
Semantical Correctness and

Completeness of Model Transformations

using Graph and Rule Transformation:

Long Version

Hartmut Ehrig and Claudia Ermel

Technische Universität Berlin, Germany
{lieske,ehrig}@cs.tu-berlin.de

Forschungsberichte des Fachbereichs Informatik

Bericht-Nr. 2008/13, ISSN 1436-9915



Abstract

An important requirement of model transformations is the preservation of the be-
havior of the original model. A model transformation is semantically correct if for
each simulation run of the source system we find a corresponding simulation run in
the target system. Analogously, we have semantical completeness, if for each simu-
lation run of the target system we find a corresponding simulation run in the source
system.

In our framework of graph transformation, models are given by graphs, and
graph transformation rules are used to define the operational behavior of visual
models (called simulation rules). In order to compare the semantics of source and
target models, we assume that in both cases operational behavior can be defined by
simulation rules. The model transformation from source to target models is given by
another set of graph transformation rules. These rules are also applied to the simu-
lation rules of the source model. The result of this rule transformation is compared
with the given simulation rules of the target language.The main result in this paper
states the conditions for model and rule transformations to be semantically correct
and complete. The result is applied to analyze the behavior of a model transforma-
tion from a domain-specific visual language for production systems to Petri nets.
Keywords: graph transformation, visual languages, simulation, model transforma-
tion, rule transformation, semantical correctness, semantical completeness



1 Introduction

In recent years, visual models represented by graphs have become very popular in
model-based software development. The shift of paradigm from pure programming
to visual modeling and model-driven development (MDD) led to a variety of domain-
specific modeling languages (DSMLs) on the one hand, but also to a wide-spread
use of general diagrammatic modeling languages such as UML [1] and Petri nets
[2]. DSMLs provide an intuitive, yet precise way in order to express and reason
about concepts at their natural level of abstraction. Starting with a domain-specific
model, model transformation is the key technology of MDD and serves a variety of
purposes, including the refinements of models, their mapping to implementations
and/or semantic domains, consistency management and model evolution. For exam-
ple, a complete design and analysis process involves designing the system using the
design language, transforming it into the analysis language, and performing the ver-
ification and analysis on the analysis model. In such a scenario, it is very important
that the transformation preserves the semantics of the design model.

In this paper we study semantical correctness and completeness of model trans-
formations provided that the source and the target languages have already a formal
semantics. Approaches exist where semantic equivalence between one source model
and its transformed target model is shown using bisimulation. In the approach of
Karsai et al. [3] the particular transformation resulted in an output model that
preserves the semantics of the input model with respect to a particular property.
However, analogously to syntactical correctness proofs, it is desirable to have a more
general concept for showing semantical correctness and completeness of a model
transformation, independent of concrete source models.

This paper discusses an approach to verify semantical correctness of model trans-
formations on the level of model transformation rules. Basically, semantical correct-
ness of a model transformation means that for each simulation sequence of the
source system we find a corresponding simulation sequence in the target system.
Vice versa, we have semantical completeness, if for each simulation sequence in the
target system there is a corresponding sequence simulating the source model. In
order to compare the semantics of the source and target models, we assume that in
both cases operational behavior can be defined by simulation graph rules. We then
apply the model transformation to the simulation rules of the source model, leading
to a so-called rule transformation. The resulting rules are compared to the given
simulation rules of the target language.

The main result in this paper states the conditions for model transformations
to be semantically correct and complete. The paper generalizes and extends results
from simulation-to-animation model and rule transformation (S2A transformation),
which realizes a consistent mapping from simulation steps in a behavioral modeling
language to animation steps in a more suitable domain-specific visualization [4–6].
The result is applied to analyze the behavior of a model transformation from a
domain-specific language for production systems to Petri nets.

2



This technical report is the long version of our paper presented at the Inter-
national Conference on Graph Transformation 2008 [7], giving unabridged formal
definitions, full proofs of all theorems and more details of the case study.

The structure of the paper is as follows: In Section 2, our running example,
a domain-specific visual language for production systems, is introduced. Section 3
reviews the basic concepts of model and rule transformation based on graph trans-
formation. In Section 4, the notions semantical correctness and semantical com-
pleteness of model transformations are formally defined, and conditions for correct
and complete model transformations defined by graph rules are worked out. The
main result is applied to our running example, showing that the model transfor-
mation from production systems to Petri nets is semantically correct and complete.
Section 5 discusses related work, and Section 6 concludes the paper.

2 Example: Simulation of Production Systems

In this section we provide a description of a DSML for production systems and its
operational semantics using graph transformation rules (a slightly simplified version
of the DSML presented in [8]). Note that the rules are shown in concrete syntax,
thus making the expression of operational semantics intuitive and domain-specific.
Fig. 1 shows in the upper part a type graph for the production system language.
The language contains different kinds of machines, which can be connected through
conveyors. Human operators are needed to operate the machines, which consume
and produce different types of pieces from/to conveyors. Conveyors can also be con-
nected. The lower part of Fig. 1 shows a production system model (a graph typed
over the type graph above) using a visual concrete syntax. The model contains six
machines (one of each type), two operators, six conveyors and four pieces. Machines
are represented as boxes, except generators, which are depicted as semi-circles with
the kind of piece they generate written inside. Operators are shown as circles, con-
veyors as lattice boxes, and each kind of piece has its own shape. Two operators
are currently operating a generator of cylindrical pieces and a packaging machine
respectively.

Fig. 2 shows some of the graph transformation rules that describe the operational
semantics for production systems.

Rule assemble specifies the behaviour of an assembler machine, which converts
one cylinder and a bar into an assembled piece. The rule can be applied if every
specified element (except those marked as {new}) can be found in the model. When
such an occurrence is found, then the elements marked as {del} are deleted, and the
elements marked as {new} are created. Note that even if we depict rules using this
compact notation, we use the DPO formalization in our graph transformation rules.
In practice, this means that a rule cannot be applied if it deletes a node but not all
its adjacent edges. In addition, we consider only injective matches. Rule genCylinder
models the generation of a piece of kind cylinder which requires that the cylinder
generator machine is attended by an operator and connected to a conveyor. Rule

3



Fig. 1. Type Graph for Producer Systems and Instance Graph

Fig. 2. Some Simulation Rules for Production Systems

move cyl describes the movement of cylinder pieces through conveyors. Finally, rule
change models the movement of an operator from one machine (of any kind) to
another one. Note that we may use abstract objects in rules (e.g., Machine is an
abstract node type). In this case, the abstract objects in a rule are instantiated
to objects of any concrete subclass [9]. Additional rules (not depicted) model the
behaviour of the other machine types.

3 Basic Concepts of Model and Rule Transformation

In this section, we define model transformation by graph and rule transformation
based on visual language specifications as typed graph transformation systems.

3.1 Visual Languages and Simulation

We use typed algebraic graph transformation systems (TGTS) in the double-pushout-
approach (DPO) [10] which have proven to be an adequate formalism for visual
language (VL) modeling. A VL is modeled by a type graph capturing the definition

4



of the underlying visual alphabet, i.e. the symbols and relations which are available.
Sentences or diagrams of the VL are given by graphs typed over the type graph. We
distinguish abstract and concrete syntax in alphabets and models, where the con-
crete syntax includes the abstract symbols and relations, and additionally defines
graphics for their visualization. Formally, a VL can be considered as a subclass of
graphs typed over a type graph TG in the category GraphsTG.

