
Forschungsberichte
der Fakultät IV – Elektrotechnik und Informatik

A Formal Resolution Strategy
for Operation-Based Conicts

in Model Versioning
Using Graph Modications

Hartmut Ehrig1

Claudia Ermel1
Gabriele Taentzer2

1Technische Universität Berlin, Germany
ehrig@cs.tu-berlin.de, claudia.ermel@tu-berlin.de,

2Philipps-Universität Marburg, Germany
taentzer@mathematik.uni-marburg.de

Bericht-Nr. 2011 – 01
ISSN 1436-9915

CORE Metadata, citation and similar papers at core.ac.uk

Provided by DepositOnce

https://core.ac.uk/display/326320869?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:claudia.ermel@tu-berlin.de

A Formal Resolution Strategy for

Operation-Based Conflicts in Model Versioning

Using Graph Modifications

Hartmut Ehrig1, Claudia Ermel1 and Gabriele Taentzer2

1 Technische Universität Berlin, Germany
claudia.ermel@tu-berlin.de, ehrig@cs.tu-berlin.de

2 Philipps-Universität Marburg, Germany
taentzer@informatik.uni-marburg.de

Abstract. In model-driven engineering, models are primary artifacts
and can evolve heavily during their life cycle. Hence, versioning of mod-
els is a key technique which has to be offered by an integrated devel-
opment environment for model-driven engineering. In contrast to text-
based versioning systems, our approach takes abstract syntax structures
in model states and operational features into account. Considering the
abstract syntax of models as graphs, we define a model revision by a span
G← D → H, called graph modification, where G and H are the old and
new versions, respectively, and D the common subgraph that remains
unchanged. Based on notions of behavioural equivalence and parallel in-
dependence of graph modifications, we are able to show a Local-Church-
Rosser Theorem for graph modifications. The main goal of the paper is
to handle conflicts of graph modifications which may occur in the case
of parallel dependent graph modifications. The main result is a general
merge construction for graph modifications that resolves all conflicts si-
multaneously in the sense that for delete-insert conflicts insertion has
priority over deletion.

1 Introduction

Visual models are primary artifacts in model-driven engineering. Like source code,
models may heavily evolve during their life cycle and should put under version con-
trol to allow for concurrent modifications of one and the same model by multiple

1

modelers at the same time. When concurrent modifications are allowed, contradict-
ing and inconsistent changes might occur leading to versioning conflicts. Traditional
version control systems for code usually work on file-level and perform conflict de-
tection by line-oriented text comparison. When applied to the textual serialization
of visual models, the result is unsatisfactory because the information stemming from
abstract syntax structures might be destroyed and associated syntactic and semantic
information might get lost.

Since the abstract syntax of visual models can be well described by graphs, we
consider graph modifications to reason about model evolution. Graph modifications
formalize the differences of two graphs before and after a change as a span of injective
graph morphisms G ←− D −→ H where D is the unchanged part, and we assume
wlog. that D → G and D → H are inclusions. An approach to conflict detection
based on graph modifications is described in [11]. We distinguish operation-based
conflicts where deletion actions are in conflict with insertion actions and state-based
conflicts where the tentative merge result of two graph modifications is not well-
formed wrt. a set of language-specific constraints.

In this paper, we enhance the concepts of [11] by the resolution of operation-
based conflicts of graph modifications. First of all, we define behavioural equivalence
and parallel independence of graph modifications based on pushout constructions
in analogy to algebraic graph transformations [4] and show a Local Church-Rosser
Theorem for parallel independent graph modifications. Then we present a merge
construction for conflict-free graph modifications and show that the merged graph
modification is behavioural equivalent to the parallel composition of the given graph
modifications. Using the minimal rule construction of [2,11], we are able to show that
two graph modifications are parallel independent if and only if the graph transfor-
mations based on the minimal rules are parallel independent in the sense of the
DPO-approach [4].

The main new idea of this paper is a general merge construction for graph modifi-
cations which coincides with the conflict-free merge construction if the graph modifi-
cations are parallel independent. Two graph modifications m1 = G← D1 → H1 and
m2 = G← D2 → H2 are said to be in conflict if they are not parallel independent.
A characterization result shows that (m1,m2) are in conflict if and only if (m1,m2)
are in delete-delete conflict or (m1,m2) (resp. (m2,m1)) are in delete-insert conflict.
Our general merge construction can be applied to conflicting graph modifications in
particular. We establish a precise relationship between the behaviour of the given
modifications and the merged modification concerning deletion, preservation and
creation of edges and nodes. In our main result, we show in which way different con-
flicts of the given graph modifications are resolved by the merge construction which

2

gives insertion priority over deletion in case of delete-insert conflicts. Note, however,
that in general the merge construction has to be processed further by hand, if other
choices of conflict resolution are preferred for specific cases. Our running example
is a model versioning scenario for statecharts where all conflicts are resolved by the
general merge construction.

Structure of the paper: In Section 2, we present the basic concepts of algebraic
graph modifications, including behavioural equivalence and a Local Church-Rosser
Theorem. A general merge construction is presented and analysed in Section 4,
where also the main result concerning conflict resolution is given3. Related work is
discussed in Section 5, and a conclusion including directions for future work is given
in Section 6.

2 Graph Modifications: Independence and
Behavioural Equivalence

Graph modifications formalize the differences of two graphs before and after a change
as a span of injective graph morphisms G ← D → H where D is the unchanged
part. This formalization suits well to model differencing where identities of model
elements are preserved for each element preserved. We recall the definition of graph
modifications from [11] here:

Definition 1 (Graph modification). Given two graphs G and H, a graph mod-

ification G
D

=⇒ H is a span of injective morphisms G
g←− D

h−→ H. A sequence
G = G0 =⇒ G1 =⇒ ... =⇒ Gn = H of graph modifications is called graph modifica-
tion sequence and is denoted by G

∗
=⇒ H.

Graph D characterizes an intermediate graph where all deletion actions have
been performed but nothing has been added yet. Wlog. we can assume that g and
h are inclusions, i.e. that D is a subgraph of G and of H. G is called original graph
and H is called changed or result graph.

Example 1 (Graph modifications). Consider the following model versioning scenario
for statecharts. The abstract syntax of the statechart in Figure 1 (a) is defined by
the typed, attributed graph in Figure 1 (b). The node type is given in the top com-
partment of a node. The name of each node of type State is written in the attribute
compartment below the type name. We model hierarchical statecharts by using con-
tainment edges. For instance, in Figure 1 (b), there are containment edges from

3 This technical report is an extended version of our contribution to FASE 2010 [5], containing full proofs.

3

superstate S0 to its substates S1 and S24. Note that for simplicity of the presenta-
tion we abstract from transition events, guards and actions, as well as from other
statechart features, but our technique can also be applied to general statecharts.
Furthermore, from now on we use a compact notation of the abstract syntax of stat-
echarts, where we draw states as nodes (rounded rectangles with their names as node
ids) and transitions as directed arcs between state nodes. The compact notation of
the statechart in Figure 1 (a) is shown in Figure 1 (c).

Fig. 1. Sample statechart: concrete syntax (a), abstract syntax graph (b), and com-
pact notation (c)

In our model versioning scenario, two users check out the statechart shown in
Figure 1 and change it in two different ways. User 1 performs a refactoring operation
on it. She moves state S3 up in the state hierarchy (cf. Figure 2). User 2 deletes
state S3 together with its adjacent transition to state S4.

