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Abstract: Global navigation satellite systems (GNSS) are an important tool for positioning, navigation,
and timing (PNT) services. The fast and high-precision GNSS data processing relies on reliable integer
ambiguity fixing, whose performance depends on phase bias estimation. However, the mathematic
model of GNSS phase bias estimation encounters the rank-deficiency problem, making bias estimation
a difficult task. Combining the Monte-Carlo-based methods and GNSS data processing procedure
can overcome the problem and provide fast-converging bias estimates. The variance reduction of the
estimation algorithm has the potential to improve the accuracy of the estimates and is meaningful
for precise and efficient PNT services. In this paper, firstly, we present the difficulty in phase
bias estimation and introduce the sequential quasi-Monte Carlo (SQMC) method, then develop the
SQMC-based GNSS phase bias estimation algorithm, and investigate the effects of the low-discrepancy
sequence on variance reduction. Experiments with practical data show that the low-discrepancy
sequence in the algorithm can significantly reduce the standard deviation of the estimates and shorten
the convergence time of the filtering.

Keywords: GNSS phase bias; sequential quasi-Monte Carlo; variance reduction

1. Introduction

Global navigation satellite systems (GNSS) are widely used in positioning, navigation, and timing
(PNT) services. The accuracy of the precise positioning can reach the level of centimeters and satisfy
a pervasive use in civil and military applications. GNSS is being developed at a fast pace, and the
systems in full operation at present include the United States of America (USA)’s Global Positioning
System (GPS) and Russia’s Global Navigation Satellite System (GLONASS). The European Union plans
to complete the construction of the Galileo system, while China is going to fully operate the BeiDou
Navigation Satellite System (BDS) by 2020 [1,2]. The basic principle of GNSS data processing is to
mathematically solve the interesting PNT parameters in the observation models with measurements of
the distances between GNSS satellites and receivers. However, the biases in the signal measurements
lead to errors in the models and degrade the accuracy of the solutions. Consequently, the bias estimation
plays an important role in the quality of the final PNT services [3–5]. Reducing the variance of the bias
estimates can more precisely recover the measurements and improve the service quality.

Fast and precise GNSS data processing uses the carrier-wave phase measurement by the receivers.
The phase measurement only records the fractional part of the carrier phase plus the cumulated numbers.
Therefore, the phase measurements from GNSS receivers are not directly the satellite–receiver distance,
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and an additional unknown integer ambiguity needs to be solved so that the distance can be recovered.
Methods for solving the integer ambiguities were investigated in the past few decades, and some
effective approaches such as the ambiguity function method (AFM) and the Least-squares ambiguity
Decorrelation Adjustment (LAMBDA) method were proposed, which are widely used in practice [6,7].
The LAMBDA method-based GNSS data processing is usually composed of four steps [6,8]. Firstly,
the interesting parameters for PNT services are estimated together with the unknown ambiguities by
the least-squares method or Kalman filtering. Secondly, the integer ambiguities are resolved according
to the float estimates and variance–covariance (VC) matrix by decorrelation and searching methods.
Thirdly, the searched integer ambiguities are validated to assure that they are the correct integers.
Fourthly, the interesting unknown parameters of PNT services in the measurement models are derived
with the validated integer ambiguities. The reliable ambiguity resolution is critical for fast and precise
PNT services. The above steps work well when the errors of the measurements are small, but the
performance degrades quickly when the errors grow. The errors of the phase measurements affect the
solutions of the float ambiguities in the first step and destroy the integer nature of the ambiguities that
are searched in the second step. As a result, the fixed integer vector cannot pass the validation in the
third step and, thus, the fast and precise GNSS PNT services will be unreachable.

