C and C is a �nitary M-adhesive category.
Hence, altogether we have at most i = i1 · . . . · in ∈ N di�erent t : F ′ → F up to isomor-
phism.

Remark 6. For in�nite (discrete) X we have Funct(X,C) ∼=
∏

i∈N C. With C = Setsfin

the object (2i)i∈N with 2i = {1, 2} has an in�nite number of subobjects (1i)i∈N of (2i)i∈N
with 1i = {1}, because in each component i ∈ N we have two choices of injective functions
f1/2 : {1} → {1, 2}. Hence Funct(X,C) is not �nitary, because (2i)i∈N in

∏
i∈N C is not

�nite.

Fact 9 (Finitary Comma Categories). Given �nitaryM-adhesive categories (A,M1) and
(B,M2) and functors F : A→ C and G : B→ C, where F preserves pushouts alongM1

and G preserves pullbacks along M2, then the comma category ComCat(F, G; I) with
M = (M1 ×M2) ∩ComCat(F, G; I) is a �nitaryM-adhesive category.

Proof. By Theorem 4.15.4 in [2], ComCat(F, G; I) is an M-adhesive category and it
remains to show that each object (A, B, op =

[
opk : F (A)→ G(B)

]
k∈I) is �nite. By as-

sumption, A and B are �nite with a �nite number of subobjects m1,i : Ai → A ∈ M1
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for i ∈ I1 and m2,j : Bj → B ∈ M2 for j ∈ I2. Hence, we have at most |I1| · |I2| M-
subobjects of (A, B, op) of the form, where for each i, j, k there is at most one opk

i,j such
that (1) in Fig. 14 commutes, because G preserves pullbacks alongM2 such that G(m2,j)
is a monomorphism in C according to the mono-characterization by pullbacks.

F (Ai) G(Bj)

F (A) G(B)

(1)

opk
i,j

opk

F (m1,i) G(m2,j)

Figure 14: Finite comma categories

Remark 7. Note that I in ComCat(F, G; I) is not required to be �nite.

6 Extension to Non-M-Adhesive Categories

There are some relevant categories in computer science which are notM-adhesive for non-
trivial choices ofM. The categories SGraphs of simple graphs (i. e., there is at most one
edge between each pair of vertices) and RDFGraphs of Resource Description Framework
graphs [9, 10] are, e. g., only M-adhesive if M is chosen to be bijective on edges which
is not satisfactory, since M is the class used for transformation rules and these should
be able to add and delete edges. This di�erence between multi and simple graphs is due
to the fact that colimits implicitly identify equivalent edges for simple graphs and similar
structures and, hence, behave radically di�erently than in the case of multi graphs.

Similar behaviour can be expected for a wide variety of categories in which the objects
contain some kind of relational structure. Since relational structures are omnipresent in
computer science � in databases, non-deterministic automata, logical structures � the study
of transformations for these categories is also highly relevant.

Moreover, pushout complements are not even unique in these categories leading to
double-pushout transformations being non-deterministic even for determined rule and
match. We can, however, canonically choose a minimal pushout complement (MPOC),
which is the approach taken in [9, 10]. This leads to a new variant of the double-pushout
transformation framework which is applicable to such categories of relational structures.

Therefore, it is interesting to explore to what extent the results on �nitaryM-adhesive
categories presented in this paper are also valid in such non-M-adhesive categories in
order to transfer as much as possible of the extensive theoretical results fromM-adhesive
categories to the MPOC framework and possibly also other approaches.

De�nition 9 (M-Category). A category C together with a class M of monomorphisms
is called M-category (C,M) if M is closed under composition, decomposition and iso-
morphisms, pushouts and pullbacks along M exist, and M is closed under pushouts and
pullbacks.
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An object A in (C,M) is called �nite if the number ofM-subobjects of A is �nite and the
M-category is called �nitary if each object A in (C,M) is �nite.

Facts 1�5 regarding coproducts and factorizations are already valid for (�nitary) M-
categories, where we need in additionM-initial objects for Facts 2 and 5. Moreover, Facts 8
and 9 remain valid for �nitaryM-categories, but this problem is open for the creation of
pushouts in Fact 7 and, hence, also for Theorem 2.

By contrast, initial pushouts as they are de�ned in De�nition 6 and constructed in
Fact 6 do not, in general, exist in �nitaryM-categories. The problem is that the squares
between the initial pushout and the comparison pushouts have to be pushouts themselves.
Therefore, we de�ne a weaker variant of initial pushouts, which does not require these
squares to be pushouts but just to be commutative.

De�nition 10 (Weak Initial Pushout). Given an M-category (C,M), a pushout (1) as
in De�nition 6 over a morphism m : L → G with b, c ∈ M is called weak initial if for all
pushouts (2) over m with b′, c′ ∈ M there exist unique morphisms b∗, c∗ ∈ M, such that
b′ ◦ b∗ = b, c′ ◦ c∗ = c, and (3) commutes.

