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Abstract. The generation of tools for domain specific modeling lan-
guages (DSMLs) is a key issue in model-driven development. Various
tools already support the generation of domain-specific visual editors
from models, but tool generation for visual behavior modeling languages
is not yet supported in a satisfactory way. In this paper we propose a
generic approach to specify DSML environments visually by models and
transformation rules based on the Eclipse Modeling Framework (EMF).
Editing rules define the behavior of generated visual editors, whereas
simulation rules describe a model’s operational semantics. From a DSML
definition (model and transformation rules), an Eclipse plug-in is gener-
ated, implementing a visual DSML environment including an editor and
(possibly multiple) simulators for different simulation views on the model.
We present the basic components of Tiger2, our EMF-based generation
environment, and demonstrate the environment generation process for a
small DSML modeling the behavior of ants in an ant hill.

1 Introduction

Domain specific modeling languages (DSML) are of growing importance for soft-
ware engineering, and the rapid development of DSML tools is a key issue in model-
driven development. Meta-tools including MetaEdit+ [28], DiaGen [24], AToM3 [21],
GME [22], Marama [17] and DSL Tools [23] have been developed to support rapid
specification and generation of DSML tools. Moreover, the Eclipse Modeling Frame-
work EMF [11] has recently come to be a quasi-standard for meta-modeling in prac-
tice, consisting of an implementation of core concepts based on MOF. The above

1



mentioned meta-tools do not yet take the EMF format for meta-modeling into ac-
count, which poses difficulties when existing EMF models serve as basis for tool
generation. A notable exception is the EMF-based editor generator GMF [10] which
is widely used in Eclipse projects on model-driven software development, such as
the UML2Tools subproject [13]. In contrast to editor generation, the generation of
tools for visual behavior modeling languages based on EMF is not yet supported in
a satisfactory way. Visual behavior models are the basis for model simulation with
the purpose to validate the model behavior with respect to its requirements. In this
paper we propose a generic approach to specify behavior-modeling environments
by EMF models and EMF model transformation based on graph transformation
rules. Graph transformation has been investigated as a fundamental concept for
programming, specification, concurrency, distribution, visual modeling and model
transformation [14,15].

In our modeling environment, a set of EMF transformation rules called editing
rules define the editing commands of the generated visual editor, i.e. the model
syntax; on the other hand, a set of simulation rules describe a model’s operational
semantics. For automatic simulation, rule application is controlled by activity di-
agrams, where simple activities denote rule applications. From a DSML definition
(EMF model, view definitions and EMF transformation rules), an Eclipse plug-
in is generated, implementing a visual DSML environment including an editor and
(possibly multiple) simulation views on the model.

The structure of this paper is as follows: After reviewing graph and EMF trans-
formation concepts in Sect. 2, we introduce our running example, a small DSML
modeling the behavior of ants in an ant hill, in Sect. 3. Sect. 4 defines the EMF
models used for DSML specification, and Sect. 5 presents Tiger2 [29], our gen-
eration environment based on EMF and EMF model transformation. We give an
outlook to future work and conclude the paper in Sect. 7.

2 EMF Transformation based on Graph Transformation
Concepts

For editing and simulation we use a rule based approach based on algebraic graph
transformation concepts [14]. In this section, we introduce the main notions of mod-
eling by graph transformation (Sect. 2.1) and extend these notions to model EMF
model transformation based on graph transformation in Sect. 2.2.

2.1 Modeling by Graph Transformation

A domain-specific visual language (VL) is modeled by a type graph defining the
underlying visual alphabet, i.e. the symbols (node types) and relations (edge types)
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which are available. Sentences or diagrams of the VL are given by graphs typed over
(i.e. conforming to) the type graph. Such a VL type graph (which may also contain
multiplicities and inheritance arcs) corresponds closely to a meta-model. Node types
may be attributed by attribute types.