Obviously, conflicts occur when these users try to check in their changes: state
S3 is deleted by user 2 but is moved to another container by user 1.

In this section, we study relations between different graph modifications based
on category theory. In particular, we are interested in the parallel and sequential
independence and behavioural equivalence of graph modifications leading to a Local
Church-Rosser Theorem and a Merge Theorem. For this purpose, we need pullbacks,
coproducts and pushouts of graphs as basic categorical constructions, corresponding
to intersection, disjoint union resp. union of graphs in a generalized form. Due to
this general formal setting, we can use different kinds of graphs like labelled, typed
or typed attributed graphs (see [4] for more details). At first, we consider the se-
quential and parallel composition of two graph modifications. Our intention is that

4 In contrast to UML state machines, we distinguish edges that present containment links by composition
decorators.

4

Fig. 2. Graph modifications m1 (refactoring) and m2 (deletion)

graph modifications are closed under composition. Given the sequential composition

of two graph modifications G
D1=⇒ H1 and H1

D2=⇒ H2, the resulting modification
obviously has G as original and H2 as changed graph. But how does their inter-
mediate graph D should look like? The idea is to construct D as intersection graph
of D1 and D2 embedded in H1. This is exactly realized by a pullback construction.
The parallel composition of two graph modifications means to perform both of them
independently of each other by componentwise disjoint union. This corresponds to
coproduct constructions G1 + G2, D1 + D2 and H1 + H2 on original, intermediate
and changed graphs.

Definition 2 (Composition of graph modifications). Given two graph modi-

fications G
D1=⇒ H1 = (G ← D1 → H1) and H1

D2=⇒ H2 = (H1 ← D2 → H2),

the sequential composition of G
D1=⇒ H1 and H1

D2=⇒ H2, written (G ← D1 →
H1) ∗ (H1 ← D2 → H2) is given by G

D
=⇒ H2 = (G ← D → H2) via the pullback

construction G D1
oo // H1 D2

oo // H2.

D

eeLLLLLLL
99sssssss

(PB)

The parallel composition of G1
D1=⇒ H1 and G2

D2=⇒ H2 is given by coproduct con-

struction: G1 + G2
D1+D2=⇒ H1 + H2 = (G1 + G2 ← D1 + D2 → H1 + H2).

The differences between the original and the intermediate graph as well as be-
tween the intermediate and the changed graph define the behaviour of a graph
modification. The same behaviour can be observed in graphs with more or less con-
text. Therefore, we define the behavioural equivalence of two graph modifications as

5

follows: Starting with two modifications mi = (Gi
Di=⇒ Hi) (i = 1, 2), we look for a

third graph modification G
D

=⇒ H modeling the same changes with so little context
that it can be embedded in m1 and m2. A behaviourally equivalent embedding of
graph modifications can be characterized best by two pushouts as shown in Defi-
nition 3, since the construction of a pushout ensures that Gi are exactly the union
graphs of G and Di overlapping in D. Analogously, Hi are exactly the union graphs
of H and Di overlapping in D5

Definition 3 (Behavioural Equivalence of Graph Modifications).

Two graph modifications Gi
Di=⇒ Hi (i = 1, 2) are

called behaviourally equivalent if there is a span
(G ← D → H) and PO-span morphisms from
(G← D → H) to (Gi ← Di → Hi), (i = 1, 2), i.e.
we get four pushouts in the diagram to the right.

G1

(PO)

D1
oo //

(PO)

H1

G

OO

��
(PO)

D

OO

��

oo //

(PO)

H

OO

��
G2 D2
oo // H2

Remark 1. Behavioural equivalence of graph modifications is a congruence. This
means, it is reflexive, symmetric and transitive and compatible with sequential and
parallel composition.

Example 2. Figure 3 shows two behaviourally equivalent graph modifications where
the upper one is the refactoring modification m1 from Figure 2. The span (G ←
D → H) shows the same changes as in m1 and m2, but in less context.

We want to consider graph modifications to be parallel independent if they do not
interfere with each other, i.e. one modification does not delete a graph element the
other one needs to perform its changes. While nodes can always be added to a graph
independent of its form, this is not true for edges. An edge can only be added if it
has a source and a target node. Thus parallel independence means more concretely
that one modification does not delete a node that is supposed to be the source
or target node of an edge to be added by the other modification. Moreover, both
graph modifications could delete the same graph elements. It is debatable whether
the common deletion of elements can still be considered as parallel independent or
not. Since we consider parallel independent modifications to be performable in any
order, common deletions are not allowed. Once modification m1 has deleted a graph
element, it cannot be deleted again by modification m2

6

5 In the framework of algebraic graph transformations [4], we may also consider graph modification

G
D

=⇒ H as a graph rule r which is applied to two different graphs G1 and G2. Since the same rule is
applied, graph transformations Gi

r
=⇒ Hi (i = 1, 2) would be behaviourally equivalent.

6 However, we will see that modifications with common deletions still can be merged.

6

Fig. 3. Graph modifications m1 and m2 are behaviourally equivalent

This kind of parallel independence is characterized by Definition 4 as follows: At
first, we compute the intersection D of D1 and D2 in G by constructing a pullback.
Since common deletions are not allowed, there has to be at least one modification for
each graph element which preserves it. Thus, D1 glued with D2 via D has to lead to
G, which corresponds to pushout (1). Next, considering D included in D1 included
in H1 we look for some kind of graph difference. We want to identify those graph
elements of H1 that are not already in D1 and have to be added by D3 such that
both overlap in D, i.e. H1 becomes the pushout object of D → D1 and D → D3. In
this case, D3 with D → D3 → H1 is called pushout complement of D → D1 → H1

(see [4] for pushout and pushout complement constructions). Analogously, D4 is the
difference of H2 and D2 modulo D. Finally, both differences D3 and D4 are glued via
D resulting in H. According to Proposition 1, both modifications may occur in any
order, such that Definition 4 reflects precisely our intention of parallel independence.

7

Definition 4 (Parallel Independence of Graph Modifications).
Two graph modifications (G ← Di → Hi), (i =
1, 2) are called parallel independent if we have the
four pushouts in the diagram to the right, where
(1) can be constructed as pullback, (2) and (3) as
pushout-complements and (4) as pushout.

G
(1)

D1
oo //

(2)

H1

D2

OO

�� (3)

D

OO

��

oo //

(4)

D3

OO

��
H2 D4
oo // H

Remark 2.

1. Parallel independence requires that pullback (1) is a pushout, i.e. D1 → G← D2

are jointly surjective, and that the pushout-complements D3 in (2) and D4 in (3)
exist. Since all morphisms are injective, we only have to check that the dangling
points of D1 → H1 and D2 → H2 are in D.

2. (G ← D1 → H1) and (G ← D2 → H2) are called almost parallel independent if
(1) is pullback and (2)− (4) are pushouts.

Definition 5 (Sequential Independence of Graph Modifications). Two graph
modifications G ← D1 → H1 and H1 ← D3 → H are called sequentially indepen-
dent if H1 ← D1 → G and H1 ← D3 → H are parallel independent.

Remark 3. Sequential independence requires by definition the four pushouts on the
left which are equivalent to the four pushouts on the right where given G← D1 → H1

and H1 ← D3 → H, (2) is constructed as pullback, (1) and (4) are constructed as
pushout-complements, and (3) as pushout:

H1

(1)

D1
oo //

(2)

G

D3

OO

�� (3)

D

OO

��

oo //

(4)

D2

OO

��
H D4
oo // H2

G
(1)

D1
oo //

(2)

H1

D2

OO

�� (3)

D

OO

��

oo //

(4)

D3

OO

��
H2 D4
oo // H

Proposition 1 (Local Church-Rosser for Graph Modifications).