GNSS signals propagate through the device hardware when they are emitted from the satellite or
received by the receivers, leading to time delays, i.e., biases. The biases play the role of errors in the
measurements when they cannot be successfully estimated and, thus, block the success of ambiguity
fixing. The difficulty in the phase bias estimation lies in the correlation between the unknown bias
and the ambiguity parameters. This correlation leads to rank-deficiency of the equation set and, thus,
the parameters cannot be solved by the least-squares method or Kalman filtering method in the first
step of ambiguity fixing [9,10]. It should be noted that estimation of some parameters leading to
rank-deficiency in GNSS data processing can be avoid by the techniques such as S-system theory [11].
However, those techniques focus on solving the estimable parameters and cannot solve the problems
when the inestimable parameters are critical. In this case, if we want to estimate the bias parameter
or the ambiguity parameter accurately, the conventionally inestimable parameter must be accurately
known, which is a dilemma for GNSS researchers. Fortunately, the Monte Carlo-based approaches have
the potential to solve this dilemma [12,13]. Furthermore, it can be found in references that the Monte
Carlo method is also used for the ambiguity resolution without phase error estimation in attitude
determination [14] and code multipath mitigation with only code observations [15]. Those researches
use different ideas in data processing and are not related to the topic of phase bias estimation.

The sequential Monte Carlo (SMC) method or particle filtering is used in the state-space approach
for time series modeling since the basic procedure proposed by Goden [16] (see the descriptions
in References [16–18]). The SMC is mainly to solve problems with non-Gaussian and non-linear
models, while it is rarely used in GNSS data processing. SMC can be regarded as Bayesian filtering
implemented by the Monte Carlo method [19]. A state-space model, i.e., hidden Markov model,
can be described by two stochastic processes {xt}

T
t=1 and

{
y
}T
t=1. The latent Markov process of initial

density satisfies x0 ∼ µ(x0), and the Markov transition density is f (xk|xk−1), with
{
y
}T
t=1 satisfy g(yk|xk),

which is a conditional marginal density. Bayesian filtering gives the estimation of the posterior
density P(xk|y1:k) = g(yk|xk)g(xk|xk−1)/P(yk|y1:k−1), where P(yk|y1:k−1) is a normalizing constant.
The analytical solution P(xk|y1:k) can be derived for some special cases such as the solution of a Kalman
filter for linear models with Gaussian noise. Otherwise, the analytical solution is not available, and
the Monte Carlo-based solutions can be used to approximate the solution via random samples as
SMC. The probability density of the variable is represented by weighted samples, and the estimates
can be expressed by xk = 1/N

∑N
i=1 xi

k. The SMC is mainly composed of three steps according to
References [20,21], the update step which updates the weighs of the particles according to g(yk|xk),
the resampling step to avoid degeneracy indicating most particles with weights close to zero, and the
prediction step which transits the particles to the next epoch.
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However, the random sequence used in the Monte Carlo method has possible gaps and clusters.
Quasi-Monte Carlo (QMC) replaces the random sequence with a low-discrepancy sequence which can
reduce the variance and has better performance [22–25]. Until now, the QMC-based variance reduction
method in GNSS data processing was not addressed. This study aims to combine the GNSS data
processing procedure and the sequential QMC (SQMC) methods to obtain precise GNSS phase bias
estimates. The paper firstly gives an overview of the mathematical problem in GNSS bias estimation
and then provides a renewed algorithm introducing the variance reduction method based on QMC to
precisely estimate GNSS phase bias.

The remainder of this article is structured as follows: Section 2 presents the procedure and
mathematical models of the GNSS data processing and introduce the difficulties in phase bias
estimation. Section 3 gives an overview of the QMC theory. Section 4 describes the proposed GNSS
phase bias estimation algorithm based on the SQMC method. Section 5 gives the results of phase bias
estimation with practical data, and Section 6 draws the key research conclusions.

2. Mathematic Models of GNSS Precise Data Processing and the Dilemma

The code and phase measurements are usually used to derive the interesting parameters for GNSS
services. The code measurement is the range obtained by multiplying the traveling time of the signal
when it propagates from the satellite to the receiver at the speed of light. The phase measurement is
much more precise than the code measurement but is ambiguous by an unknown integer number of
wavelengths when used as range, and the ambiguities are different every time the receiver relocks the
satellite signals [7].

In the measurement models, the unknowns include not only the coordinate parameters, but also
the time delays caused by the atmosphere and device hardware, as well as the ambiguities for phase
measurement. In relative positioning, the hardware delays can be nonzero values and should be
considered in multi-GNSS and GLONASS data processing, i.e., inter-system bias (ISB) [9,10,26] and
inter-frequency bias (IFB) [27], respectively. The ISB and IFB of the measurements are correlated with
the ambiguities and are the key problems to be solved.