For behavioral diagrams, an operational semantics can be given by a set of simu-
lation rules PS, using the abstract syntax of the modeling VL, defined by simulation
type graph TGS. A simulation rule p = (L← K → R) ∈ PS is a TGS-typed graph
transformation rule, consisting of a left-hand side L, an interface K, a right-hand
side R, and two injective morphisms. In the case L = K, the rule is called non-
deleting. Applying rule p to a graph G means to find a match of L

m−→ G and to
replace the occurrence m(L) of L in G by R leading to the target graph G′. Such

a graph transformation step is denoted by G
(p,m)
=⇒ G′, or simply by G ⇒ G′. In the

DPO approach, the deletion of m(L) and the addition of R are described by two
pushouts (a DPO) in the category GraphsTG of typed graphs. A rule p may be ex-
tended by a set of negative application conditions (NACs) [10], describing situations
in which the rule should not be applied to G. Formally, match L

m−→ G satisfies
NAC L

n−→ N if there does not exist an injective graph morphism N
x−→ G with

x ◦ n = m. A sequence G0 ⇒ G1 ⇒ ... ⇒ Gn of graph transformation steps is
called transformation and denoted as G0

∗⇒ Gn. A transformation G0
∗⇒ Gn, where

rules from P are applied as long as possible, (i.e. as long as matches can be found

satisfying the NACs), is denoted by G0
P !
=⇒ Gn.

We regard a model’s simulation language V LS, typed over the simulation alpha-
bet TGS, as a sublanguage of the modeling language V L, such that all diagrams
GS ∈ V LS represent different states of the same model during simulation. Based on
V LS, the operational semantics of a model is given by a simulation specification.

Definition 1. (Simulation Specification) Given a visual language VLS typed
over TGS, i.e. VLS ⊆ GraphsTGS

, a simulation specification SimSpecVLS
=

(VLS , PS) over VLS is given by a typed graph transformation system (TGS, PS)
so that VLS is closed under simulation steps, i.e. GS ∈ VLS and GS ⇒ HS via
pS ∈ PS implies HS ∈ VLS . The rules pS ∈ PS are called simulation rules.

Example 1. The simulation specification SimSpecV LS
= (VLS , PS) for the produc-

tion system consists of the visual language VLS typed over TGS, where TGS is the
type graph shown in the upper part of Fig. 1, PS is the set of simulation rules partly
shown in Fig. 2, and VLS consists of all graphs that can occur in any production
system simulation scenario, e.g. the instance graph shown in the lower part of Fig. 1
is one element of V LS.

We divide a model and rule transformation from a source to a target simulation
specification into two phases: in the first phase (called S2I transformation phase),
non-deleting graph transformation rules are applied to the source model and to

5



the source language simulation rules and add elements from the target language to
the source model and rule graphs. The result of the S2I transformation phase is an
integrated simulation specification, i.e. the resulting integrated model and simulation
rules contain both source and target model elements. The second phase (called I2T
transformation phase) restricts the integrated model and the integrated simulation
rules to the type graph of the target language. Note that these two phases allow us
to consider only non-deleting rules in the S2I transformation phase.

3.2 S2I Model and Rule Transformation

In order to transform a source simulation specification SimSpecV LS
to an inte-

grated source-target simulation specification SimSpecV LI
where V LI contains at

least V LS and V LT , we define an S2I transformation S2I = (S2IM , S2IR) consist-
ing of a model transformation S2IM , and a corresponding rule transformation S2IR.
The S2IM transformation applies model transformation rules from a rule set Q to

each GS ∈ V LS as long as possible (denoted by GS
Q !
=⇒ GI). The applications of the

model transformation rules add symbols from the target language to the model state
graphs. The resulting set of graphs GI comprises the source-and-target integration
language V LI .

Definition 2. (Model Transformation S2IM ) Given a simulation specification
SimSpecV LS

= (V LS, PS) with VLS typed over TGS and a type graph TGI , called
integration type graph, with TGS ⊆ TGI , then a model transformation S2IM :
V LS → V LI is given by S2IM = (VLS , TGI , Q) where (TGI , Q) is a typed graph
transformation system with non-deleting rules q ∈ Q, and S2IM -transformations

GS
Q !
=⇒ GI with GS ∈ VLS . The integrated language VLI is defined by VLI =

{GI | ∃ GS ∈ VLS ∧ GS
Q !
=⇒ GI}. This means, GS

Q !
=⇒ GI implies GS ∈ VLS and

GI ∈ VLI .

Example 2. The integrated visual language V LI for the model transformation from
production systems to Petri nets is defined by the integrated type graph TGI in
Fig. 3. The subtypes of Machine and Piece are not depicted since they are not
needed in our model transformation rules. Machines and conveyors are mapped to
places; pieces and operators are elements moving from one place-like element to
another and hence mapped to tokens. Connections between conveyors or between
machines and conveyors which indicate the way token-like elements are transported,
are mapped to transitions. The model transformation rules Q are shown in Fig. 4.
Rules mach2place and conv2place generate places for machines and conveyors. Note
that a conveyor is transformed to four different places, thus realizing a flattening
from our model with distinct piece types to a P/T net with indistinguishable to-
kens. Distinguishing the pieces is realized in the P/T net by placing them in distinct
places. Rules op2tk and piece2tk generate tokens for operators and pieces on the
places associated to their respective machines or conveyors. Transitions are gener-
ated for each connection between two conveyors (rule transport2tr) and for each

6



Fig. 3. Type Graph TGI for the ProdSystem2PetriNet Model Transformation

machine which is connected to one or more conveyors (rules first in2tr, nxt in2tr
and first out2tr, nxt out2tr). While rules first in2tr and first out2tr are applied
only if there exists not yet a transition connected to a machine (modeled by suit-
able NACs which are not depicted), rules nxt in2tr and nxt out2tr are applied in
the case that a machine is already connected to a transition and just add an arc
connecting the existing transition to an existing conveyor place of the right kind. A
machine’s transition is always connected by a double arc to the machine’s place to
ensure that a machine is working only if an operator is present. The result of an

Fig. 4. ProdSystem2PetriNet Model Transformation Rules

7



S2IM -transformation is illustrated in Fig. 5, where a part from the model shown in
Fig. 1 has been transformed. The model transformation rules in Fig. 4 have been
applied as long as possible, but at most once at the same match.

Fig. 5. ProdSystem2PetriNet: S2IM Model Transformation Result

Our aim in this paper is not only to transform model states but to obtain a
complete integrated simulation specification, including simulation rules, from the
source simulation specification. In Def. 3, we review a construction from [5, 4],
allowing us to apply the S2I transformation rules from Q also to the simulation rules,
resulting in a set of integrated simulation rules. Basically, the S2I transformation
rules are applied to each rule side of a simulation rule pS = (LS ← KS → RS) as
long as possible, resulting in an integrated simulation rule pI = (LI ← KI → RI).
Def. 3 defines rule transformation for the case without NACs. An extension to the
case with NACs is given in [5, 4].

Definition 3. (Transformation of Rules by Non-Deleting Rules) Given a

non-deleting rule q = (Lq → Rq) and a rule p1 = (L1
l1← K1

r1→ R1), then q is

applicable to p1 leading to a rule transformation step p1
q _ *4 p2 , if the precondition

of one of the following three cases is satisfied, and p2 = (L2
l2← K2

r2→ R2) is defined
according to the corresponding construction.

Case (1)

Precondition (1): There is a match Lq
h−→ K1.

Construction (1): K2, L2, and R2 are defined by
pushouts (1), (1a) and (1b), leading to injective mor-
phisms l2 and r2.