1. Given parallel independent graph modifications G
Di=⇒ Hi(i =

1, 2). Then, there exists H and graph modifications H1
D3=⇒

H, H2
D4=⇒ H which are behaviourally equivalent to G

D2=⇒
H2, G

D1=⇒ H1, respectively, and G
D1=⇒ H1

D3=⇒ H, G
D2=⇒

H2
D4=⇒ H are sequentially independent and the sequential

compositions are equal.

G
D1 +3

D2

��

H1

D3

��
H2 D4

+3 H

8

2. Given sequential independent graph modifications G
D1=⇒ H1

D3=⇒ H. Then, there

exists H2 and graph modifications G
D2=⇒ H2

D4=⇒ H which are behavioral equiv-

alent to H1
D3=⇒ H, G

D1=⇒ H1, respectively, such that G
D2=⇒ H2

D4=⇒ H are

sequentially independent and G
D1=⇒ H1, G

D2=⇒ H2 are parallel independent and
the sequential compositions are equal.

G
D1 +3

D2

��

H1

D3

��
H2 D4

+3 H

G
(1)

D1
oo //

(2)

H1

D2

OO

�� (3)

D

OO

��

oo //

(4)

D3

OO

��
H2 D4
oo // H

Proof.

1. Given parallel independent graph modifications G
Di=⇒ Hi (i = 1, 2), we have

pushouts (1) − (4) by Definition 4 leading to H1
D3=⇒ H and H2

D4=⇒ H with
behavioural equivalence according to Definition 3. According to Definition 5 we
have the required sequential independence. The sequential compositions are equal
because (2) and (3) are also pullbacks and (1) and (2) commute.

2. By dualization of 1. ut

Remark 4. The Local Church-Rosser Theorem for graph modifications can be ex-
tended analogously to the Local Church-Rosser Theorem for graph transformation

in [4]. The resulting graph modifications G
D1=⇒ H1

D3=⇒ H, G
D2=⇒ H2

D4=⇒ H are se-

quentially independent. Vice versa, given sequentially independent G
D1=⇒ H1

D3=⇒ H,

we can also construct the sequentially independent G
D2=⇒ H2

D4=⇒ H, s.t. G
D1=⇒ H1

and G
D2=⇒ H2 become parallel independent.

Example 3. Figure 4 shows two parallel independent graph modifications where
m1 = (G ← D1 → H1) is the refactoring modification from Figure 2, and m2 =
(G ← D2 → H2) deletes the transition from S2 to S4 and adds a new state named
S5. We have four pushouts, thus both graph modifications may be performed in any
order, yielding in both cases the same result H.

9

Fig. 4. Parallel independent graph modifications

3 Merging of Conflict-Free Graph Modifications

In the case that two graph modifications are parallel independent, they are called
conflict-free and can be merged to one merged graph modification that realizes both
original graph modifications simultaneously7 (see Definition 7).

In Theorem 2, we show that in case of parallel independence of G
Di=⇒ Hi (i =

1, 2), the merged graph modification G
D

=⇒ H is behaviourally equivalent to the

parallel composition G+G
D1+D2=⇒ H1 +H2 of the original graph modifications G

Di=⇒
Hi (i = 1, 2). For the proof of Theorem 2 we need the concept of minimal rules
which was introduced in [2] by Bisztray et al., where rules in the DPO approach
to graph transformation [4] are also given by injective spans (L ← K → R), but
the intention is to apply them to graphs G via matches o : L→ G. A minimal rule
can be constructed from a given graph modification and describes its changes in
minimal context. The minimal rule generates the graph modification in the sense
that we get a double pushout diagram according to the DPO approach to graph

7 Note that the merge construction in Definition 7 corresponds to the construction in [11].

10

transformation [4] with the minimal rule on top and the graph modification resulting
from the rule application.

Definition 6 (Minimal graph rule and transformation). Rule p = (L
l←−

K
r−→ R is minimal over graph modification G

g←− D
h−→ H if the outer DPO

exists and for each rule L′
l′←− K ′

r′−→ R′ with injective morphism K ′ → D and
pushouts (3) (4), there are unique mor-
phisms L → L′, K → K ′, and R →
R′ such that the following diagram com-
mutes and (1), (2), (1) + (3), and (2) +
(4) are pushouts. Graph transformation

G
p

=⇒ H is also called minimal.

L

��

��
(1)

K

��

��

loo r //

(2)

R

��

��

L′

��
(3)

K ′

��

l′oo r′ //

(4)

R′

��
G D

goo h // H

Theorem 1 (Characterization of Parallel Independent Graph Modifica-

tions). Given graph modifications G
Di=⇒ Hi (i = 1, 2) with minimal rules pi and

minimal transformations G
pi

=⇒ Hi (i = 1, 2), then the following statements are
equivalent:

1. G
Di=⇒ Hi (i = 1, 2) are parallel independent graph modifications,

2. G
pi

=⇒ Hi (i = 1, 2) are parallel independent DPO transformations.

Proof Idea (For the full proof, see Section A.1).
The equivalence of statements 1 and 2 can be shown using the minimality of minimal
rules according to Definition 6, pushout decomposition as well as the construction
of parallel independence in the DPO-approach [4]. ut

Now we define the merging construction of two conflict-free graph modifications
and show that the result is behaviourally equivalent to their parallel composition.

Definition 7 (Merging Conflict-Free Graph Modifications). Given parallel

independent graph modifications G
Di=⇒ Hi (i = 1, 2). Then, graph modification

G
D

=⇒ H given by G ← D → H defined by the diagonals of pushouts (1), (4) in

Definition 4 is called merged graph modification of G
Di=⇒ Hi (i = 1, 2).

Theorem 2 (Behavioural Equivalence of Merged Graph Modification).

Given parallel independent graph modifications G
Di=⇒ Hi (i = 1, 2), and their

merged graph modification G
D

=⇒ H in the sense of Definition 7. Then, G
D

=⇒ H

is behaviourally equivalent to the parallel composition G + G
D1+D2=⇒ H1 + H2 of the

original graph modifications G
Di=⇒ Hi (i = 1, 2).

11

Proof Idea (For the full proof, see Section A.2).
Using the minimal transformations with minimal rules pi = (Li ← Ki → Ri) for

the graph modifications G
Di=⇒ Hi = (G ← Di → Hi) (i = 1, 2), we show that

two graph modifications are parallel in-
dependent iff their minimal transforma-
tions are parallel independent. Using the
characterization of parallel independence
for graph modifications in Theorem 1
and the parallelism theorem for DPO-
transformations in [4], we obtain the four
pushouts in the diagram to the right,
showing the required behavioural equiv-
alence.

G + G

(PO)

D1 + D2
oo //

(PO)

H1 + H2

L1 + L2

(PO)

��

OO

K1 + K2
oo //

(PO)

��

OO

R1 + R2

��

OO

G Doo // H
ut

Remark 5. Theorem 2 motivates why in case of parallel independence of G
Di=⇒ Hi

(i = 1, 2) the merged graph modification G
D

=⇒ H realizes both graph modifications
simultaneously. This is expressed by behavioural equivalence to the parallel compo-

sition. Moreover, it is equal to the sequential compositions of G
D1=⇒ H1

D3=⇒ H and

G
D2=⇒ H2

D4=⇒ H in Definition 4.