On the basis of a type graph defining a VL, and instance graphs typed over
this type graph representing different states of a model, step-wise simulation is
now described by graph transformation between these states. The main idea of
graph transformation is the rule-based modification of graphs where each application
of a graph transformation rule leads to a graph transformation step. The core of
a graph transformation rule (LHS

r−→ RHS) is a pair of graphs (LHS,RHS),
called left-hand side and right-hand side, and an injective (partial) graph morphism
r : LHS → RHS. A graph morphism consists of structure-preserving mappings
from nodes in LHS to nodes in RHS, such that for an edge from node n1 to node
n2 in LHS which is preserved by the rule, we have a corresponding edge from node
r(n1) to r(n2) in RHS. In our approach, all graph morphisms are injective, i.e. they
do not merge elements. Applying the rule (LHS

r−→ RHS) means to find a match
of LHS in the source graph and to replace this matched part in the source graph by
the corresponding RHS, thus transforming the source graph into the target graph
of the graph transformation. Intuitively, the application of rule r to graph G via a
match m from LHS to G deletes the image m(LHS) from G and replaces it by a
copy of the right-hand side m∗(RHS). Note that a rule may only be applied if the
so-called gluing condition is satisfied, i.e. the deletion step must not leave dangling
edges.

Definition 1. Graph Transformation Let (LHS
r−→ RHS) be a typed graph trans-

formation rule and G a typed graph with a typed graph morphism LHS
m−→ G,

called match. A graph transformation step G
r,m
=⇒ H from G to a typed graph H via

rule p, match m, and co-match m∗ is shown in the diagram below. The rule r may
be extended by a set of negative application conditions (NACs) [18,14]. A match
LHS

m−→ G satisfies a NAC with the injective NAC morphism LHS
n−→ NAC, if

there is no graph morphism NAC
q−→ G with q ◦ n = m.

NAC

q
|

JJJ
JJ

$$JJJJJ

LHS
r //

m

��

noo RHS

m∗

��
G // H

An example of a rule application is shown in Fig. 1, where mappings are indicated
by corresponding numbers in the graphs. The LHS matches its Field node to Field
node 2 in G. Hence, the node of type Ant in H, which is created by the rule, is linked
to Field 2 and to node AntWorld.
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Fig. 1. Rule application example

A sequence G0 ⇒ G1 ⇒ .. ⇒ Gn of graph transformation steps is called graph
transformation, denoted as G0

∗⇒ Gn.

A rule may be extended by input parameters, i.e. variables used to compute new
attribute values for nodes in the right-hand side. When the rule is applied, the input
parameters have to be bound to concrete values.

2.2 From Graph to EMF Transformation

The Eclipse Modeling Framework EMF [11] is a modeling and code generation fa-
cility for building tools and other applications based on a structured data model.
From a model specification described by a class diagram, EMF provides tools and
runtime support to produce a set of Java classes for the model, a set of adapter
classes that enable viewing and command-based editing of the model, and a basic
(tree-based) editor. EMF provides the foundation for interoperability with other
EMF-based tools, e.g. OCL checkers.

Although EMF provides basic operations for modifying EMF based models, it
is still difficult to define more complex operations on these models. Our approach
uses the recently developed Eclipse plug-in [30,7] supporting modeling and code
generation for EMF model transformations, based on structured data models and
graph transformation concepts. The conceptual differences between modeling based
on typed, attributed graphs and object-based modeling as performed by EMF are
shown in Table 1.
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Table 1. Mapping EMF notions to graph terminology

EMF notion Graph term

Model Type graph with attribution, inheritance, multiplicities. Edges can be marked as con-
tainments.

Model instance Typed, attributed graph with containment edges
Class Node in type graph
Object Node in typed graph
Association Edge in type graph (with possible multiplicities or containment mark)
Reference Edge in typed graph that must not violate certain multiplicity and containment con-

straints.