The double difference (DD) measurement models are usually constructed to mitigate the common
errors of two non-difference measurements. For short baselines, the DD measurement mathematical
models including the interesting parameters for GNSS PNT services, such as coordinates for positioning,
the unknown ambiguities, and the ISB or IFB parameters, can be written in the form of matrices as

v = Ax + Db + Cy + l, (1)

where v denotes the vector of observation residuals; b is composed of unknown single difference
(SD) ambiguities

(
Ni1

ab, Ni2
ab, . . . , Nin

ab

)
, where i is the reference satellite and n is the number of the

DD-equations, and a and b are the stations; y includes the ISB and IFB rate; vector x contains the
unknown station coordinate and the other interesting parameters; l is the measurements from the
receiver; A is the design matrix of the elements in x; D is the design matrix with elements of zero and
the corresponding carrier wavelength. Matrix D transforms SD ambiguities to DD ambiguities; C is
the design matrix of y with elements of zero and the SD of the channel numbers for phase IFB rate
parameter, with elements of zero and one for the phase ISB parameter.

GNSS data processing such as for precise positioning is used to precisely determine the elements
in x. Denoting the weight matrix of the DD measurements [7] by P, the normal equation of the
least-squares method is 

ATPA ATPD ATPC
DTPD DTPC

sym CTPC




x
b
y

 =


ATPl
DTPl
CTPl

. (2)
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For simplification, the notation in Equation (3) is used.
Nxx Nxb Nxy

Nbb Nby
sym Nyy




x
b
y

 =


Wx

Wb
Wy

. (3)

If the bias vector y is precisely known, the estimation of x can be realized by following four steps.
Step 1: Derive the solution of x and b with float SD-ambiguities by least-squares method.[

x̂
b̂

]
=

[
Nxx Nxb
Nbx Nbb

]−1[
Wx −Nxyy
Wb −Nbyy

]
=

[
Qxx Qxb
Qbx Qbb

][
Wx −Nxyy
Wb −Nbyy

]
. (4)

After the float SD ambiguities in b are estimated, the SD ambiguities and their VC matrix are transformed
into DD ambiguities bD̂D̂ and the corresponding VC matrix Qb̂b̂ by differencing.

Step 2: Fix the integer ambiguities. The elements of b̂DD are intrinsically integer values but
the values calculated are floats. Resolving the float values to integers can improve the accuracy to
sub-centimeter level with fewer observations [28]. The ambiguity resolution can be expressed by

b̌ = F
(
b̂
)
, (5)

where function F() maps the ambiguities from float values to integers. This process can be
implemented by the LAMBDA method [6,8] which can efficiently mechanize the integer least square
(ILS) procedure [29]. This method is to solve the ILS problem described by

min
(
b̂− b

)T
Qb̂b̂

−1
(
b̂− b

)
, with b ∈ Zn, (6)

where b denotes the vector of integer ambiguity candidates. The LAMBDA procedure contains mainly
two steps, the reduction step and the search step. The reduction step decorrelates the elements in b̂
and orders the diagonal entries by Z-transformations to shrink the search space. The search step is a
searching process finding the optimal ambiguity candidates in a hyper-ellipsoidal space.

Step 3: Validate the integer ambiguities. The obtained ambiguity combination b̌ is not guaranteed
to be the correct integer ambiguity vector and it requires to be validated. The R-ratio test [29,30] can be
employed. This test tries to ensure that the best ambiguity combination, which is the optimal solution
of Equation (6), is statistically better than the second best one. The ratio value is calculated by

RATIO = ‖b̂− b̌
′

‖
2Qb̂b̂/

(
‖b̂− b̌

2
‖Qb̂b̂

)
, (7)

where b̌
′

is the second best ambiguity vector according to Equation (6). The integer ambiguity vector b̌
will be accepted if the ratio value is equal to or larger than a threshold, and it will be refused if the ratio
value is smaller than the threshold.

Step 4: Derive the fixed baseline solution. After the integer ambiguity vector passes the validation
test, b̌ is used to adjust the float solution of other parameters, leading to the corresponding fixed
solution. This process can be expressed by

x̌ = x̂−Qx̂b̂Qb̂b̂
−1

(
b̂− b̌

)
, (8)

Qx̌x̌ = Qx̂x̂ −Qx̂b̂Qb̂b̂
−1Qb̂x̂, (9)

where x̌ denotes the fixed solution of x; Qx̌x̌ is the VC matrix of the fixed solution x̌; Qb̂x̂ is the VC
matrix of b̂ and x̂; b̂ refers to the float ambiguity solution; x̂ is the float solution of x.
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The fixed solution x̌ can reach sub-centimeter level. If errors in the observation models are removed,
the successful ambiguity fixing requires observations of only a few epochs, even a single epoch.