Example 4. The merged graph modification of the two parallel independent graph
modifications m1 = (G ← D1 → H1) and m2 = (G ← D2 → H2) in Figure 4
is given by m = (G ← D → H). Obviously, m realizes both graph modifications
m1 and m2 simultaneously. Due to Theorem 2, m is behaviourally equivalent to the

parallel composition of m1 and m2, G+G
D1+D2=⇒ H1+H2, and equal to the sequential

compositions G
D1=⇒ H1

D3=⇒ H and G
D2=⇒ H2

D4=⇒ H.

4 Conflict Resolution

If two graph modifications have conflicts, a merge construction according to Defi-
nition 7 is not possible any more. In this section, we propose a general merge con-
struction that resolves conflicts by giving insertion priority over deletion in case of
delete-insert conflicts. The result is a merged graph modification where the changes
of both original graph modifications are realized as far as possible. We state the
properties of the general merge construction and show that the merge construction
for the conflict-free case is a special case of the general merge construction.

12

Definition 8 (Conflicts of Graph Modifications).

1. Two modifications mi = G
Di=⇒ Hi (i = 1, 2) are conflict-free if they are parallel

independent (i.e. we have four pushouts according to Definition 4).
2. They are in conflict if they are not parallel independent.
3. They are in delete-delete conflict if ∃x ∈ (G\D1) ∩ (G\D2).
4. (m1,m2) are in delete-insert conflict if

∃ edge e ∈ H2\D2 with s(e) ∈ D2 ∩ (G\D1) or t(e) ∈ D2 ∩ (G\D1).

Remark 6. Note that for mi = (G
Di=⇒ Hi) (i = 1, 2) conflict-freeness, conflicts

and delete-delete conflicts are symmetric, but (m1,m2) in delete-insert conflict (i.e.
deletion of a node n in m1 and insertion of an edge attaching the edge to node
n in m2 is different from (m2,m1) in delete-insert conflict (i.e. deletion in m2 and
insertion in m1).

Example 5. Consider the graph modifications m1 = G← D1 → H1 and m2 = G←
D2 → H2 in Figure 2. (m2,m1) are in delete-insert conflict because m2 deletes node
S3 which is needed by m1 for the insertion of an edge. Moreover, m1 and m2 are in
delete-delete conflict because the edge from S1 to S3 is deleted by both m1 and m2.
(m1,m2) are not in delete-insert conflict.

If two modifications m1 and m2 are in conflict, then at least one conflict occurs
which can be of the following kinds:

1. both modifications delete the same graph element,
2. m1 deletes a node which shall be source or target of a new edge inserted by m2,
3. m2 deletes a node which shall be source or target of a new edge inserted by m3.

Of course, several conflicts may occur simultaneously. In fact, all three conflict sit-
uations may occur independently of each other. For example, (m1,m2) may be in
delete-delete conflict, but not in delete-insert conflict, or vice versa. 8

Theorem 3 characterizes the kinds of conflicts that parallel dependent graph
modifications may have.

8 In the worst case, we may have all kinds of conflicts simultaneously.

13

Theorem 3 (Characterization of Conflicts of Graph Modifications). Given

mi = (G
Di=⇒ Hi) (i = 1, 2), then (m1,m2) are in conflict iff

1. (m1,m2) are in delete-delete conflict, or
2. (m1,m2) are in delete-insert conflict, or
3. (m2,m1) are in delete-insert conflict.

Proof Idea (For the full proof, see Section A.3). Parallel
independence of (m1,m2) is equivalent to the fact that
(PB1) is also pushout, and the pushout complements
(POC1) and (POC2) exist, such that pushout (PO3)
can be constructed. By negation, statements 1. - 3. are
equivalent to 4. - 6., respectively:

G
(PB1)

D1
oo //

(POC1)

H1

D2

OO

��
(POC2)

D

OO

��

oo //

(PO3)

D3

OO

��
H2 D4
oo // H

4. (PB1) is not a pushout, i.e. D1 → G← D2 is not jointly surjective.
5. The dangling condition for D → D2 → H2 is not satisfied.
6. The dangling condition for D → D1 → H1 is not satisfied.

The dangling condition mentioned in statements 5. - 6. is the one known from
DPO graph transformation [4]. It is satisfied by inclusions D → Di → Hi (i = 1, 2),
if ∀e ∈ Hi\Di : (s(e) ∈ Di =⇒ s(e) ∈ D)∧(t(e) ∈ Di =⇒ t(e) ∈ D). s(e) and t(e)
are called dangling points. If the dangling condition is satisfied by D → Di → Hi,
the pushout complement (POCi) can be constructed. ut

For delete-insert conflicts, our preferred resolution strategy is to preserve the
nodes in the merged graph modification that are needed to realize the insertion of
edges. If deletion is preferred instead, it has to be done manually after the auto-
matic construction of the merged graph modification, supported by visual conflict
indication. Ideally, deletion is done such that predefined meta-model constraints are
fulfilled afterwards (see conclusion).

In the following, we define a general merge construction yielding the desired
merged graph modification for two given graph modifications with conflicts. In the
special case that we have parallel independent graph modifications, it coincides with
the conflict-free merge construction in Definition 7.

For the general merge construction, we need so-called initial pushouts. In a nut-
shell, an initial pushout over a graph morphism f : D → G extracts a minimal graph
morphism b : B → C where the context C contains all non-mapped parts of G, and
the boundary B consists of those nodes in D that are used for edge insertion [4].

14

Definition 9 (Initial pushout). Let f : D → G be a graph morphism, an initial
pushout over f consists of graph morphisms g : C → G, b : B → C, and injective
d : B → D such that f and g are a pushout over b and d.

For every other pushout over f consisting
of c′ : C ′ → G, b′ : B′ → C ′, and injective
d′ : B′ → D, there are unique graph mor-
phisms b : B → B′ and c : C → C ′ such that
c′ ◦ c = g and d′ ◦ b = d. Moreover, it is
required that (c, b′) is a pushout over (b, b).

B′
b′

//

=
d′

''

C ′

=
c′

ww

B

d
��

b //
b

``

(IPO)

C

g

��

c

>>

D
f
// G

Note that for graph morphisms, there is a canonical construction for initial
pushouts [4].

Example 6 (Initial pushout). In Figure 5, the initial pushout IPO1 over the mor-
phism D1 → H1 of graph modification m1 in Figure 2 is shown. The morphism
B1 → C1 contains in a minimal context the insertion of the containment edge from
S0 to S3.

Fig. 5. Initial pushout over morphism D1 → H1

Now, we are ready to present our general merge construction for graph modifi-
cations (see Definition 10). Analogously, to the merging of conflict-free graph mod-
ifications we start with constructing the intersection D of the intermediate graphs
D1 and D2. In case of delete-insert conflicts where a node is supposed to be deleted
by one modification and used as source or target by the other modification, D is

15

too small, i.e. does not contain such nodes. Therefore, we look for a construction
which enlarges D to the intermediate graph for the merged modification where in-
sertion is prior to deletion: At first, we identify all these insertions in modifications
1 and 2. This is done by initial pushout construction (as described above) leading
to Bi → Ci(i = 1, 2). By constructing first the intersection D∗i of Bi and D in Di

and thereafter the union Di of Bi and D via D∗i , graph D is extended by exactly
those graph elements in Bi needed for insertion later on resulting in Di. After having
constructed these extended intermediate graphs D1 and D2, they have to be glued
to result in the intermediate graph D of the merged graph modification. Thereafter,
the insertions identified by Bi → Ci(i = 1, 2) can be transferred to Di → Xi(i = 1, 2)
first and to D → Xi(i = 1, 2) thereafter. Finally, they are combined by gluing X1

and X2 via D yielding result graph H. Since D is D extended by graph elements
which are not to be deleted,(they are needed for insertion or come from G originally)
D can be embedded into G and thus, can function as intermediate graph for the
merged graph modification G← D → H.