Lq

h ��

q //

(1 )

Rq

��
K1

r1

��

l1
�����

qK // K2

l2
�����

r2

��
L1 qL

(1a) // L2

R1 qR

(1b) // R2

8



Case (2)

Precondition (2): There is no match Lq
h−→ K1, but a

match Lq
h′−→ L1.

Construction (2): L2 is defined by pushout (2), and
K2 = K1, R2 = R1, r2 = r1, and l2 = qL ◦ l1.

Lq

h′

��

q //

(2 )

Rq

��
L1

qL // L2

Case (3)

Precondition (3): There are no matches Lq
h−→ K1 and

Lq
h′−→ L1, but there is a match Lq

h′′−→ R1.
Construction (3): R2 is defined by pushout (3), and L2 =
L1, K2 = K1, l2 = l1, and r2 = qL ◦ r1.

Lq

h′′

��

q //

(3 )

Rq

��
R1

qR // R2

Case (1) in Def. 3 corresponds to the notion of rule rewriting in [11], adapted
to non-deleting S2I transformation rules. In Case (2), the S2I transformation rule
q is not applicable to the interface K1, but to the left-hand side of a rule p1, and
in Case (3), q is not applicable to K1, but to the right-hand side of p1. Note that it
is possible that both Case (2) and Case (3) can be true for different matches of q.
Then, q is applied in a first step to L1 according to (2), and in a second step to R1

according to (3).
Based on Def. 3 we now define an S2IR transformation of rules, leading to

an S2I transformation S2I = (S2IM , S2IR) from the source simulation specification
SimSpecV LS

to the integrated simulation specification SimSpecV LI
.

Definition 4. (Rule Transformation S2IR) Given a simulation specification Sim-
SpecV LS

= (VLS , PS) and an S2IM -transformation S2IM = (VLS , TGI , Q), then a
rule transformation S2IR : PS → PI is given by S2IR = (PS, TGI , Q) and S2IR

transformation sequence pS
Q !_*4 pI with pS ∈ PS, where rule transformation steps

p1
q _*4 p2 with q ∈ Q (see Def. 3) are applied as long as possible. The integrated

simulation rules PI are defined by PI = {pI | ∃ pS ∈ PS ∧ pS
Q !_ *4 pI }. This means

pS
Q !_*4 pI implies pS ∈ PS and pI ∈ PI .

Definition 5. (S2I Transformation, Integrated Simulation Specification)
Given SimSpecV LS

= (VLS , PS), an S2IM transformation S2IM : VLS → VLI and
an S2IR transformation S2IR : PS → PI , then

1. S2I : SimSpecV LS
→ SimuSpecV LI

, defined by S2I = (S2IM , S2IR) is called S2I
transformation.

2. SimSpecV LI
= (VLI , PI) is called integrated simulation specification, and each

transformation step GI
pI=⇒ HI with GI , HI ∈ VLI and pI ∈ PI is called inte-

grated simulation step.

Example 3. Fig.6 shows three integrated simulation rules, the result of S2IR trans-
formation, i.e. of applying the model transformation rules from Fig. 4 to the source
simulation rules genCylinder,move cyl and change from Fig. 2.

9



Fig. 6. Some Integrated Simulation Rules resulting from S2IR Transformation

3.3 I2T Transformation

In the I2T transformation phase, we start with the integrated simulation specifica-
tion SimuSpecV LI

and generate the target simulation specification SimuSpecV LT

by restricting the integrated model graph and the integrated simulation rules to the
type graph of the target language.

Definition 6. (I2T Transformation and Target Simulation Specification)
Given an S2I transformation S2I : SimSpecV LS

→ SimSpecV LI
, then

1. I2T : SimSpecV LI
→ SimSpecV LT

, called I2T transformation, is defined by
I2T = (I2TM : V LI → V LT , I2TR : PI → PT ) with
– I2TM (GI) = GI |TGT

(called I2TM transformation), and
– I2TR(pI) = pI |TGT

(called I2TR transformation).
2. SimSpecV LT

= (VLT , PT ) with V LT = {GI |TGT
| GI ∈ V LI} and PT = {pI |TGT

| pI ∈ PI} is called target simulation specification, and each transformation step

GT
pT=⇒ HT with GT , HT ∈ VLT and pT ∈ PT is called target simulation step.

10



Example 4. Fig.7 shows the target simulation rules, the result of I2TR transforma-
tion, i.e. of restricting the integrated simulation rules from Fig. 6 to the type graph
of TGT of the target language from Fig. 3 (i.e. the Petri net type graph).

Fig. 7. Some Target Simulation Rules resulting from I2TR Transformation

We now can define the complete S2T model and rule transformation by combin-
ing the two transformation phases S2I and I2T .

Definition 7. (S2T Transformation)
Given an S2I transformation S2I : SimSpecV LS

→ SimSpecV LI
, and an I2T trans-

formation I2T : SimSpecV LI
→ SimSpecV LT

, then S2T: SimSpecV LS
→ SimSpecV LT

,
called S2T transformation, is defined by S2T = (S2TM : V LS → V LT , S2TR : PS →
PT ) with

– S2TM = I2TM ◦ S2IM (called S2TM transformation), and
– S2TR = I2TR ◦ S2IR (called S2TR transformation).

4 Semantical Correctness and Completeness of Model and
Rule Transformations

In this section, we continue the general theory of Section 3 and study behavior
preservation, i.e. semantical correctness and completeness of model and rule trans-
formations.

4.1 Semantical Correctness of S2I Transformations

In our case, semantical correctness of a S2I transformation means that for each
simulation step GS

pS=⇒ HS there is a corresponding simulation step GI
pI=⇒ HI

where GI (resp. HI) are obtained by model transformation from GS (resp. HS), and

11



pI by rule transformation from pS. Note that instead of a single step GI
pI=⇒ HI

we can also handle more general sequences GI
∗

=⇒ HI using concurrent rules and
transformations. In [5], it is shown that the following properties have to be fulfilled
by an S2I -transformation in order to be semantically correct:

Definition 8. (Termination of S2IM and Rule Compatibility of S2I )
An S2IM transformation S2IM : VLS → VLI is terminating if each transformation

GS
Q ∗
=⇒ Gn can be extended to GS

Q ∗
=⇒ Gn

Q ∗
=⇒ Gm such that no q ∈ Q is applicable to

Gm anymore. An S2I -transformation S2I = (S2IM : VLS → VLI , S2IR : PS → PA)
with S2IM = (VLS , TGI , Q) is called rule compatible, if for all pI ∈ PI and q ∈ Q we
have that pI and q are parallel and sequential independent. More precisely, for each

G
pI=⇒ H with GS

Q ∗
=⇒ G and HS

Q ∗
=⇒ H for some GS, HS ∈ VLS and each G

q
=⇒ G′

(resp. H
q

=⇒ H ′) we have parallel (resp. sequential) independence of G
pI=⇒ H and

G
q

=⇒ G′ (resp. H
q

=⇒ H ′).

In order to prove Theorem 1, we first show local semantical correctness in Propo-
sition 1 where only one S2IM -step (resp. S2IR-step) is considered.