From Equations (5) and (6), the successful ambiguity resolution requires accurate float ambiguity
estimates and the corresponding VC matrix. If the bias in y is unknown, the bias cannot be separated by
Equation (4) but stays with the ambiguity parameter. As a result, the obtained ambiguity parameters
include bias and the ambiguity resolution will fail. When both the bias and the ambiguity are
parameterized simultaneously, the bias parameter is correlated with the ambiguity parameter and, thus,
it is impossible to separate the bias values and get precise float ambiguities estimates. Mathematically,
the normal equation set (Equation (2)) will be rank-deficient and cannot be solved.

3. Monte Carlo-Based Algorithms

3.1. Bayes Filtering

In a state-space model, the transition function and the measurement model can be expressed by

xk = fk(xk−1, εk), (10)

yk = hk(xk, ek), (11)

where yk is the measurement vector at epoch k; fk() is the transition function; hk() is the measurement
function; εk and ek are the state noise and the measurement noise, respectively. This model indicates
a first-order Markov process because the estimated state vector is only related to the states of the
previous epoch k− 1, but not to other states before.

Considering the Chapman–Kolmogorov equation [31],

p
(
xk|y1:k−1

)
=

∫
p(xk|xk−1) p

(
xk−1|y1:k−1

)
dxk−1, (12)

the posterior density p
(
xk|y1:k

)
can be estimated according to the Bayes’s theorem by

p
(
xk|y1:k

)
= p

(
yk|xk

)
p
(
xk|y1:k−1

)
/p

(
yk|y1:k−1

)
. (13)

The expectation of x can, hence, be expressed by

x̂ =

∫
xp

(
xk|y1:k

)
dx. (14)

Combining Equations (12) and (13), the estimates of x on each epoch can be calculated theoretically.
The optimal analytical expression for p

(
xk|y1:k

)
can be derived for a linear Gauss–Markov model as

a Kalman filter but cannot be obtained for most cases. Fortunately, the suboptimal solutions by the
Monte Carlo method are usually available.

3.2. Importance Sampling

In Monte Carlo methods, the probability density function (PDF) p
(
xk|y1:k

)
is represented by N

samples
{
xi
}N

i=1
; therefore,

p
(
xk|y1:k

)
≈

1
N

∑N

i=1
δ
(
x− xi

)
⇒ x̂ ≈ E

({
xi
}N

i=1

)
, (15)

where δ() is the Dirac delta function.
The posterior density is not precisely known at the beginning of epoch k. Assuming a prior

PDF q(x) is known from which the samples can be generated and p(x) is the posterior density to be
estimated, after the samples are generated, they can be used to load the information provided by the
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measurements at epoch k and obtain more precisely posterior density. The expectation of the unknown
state vector can be calculated by

xˆ=
∫

xp(x)dx =

∫
xp(x)/q(x)q(x)dx =

∫
x(p(x)/q(x))q(x)dx=

∫
x w(x) q(x)dx, (16)

where w(x) = p(x)/q(x); q(x) is the importance density function.
As the PDFs are represented via the Monte Carlo method and according to the Bayes’s theorem,

the expectation can be written as

x̂ ≈
1
N

∑N

i=1
wixi, (17)

where wi of xk is derived by w̃(xk) =
∑N

i=1 wi
k−1p

(
yk|xk

)(
p
(
xk|xi

k−1

)
/q

(
xk|xi

k−1, yk

))
.

3.3. Sequential Monte Carlo Algorithm

A sequential importance sampling (SIS) procedure can be implemented to get estimates of x.

Firstly, sample set
{
xi

0

}N

i=1
is generated with equal weights according to the initial distribution q(x0).

Then, the samples are reweighted according to the likelihood of the measurements and the estimates x̂
are calculated. Afterward, the samples are transited to the next epoch. In practice, the SIS quickly
degenerates during the filtering as more and more particles get negligible weights. Fortunately,
the degeneracy problem can be solved by resampling which duplicates the samples with large weights
and deletes the samples with small weights.