Remark 8. Observe that in M-adhesive categories each weak initial pushout is already
an initial pushout, since the initial pushout can be decomposed byM-pushout-pullback-
decomposition which holds inM-adhesive categories, because the comparison pushout is
also a pullback inM-adhesive, but not in generalM-categories.

Now, we show the existence and construction of weak initial pushouts for �nitaryM-
categories, provided thatM-pushouts are closed under pullbacks in the following sense.

De�nition 11 (Closure ofM-Pushouts under Pullbacks). Given anM-category (C,M),
we say that M-pushouts are closed under pullbacks if for each morphism m : L→ G and
commutative diagram with pushouts over m in the right squares, pullbacks in the top and
bottom and b1, b2 ∈ M (and, hence, c1, c2, u1, u2, v1, v2 ∈ M) it follows that the diagonal
square is a pushout.

B1

L
B12

B2 C1

G
C12

C2

a1

b1

c1

u1

v1

m
a12

b

c

b2

c2

u2

v2

a2

Figure 15: Closure ofM-pushouts under pullbacks

Fact 10 (Existence of Weak Initial Pushouts). Finitary M-categories have weak initial
pushouts, provided thatM-pushouts are closed under pullbacks.
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Proof. Given m : L → G, we consider, similarly to Fact 6, all pushouts Pi (i ∈ I) over
m with bi, ci ∈ M up to isomorphism. Since L and G are �nite, we can assume that I is
�nite and construct, also similarly to Fact 6, the weak initial pushout by iterated pullbacks.
The closure ofM-pushouts under pullbacks ensures that the constructed diagonal square
is, in fact, a pushout. But we do not necessarily have pushouts in the left squares in the
diagram in Fig. 15. Moreover, eachM-pushout over m coincides up to isomorphism with
Pi for some i ∈ I. Hence, there are ui, vi ∈M by construction, which are unique by bi and
ci being monomorphisms. Altogether, this means that the constructed square is a weak
initial pushout.

Note that the required closure of M-pushouts under pullbacks already holds in
M-adhesive categories. Moreover, the closure holds in the categories SGraphs and
RDFGraphs, allowing us to construct weak initial pushouts in these categories.

Remark 9. Similar to Remark 3, weak initial pushouts allow to de�ne a gluing condition,
which in this case is necessary and su�cient for the existence and uniqueness of minimal
pushout complements (see [10]).

7 Conclusion

We have introduced �nite objects in weak adhesive HLR categories [2], calledM-adhesive
categories for simplicity in this paper. This leads to �nitaryM-adhesive categories, like the
category Setsfin of �nite sets and Graphsfin of �nite graphs with classM of all monomor-
phisms. In order to prove the main results like the Local Church-Rosser, Parallelism,
Concurrency, Embedding, Extension, and Local Con�uence Theorems not only the well-
known properties of M-adhesive categories are needed in [2], but also some additional
HLR-requirements, especially initial pushouts, which are important to de�ne the gluing
condition and pushout complements, but often tedious to be constructed explicitly. In this
paper, we have shown that for �nitaryM-adhesive categories initial pushouts can be con-
structed by �niteM-intersections. Moreover, also the other additional HLR-requirements
are valid in �nitary M-adhesive categories and, hence, the main results are valid for all
M-adhesive systems with �nite objects, which are especially important for most of the
application domains.

In order to construct �nitaryM-adhesive categories we can either restrictM-adhesive
categories to all �nite objects or apply suitable functor and comma category constructions
(known already for generalM-adhesive categories [2]).

Finally, we have extended some of the results to non-M-adhesive categories, like the
category of simple graphs. Although adhesive categories [1] are special cases ofM-adhesive
categories for the classM of all monomorphisms we have to be careful in specializing the
results to �nitary adhesive categories. While an object is �nite in anM-adhesive category
C if and only if it is �nite in the �nitary restriction Cfin (withMfin =M∩Cfin) this is only
valid in adhesive categories if the inclusion functor I : Cfin → C preserves monomorphisms.
It is to our knowledge an open problem for which kind of adhesive categories this condition
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is valid. Concerning categories C with a classM of monomorphisms, calledM-categories,
it is open whether there are non-M-adhesive categories such that the �nitary restriction
(Cfin, Mfin) is a �nitary M-adhesive category. For non-M-adhesive categories it would
be interesting to �nd a variant of the Van-Kampen-property which is still valid and allows
to prove at least weak versions of the main results known for M-adhesive systems. The
closure ofM-pushouts under pullbacks is a �rst step in this direction, because it allows to
construct weak initial pushouts for �nitaryM-categories.

It remains open to compare our notion of �nite objects in M-categories with simi-
lar notions in category theory [11, 7] and to investigate other examples of M-categories.
Moreover, the relationships to work on (�nite) subobject lattices in adhesive categories in
[12, 13] are a valuable line of further research.
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