Classes in an EMF model correspond to nodes in a typing graph. Associations
between classes can be seen as edges in a type graph. Generalizations and multiplicity
constraints of association ends can also be defined in the type graph. Objects as
instantiations of classes of an EMF model are comparable to nodes in a graph which
is typed by a type graph. Objects can be linked to each other by setting reference
values. Such references correspond to edges in a typed attributed graph.

Usually, EMF models have containment constraints in addition, which do not
occur in plain graph transformation. Containment relations, i.e. aggregations, de-
fine an ownership relation between objects. Thereby, they induce a tree structure
in model instantiations. In MOF and EMF, this tree structure is further used to
implement a mapping to XML, known as XMI (XML Meta data Interchange) [31].
Containment implies a few constraints for model instantiations that must be ensured
at run-time. As semantical constraints for containment edges, the MOF specification
[26] states the following:

– ”An object may have at most one container.”
– ”Cyclic containment is invalid.”

EMF provides full implementations of instance models. These implementations al-
ways ensure these constraints.

In [8], containment constraints of EMF model transformations are translated
to a special kind of graph transformation rules such that their application leads to
consistent transformation results only, i.e. they must not delete contained objects
without deleting their containment relations as well, and they must not generate
objects without relating them to precisely one container. Moreover, containment cy-
cles must not be produced by rule applications. In [8] we formally define well-formed
graph transformation rules with containment (called EMF transformation rules from
now on) and show that their application does not violate the EMF containment con-
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straints stated above. Hence, in this paper we will use EMF transformation rules
only and thus can be sure that we always have valid EMF instance models. Note that
EMF transformation rule applications change an EMF model instance in-place, i.e.
the model instance is modified directly, without copying it before. Moreover, we can
export EMF transformation rules to the graph transformation analyzer AGG [4]
in order to verify important transformation properties such as dependencies and
confluence of rule applications [14].

3 Running Example: Ant World

The AntWorld simulation is a case study designed as benchmark for the compar-
ison of graph transformation tools at the Graph-Based Tools Workshop GraBaTs
2008 [32]. The AntWorld simulation consists of an ant hill sitting in the middle of
a large area. The ants are moving around searching for food. If an ant finds food,
it brings the food home to its ant hill in order to grow new ants. On its way home,
the ant drops pheromones marking the path to the food reservoir. If an ant without
food leaves the hill or if a searching ant hits a pheromone mark, the ant follows the
pheromone path to the food. This behavior already results in the well-known ant
trails. The area in which the ants move is modeled by a grid of nodes. In order to
enable the ants to go home on a straight path, if they have found some food, the
area grid looks like a spider’s web with the ant hill in its center, see Fig. 2.

The AntWorld simulation works in rounds. Within each round, each ant does
one move. The ant behavior depends on the following modes:

– If the ant has no food and is on a field with food, it takes one piece of food and
enters the food carrying mode. It may still move within the current round.

– If the ant carries some food, it follows the links towards the ’inner’ circle. During
its way home, on each visited grid node (including the food node, the ant drops
1024 parts of pheromones. This guides other ants to the food place.

– If ant with food is on the hill node, it drops the food and enters the search mode.
It may leave the hill within the same round.

– An ant without food is in search mode. The ant checks the neighbor node(s) of
the next outer circle for pheromones. If there are neighbor nodes on the next
outer circle with more than 9 parts of pheromones, the ant chooses one of these
fields, randomly.

– If the ant is in search mode and no outer neighbor has sufficient pheromones, the
ant moves to any neighbor field, randomly. However, an ant without food shall
not enter the ant hill.

Initially, the area grid consists only of the hill and the first two circles. The hill
contains eight ants. No food is provided on the grid. Whenever during one round
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Fig. 2. AntWorld example

an ant enters the currently outmost circle (i.e. the border of the yet known area),
a new circle of nodes is created. During the creation of this next circle, every 10th
node shall carry 100 parts of food. After each round, the pheromones evaporate.
This is needed in order to erase an old ant trail once the food has drained. After
each round, the hill consumes the food brought to it and it creates one new ant per
delivered food part.