The resampling step is implemented as follows: (a) the numerical CDF
{
Wi

k

}N

i=1
of x is constructed

with Wi
k =

∑i
j=1 w j

k; (b)CDF {ui}
N
i=1 is generated by ui = ((i− 1) + ũ)/N, where ũ is a random value

over interval [0, 1); (c) m = 1; for each i = 1, . . . , N, if w̃m
k <ui, xm

k is deleted by setting m = m + 1;

otherwise, xm
k is duplicated by setting xi

k = xm
k ; (d) the new sample set

{
xi

k

}N

i=1
is assigned equal weights.

It is not necessary to resample the samples each epoch, and a condition can be set by comparing
the effective number with a threshold. This resampling procedure adequately solves the degeneracy
problem in SIS in practice. Considering the resampling step, the SMC procedure can be implemented
as Algorithm 1.

Algorithm 1: Sequential Monte Carlo (SMC)

(a) Initialization Generate samples
{
xi

0

}N

i=1
, with xi

0 ∼ q(x0).

(2) Update Update the weights according to likelihood function p
(
yk|x

i
k

)
of measurements with

wi
k = wi

k−1p
(
yk|x

i
k

)
.

Normalize the weights by wi
k = wi

k/
∑N

j=1 w j
k

Calculate the estimated value and variance by x̂k ≈
∑N

i=1 xi
kwi

k and

var(x̂k) ≈
∑N

i=1

(
xi

k − x̂k
)(

xi
k − x̂k

)T
wi

k, respectively.
(c) Resampling Implement resampling if Ne f f < Nth,

where Ne f f is the effective number of samples which is calculated by Ne f f =

1/
∑N

i=0

(
wi

k

)2

and Nth is a threshold which can be set to the value of 2/3N.

(d) Prediction Draw new samples
{
xi

k

}N

i=1
, by xi

k = f
(
xi

k−1

)
+ vk.

Repeat steps (b) to (d) for the next epoch k + 1.

3.4. Sequential Quasi-Monte Carlo Algorithm

The pseudo random numbers usually used in the Monte Carlo method encounter possible gaps
and clusters in the sampling fields. This can be avoided by a QMC method which replaces the random
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sequences with low-discrepancy sequences such as the Sobol sequence, Halten sequence, and so
on [32,33].

The QMC sequence is a deterministic sequence and is uniformly distributed over [0, 1]d. Let
{
ui

}N

i=1

be a sequence of vectors in [0, 1]d and = [0, x] be a subinterval of [0, 1]d. is the sub sequence of
{
ui

}N

i=1
first belonging to . The discrepancy of the sequence is defined by

D∗
({

ui
}N

i=1

)
= sup

x∈[0,1]d

∣∣∣∣∣# o f
N

−

∏d

j=1
xi
∣∣∣∣∣, (18)

where sup refers to the supremum. A sequence with small discrepancy defined by the above formula
is named a low-discrepancy sequence. Koksma–Hlawka theorem indicates that the approximation
error of a real function represented by discrete numbers, i.e., the left side of Equation (19), is bounded
by the product of two independent factors, the variation of the real function, and the discrepancy of
the discrete numbers. Therefore, we have the following inequality:

|
1
N

∑N

i=1
f
(
ui

)
−

∫
[0,1]d

f (u)du| ≤ V( f )D∗
({

ui
}N

i=1

)
, (19)

where V( f ) is the variation of f in the sense of Hardy and Krause [34]. A low-discrepancy sequence

has D∗
({

ui
}N

i=1

)
= O

(
N−1

(
lnd N

))
. This indicates that the QMC estimate for numerical integration has

a probabilistic error bound of O
(
N−1

(
lnd N

))
, which is better than the error bound of MC estimate

O
(
N−1/2

)
. This can improve the convergence and enables efficient computing.

It is difficult to analyze the accuracy of the approximation by QMC in practice as the points are
regular. Therefore, randomized QMC (RQMC) can be used so that every element of the sequence
is uniformly distributed over the unit cub but still has a low-discrepancy property [35–37]. Figure 1
shows the first 200 samples of the sequences for RQMC sampling, pseudo-random sampling, and
the corresponding Gaussian sampling with a Sobol sequence. The SQMC algorithm is presented in
Algorithm 2.
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Algorithm 2: SQMC

(a) Initialization Generate a QMC or RQMC points
{
ui

}N

i=1
where ui

∈ [0, 1]d; generate
{
xi

0

}N

i=1
according

to xi
0 = q−1

(
ui

)
, where q(x) is the prior density of x.