Definition 10 (Merged Graph Modification in General). Given two graph
modifications G ← D1 → H1 and G ← D2 → H2. We construct their merged
graph modification G← D → H in 6 steps, leading to the following general merge
construction diagram:

G

(PB1)

D1
oo id //

(1)

D1
//

(PO1)

H1

D2

OO

id

��
(2)

D

OO

��

oo //

(PO3)

D1

OO

��

//

(PO4)

X1

OO

��
D2

��
(PO2)

D2

��

oo //

(PO5)

D //

��
(PO6)

X1

��
H2 X2
oo // X2

// H

1. Construct D by pullback (PB1) of D1 → G← D2.
2. Construct initial pushouts (IPOi) over Di → Hi for i = 1, 2:

Bi

(3) &&
//

��
(IPOi)

Di

��
(POi)

Di

��

oo

Ci
// 66Hi Xi
oo

D∗i

{{xxx
xxx

x

""F
FF

FF
FF

(PO)

Bi
//

(3)

##G
GG

GG
GG

Di

��

Doo
(4)

||xx
xx

xx
x

Di

16

3. Construct D∗i as a pullback of Bi → Di ← D and Di as pushout of Bi ← D∗i → D
with induced morphism Di → Di with Bi → Di → Di = Bi → Di (3) and
D → Di → Di = D → Di (4) for (i = 1, 2).

4. Construct pushout Di → Xi ← Ci of Di ← Bi → Ci (i = 1, 2), leading by
(3) to induced morphism Xi → Hi and pushout (POi) (i = 1, 2) by pushout
decomposition. Moreover, (4) implies commutativity of (1) and (2) for (i = 1, 2).

5. Now we are able to construct pushouts (PO3), (PO4), (PO5) and (PO6) one
after the other.

6. Finally, we obtain the merged graph modifi-
cation (G ← D → H), where D → H is de-
fined by composition in (PO6), and D → G
is uniquely defined as induced morphism us-
ing pushout (PO3).

D1

''OOOOOO
//

(PO3)

D1
��

D

77oooooo

''OOOOOO

(=) ''

(=)
77

D // G

D2

77oooooo // D2

OO

Remark 7. If the modifications mi = (G ← Di → Hi) (i = 1, 2) are parallel inde-
pendent, then the pullback (PB1) is a pushout and D1 = D = D2 = D. In this
case, the general merged modification m = (G ← D → H) is equal up to isomor-
phism to the merged graph modification in the conflict-free case in Definition 7. If
mi = (G← Di → Hi) (i = 1, 2) are in delete-delete conflict, then the merged graph
modification deletes the items that are deleted by both m1 and m2 since these items
are not in D and hence not in D.

Example 7. We construct the merged graph modification for graph modifications
m1 = G ← D1 → H1 and m2 = G ← D2 → H2 in Figure 2. The construction
diagram is shown in Figure 6.

According to step 3 in Definition 10, D1 has to be constructed as pushout of
B1 ← D∗1 → D. D∗1 is the pullback of B1 → D1 ← D, hence D∗1 consists just
of the single node S0 . Since B1 contains two single nodes, S0 and S3 , we get as
result of step 3 graph D1 which is similar to D but contains additionally node S3.
Since (m1,m2) are not in delete-insert conflict, D2 = D. All remaining squares are
constructed as pushouts.

Note that the resulting merged graph modification G← D → H preserves node
S3 because this node is deleted in m2 although it is used for inserting a new edge
in m1 (resolution of the delete-insert conflict). The edge from S1 to S3 is deleted
by the merged graph modification as it is deleted by both m1 and m2 (resolution of
the delete-delete conflict). All graph objects created by either m1 or m2 are created
also by the merged graph modification. Note that square (2) is a pushout in this
example since (m1,m2) are not in delete-insert conflict.

17

Fig. 6. General merge construction for conflicting graph modifications m1 and m2

The following theorem states that the modification resulting from the general
merge construction specifies the intended semantics resolving delete-insert conflicts
by preferring insertion over deletion:

Theorem 4 (Behaviour Compatibility of the General Merge Construc-

tion). Given graph modifications mi = G
Di=⇒ Hi (i = 1, 2) with merged graph

modification m = G
D

=⇒ H = (G← D → H) in the sense of Definition 10. We use
the following terminology for m (and similarly for for m1,m2):

18

x ∈ G preserved by m ⇐⇒ x ∈ D,
x ∈ G deleted by m ⇐⇒ x ∈ G\D,
x ∈ H created by m ⇐⇒ x ∈ H\D.

Then, m is behaviour compatible with m1 and m2 in the following sense:

1. Preservation: x ∈ G preserved by m1 and m2 =⇒ x ∈ G preserved by m
=⇒ x ∈ G preserved by m1 or m2

2. Deletion: x ∈ G deleted by m1 and m2 =⇒ x ∈ G deleted by m
=⇒ x ∈ G deleted by m1 or m2

3. Preservation and Deletion: x ∈ G preserved by m1 and x ∈ G deleted by m2

=⇒ x ∈ G preserved by m, if x ∈ D1
9

x ∈ G deleted by m, if x /∈ D1
10

(similar for m1,m2, D1 replaced by m2,m1, D2)
4. Creation: x ∈ H1 created by m1 or x ∈ H2 created by m2

⇐⇒ x ∈ H created by m

Proof Idea (For the full proof, see Section A.4. The preservation, deletion and cre-
ation results follow from the pushout properties of D, the pushout complement
properties of D1, D2 and the fact that D1 is pullback in the diagrams (PO1) and
(PO4) (and analogously for D2). ut

Theorem 5 characterizes the three forms of conflict resolution which may occur.

Theorem 5 (Conflict Resolution by General Merge Construction). Given

graph modifications mi = G
Di=⇒ Hi (i = 1, 2) that are in conflict. The merge

construction m = (G← D → H) resolves the conflicts in the following way:

1. If (m1,m2) are in delete-delete conflict, with both m1 and m2 deleting x ∈ G,
then x is deleted by m.

2. If (m1,m2) are in delete-insert conflict, there is an edge e2 created by m2 with
x = s(e2) or x = t(e2) preserved by m2, but deleted by m1. Then x is preserved
by m.

3. If (m2,m1) are in delete-insert conflict, there is an edge e1 created by m1 with
x = s(e1) or x = t(e1) preserved by m1, but deleted by m2. Then x is preserved
by m.

9 In this case, x is a node needed as source or target for an edge inserted by m1.
10 In this case, x is not needed for edge insertion by m1.

19

Proof Idea (For the full proof, see Section A.5). The resolution of delete-delete con-
flicts follows from the deletion property, and the resolution of delete-insert conflicts
follows from the preservation-deletion property of the general merge construction in
Theorem 4. ut

5 Related Work

First of all, we have to clarify that model merging differs from merging of model
modifications. Model merging as presented e.g. in [8,10] is concerned with a set of
models and their inter-relations expressed by binary relations. In contrast, merging
of model modifications takes change operations into account. Merging of model
modifications usually means that non-conflicting parts are merged automatically,
while conflicts have to be resolved manually. In the literature, different resolution
strategies which allow at least semi-automatic resolution are proposed. A survey on
model versioning approaches and especially on conflict resolution strategies is given
in [1]. Here, we focus on conflict resolution strategies.