Proposition 1 (Local Semantical Correctness of S2I -Transformations).
Given an S2I -transformation S2I : SimSpecV LS

→ SimSpecV LI with S2I =
(S2IM : VLS → VLI , S2IR : PS → PI) and an S2IR-transformation sequence

pS
Q !_*4 pI with intermediate S2IR-step pi

q _ *4 pi+1 with q ∈ Q. Then for each

graph transformation step Gi
pi=⇒ Hi with Gi, Hi ∈ GraphsTGI

we have

1. Graph transformation steps Gi
qi=⇒ Gi+1 in Cases

(1) and (2), Gi
id

=⇒ Gi+1 in Case (3), Hi
q

=⇒ Hi+1

in Cases (1) and (3), and Hi
id

=⇒ Hi+1 in Case (2)
of Def. 3.

2. Graph transformation step Gi+1
pi+1
=⇒ Hi+1 with Gi+1,

Hi+1 ∈ GraphsTGI

Gi

q / id +3

pi

��

Gi+1

pi+1

��

q _ *4

Hi
q / id +3 Hi+1

Proof. We consider the respective pushout diagrams for pi
q _*4 pi+1 according to

the three rule transformation cases in Def. 3, and show by pushout composition/de-
composition that in each case we obtain the commuting double cube below where
the two back squares comprise the given DPO for the transformation step Gi

pi=⇒
Hi, and in the front squares we get the required DPO for the transformation step
Gi+1

pi+1
=⇒ Hi+1.

Li

����� mi

��

Ki
lioo

��

�����

ri // Ri

��

�����

Li+1

mi+1

��

Ki+1
oo

��

// Ri+1

��
Gi

�����
Ci

oo

�����
// Hi

�����

Gi+1 Ci+1
oo // Hi+1

Lq

h

��

q //

(POI )

Rq

��
Ki

qi+1 // Ki+1

12



In Case (1) of Def. 3, we obtain the top squares as pushouts and then construct
Gi+1, Ci+1, Hi+1 as pushouts in the diagonal squares, leading to unique induced
morphisms Ci+1 → Gi+1 and Ci+1 → Hi+1 such that the double cube commutes.
By pushout composition/decomposition also the front and the bottom squares are

pushouts. Furthermore, we obtain pushouts for the transformation steps Gi
q

=⇒ Gi+1

and Hi
q

=⇒ Hi+1 by composing pushout (POI) with the respective pushouts from
the double cube. Cases (2) and (3) are handled similarly, with the difference that
some morphisms in the respective double cubes are identities.

Based on the notions of termination and rule compatibility in Def. 8, we now
extend local semantical correctness of S2I to semantical correctness. Note that the
proof of Theorem 1 corresponds to the proof of Semantical Correctness of S2A in
[5].

Theorem 1 (Semantical Correctness of S2I ).
Given an S2I -transformation S2I : SimSpecV LS

→ SimSpecV LI
with S2I = (S2IM :

VLS → VLI , S2IR : PS → PI) which is rule compatible, and S2IM is terminating.
Then, S2I is semantically correct in the sense that we have for

each simulation step GS
pS=⇒ HS with GS ∈ VLS and each

S2IR-transformation sequence pS
Q !_ *4 pI (see Def. 4):

1. two S2IM -transformation sequences

GS
Q !
=⇒ GI and HS

Q !
=⇒ HI , and

2. an integrated simulation step GI
pI=⇒ HI

GS
Q ! +3

pS

��

GI

pI

��

Q ! _ *4

HS
Q ! +3 HI

Proof. Given S2I = (S2IM : VLS → VLI , S2IR : PS → PI ) with terminating S2IM ,

a simulation step GS
pS=⇒ HS with GS ∈ VLS , and an S2IR transformation sequence

pS
Q !_*4 pI with pS = p0

q0 _*4 p1
q1 _ *4 .. qn−1_*4 pn = pI with n ≥ 1, then we can

apply the Local Semantical Correctness Theorem 1 for i = 0, .., n − 1, leading to
the diagram below, which includes the case n = 0 with GS = G0, HS = H0 and
pS = p0 = pI , where no q ∈ Q can be applied to pS.

GS = G0
q0 +3

pS=p0

��

G1
q1 +3

p1

��

G2
q2 +3

p2

��

... +3 Gn−1
qn−1 +3

pn−1

��

Gn

pn=pI

��

Q! _ *4

HS = H0 q0

+3 H1 q1

+3 H2 q2

+3 ... +3 Hn−1 qn−1

+3 Hn

If no q ∈ Q can be applied to Gn and Hn anymore, we are ready, because the top

sequence is GS
Q !
=⇒ Gn = GI , and the bottom sequence is HS

Q !
=⇒ Hn = HI .

Now assume that we have qn ∈ Q which is applicable to Gn leading to Gn
qn

=⇒
Gn+1. Then, rule compatibility implies parallel independence with GI

pI=⇒ HI , and

13



the Local Church Rosser Theorem [10] leads to square (n):

Gn
qn +3

pI

��
(n)

Gn+1
+3

pI

��

... +3 Gm−1 qm−1

+3

pI

��

Gm = GI

pI

��
Hn

qn +3 Hn+1
+3 ... +3 Hm−1

qm−1+3 Hm = HI

This procedure can be repeated as long as rules qi ∈ Q are applicable to Gi

for i ≥ n. Since S2IM is terminating, we have some m > n such that no q ∈ Q

is applicable to Gm anymore, leading to a sequence GS = G0
Q !
=⇒ Gm = GI . Now

assume that there is some q ∈ Q which is still applicable to Hm leading to Hm
q

=⇒
Hm+1. Now rule compatibility implies sequential independence of Gm

pI=⇒ Hm
q

=⇒
Hm+1. In this case, the Local Church Rosser Theorem would lead to a sequence
Gm

q
=⇒ Gm+1

pI=⇒ Hm+1 which contradicts the fact that no q ∈ Q is applicable

to Gm anymore. This implies that also H0
Q ∗
=⇒ Hn

Q ∗
=⇒ Hm is terminating, leading

to the required sequence HS = H0
Q !
=⇒ Hm = HI . As long as rules qi ∈ Q are

applicable to Gi for i ≥ n, the termination of the S2IM transformation ensures that
we have some m > n such that no q ∈ Q is applicable to Gm anymore, leading

to a sequence GS = G0
Q !
=⇒ Gm = GI . Furthermore, the rule compatibility of S2I

ensures that whenever qi ∈ Q is applicable to Gi for i ≥ n, then qi is also applicable
to Hi (and vice versa), which implies squares (n + 1), ..(m − 1) with

pI=⇒ in the

vertical direction, and we get the required sequences GS = G0
Q !
=⇒ Gm = GI and

HS = H0
Q !
=⇒ Hm = HI .

Example 5. Our ProdSystem2PetriNet model transformation is terminating, pro-
vided that all model transformation rules are applied at most once at each possible
match. (For automatic model transformations, this can be ensured by using ade-
quate NACs). Moreover, S2IR is rule compatible for ProdSystem2PetriNet, since all
pI ∈ PI are parallel and sequentially independent from the model transformation
rules q ∈ Q. This is shown by considering all overlapping matches from a rule pair

(q, pI) into an integrated model GI : Lq
h−→ GI

m←− LI . We find that each overlap
either is preserved by both rules, or that h(Lq) is completely included in m(LI). The
first case is uncritical. In the second case, rule q is not applicable since it has been
applied before at the same match, and hence this overlap cannot lead to a parallel
dependency.

4.2 Semantical Correctness of I2T Transformations

We now consider the semantical correctness of the I2T transformation phase, which
was defined in Def. 6 as the restriction of the integrated model graph and the inte-
grated simulation rules to the type graph TGT of the target VL.