3.1 The Ant World Meta Model

Fig. 3 shows the EMF model we used for our rules. All objects in our ant world are
contained in a class called AntWorld. We model Ants, Fields, Food and Pheromones
as classes. Fields are further divided into their specific roles like Hill, Normal fields
and Exit fields which form the main four axis in the grid starting from the Hill.

3.2 Editing Rules

For building the start system for our simulation shown in Fig. 2, we provide some
basic editing rules (see Fig. 4). Rule addHill is applicable only once (modeled by
a suitable NAC). Rules addNormal and addMainField produce new fields, linked
by applying rule linkFields. Ants are produced by rule addAnt (see Fig. 1). We do
not provide editing rules for food and pheromones, since they are produced during
simulation only.
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Fig. 3. EMF Model for the Ant World VL

Fig. 4. Basic editing rules

3.3 Simulation Rules

We have six rules for ant movement (see Fig. 5). In search mode, an ant can move up
or down or along a circle as long as there are no pheromones on any child field from
the ant’s position. If there are pheromones, rule followTrail is used instead of the
other movement rules to guide the ant to a food place. If the ant already picked up
some food, one of two carryFood rules is used, either refreshing an already existing
pheromone trail while the ant moves towards the hill; or creating a new pheromone
path.

AntWorld management consists of expanding the world if an ant moves towards
the outer edge, create new food supplies on the outer ring, and decay or remove old
pheromone trails. The world is expanded by three rules: expandExit (see Fig. 6),
expandNormal and makeCircle to connect newly generated outer nodes (not de-
picted). While expanding the world, the number of newly created fields is stored
and afterwards new food supplies (100 parts) are created on the outer ring by rule
createFood. At last, each pheromone occurrence is reduced by factor 0.95 (rule de-
cayPhero). Pheromone amounts below 9 are dropped completely.
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Fig. 5. Rules for ant movement

Fig. 6. Rules for AntWorld management
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If an ant comes to a field containing food, it picks up one part of the food
(rule pickFood). On the hill, a food-carrying ant drops the food (rule dropFood) and
creates a new ant using the createAnt rule.

Fig. 7. Rules for food transportation

3.4 Control Structure Model

For the rule control flow of simulation rules, we define activity diagrams for the
different task groups as defined in the previous section.
In Fig. 8, the main activity diagram PlayRound models that each round consists
of the phases ant movement, food transportation and ant creation, and AntWorld
management (possibly expanding the grid), Each of the hierarchical activities in the
PlayRound activity diagram stands for a refined activity diagram controlling the
rule applications of the respective phase.

In the activity diagram MoveAnts for ant movement (Fig. 9), we allow each ant
exactly one rule application. If the ant cannot carry food or follow a trail, it is in
search mode and will choose one of the possible matches to move up, down or to
one of its neighbor fields.
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Fig. 8. Main activity diagram PlayRound

Fig. 9. Activity diagram MoveAnts

The rules controlled by the HandleWorld activity diagram (Fig. 10) expand the
AntWorld if there is an ant on the outmost ring. Food is created on the newly
created outer ring and pheromone trails are decayed and removed.

After all ants have moved they can still pick up or drop food on the hill. In the
last case, new baby ants are created (Fig. 11).
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Fig. 10. Activity diagram HandleWorld

Fig. 11. Diagrams HandleFood and CreateNewAnts
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4 Modeling DSML Environments

In this section, we describe the EMF models underlying our approach to DSML
specification and tool generation. As demonstrated in the last section, we aim at a
VL specification (Fig. 12) based on EMF, consisting of the parts

– Language: An EMF model for the VL, EMF transformation rules for editing
operations and for simulation steps, and a set of activity diagrams specifying the
application of simulation rules.

– Visualization: Mappings from EMF model elements to GEF figures and con-
nections which are supposed to realize their visual appearance in the generated
environment.

– Views : Mappings from EMF model elements to views for different visualizations,

Moreover, a VL specification also contains Session information. Strictly they are
not part of the pure VLSpec, but are used to store the session in the same model
instance and by that in the same file.