A category-theoretical approach formalizing model versioning is given in [9].
Similar to our approach, modifications are considered as spans of morphisms to de-
scribe a partial mapping of models. Merging of model changes is defined by pushout
constructions. However, conflict resolution is not yet covered by this approach in
a formal way. A category theory-based approach for model versioning in-the-large
is given in [3]. However, this approach is not concerned with formalizing conflict
resolution strategies. A set-theoretic definition of EMF model merging is presented
in [13], but conflicts are solved by the user and not automatically.

In [6] the applied operations are identified first and grouped into parallel in-
dependent subsequences then. Conflicts can be resolved by either (1) discarding
complete subsequences, (2) combining conflicting operations in an appropriate way,
or (3) modifying one or both operations. The choice of conflict resolution is made by
the modeler. These conflict resolution strategies have not been formalized. The in-
tended semantics is not directly investigated but the focus is laid on the advantage of
identifying compound change operations instead of elementary ones. In contrast, we
propose a semi-automatic procedure where at first, an automatic merge construction
step gives insertion priority over deletion in case of delete-insert conflicts. If other
choices are preferred, the user may perform deletions manually in a succeeding step.

Automatic merge results may not always solve conflicts adequately, especially
state-based conflicts or inconsistencies may still exist or arise by the merge construc-
tion. Resolution strategies such as resolution rules presented in [7] are intended to
solve state-based conflicts or inconsistencies. They can be applied in follow-up graph

20

transformations after the general conflict resolution procedure produced a tentative
merge result. Moreover, Mens et al. discuss the problem that conflict resolution
may give rise to new conflicts or inconsistencies and consider potential dependencies
between model inconsistencies detection and resolution as well.

6 Conclusions and Future Work

In this paper, we have formalized a conflict resolution strategy for operation-based
conflicts based on graph modifications. Our main result is a general merge construc-
tion for conflicting graph modifications. The merge construction realizes a resolution
strategy giving insertion priority over deletion in case of delete-insert conflicts to get
a merged graph modification result containing as much information as possible. We
establish a precise relationship between the behaviour of the given graph modifica-
tions and the merged modification concerning deletion, preservation and creation
of graph items. In particular, our general merge construction coincides with the
conflict-free merge construction if the graph modifications are parallel independent.
We show how different kinds of conflicts of given graph modifications are resolved
by our automatic resolution strategy. It is up to an additional manual graph modi-
fication step to perform deletions that are preferred over insertions.

In [11], we presented two kinds of conflicts which can be detected based on graph
modification: operation-based and state-based conflicts. Hence, in future work, our
strategy for solving operation-based conflicts shall be extended by resolving also
state-based conflicts. Here, repair actions should be provided to be applied manually
by the modeler. Their applications would lead to additional graph modifications
optimizing the merged graph modification obtained so far. For the specification of
repair actions in this setting, the work by Mens et al. in [7] could be taken into
account.

With regard to tool support, our graph transformation environment Agg [12]
supports conflict analysis for graph rules and graph modifications. We plan to im-
plement also the check of behavioural equivalence and the general merge construc-
tion for graph modifications in near future. This proof-of-concept implementation
could function as blueprint for implementing our new resolution strategy in emerging
model versioning tools.

References

1. Altmanninger, K., Seidl, M., Wimmer, M.: A survey on model versioning ap-
proaches. IJWIS 5(3), 271–304 (2009)

21

2. Bisztray, D., Heckel, R., Ehrig, H.: Verification of Architectural Refactorings by
Rule Extraction. In: Proc. FASE. LNCS, vol. 4961, pp. 347–361. Springer (2008)

3. Diskin, Z., Czarnecki, K., Antkiewicz, M.: Model-versioning-in-the-large: Alge-
braic foundations and the tile notation. In: Proc. of Workshop on Comparison
and Versioning of Software Models (CVSM’09). pp. 7–12. IEEE Computer So-
ciety (2009)

4. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. EATCS Monographs in Theor. Comp. Science, Springer (2006)

5. Ehrig, H., Ermel, C., Taentzer, G.: A formal resolution strategy for operation-
based conflicts in model versioning using graph modifications. In: Proc. Fun-
damental Aspects of Software Engineering (FASE’11). LNCS, vol. 6603, pp.
202–216. Springer (2011)

6. Küster, J.M., Gerth, C., Engels, G.: Dependent and conflicting change opera-
tions of process models. In: Proc. Int. Conf. on Model Driven Architecture -
Foundations and Applications. LNCS, vol. 5562, pp. 158–173. Springer (2009)

7. Mens, T., van der Straeten, R., D’Hondt, M.: Detecting and resolving model
inconsistencies using transformation dependency analysis. In: Proc. MoDELS.
LNCS, vol. 4199, pp. 200–214. Springer (2006)

8. Pottinger, R., Bernstein, P.A.: Merging models based on given correspondences.
In: Proc. Int. Conf. on Very Large Data Bases (VLDB’03). pp. 826–873. VLDB
Endowment (2003)

9. Rutle, A., Rossini, A., Lamo, Y., Wolter, U.: A category-theoretical approach to
the formalisation of version control in MDE. In: Proc. Fundamental Aspects of
Software Engineering (FASE’09). LNCS, vol. 5503, pp. 64–78. Springer (2009)

10. Sabetzadeh, M., Nejati, S., Liaskos, S., Easterbrook, S.M., Chechik, M.: Con-
sistency checking of conceptual models via model merging. In: Proc. IEEE Int.
Conf. on Requirements Engineering. pp. 221–230. IEEE (2007)

11. Taentzer, G., Ermel, C., Langer, P., Wimmer, M.: Conflict detection for model
versioning based on graph modifications. In: Proc. Int. Conf. on Graph Trans-
formations (ICGT’10). LNCS, vol. 6372. Springer (2010)

12. TFS-Group, TU Berlin: AGG (2009), http://tfs.cs.tu-berlin.de/agg
13. Westfechtel, B.: A formal approach to three-way merging of EMF models. In:

Proc. Workshop on Model Comparison in Practice (IWMCP). pp. 31–41. ACM
(2010)

22

http://tfs.cs.tu-berlin.de/agg

A Proofs

A.1 Proof of Theorem 1

Theorem 1 (Characterization of Parallel Independent Graph Modifica-
tions). Given graph modifications G ← Di → Hi (i = 1, 2) with minimal rules pi
and minimal transformations G

pi
=⇒ Hi (i = 1, 2), then the following statements are

equivalent:

1. G← Di → Hi are parallel independent graph modifications,
2. G

pi
=⇒ Hi are parallel independent DPO transformations.

Proof.
1. =⇒ 2.
From 1. we obtain pushouts (1) − (4). Let minimal transformations be given by
pushouts (5), (6)) and (7), (8).

L1

��
(5)

��

K1

��

oo //

(6)

��

R1

��

��

L2
//

(7)

((
G

(1)

D1
oo //

(2)

H1

K2
//

��

OO

(8)

D2

��

OO

(3)

D

��

oo //

OO

(4)

D3

��

OO

R2
// H2 D4

oo // H

By minimality in Lemma 1, we obtain especially unique morphisms L1 → D2

and L2 → D1 such that the corresponding triangles commute. This means that
G

p1
=⇒ H1, G

p2
=⇒ H2 are parallel independent.