For the proof of Theorem 2 we need a property of a type graph embedding,
defined by an injective type graph morphism fTG : TG1 → TG2. Type graph em-
beddings induce TGTS embeddings (morphisms between type graph transformation

14



systems) [4] which correspond to the notion of restriction of graph transformation
systems, i.e. for a type graph embedding fTG : TG1 → TG2, a TGTS embedding
exists between two typed graph transformation systems TGTS1 = (TG1, P1) and
TGTS2 = (TG2, P2) if P1 = P2|TG1).

Proposition 2 (TGTS Embeddings reflect the Behavior). Given a type graph
embedding, i.e. an injective type graph morphism fTG : TG1 → TG2 and a TGTS
embedding from TGTS1 = (TG1, P1) to TGTS2 = (TG2, P2). Then, the TGTS

embedding reflects the behavior in the sense that if we have a transformation G2
p2,m2=⇒

H2 in TGTS2, we get the transformation G1
p1,m1=⇒ H1 in TGTS1, where G1, H1, p1

and m1 are restrictions of G2, H2, p2 and m2 to TG1, respectively.

Proof. Basically, the proof works by construction of the double cube shown below,
where the front squares are pushouts corresponding to a rewriting step G2

p2=⇒ H2

in the DPO approach, applying the rule p2 = (L2 ← I2 → R2) to graph G2.
We can contruct L1, K1 and R1 as restrictions of L2, K2 and R2, respectively, and
G1, D1 and H1 as restrictions of G2, D2 and H2, such that the diagonal, bottom and
top squares are pullbacks and the double cube commutes. Thus, the Van-Kampen
property (see [10]) can be used to prove that the back squares are also pushouts,

which correspond to the rewriting step G1
p1=⇒ H1 in the DPO approach, applying

the rule p1 = (L1 ← K1 → R1) to G1.
L1

�����

��

K1
oo

��

�����
// R1

��

�����

L2

��

I2
oo

��

// R2

��
TG1

�����
G1

oo

�����
D1

oo

�����
// H1

�����
// TG1

�����

TG2 G2
oo D2

oo // H2
// TG2

Theorem 2 (Semantical Correctness of I2T Transformations). Given an
S2I transformation S2I = (S2IM : V LS → V LI , S2IR : PS → PI) : SimSpecV LS

→
SimSpecV LI

, and an I2T transformation I2T : SimSpecV LI
→ SimSpecV LT

de-
fined by I2T = (I2TM , I2TR) according to Def. 6. Then, I2T is semantically correct

in the sense that we have for each integrated simula-
tion step GI

pI=⇒ HI with GI ∈ VLI and each I2TR-
transformation I2TR(pI) = pI |TGT

= pT :

1. I2TM (GI) = GT and I2TM (HI) = HT , and

2. a target simulation step GT
pT=⇒ HT

GI

pI

��

I2TM // GT

pT

��

I2TR //

HI
I2TM // HT

Proof. The semantical correctness of I2T transformations holds because due to the
definition of I2T as restriction of the integrated model GI to GT and of the integrated
rules pI to pT , we have a TGTS embedding from SimSpecV LT

to SimSpecV LI
. TGTS

embeddings reflect the behavior according to Proposition 2. Hence, if we have a
transformation GI

pI ,mI=⇒ HI in SimSpecV LI
, we get the transformation GT

pT ,mT=⇒ HT

15



in SimSpecV LT
, where GT , HT , pT and mT are restrictions of GI , HI , pI and mI ,

respectively.

4.3 Semantical Completeness of S2I Transformations

In this section we consider the relation between an integrated simulation specification
SimSpecV LI

and the corresponding source simulation specification SimSpecV LS
.

Similar to the construction of the target simulation specification SimSpecV LT
by

restriction of SimSpecV LI
to TGT , the source simulation specification SimSpecV LS

can be re-constructed by restricting the integrated model graph and simulation rules
to the type graph TGS of the source language.

Definition 9. (I2S Backward Transformation) Given an S2I transformation
S2I : SimSpecV LS

→ SimSpecV LI
, then I2S: SimSpecV LI

→ SimSpecV LS
, called

I2S backward transformation, is defined by I2S = (I2SM : V LI → V LS, I2SR :
PI → PS) with

– I2SM (GI) = GI |TGS
(called I2SM backward transformation), and

– I2SR(pI) = pI |TGS
(called I2SR backward transformation).

The S2I transformation is called faithful if S2IM (GS) = GI implies I2SM (GI) = GS

and S2IR(pS) = pI implies I2SM (pI) = pS.

We call a model transformation rule L
q−→ R faithful if its restriction q|TGS

to
the source language is the identity. For the proof of Theorem 3, we first need to show
that an S2I transformation is faithful if all rules q ∈ Q are faithful (see Prop. 3).

Definition 10 (Faithful Model Transformation Rule). A nondeleting model
transformation rule q : L→ R ∈ Q is called faithful, if the restriction of q to TGS

is the identic rule: q|TGS
= id.

Proposition 3 (Faithful S2I Transformation).
Given Q as set of faithful model transformation rules
q : L → R. Then, each G

q
=⇒ H with f : G → H can

be chosen such that f |TGS
= id.

Proof. Given G
q

=⇒ H by the right pushout, we con-
struct L′, R′, G′ and H ′ as restrictions of L, R, G and H,
respectively, such that all squares in the cube are pull-
backs. Then, the van Kampen property implies that the
left square is a pushout where q faithful implies q′ = id
and hence, w.l.o.g. also f ′ = id.

L′ //

����
� ��

q′ ��

L
��

q

��

����
�

G′ // //
��

f ′

��

G
��

f ��
R′ //

����
�



��
��
��
��
��
��

R
����

�



��
��
��
��
��
��
�

H ′ // //

��

H

��
TGS

// // TGI

Theorem 3 (Semantical Completeness of S2I Transformations). Given a
faithful S2I transformation S2I = (S2IM , S2IR) : SimSpecV LS

→ SimSpecV LI
and

its backward transformation I2S = (I2SM , I2SR) : V LI → V LS, with I2SM : V LI →
V LS and I2SR : PI → PS. Then, S2I is semantically complete in the sense that we

16



have for each integrated simulation step GI
pI=⇒ HI

with GI , HI ∈ V LI and pI ∈ PI :

1. I2SM (GI) = GS and I2SM (HI) = HS with
S2IM (GS) = GI , S2IM (HS) = HI , and

2. a source simulation step GS
pS=⇒ HS with

I2SR(pI) = pI |TGS
= pS and S2IR(pS) = pI .

GI
I2SM //

pI

��

GS

pS

��

I2SR //

HI
I2SM // HS

Proof. The semantical completeness of S2I holds due to the fact that the I2S
backward transformation induces a typed graph transformation system (TGTS)
embedding from SimSpecV LS

to SimSpecV LI
(see [6]). TGTS embeddings reflect

the behavior according to Prop. 2. Hence, if we have a transformation GI
pI ,mI=⇒

HI in SimSpecV LI
, we get the transformation GS

pS ,mS=⇒ HS in SimSpecV LS
with

I2SM (GI) = GS, I2SM (HI) = HS and I2SR(pI) = pS. It remains to show that
S2IM (GS) = GI (and similarly S2IM (HS) = HI and S2IR(pS) = pI). In fact,
GI ∈ V LI implies existence of G′

S ∈ V LS with S2IM (G′
S) = GI , and by S2I faithful

we have I2SM (GI) = G′
S. This implies GS = G′

S and S2IM (GS) = GI .