ECore

VLSpecLanguage

Visualization

Session

Views

views1..n

language
session

visualization

ENamedElement

Fig. 12. Core model of a VL specification

13



4.1 Language

An overview of the main Language components is shown in Fig. 13.

ECore

Language

GraphRuleSetEPackage

startGraph

alphabet

simpleRules0..n

Rule

ruleSet

ComplexRule

complexRules0..n

Fig. 13. Language model

A language consists of syntax and semantics. We define the syntax by an alphabet
(the EMF model) and editing rules, and give the semantics in form of operational
simulation rules, controlled by activity diagrams. In order to define the alphabet
of the Language, an EPackage (EMF model) is used. The language does not hold the
EPackage as containment but as pure association and thus the alphabet may be loaded
from and can be stored to an external file. This design decision has the purpose to
ease the creation and modification of the model with external tools.

For our AntWorld example, Fig. 3 is showing the EMF model representing the
VL’s alphabet.

Besides the alphabet, the Language contains the Rule and Graph definition (see
Fig. 14).

A Graph consists of Nodes and Edges, which in turn are a mapping to the
elements of the alphabet. Each Node has a set of incoming and outgoing Edges to
form the graph structure. As the Language defines an EMF model that is used by
having an EPackage as its alphabet, each Node has to be assigned to a corresponding
EClass and each Edge has to be assigned to a corresponding EReference. To complete the
graph grammar, a start graph of the language is defined using the Graph structure.
As AntWorld start graph, the graph shown in Fig. 2 may be defined. Note that
Fig. 2 shows the start graph in its concrete visualization.

Each Rule consists of an LHS, an RHS and a number of NACs which are all
Graphs. Mappings are used to define morphism between Graphs. To keep the model
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Rule

Graph
nacs

0..n

Mapping

lhs1

rhs

1

mappings0..n

Node

origin 1 1 image

Edge
edges

0..n nodes

0..n

incoming target

10..n
outgoing source

10..n

ECore

EReference EClass
type

1

type

1

Language

EPackage

startGraph

alphabet

simpleRules

0..n

  

RuleSet

ruleSet 1

Fig. 14. Rules and Graphs of a Language

simple and efficient, there are no internal constraints to make every mapping a valid
graph morphism (see [14]). Checking whether a morphism is valid and whether it
is actually part of a graph transformation has to be done algorithmically. A valid
Rule can now be used to perform basic editing operations of the language such
as creation and deletion rules, or atomic simulation steps. Naturally, more complex
EMF transformation rules can be defined allowing for more sophisticated operations,
e.g. to realize model transformations (see [16,6,7]).

Sample rules for the AntWorld have been presented in Sect. 3. The instance
model corresponding to the rule addNormal in Fig. 4 is shown in Fig. 15.

In order to control the application of simulation rules, activity diagrams are used
(see Sect. 3.4 for examples). The formal background for refining activities by graph
transformation rules is given in [19]. The main idea is to refine a SimpleActivity via a
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Fig. 15. Instance model for rule addNormal

rule that is applied when the activity is executed. Activities are linked by Next edges
(see Fig. 16). To control the flow, DecisionActivities and LoopActivities with graph
constraints at their outgoing Next edges are used. Graph constraints are are of the
form P → C, where P is the premise and C is its conclusion of the graph constraint.
A step in the activity diagram can only be performed if the corresponding graph
constraint is fulfilled, i.e. if in the case that P is found in the current graph, then
also the conclusion C is found there as an extension of P .

4.2 Visualization

To achieve the visual representation of the language elements (see Fig. 17), different
kind of shapes can be defined. Figures are used to represent Nodes in a Graph and
Connections are used to visualize Edges. They directly relate to their counterparts
in Draw2d, the graphic toolkit that comes with the Eclipse Graphical Editing
Framework GEF [12].