(b) Update Update the weights according to likelihood function p
(
yk|x

i
k

)
of measurements with

wi
k = wi

k−1p
(
yk|x

i
k

)
.

Normalize the weights by wi
k = wi

k/
∑N

j=1 w j
k, Calculate the estimated value and

variance by x̂k ≈
∑N

i=1 xi
kwi

k and var(x̂k) ≈
∑N

i=1

(
xi

k − x̂k
)(

xi
k − x̂k

)T
wi

k, respectively.
(c) Resample Resample if Ne f f < Nth,

where Ne f f is the effective number of samples which is calculated by

Ne f f = 1/
∑N

i=0

(
wi

k

)2
and Nth is a threshold which can be set to the value of 2/3N.

(d) prediction Generate a QMC or RQMC points
{
ui

}N

i=1
where ui

∈ [0, 1]d ‘ draw new samples
{
xi

k

}N

i=1

according to p
(
xk|y1:k−1

)
with

{
ui

}N

i=1
.

Repeat steps (b) and (c) for the following epochs.

4. SQMC-Based Algorithm for Phase Bias Estimation

The ratio for integer ambiguity validation in step 3 of Section 2 reflects the closeness of the float
ambiguity vector to the integer ambiguity vector and, thus, shows the quality of the ambiguity fixing
performance. If the ambiguity is successfully fixed to the integer ambiguities with high probability,
the phase bias can be precisely derived. Although the searching and validation step cannot be
linearized to satisfy the conditions for using the linear least-squares methods, we can count on the
Monte Carlo-based method to develop algorithms for precise phase bias estimation.

The ratio value used in the ambiguity validation reflects the quality of the integer ambiguity fixing
performance as used in the ambiguity validation. If bk is the correct ambiguity vector and xk represents
the phase bias parameters at epoch k, we can have the assumption that the conditional probability
density p(bk|xk) has the proportional relationship p(bk|xk) ∝ ratio(xk), and simply let

p
(
bk|xi

k

)
= ratio

(
xi

k

)
/
∑N

i=1
ratio

(
xi

k

)
. (20)

The PDF p(bk|xk) is then used as the likelihood function in the Monte Carlo-based estimation method
to update the weights. This is expressed as

wi
k = wi

k−1p
(
bk|xi

k

)
= wi

k−1ratio
(
xi

k

)
/
∑N

i=1
ratio

(
xi

k

)
. (21)

This designed likelihood function works for the estimation of the phase biases which affect the ratio
values in ambiguity fixing.

The following procedure is implemented to calculate ratio
(
xi

k

)
at epoch k for each element in sample

set
{
xi

k

}N

i=1
: (a) xi

k is used as known bias values to calibrate the measurement model by Equation (4)
and solve the equation set to get float SD ambiguities and the corresponding VC matrix; (b) the DD
ambiguities and the VC matrix are calculated, and the integer ambiguities are fixed using the LAMBDA
method; (c) ratio

(
xi

k

)
is calculated using Equation (7).

Moreover, the phase bias can be regarded as constant between epochs, and the transition function
which transports samples from epoch k− 1 to epoch k is

xi
k = xi

k−1 + vi, (22)

where v is the normal distributed noise with each element v ∼ N(0, σ).
The flowchart of the SQMC procedure for phase bias estimation is plotted in Figure 2, and the

corresponding algorithm is presented as Algorithm 3.
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Figure 2. Flowchart of the global navigation satellite system (GNSS) phase bias estimation. The blue
boxes refer to the GNSS data processing steps and the yellow boxes are related to SQMC.

Algorithm 3: GNSS phase bias estimation (SQMC)

Initialization Generate a QMC or RQMC points
{
ui

}N

i=1
where ui

∈ [0, 1]d; generate
{
xi

0

}N

i=1
according

to xi
0 = q−1

(
ui

)
, where q(x) is the prior density of x.

Update Update the weights according to likelihood function p
(
yk|x

i
k

)
of measurements with

wi
k = wi

k−1p
(
bk|xi

k

)
.