2. =⇒ 1.
Given parallel independent DPO-transformations by pushouts (5) − (8) and mor-
phisms L1 → D2 and L2 → D1 such that the triangles commute. Then, D is
constructed as pullback in (1) and can be shown to be also a pushout because
D1 → G ← D2 are jointly surjective. The pullback property of (1) and morphisms
K1 → D1, K1 → L1 → D2 imply a unique K1 → D such that the corresponding
triangle commutes. In the next step, D3 is constructed as pushout of D ← K1 → R1,
leading by pushout decomposition to pushout (2). Symmetrically, we obtain pushout
(3) and finally (4) as pushout of D4 ← D → D3. ut

23

Remark 8. In (2. =⇒ 1.), it ist sufficient to have any pair of rules p1, p2 generating

DPO-transformations G
pi

=⇒ Hi (i = 1, 2); it is not necessary that p1, p2 are minimal.

A.2 Proof of Theorem 2

For the proof of Theorem 2, we need the construction of minimal rules by Bisztray
et al. [2]. This construction yields in a natural way a minimal DPO rule for a
graph modification. Minimal rules contain the proper atomic actions on graphs with
minimal contexts. Bisztray et al. have shown that this construction is unique, i.e. no
smaller rule than the minimal rule can be constructed for a given graph modification.

The following minimal rule construction extracts all deletion and creation actions
from a given transformation in graphs L1 and R1 by constructing so-called initial
pushouts (see Definition 9).

Definition 11 (Construction of Minimal Rules from Graph Modifications).
Given a graph modification G ← D → H, the minimal rule L ← K → R is con-
structed as follows:

1. Construct the initial pushouts (1) of D → G and (2) of D → H

C1

��
(1)

B1

 A
AA

AA
AA

A
b1oo B2

~~}}
}}

}}
}}

// C2

��
(2)

G D
goo h // H

2. Construct the pullback B1 ← P → B2 of B1 → D ← B2, and then the pushout
B1 → K ← B2 of B1 ← P → B2, leading to unique injective morphism K → D
such that (3), (4) commute.

P

{{www
www

w

##G
GGG

GGG

C1

��

(1)

B1

##G
GGGGG

b1oo

(3)

&&

B2

{{wwwwww
//

(4)

xx

C2

��

(2)K

��
G D

goo h // H
3. Finally split initial pushouts (1) and (2) by (3) and (4), i.e. construct pushouts

(5) of C1 ← B1 → K and (6) of K ← B2 → C2, leading to pushouts (7) and (8)
by pushout decomposition, and the minimal rule L← K → R.

24

C1

��
(5)

B1

 A
AA

AA
AA

A
b1oo B2

~~}}
}}

}}
}}

// C2

��
(6)

L

��
(7)

K

��

oo //

(8)

R

��
G Doo // H

The DPO (7), (8) is called minimal transformation of G ← D → H via the
minimal rule L← K → R.

Note that after Step 1, the minimal rule extraction may also be considered as
E-concurrent rule constructed from a deletion rule on the left and a creation rule on
the right.

The following lemma shows that the minimal rule construction in Definition 11
satisfies the axiomatic requirement of Definition 6.

Lemma 1 (Minimality of Minimal Rule and Transformation). Given any
rule L′ ← K ′ → R′ which generates G← D → H with injective match via pushouts
(1) and (2) below, and the outer diagram is a DPO with minimal rule and minimal
transformation. Then, there are unique injective morphisms L → L′, K → K ′ and
R→ R′ such that (3)− (5) commute and (6), (7) are pushouts.

L

 @
@@

@@
@@

@

(3)

��

(6)

K

 B
BB

BB
BB

B

��

oo //

(7)