4.3 Views

With the visual elements of a Language defined, a mapping assigns each symbol
of the alphabet used, to its visual representation. Each View provides a distinct
mapping of the model elements, which allows subsequently having different visual
representations of the same model within a single editor. At least one view has to be
defined in order to have a working editor. Since the alphabet is an EPackage, there
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RuleSet

simpleRules0..n

Rule

ComplexRule
complexRules

0..n

SimpleActivity

AbstractActivity

DecisionActivity

StartActivity

EndActivity

ActivityDiagram

activities0..n

Constraint

Next

source

target

Mapping
mappings

0..n

GraphConstraint

incoming
i

outgoing

i

Graph

premise conclusion

LoopActivity

MergeActivity

ForkActivity

JoinActivity

Fig. 16. Simulation defined by activity diagrams

Visualization

ConnectionFigure

0..n0..n

RectangleCircle RoundedRectangle TrianglePolyline

Fig. 17. Visualization of Language Elements

is a mapping between an EClass to one or more Figures and a mapping between an
EReference to one or more Connections (see Fig. 18).
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ECore

View

EdgeMappingNodeMapping
0..n

0..n

Figure

nodeSymbolType

1

figures 1..n

Connection

edgeSymbolType

1

connections1..n

EClass EReference

Fig. 18. Views for Language Elements

For our AntWorld view, model element Ant is mapped to an (invisible) Rectangle
figure containing three Circles (the body parts) and three Polylines (the six legs),
see Fig. 2.

5 The Generation Environment

A VL specification based on a meta model in combination with a rule-based speci-
fication of editor commands and refined activity diagrams for simulation is used in
our generation environment Tiger 2 (Transformation-based Generation of Environ-
ments) to generate a corresponding visual modeling environment for the specified
visual DSML.

Tiger 2 combines precise VL specification techniques using graph transforma-
tion concepts with the meta-modeling based on EMF and sophisticated graphical
editor development features offered by GEF. Whereas our previous Tiger tool [29]
was an editor generator only, in Tiger 2 also controlled units of simulation rules
can be specified, and automatic simulation can be visualized in different views at
the same time.

The architecture of Tiger 2 consists of the three components Designer (where
the modeler defines the DSML), Generator (translating a VL Specification to Java
code) and the Generated Tool Environment (an Eclipse plug-in containing a visual
editor and simulation views for the specified VL).
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5.1 Designer

In the current state, the Designer is mainly tree-based, except for the definition of
rules and activity diagrams, where visual editors exist already (see the screenshots in
Sect. 3). Future versions will allow VL designers the visual definition of visualizations
and views, as well. Views are created by adding them via a right-click on the VLSpec
tree node. For adding the mapping, the corresponding EClass or EReference respectively
has to be determined.

5.2 Generator

Generating Code from the EMF Model EMF models can be directly translated to
Java code, using the Java Emitter Templates JET [9]. The generated code can be
seen as a run-time data model of the structure defined in the class diagrams. The
code generation provides a complete implementation that manages the life cycle of
objects (create, delete, set attributes etc.), while ensuring multiplicity and contain-
ment constraints. Further, a persistence API is provided, implementing load / save
operations for model instances. The standard format for EMF models / model in-
stances is XML / XMI. The code generated by EMF can be extended at any point.
An EMF model is translated into a EPackage. Such a package contains all information
defined in the model. EMF Classes are translated to Java classes that contain all
attributes and references defined in the model. To each package there is a run-time
factory, which is used for creating objects. Furthermore, an EPackage is identified using
a unique namespace URI, also defined in the model.