Example 6. Our ProdSystem2PetriNet model transformation is faithful since all
model transformation rules (see Fig. 4) add only language elements typed over
TGI \ TGS. Hence, the rules are faithful, and the ProdSystem2PetriNet S2I trans-
formation is semantically complete according to Thm. 3.

4.4 Semantical Completeness of I2T Transformations

Semantical completeness of I2T transformations means that for each simulation step
in the target simulation specification we get a corresponding simulation step in the
integrated simulation specification. We require the following property to be fulfilled
for an I2T transformation in order to be semantically complete. (This property is
discussed for our case study in Example 7.)

Definition 11 (I2T Completeness Condition).
Given a target simulation rule pT ∈ PT , then due to the construction of SimSpecV LT

by restriction, there exists an integrated simulation rule pI ∈ PI such that pT =
pI |TGT

. Then, for each target transformation

GT
pT=⇒ HT with GT ∈ V LT and context graph

DT and morphism KT → DT we require that there
exists a context graph DI typed over TGI and mor-
phism KI → DI such that

1. KT → DT is the restriction of KI → DI to
TGT , i.e. that we have two pullbacks in the di-
agonal squares in the diagram to the right.

2. For the pushout objects GI and HI in the front
squares we have GI , HI ∈ V LI .

LT

�����

��

KT
oo

��

�����
// RT

��

�����

LI

��

KI
oo

��

// RI

��
GT DT

oo

�����
//

��

HT

GI DI

��

oo // HI

TGT

�����

TGI

17



For the proof of Theorem 4, we need an additional proposition which ensures the
existence of a pullback in a double cube under certain conditions:

Proposition 4 (Existence of Pullback in
Double Cube). Given the commutative double
cube to the right, where we have pushouts in the up-
per back and the upper front squares, and pullbacks
in the composite left, the upper right, upper top,
upper bottom, upper left and lower right squares.
Moreover, all horizontal morphisms are injective.
Then, the lower left square is a pullback.

LT

�����

��

KT
oo

��

�����

LI

��

KI
oo

��
GT

�����

��

DT
oo

�����

��
GI

��

DI

��

oo

TGT

�����
TGT

�����

idoo

TGI TGIid
oo

Proof.

– Part 1 (Existence): Given x1 ∈ TGT , x2 ∈ GI with x1 7→ x0 ← [ x2 for x0 ∈ TGI ,
we show that ∃z1 ∈ GT s.t. z1 7→ x1 and z1 7→ x2.

Since GI is pushout object, we have two cases:
• Case 1: ∃y2 ∈ LI : y2 7→ x2

(PB in composite left square) =⇒ ∃y1 ∈ LT : y1 7→ y2, y1 7→ x1. Let z1 =
(LT → GT )(y1) =⇒ z1 ∈ GT with z1 7→ x1 and (GT → GI)(z1) = (LT →
GT → GI)(y1) = (LT → LI → GI)(y1) = x2

• Case 2: ∃y′
2 ∈ DI : y′

2 7→ x2

(PB in lower right square) =⇒ ∃y′
1 ∈ DT : y′

1 7→ y′
2, y

′
1 7→ x1. Let z1 = (DT →

GT )(y′
1) =⇒ z1 ∈ GT with z1 7→ x1 and (GT → GI)(z1) = (DT → GT →

GI)(y
′
1) = (DT → DI → GI)(y

′
1) = x2

– Part 2 (Uniqueness): Given x1, x2 ∈ GT with
(GT → GI)(x1) = x0 = (GT → GI)(x2), and
(GT → TGT )(x1) = (GT → TGT )(x2), we have to show that x1 = x2.

Due to GI being pushout object, we have three cases:
• Case 1: ∃y1 ∈ LT , y2 ∈ DT , (LT → GT )(y1) = x1, (DT → GT (y2) = x2

Let z1 = (LT → LI)(y1), z2 = (DT → DI)(y2). Then, z1 7→ x0, z2 7→ x0. (PB
in upper front square) =⇒ ∃z0 ∈ KI : z0 7→ z1, z0 7→ z2.
(PB in upper right square) =⇒ ∃z′

0 ∈ KT : z′
0 7→ z0, z

′
0 7→ y2.

(LT → LI) injective =⇒ z′
0 7→ y1

(upper back square is commutative) =⇒ x1 = x2.
• Case 2: ∃y1, y2 ∈ DT , (DT → GT )(y1) = x1, (DT → GT )(y2) = x2

Let z1 = (DT → DI)(y1) and z2 = (DT → DI)(y2) =⇒ (DI → GI)(z1) =
(DI → GI)(z1) = x0

(DI → GI) injective =⇒ z1 = z2

(DT → DI) injective =⇒ y1 = y2 =⇒ x1 = x2

18



• Case 3: ∃y1, y2 ∈ LT , (LT → GT )(y1) = x1, (LT → GT )(y2) = x2

Let z0 = (GT → TGT )(x1) = (GT → TGT )(x2) =⇒ (z′
0 = (TGT →

TGI)(z0) = (GI → TGI)(x0)
Let z1 = (LT → LI)(y1) and z2 = (LT → LI)(y2) =⇒ (LI → GI)(z1) =
(LI → GI)(z2) = x0

(PB in upper left square) =⇒
∃y12 ∈ LT : (LT → LI)(y12) = z1, (LT → GT )(y12) = x2

∃y21 ∈ LT : (LT → LI)(y21) = z2, (LT → GT )(y21) = x1

(PB in left composite square) =⇒ ∃!y ∈ LT :
(LT → LI)(y) = z1, and (LT → TGT )(y) = z0

=⇒ y12 = y1 =⇒ x1 = (LT → GT )(y1) = (LT → GT )(y12) = x2

Theorem 4 (Semantical Completeness of I2T ).
Each I2T transformation I2T = (I2TM , I2TR) which satisfies the I2T completeness
condition (see Def. 11) is semantically complete in the sense that for each target

transformation GT
pT=⇒ HT with GT ∈ V LT via

simulation rule pT ∈ PT with pT = pI |TGT
for

some pI ∈ PI there is an integrated transforma-
tion GI

pI=⇒ HI such that

– GI , HI ∈ V LI

– GT = GI |TGT
and HT = HI |TGT

∈ V LT

GI I2TM

//

pI

��

GT

pT

��

I2TR //

HI
I2TM // HT

Proof. Given a target simulation rule pT which is restriction of an integrated sim-
ulation rule pI to TGT , i.e. in the diagram to the right, the top left and top right
squares are pullbacks. Given a target transformation GT

pT=⇒ HT , i.e. the upper back
squares are pushouts. Since we have GT ∈ V LT ,

and the completeness condition (part 1) is satis-
fied, we have a context graph DI typed over TGI

and two morphisms KI → DI and KT → DT such
that the diagonal squares are pullbacks. We con-
struct the graphs GI and HI as pushout objects,
e.g. we get two pushouts in the upper front squares
(the DPO for the transformation GI

pI=⇒ HI) with
GS, HS ∈ V LI by completeness condition (part
2). We also get the morphisms GI → TGI and
HI → TGI as unique pushout morphisms.

LT

�����

��

KT
oo

��

�����
// RT

��

�����

LI

��

KI
oo

��

// RI

��
GT

�����

��

DT
oo

�����
//

��

HT

�����

��
GI

��

DI

��

//oo HI

��
TGT

�����
TGT

�����

id //idoo TGT

�����

TGI TGIid
oo

id
// TGI

Moreover, we get the morphisms GT → GI and HT → HI as unique pushout
morphisms from the DPO pushouts in the upper back squares, such that the upper
left square, the bottom squares of the upper cubes, and the upper right square
commute. Using the Van-Kampen property, we get pullbacks in the upper left and
right squares and in the upper bottom squares. Now we have the situation that we
can apply Proposition 4 to both the left and the right double cube, and hence we
get that the lower left square and the lower right square are pullbacks. This implies
GT = GI |TGT

and HT = HI |TGT
.