Normalize the weights by wi
k = wi

k/
∑N

j=1 w j
k, Calculate the estimated value and

variance by x̂k ≈
∑N

i=1 xi
kwi

k and var(x̂k) ≈
∑N

i=1

(
xi

k − x̂k
)(

xi
k − x̂k

)T
wi

k, respectively.
Resample Resample if Ne f f < Nth,

where Ne f f is the effective number of samples which is calculated by

Ne f f = 1/
∑N

i=0

(
wi

k

)2
and Nth is a threshold which can be set to the value of 2

3 N.

prediction Generate a QMC or RQMC points
{
ui

}N

i=1
where ui

∈ [0, 1]d; draw new samples
{
xi

k

}N

i=1

with noise of N−1
({

ui
}N

i=1

)
.

Repeat steps 2 and 3 for the following epochs.

Algorithm 3 combines the QMC method and the GNSS ambiguity fixing procedures together
to estimate the GNSS phase bias. The low-discrepancy sequences of QMC are included for variance
reduction. Section 5 shows the applications of the approach with practical GNSS data.

5. Experiments with Practical GNSS Data

The GLONASS phase IFB estimation of baseline GOP6_GOP7 in networks of international GNSS
service (IGS) (ftp://ftp.cddis.eosdis.nasa.gov/pub/gnss) was taken as an example to demonstrate the
variance reduction by QMC. The baseline was in Europe with the location in Figure 3, and the two
GNSS stations were equipped with LEICA GRX1200+GNSS 9.20 and TRIMBLE NETR9 5.01 receivers,
respectively. The measurement data were collected at GPS time (GPST) 9:00–10:00 a.m. on day of year
(DOY) 180 of 2018 with an epoch interval of 30 seconds. Six GLONASS satellites were observed during
the time span, and the satellite slot numbers are shown at the beginning of the satellite trajectories
in Figure 4. The baseline had a post-processed GLONASS phase IFB around −29.5 mm/frequency
number (FN) which can be regarded as the true values of both L1 and L2 frequencies.

ftp://ftp.cddis.eosdis.nasa.gov/pub/gnss
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Figure 4. Observed Russia’s Global Navigation Satellite System (GLONASS) satellites shared by the
two stations of baseline GOP6_GOP7 at GPST 9:00–10:00 a.m. on day of year (DOY) 180 of 2018.
The satellite slot numbers in blue color are marked at the beginning of the satellite trajectories.

Both the code and carrier phase measurements of frequency L1 and L2 were used to form
Equation (1) in the experiment. Only one IFB parameter was included because the IFB values for both
frequency L1 and L2 were regarded as the same. Algorithm 3 for SQMC-based phase-bias estimation
was implemented, and the IFB estimate was derived at each epoch. Furthermore, the IFB estimates
were also calculated using the SMC-based approach for comparison. When the bias was estimated
many times, the estimates of each time were different because the RQMC sequence was used in the
SQMC-based procedure, and the pseudo-random sequence was used in the SMC-based procedure.
The standard deviation (SD) of the estimates was calculated to evaluate the performance.

Firstly, the IFB was estimated 1000 times with the SMC-based approach. The sigma of the
transition noise in Equation (22) was set to 1 mm/FN, and the sample number was fixed to a value of
100. The 1000 estimates of IFB for the first 60 epochs are drawn in Figure 5 as yellow lines. Afterward,
the SQMC-based approach with a Sobol sequence for IFB estimation was implemented. The SQMC
strategy also had a sigma of the transition noise as 1 mm/FN and the number of samples as 100. The IFB
was also estimated 1000 times, and the results for the first 60 epochs are plotted in Figure 5 as blue
lines. The SDs of the 1000 estimates of SMC and SQMC approaches are calculated and presented in
Figure 5 as a yellow line and blue line, respectively.
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Figure 5. Inter-frequency bias (IFB) estimates with 1000 iterations and their SDs based on SQMC-based
and SMC-based algorithms with data of baseline GOP6_GOP7 collected at GPST 9:00–9:30 a.m. on
DOY 180 of 2018.