As first step of the generation process, the GeneratorModel has to be created, as
it contains the settings for the code generator that are not stored in the EMF
model. The first important setting is the output path, where the project resides and
the generated code should be created. Other basic settings, like enabling the code
formatting are also done here.

protected void i n i t a l i z eGen e r a t o r ( ) –
genModel = GenModelFactory . eINSTANCE. createGenModel ( ) ;
genModel . se tMode lDirectory ( targetPath ) ;
genModel . setCanGenerate ( true ) ;
genModel . setCodeFormatting ( true ) ;
genModel . se tForceOverwr i te ( true ) ; ˝

The GeneratorModel has to be initialized with an actual EMF model via its EPackage:

public void setModel ( EPackage ePackage ) –
genModel . i n i t i a l i z e ( Co l l e c t i o n s . s i n g l e t on ( ePackage ) ) ; ˝

Finally the Generator can be invoked by setting the GeneratorModel as input and
attaching a progress monitor.
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public void s ta r tGenera to r ( ) –
Generator genera to r = new Generator ( ) ;
generato r . s e t Input ( genModel ) ;
Monitor monitor = CodeGenUtil . E c l i p s eU t i l . c reateMonitor ( progressMonitor , 1 ) ;
genera to r . generate ( genModel , GenBaseGeneratorAdapter .MODEL˙PROJECT˙TYPE,

monitor ) ; ˝

Code for EMF Transformation Rules The transformation rules created by the Tiger
Designer are copied to the generated editor project as an XMI file. The structure of
the XMI file is similar to that shown in Fig. 14. When the generated editor is opened,
the rules are loaded as well. The execution of the rules is handled by the EMF Tiger
transformation engine which initializes an instance of the class GenericRule with the
content of a rule.

GenericRule gener i cRu le = new GenericRule ( t igerEng ine , r u l e ) ;

After a GenericRule has been initialized in that way it is possible to call the execute()-
method which will search for a valid occurence of the LHS of the rule in an EMF
instance and also apply the model changes that are specified by the rule. When
searching for a match, NACs and attribute conditions are respected as well.

public boolean execute ( ) –
i f ( ! i sExecuted ) –
match = findMatch ( ) ;
i f (match == null ) –return fa lse ; ˝

else –comatch = generateModelChanges ( ) ; ˝
modelChange . applyChanges ( ) ;
i sExecuted = true ;
return true ; ˝

return fa lse ; ˝

Model changes are performed according to the rule, for example adding a new
edge:

for (Edge edge : r u l e . getRhs ( ) . getEdges ( ) ) –
i f ( ! ModelHelper . isEdgeMapped ( ru le , edge ) ) –

modelChange . addObjectChange ( comatchNodeMapping . get ( edge . getSource ( ) ) ,
edge . getType ( ) , comatchNodeMapping . get ( edge . getTarget ( ) ) ) ; ˝ ˝

This part of the method generateModelChanges() prepares a model change for every
edge that was not yet present in the rule’s LHS. Afterwards the changes are executed
by modelChange.applyChanges(). Analogously, addition and deletion of nodes and edges are
performed, as prescribed by the rule.

Control flow between different rules is modeled by transformation units. Each
unit represents a different kind of control flow. For example a sequential unit will
execute each subunit once in a given order and is equivalent to a number of sequen-
tial activities in an activity diagram. A decision-merge construct, for instance, is
represented by a conditional unit:
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Condit iona lUnit cUnit = ( Condit iona lUnit ) t r a f oUn i t ;
TrafoUnit i fUn i t = cUnit . g e t I f ( ) ;
GenericUnit g en e r i c I fUn i t = createGener icUnitFor ( i fUn i t ) ;
i f ( g e n e r i c I fUn i t . execute ( ) ) –

TrafoUnit thenUnit = cUnit . getThen ( ) ;
GenericUnit genericThenUnit = createGener icUnitFor ( thenUnit ) ;
r e s u l t = genericThenUnit . execute ( ) ;

˝ else –
i f ( cUnit . g e tE l s e ( ) != null ) –
TrafoUnit e l s eUn i t = cUnit . g e tE l s e ( ) ;
GenericUnit g ene r i cE l s eUn i t = createGener icUnitFor ( e l s eUn i t ) ;
r e s u l t = gene r i cE l s eUn i t . execute ( ) ;

˝ ˝

Different units can be nested in any way with the innermost units representing
single rules.