19



Example 7. We show that our ProdSystem2PetriNet I2T transformation up to now
does not fulfill the completeness condition and discuss an adaption of the model
transformation rules in order to achieve semantical completeness of the I2T transfor-
mation. Based on the set PT of target rules resulting from the ProdSystem2PetriNet
I2T transformation, we may apply more than one pT ∈ PT to the same GT . Consider
for example the target rules move cyltarget and changetarget in Fig. 7. Both rules are
applicable to a target graph GT ∈ V LT if there exists a match from the “biggest”
rule move cyltarget to GT . Thus, when applying either rule move cyltarget or rule
changetarget to GT , we get the same transformation span GT ← DT → HT , but the
applied rule pT might be the restriction of an integrated rule pI ∈ PI such that the
first part of the completeness condition is fulfilled, but not the second one: i.e., there
exists a context graph DI and morphism KI → DI such that the pushout objects
GI and HI are not in V LI . In Fig. 8, such a situation is shown where the target rule
was changetarget was constructed by restricting the integrated rule changeint to the
Petri net target language.

Fig. 8. Violated Completeness Condition in ProdSystem2PetriNet

20



But rule changetarget is applied to an occurrence in the host graph (only a part of
this host graph GT is shown in Fig. 8), where the places did not originally correspond
to machines but to conveyor belts. Thus, when the pushout objects GI and HI are
constructed, we get graphs which do not belong to V LI , i.e. it is not possible to
derive these graphs by S2I transformation from any valid source production system
(again, only a part of GI and HI are shown in Fig. 8).

This might happen because our model transformation “forgets” information,
i.e. when looking at a target rule (typed over the Petri net language), we do not
know anymore, from which integrated rule this target rule was constructed. In order
to avoid such situations, we propose a slight extension of the target type graph
TGT (Fig. 3) and the model transformation rules (Fig. 4). We introduce a suitable
annotation of Petri net elements (transitions or places), by attributes which keep
the information about the original role of the element. For example, by extending
the model transformation rules, we annotate each place originating from a machine
by the type of machine (e.g. Assembler or GenCyl, and each place originating from
a conveyor by the piece type a token on this place would represent (e.g. cyl or bar).
The annotation should establish a 1:1 correspondence between the integrated rules
in PI and the target rules in PT , and between integrated models GI ∈ V LI and their
target models GT ∈ V LT . Hence, a target rule pT ∈ PT which is a restriction of an
integrated rule pI ∈ PI now is applicable to a target model GT ∈ V LT only if there
exists GI ∈ V LI to which pI is applicable. In this case, the context graph DI and
the morphism KI → DI are unique and lead to pushouts in the front squares such
that GI and HI are in V LI , i.e. also the second part of the completeness condition
is now satisfied.

Note that the annotation does not affect the semantical correctness and com-
pleteness of S2I (shown in Examples 5 and 6) since S2I is still terminating, rule
compatible and faithful.

4.5 Semantical Correctness and Completeness of S2T Transformations

Putting all steps together, we find that a source-to-target model transformation
S2T : SimSpecV LS

→ SimSpecV LT
with S2T = I2T ◦ S2I is semantically correct

and complete if I2T and S2I are semantically correct and complete. In this case, we
get for each source simulation step in SimSpecV LS

a corresponding target simulation
step in SimSpecV LT

, and vice versa.

Theorem 5 (Semantical Correctness and Completeness of S2T ). Each S2T
transformation S2T = (S2TM , S2TR) : SimSpecV LS

→ SimSpecV LT
with S2T =

I2T ◦ S2I , where S2I : SimSpecV LS
→ SimSpecV LI

with S2I rule compatible, S2IM
terminating (Def. 8) and S2I faithful, and I2T : SimSpecV LI

→ SimSpecV LT
, with

I2T satisfying the completeness condition (Def. 11), is semantically correct and com-
plete in the following sense:

21



1. Semantical Correctness: For each source simulation step GS
pS=⇒ HS with

GS ∈ V LS and S2TR-transformation sequence pS
Q !
=⇒ pI

|TGT−→ pT we have

1. S2TM -trafo S2TM (GS) = GT : GS
Q!

=⇒ GI

|TGT−→ GT ,

S2TM -trafo S2TM (HS) = HT : HS
Q!

=⇒ HI

|TGT−→ HT , and

2. a target simulation step GT
pT=⇒ HT via target simulation rule pT ∈ PT

2. Semantical Completeness: For each
target transformation step GT

pT=⇒ HT with
GT ∈ V LT and pT ∈ PT there is a source
simulation step GS

pS=⇒ HS with

– pT = S2TR(pS),
– GT = S2TM (GS) and

HT = S2TM (HS) ∈ V LT .

GS
S2IM +3

pS

��

S2TM

))
GI

pI

��

I2TM // GT

pT

��

S2IR _*4

S2TR

''I2TR //

HS
S2IM +3

S2TM

))
HI

I2TM // HT

This means especially that the transformation step GT
pT=⇒ HT becomes a simu-

lation step in SimSpecV LT
, generated from the simulation step GS

pS=⇒ HS.

Proof. By semantical correctness of S2I and I2T (Theorems 1 and 2), we get directly
the semantical correctness of S2T = I2T ◦ S2I . By semantical completeness of S2I
and I2T (Theorems 3 and 4), we get directly the semantical completeness of S2T
= I2T ◦ S2I .

4.6 Relationship of SimSpecV LT
and Target Language Semantics

In the case that the target language has already an operational semantics given by
simulation rules PT̄ (like in our running example, where the target language is the
language of Petri nets), we may require for our model transformation S2T to be
behavior-preserving in the sense that for each model in V LT the simulations via
rules in PT correspond to simulations via rules in PT̄ and vice versa.

Example 8. As classical semantics of a P/T net (with fixed arc weight 1) we gener-
ate for each transition with i input places and o output places in a given Petri net
model a corresponding firing rule [12]. Such firing rules belong to the rule schema
depicted to the right.

For a transition with i input places and o output places
there is the graph rule pT̄ ∈ PT̄ where the transition
with its environment is preserved by the rule, all (and
only the) input places are marked each by one token in
the left-hand side, and all (and only the) output places
are marked each by one token in the right-hand side.

Furthermore, the rules must not be applied to transitions with larger environ-
ment which can be ensured by suitable NACs (called environment-preserving). Con-

22



sidering the target simulation rules PT which resulted from our extended ProdSys-
tem2Petri S2T transformation (i.e. the rules in Fig. 7, extended by annotations as
described in Example 7), we notice two differences to PT̄ :

1. the target rules in PT have no environment-preserving NACs,
2. the Petri net elements in the target rules in PT are annotated,
3. the target rules in PT in general contain context in addition to the environment

of a single transition.

In case 1, we add environment-preserving NACs to each target rule without
changing their applicability, since the annotations ensure that each target rule can
be applied to a transition with fixed environment, anyway.