R

��

 A
AA

AA
AA

A

L′

~~~~
~~

~~
~

(1)

K ′

~~||
||

||
||

(4)oo (5) //

(2)

R′

~~}}
}}

}}
}}

G Doo // H

Proof. The proof of Lemma 1 is given in [2]. ut

Example 8 (Minimal rule construction). The construction of the minimal rule p1 for
graph modification m1 in Figure 2 is depicted in Fig. 7.

Now we can show the behavioural equivalence of the parallel composition of two
parallel independent graph modifications with their corresponding merged graph
modification.

25



Fig. 7. Construction of minimal rule p1 = (L1 ← K1 → R1) for m1

Theorem 2 (Behavioural Equivalence of Merged Graph Modification).

Given parallel independent graph modifications G
Di=⇒ Hi (i = 1, 2), and their merged

graph modification G
D

=⇒ H = G ← D → H in the sense of Definition 7. Then,

G ← D → H is behavioural equivalent to the parallel composition G + G
D1+D2=⇒

H1 + H2 of the original graph modifications G
Di=⇒ Hi (i = 1, 2).

Proof. Let p1 = (L1 ← K1 → R1) and p2 = (L2 ← K2 → R2) be the minimal rules
for G ← D1 → H1 and G ← D2 → H2, respectively, with DPO-transformations
G

p1
=⇒ H1 and G

p2
=⇒ H2, which are parallel independent according to the Charac-

terization Theorem 1 below. By the DPO Parallelism Theorem [4] we have G
p1+p2
=⇒ H

with DPO
L1 + L2

(1)
��

K1 + K2
oo //

(2)
��

R1 + R2

��
G Doo // H

where G ← D → H coincides with the span defined by parallel independence of

G
Di=⇒ Hi. Since G

p1
=⇒ H1, G

p2
=⇒ H2 are transformations via the minimal rules, we

get the pushouts (4)− (7) and hence also (8) = (4) + (6) and (9) = (4) + (7):

26



L1

(4)

��

K1
oo //

(5)
��

R1

��
G D1
oo // H1

L2

(6)

��

K2oo //

(7)
��

R2

��
G D2
oo // H2

L1 + L2

(8)

��

K1 + K2
oo //

(9)
��

R1 + R2

��
G + G D1 + D2

oo // H1 + H2

Pushouts (1), (2) and (8), (9) show that the merge G
D

=⇒ H given by G← D → H

is behavioral equivalent to the parallel composition G + G
D1+D2=⇒ H1 + H2 given by

G + G← D1 + D2 → H1 + H2. ut

A.3 Proof of Theorem 3

Theorem 3 (Characterization of Conflicts of Graph Modifications). Given

mi = (G
Di=⇒ Hi) (i = 1, 2), then (m1,m2) are in conflict iff

1. (m1,m2) are in delete-delete conflict, or
2. (m1,m2) are in delete-insert conflict, or
3. (m2,m1) are in delete-insert conflict.

Proof. Parallel independence of (m1,m2) is equivalent to the fact that PB1 is
pushout, the pushout complement (POC1) exists, and (POC2) exists. In this case,
we can construct (PO3) as pushout.

G

(PB1)

D1
oo //

(POC1)

H1

D2

OO

��
(POC2)

D

OO

��

oo //

(PO3)

D3

OO

��
H2 D4
oo // H

First of all, we have (m1,m2) not parallel independent is equivalent to

1. (PB1) is no pushout, i.e. D1 → G← D2 is not jointly surjective, or
2. the pushout complement POC2 does not exist, i.e. the gluing condition for D →

D2 → H2 is not satisfied, or
3. the pushout complement POC1 does not exist, i.e. the gluing condition for D →

D1 → H1 is not satisfied.

In fact, if the negation of all conditions 1.−3. were satisfied, we would have four
pushouts and hence parallel independence. Now we have:

1. ⇐⇒ (m1,m2) are in delete-delete conflict,

27



2. ⇐⇒ ∃ dangling point x ∈ D2 which is not a gluing point, i.e. x /∈ D
⇐⇒ ∃ edge e ∈ H2\D2 with s(e) ∈ D2\D or t(e) ∈ D2\D
(∗)⇐⇒ ∃ edge e ∈ H2\D2 with s(e) ∈ D2 ∩ (G\D1) or t(e) ∈ D2 ∩ (G\D1)
⇐⇒ (m1,m2) are in delete-insert conflict

(where
(∗)⇐⇒ follows from x ∈ D2\D ⇐⇒ x ∈ D2 ∩ (G\D1) as follows:

x ∈ D2\D ⇐⇒ x ∈ D2\D1 ⇐⇒ x ∈ D2 ∩ (G\D1) using the pullback property
of (PB1).

3. ⇐⇒ (m2,m1) are in delete-insert conflict (analogously to 2.). ut

A.4 Proof of Theorem 4

Theorem 4 (Behaviour Compatibility of the General Merge Construc-

tion.) Given graph modifications mi = G
Di=⇒ Hi (i = 1, 2) with merged graph

modification m = G
D

=⇒ H = (G ← D → H) in the sense of Definition 10. Then,
m is behaviour compatible with m1 and m2 in the following sense:

1. Preservation
(x ∈ G preserved by m1 and m2) =⇒ (x ∈ G preserved by m)

=⇒ (x ∈ G preserved by m1 or m2)
2. Deletion

(x ∈ G deleted by m1 and m2) =⇒ (x ∈ G deleted by m)
=⇒ (x ∈ G deleted by m1 or m2)

3. Preservation and Deletion
(x ∈ G preserved by m1 and x ∈ G deleted by m2)

=⇒ x ∈ G preserved by m, if x ∈ D1

x ∈ G deleted by m, if x /∈ D1

(similar for m1,m2, D1 replaced by m2,m1, D2)
4. Creation

(x ∈ H1 created by m1 or x ∈ H2 created by m2)⇐⇒ (x ∈ H created by m)

Proof.

1. Preservation:
(a) x ∈ G preserved by m
=⇒ x ∈ D =⇒ x ∈ H, D pushout =⇒ w.l.o.g. x ∈ D1

=⇒ x ∈ D1 =⇒ x ∈ H1

=⇒ x ∈ G preserved by m1 or x ∈ G preserved by m2

28



(b) x ∈ G preserved by m1 and x ∈ G preserved by m2

=⇒ x ∈ D1 and x ∈ D2

=⇒ x ∈ D1 ∩D2 = D =⇒ x ∈ D
=⇒ x preserved by m

2. Deletion:
(a) x ∈ G deleted by m
=⇒ x ∈ G\D
Assume x ∈ G not deleted by m1 and x ∈ G not deleted by m2

=⇒ x ∈ G ∧ x ∈ D1 ∧ x ∈ D2 =⇒ x ∈ D =⇒ x ∈ D (contradiction)
=⇒ x ∈ G deleted by m1 or x ∈ G deleted by m2

(b) x ∈ G deleted by m1 and x ∈ G deleted by m2

=⇒ x ∈ G\D1 and x ∈ G\D2

Assume x ∈ G not deleted by m

=⇒ x ∈ D
DPO
=⇒ x ∈ D1 or x ∈ D2

if x ∈ D1 =⇒ x ∈ D1 (contradiction)
if x ∈ D2 =⇒ x ∈ D2 (contradiction)

=⇒ x ∈ G deleted by m.

3. Preservation and Deletion:
x ∈ G preserved by m1 and x ∈ G deleted by m2

=⇒ x ∈ G and x ∈ D1 and x /∈ D2

Case 1: x ∈ D1 =⇒ x ∈ D =⇒ x ∈ G preserved by m
Case 2: x /∈ D1

Assume x ∈ D
=⇒ x ∈ D1 ∨ x ∈ D2 (where both cases lead to a contradiction)
=⇒ x /∈ D =⇒ x ∈ G deleted by m

=⇒ If x ∈ D1, then x ∈ G is preserved by m.
If x /∈ D1, then x ∈ G is deleted by m.

4. Creation:
(a) x ∈ H created by m
=⇒ x ∈ H\D =⇒ x ∈ X1 or x ∈ X2 (w.l.o.g. x ∈ X1) =⇒ x ∈ H1

Assume x ∈ D1 =⇒ x ∈ D1 because (PO1) (the upper right square of the
diagram in Definition 10) is pullback

=⇒ x ∈ D (contradiction)
=⇒ x /∈ D1 =⇒ x ∈ H1\D1

=⇒ x ∈ H1 created by m1 or x ∈ H2 created by m2

29



(b) x ∈ H1 created by m1 or x ∈ H2 created by m2

=⇒ x ∈ H1\D1
(PO1)
=⇒ x ∈ X1 =⇒ x ∈ H

Assume x ∈ D
(PO4)
=⇒ x ∈ D1 (where (PO4) is also pullback)

=⇒ x ∈ D1 (contradiction)
=⇒ x /∈ D =⇒ x ∈ H\D
=⇒ x ∈ H created by m. ut

Remark 9. The general merged modification (G ← D → H) is in general not be-
haviour equivalent to the parallel composition (G+G← D1 +D2 → H1 +H2), but
we have the following categorical relationship, where (1), (2) and (4) are pushouts,
but (3) is only commutative using the constructions of Definition 10.

G + G

(1)

D1 + D2
oo //

(2)

H1 + H2

D + D

(3)

��

OO

D1 + D2
oo //

(4)

��

OO

X1 + X2

��

OO

G Doo // H

A.5 Proof of Theorem 5

Theorem 5 (Conflict Resolution by General Merge Construction.) Given

graph modifications mi = G
Di=⇒ Hi (i = 1, 2) that are in conflict. The merge

construction m = (G← D → H) resolves the conflicts in the following way:

1. If (m1,m2) are in delete-delete conflict, with both m1 and m2 deleting x ∈ G,
then x is deleted by m.

2. If (m1,m2) are in delete-insert conflict, there is an edge e2 created by m2 with
x = s(e2) or x = t(e2) preserved by m2, but deleted by m1. Then x is preserved
by m.

3. If (m2,m1) are in delete-insert conflict, there is an edge e1 created by m1 with
x = s(e1) or x = t(e1) preserved by m1, but deleted by m2. Then x is preserved
by m.

Proof.

1. Let x ∈ G be deleted by m1 and m2 which implies that x is deleted by m according
to the deletion property of the general merge construction in Theorem 4.

30



2. Let e2 ∈ H2\D2 with x = s(e2) ∈ D2 ∩ (G\D1) or x = t(e2) ∈ D2 ∩ (G\D1).
Thus, x is a dangling point for D2 → D2 → H2. Using pushout (PO2), we
conclude by the dangling condition that x is also dangling point, i.e. x ∈ D2 in
our case. According to the preservation-deletion property of the general merge
construction in Theorem 4, we get that x is preserved by m.

3. Symmetric to 2. ut

31


	A Formal Resolution Strategy for Operation-Based Conflicts in Model Versioning Using Graph Modifications 
	Hartmut Ehrig, Claudia Ermel and Gabriele Taentzer