Eclipse Plug-In and Code for Views The main information needed to create an
actual Eclipse plug-in is stored in the plug-in manifest file plugin.xml in the project
root directory. The manifest defines the extension points that are used by the plug-
in. The most important one for our purposes is the org.eclipse.ui.editors extension point.
As the editor is used to control the life-time of a plug-in instance as well handles
the actual model instance that is being edited. The extension point mainly defines a
unique identifier, the name of the plug-in, a file extension that should be associated
with model instances, an icon that will be displayed for the file extension, the actual
class that implements the main EditorPart, and a contributor class that implements
an ActionBarContributor.

The second important extension point is org.eclipse.ui.views that is used for the ac-
tual visual editor components that live within the environment. When creating new
files in the workspace (when using File → New), a customWizard can be defined via the
org.eclipse.ui.newWizard extension point.

The overall layout of the views is handled via an Eclipse perspective. The
controlling class sets up the default position of the editor and the views within
the whole workspace. This is realized by using our framework MuVitor (Multi-
View-Editor) [25] that is built on top of GEF. MuVitor generalizes recurring code
fragments for many editor features. It supports nested modes with multiple graphical
viewers and animated simulation of model behavior. The architecture is designed
in a way that encapsulates complex underlying chains of commands in GEF and
simplifies the interaction with the Eclipse workbench.
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5.3 Generated Tool Environment

Fig. 19 shows a sample view for the AntWorld simulation. Activity diagrams can be
evoked for automatic application of controlled rule sequences, and their effect can
be viewed in different views at the same time.

Fig. 19. Generated AntWorld simulation view

6 Related Work

Apart from GMF [10], also the Topcased modeler generator of the OpenEm-
beDD [3] MDE platform provides graphical patterns for common parts of user
specific EMF domain models and thus allows to easily create a basic graphical ed-
itor. However, multi-view graphical editors need a more flexible and user friendly
way to define domain specific editor environments including editor operations, simu-
lation and model transformation tools. These requirements can be more adequately
fulfilled by graph transformation tools [27] providing a graphical way to define com-
plex operations for editing, simulation, and model transformation of domain specific
languages based on a well-defined theoretical background [14]. Up to now, a com-
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prehensive generation framework combining graph transformation and EMF-based
meta-modeling for visual environment generation has not yet been implemented.

For model transformations, ATL [2] is widely used as part of the Eclipse Model-
To-Model Transformation (M2M) [1] project. While ATL uses a textual syntax for
model transformation, Tiger 2 with its underlying EMF Tiger transformation
engine provides a graphical way to define model transformations between different
DSMLs based on EMF.

7 Conclusion and Future Work

We have introduced the underlying concepts and implementation of an EMF-based
generator of modeling tool environments for visual DSMLs. Our implementation
Tiger2 is an ongoing project. Of paramount importance is the completion of a
mainly visual and intuitive Designer component. This will be followed by a compre-
hensive user evaluation to better compare the generation environment to existing
approaches. Since Tiger2 is an Eclipse plug-in, based on the MuVitor frame-
work [25], exactly like the Tiger2-generated environments, a challenging task is
to design and generate Tiger2 by Tiger2 in order to prove its adequateness and
flexibility. Some issues concerning the visualization design are still open: As stated
in [5], we aim at a flexible way to map changing visualizations to model elements by
making figure properties like size or color depend on values of the model element’s
attributes. Hence, we will refine our view model in order to allow also mappings
from attributes to figure properties. Likewise, rule control by activity diagrams can
be improved by also considering the object flow (see [20]). This can help to not only
define the order of rule applications, but also to define (parts of) the matches for
successor rules.
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6. Biermann, E., Ehrig, K., Köhler, C., Kuhns, G., Taentzer, G., Weiss, E.: EMF
Model Refactoring based on Graph Transformation Concepts. In: Proc. Work-
shop on Software Evolution through Transformations. vol. 3. ECEASST (2006)
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