In case 2, we omit the annotations in the target rules and argue that the rules
without annotations (but with environment-preserving NACs) lead to the same
transformations as the rules with annotations. In our example, we find that all
target rules without annotations which are applicable to GT at matches which over-
lap in the activated transition and its environment, have the same transformation
span, i.e. GT ← DT → HT (they are semantically equivalent). This means for in-
stance that the target rules in Fig. 7 are all semantically equivalent for a match from
the ”biggest” rule move cyltarget to GT , since they differ only in the context which
is preserved in each rule. It can be checked easily that we have a similar situation
for all other target rules. The NACs prevent that the target rules without annota-
tions become applicable to transitions with a larger environment. With respect to
the annotated target rules, all semantically equivalent target rules without anno-
tations which are applicable at matches containing the same activated transition,
correspond to exactly one application of an annotated target rule at this match,
(so this annotated rule is semantically equivalent to the rules without annotations).
Thus, we can omit the annotations in the target rules without effecting changes of
the possible target transformation steps.

In case 3, the behavior is preserved only if the additional context in each rule
pT ∈ PT can always be found for each match into any model in SimSpecV LT

, and if
this context is never changed by the rules in PT . Then the effect of applying rule pT

corresponds exactly to the effect of applying the rule for the corresponding transition
type from PT̄ . In our running example, we have additional context for instance in the
rules genCylindertarget and move cyltarget (see Fig. 7). Here, the context was gener-
ated due to the flattening of conveyors to sets of four places. Since this flattening was
also performed for each conveyor in the source model GS, we know that each match at
which the rule genCylindertarget without the three additional context places is appli-
cable, corresponds to a match of the rule with context. This is true in our example for
all firing rules containing context in addition to the active transition’s environment.
Hence, we can conclude that the ProdSystem2Petriannotated model transformation is
not only semantically correct and complete, but also behavior-preserving w.r.t. the
Petri net semantics.

23



5 Related Work

Results concerning the correctness of model transformations have been published so
far mainly on formally showing the syntactical correctness of model transformations
(see [13] for an overview).

To ensure the semantical correctness of model transformations, Varró et al. [14]
use graph transformation to specify the dynamic behavior of systems and generate
a transition system for each model. Based on the transition system, a model checker
verifies certain dynamic consistency properties by model checking the source and
target models. In [3], a method is presented to verify the semantical equivalence
for particular model transformations. It is shown by finding bisimulations that a
target model preserves the semantics of the source model with respect to a particular
property. This technique does not prove the correctness of the model transformation
rules in general, as we propose in this paper. In [4–6], we consider simulation-to-
animation model and rule transformation (S2A transformation), which realizes a
consistent mapping from simulation steps in a behavioral modeling language to
animation steps in a more suitable domain-specific visualization. The animation
specification A in [4–6] corresponds to an integrated simulation specification in this
paper. However, there is no I2T transformation considered in [4–6]. This paper
generalizes and extends the results from [4–6] to the more general case of S2T
model transformations.

6 Conclusion and Ongoing Work

We have considered the semantical correctness and completeness of model transfor-
mations based on simulation specifications (typed graph transformation systems).
The main results show under which conditions an S2T model transformation is se-
mantically correct and complete. The results have been used to analyze an S2T
transformation of a production system (a domain-specific visual model) to Petri
nets. The theory has been presented in the DPO-approach for typed graphs, but it
can also be extended to typed attributed graphs, where injective graph morphisms
are replaced by suitable classes M and M ′ of typed attributed graph morphisms for
rules and NACs, respectively [10].

In the case that the target language has already an operational semantics given
by simulation rules PT̄ (like in our running example, where the target language is
the language of Petri nets), we may require for our model transformation S2T to
be behavior-preserving in the sense that for each model in V LT the simulations
via rules in PT correspond to simulations via rules in PT̄ and vice versa. Work is
in progress to establish formal criteria for semantically correct and complete S2T
model transformations to be also behavior-preserving w.r.t. a given target language
semantics.

Future work is planned to analyze in more detail our I2T completeness condition,
to automatize our approach (e.g. check the correctness and completeness conditions

24



automatically by a tool) and to apply the approach to triple graph grammars [15],
nowadays widely used for model transformation specification.

References

1. OMG: Unified Modeling Language: Superstructure – Version 2.1.1. (2005) formal/07-02-05,
http://www.omg.org/technology/documents/formal/uml.htm.

2. Reisig, W.: Petri Nets. Volume 4 of EATCS Monographs on Theoretical Computer Science. Springer
Verlag (1985)

3. Narayanan, A., Karsai, G.: Using Semantic Anchoring to Verify Behavior Preservation in Graph
Transformations. In: Proc. Workshop on Graph and Model Transformation (GraMoT’06). Volume 4.,
Electronic Communications of the EASST (2006)

4. Ermel, C.: Simulation and Animation of Visual Languages based on Typed Algebraic Graph Trans-
formation. PhD thesis, Technische Universität Berlin, Fak. IV, Books on Demand, Norderstedt (2006)

5. Ermel, C., Ehrig, H., Ehrig, K.: Semantical Correctness of Simulation-to-Animation Model and Rule
Transformation. In: Proc. International Workshop on Graph and Model Transformation (GraMoT’06),
Satellite Event of the IEEE Symposium on Visual Languages and Human-Centric Computing. Vol-
ume 4 of Electronic Communications of the EASST., Brighton, UK, European Association of Software
Science and Technology (2006)

6. Ermel, C., Ehrig, H.: Behavior-preserving simulation-to-animation model and rule transformation. In
König, B., Heckel, R., Rensink, A., eds.: Proc. of Workshop on Graph Transformation for Verification
and Concurrency (GT-VC’07). Volume 213 of ENTCS., Elsevier Science (2008) 55–74

7. Ehrig, H., Ermel, C.: Semantical Correctness and Completeness of Model Transformations using Graph
and Rule Transformation. In: Proc. International Conference on Graph Transformation (ICGT’08).
Volume 5214 of LNCS., Heidelberg, Springer Verlag (2008) 194–210

8. de Lara, J., Vangheluwe, H.: Translating Model Simulators to Analysis Models. In Fiadeiro, J.,
Inverardi, P., eds.: Proc. Fundamental Approaches to Software Engineering (FASE’08). Volume 4961
of Lecture Notes in Computer Science. (2008) 77–92

9. Lara, J., Bardohl, R., Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Attributed Graph Transformation
with Node Type Inheritance. Theoretical Computer Science 376(3) (2007) 139–163

10. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transformation.
EATCS Monographs in Theoretical Computer Science. Springer Verlag (2006)

11. Parisi-Presicce, F.: Transformation of Graph Grammars. In: 5th Int. Workshop on Graph Grammars
and their Application to Computer Science. Volume 1073 of LNCS., Springer (1996)

12. Kreowski, H.J.: A Comparison between Petri Nets and Graph Grammars. In: 5th International
Workshop on Graph-Theoretic Concepts in Computer Science, LNCS 100, Springer (1981) 1–19

13. Ehrig, H., Ehrig, K.: Overview of Formal Concepts for Model Transformations based on Typed
Attributed Graph Transformation. In: Proc. International Workshop on Graph and Model Transfor-
mation (GraMoT’05). Volume 152 of ENTCS., Tallinn, Estonia, Elsevier Science (2005)

14. Varró, D.: Automated formal verification of visual modeling languages by model checking. Software
and System Modeling 3(2) (2004) 85–113

15. Schürr, A.: Specification of Graph Translators with Triple Graph Grammars. In Tinhofer, G., ed.:
WG94 20th Int. Workshop on Graph-Theoretic Concepts in Computer Science. Volume 903 of Lecture
Notes in Computer Science., Heidelberg, Springer Verlag (1994) 151–163

25