Obviously, both approaches could successfully estimate the IFB values. After convergence,
the estimates of the two algorithms were very similar, such as the results after epoch 40th. However,
the estimates of the SQMC-based algorithm converged faster than those of the SMC approach, and the
corresponding SD was much lower at the beginning. In the worst case of the 1000 estimates, the results
converged, i.e., became close to the true value with a difference smaller than 1.5 mm/FN at the seventh
epoch for SQMC and at the 40th epoch for SMC.

The variance of the estimates for the SQMC-based algorithm with variation in the sample numbers
and the transition noise was also analyzed.

Firstly, the phase IFB was estimated 100 times using the SMC-based and SQMC-based algorithms,
separately, with the number of particles varied from 30 to 200. The sigma of transition noise was fixed
to 1 mm/FN for each estimation. The SDs of the 100 estimates at epochs 1, 2, 5, and 10 are presented in
Figure 6, where we can see that the SD decreased for both SMC and SQMC as the number of particles
increased. The SD for SQMC had much smaller values compared with SQMC. This indicates that the
SQMC-based algorithm could achieve estimates with smaller SD than the SMC-based algorithm using
even smaller sample numbers. This is very meaningful in GNSS data processing, because the main
time-consuming step is the ambiguity fixing procedure in step 2 in Section 2 for each sample. Fewer
samples result in a lighter computation load.
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6. Conclusions  

Figure 6. SDs of the 100 estimates based on SQMC-based and SMC-based algorithms, separately,
for different number of particles from 30 to 200 at epochs 1, 2, 5, and 10. The data are for baseline
GOP6_GOP7 collected at GPST 9:00–9:30 a.m. on DOY 180 of 2018.

Then, the effects of the transition noise were evaluated. The phase IFB was estimated another
100 times with the sigma of the transition noise from 10−6 to 10−2 m/FN, and the number of the samples
was fixed to 100. The SDs of the 100 estimates were calculated at each epoch and the values at epochs
1, 2, 5, and 10 are plotted in Figure 7. Obviously, the SDs of the SQMC-based algorithm were much
smaller than those of the SMC-based algorithm at all the four epochs. The SDs at epoch 10 showed a
curve near 10−3 m/FN and were larger than the STDs corresponding to other nearby sigma values.
This indicates that the transition noise level in the transition model needs to be set carefully. Too high a
transition noise will increase the SDs; however, if the sigma is too small, the samples cannot evolve to
the proper field and the prior density cannot be well represented by the samples, also leading to large
STD values.
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Figure 7. SD of the 100 estimates based on SQMC-based and SMC-based algorithms, separately,
for different transition noise with sigma from 10−6 to 10−2 m/FN at epochs 1, 2, 5, and 10. The data are
for baseline GOP6_GOP7 collected at GPST 9:00–9:30 a.m. on DOY 180 of 2018.
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6. Conclusions

This article presented the problem of solving the mathematical models in GNSS phase bias
estimation, which is essential for fast and precise GNSS data processing; it then developed a fast and
efficient algorithm by combining the GNSS data processing procedure and the SQMC method.

The proposed SQMC-based GNSS phase bias estimation algorithm introduces the QMC technique
to the SMC-based algorithm for variance reduction. The random sequences in SMC approach are
replaced by low-discrepancy sequences in the sampling of the steps of initialization and prediction.
We performed the experiments of phase IFB estimation for GLONASS data processing with practical
data. The results show that the GNSS phase bias estimates have much smaller variance based on the
low-discrepancy sequence. The estimation converges faster, and the results are more precise even with
a much smaller number of samples. This can largely save the convergence time and the computation
load of GNSS PNT services.

In addition, this study introduces the difficulty in GNSS data processing to the mathematic
community, and it has the potential to boost new numerical algorithms for GNSS research
and applications.
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Abbreviations

The following abbreviations are used in this manuscript:

BDS BeiDou Navigation Satellite System
DOY Day of year
GLONASS GLObal NAvigation Satellite System
GNSS Global navigation satellite system
GPS Global positioning system
IFB Inter-frequency bias
IGS International GNSS Service
ISB Inter-system bias
LAMBDA Least-squares ambiguity decorrelation adjustment
MC Monte Carlo method
PDF Probability density function
PNT Positioning, navigation, and timing
QMC Quasi-Monte Carlo method
SIS Sequential importance sampling
SMC Sequential Monte Carlo method
SQMC Sequential quasi-Monte Carlo method
STD Standard deviation
VC Variance–covariance
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