
Forschungsberichte
der Fakultät IV – Elektrotechnik und Informatik

Formal Analysis of Functional Behaviour
for Model Transformations

Based on Triple Graph Grammars -
Extended Version

Frank Hermann, Hartmut Ehrig,
Fernando Orejas, and Ulrike Golas

Bericht-Nr. 2010-08
ISSN 1436-9915

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DepositOnce

https://core.ac.uk/display/326320849?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Formal Analysis of Functional Behaviour

for Model Transformations

Based on Triple Graph Grammars - Extended Version

Frank Hermann1, Hartmut Ehrig1, Fernando Orejas2, and Ulrike Golas1

1 {frank,ehrig,golas}@cs.tu-berlin.de, Institut für Softwaretechnik und
Theoretische Informatik, Technische Universität Berlin, Germany

2 orejas(at)lsi.upc.edu, Departament de Llenguatges i Sistemes Informàtics,
Universitat Politècnica de Catalunya, Barcelona, Spain,

Abstract

Triple Graph Grammars (TGGs) are a well-established concept for the speci�ca-

tion of model transformations. In previous work we have formalized and analyzed

already crucial properties of model transformations like termination, correctness and

completeness, but functional behaviour - especially local con�uence - is missing up to

now.

In order to close this gap we generate forward translation rules, which extend stan-

dard forward rules by translation attributes keeping track of the elements which have

been translated already. In the �rst main result we show the equivalence of model

transformations based on forward resp. forward translation rules. This way, an addi-

tional control structure for the forward transformation is not needed. This allows to

apply critical pair analysis and corresponding tool support by the tool AGG. How-

ever, we do not need general local con�uence, because con�uence for source graphs

not belonging to the source language is not relevant for the functional behaviour of

a model transformation. For this reason we only have to analyze a weaker property,

called translation con�uence. This leads to our second main result, the functional

behaviour of model transformations, which is applied to our running example, the

model transformation from class diagrams to database models.

Keywords: Model Transformation, Triple Graph Grammars, Con�uence, Func-
tional Behaviour

1

1 Introduction

Model transformations based on triple graph grammars (TGGs) have been introduced by
Schürr in [21]. TGGs are grammars that generate languages of graph triples, consisting
of source and target graphs, together with a correspondence graph �between� them. Since
1994, several extensions of the original TGG de�nitions have been published [22, 15, 10] and
various kinds of applications have been presented [23, 11, 14]. For source-to-target model
transformations, so-called forward transformations, we derive rules which take the source
graph as input and produce a corresponding target graph. Major properties expected to be
ful�lled for model transformations are termination, correctness and completeness, which
have been analyzed in [2, 4, 5, 1, 7].

In addition to these properties, functional behaviour of model transformations is an
important property for several application domains. Functional behaviour means that
for each graph in the source language the model transformation yields a unique graph
(up to isomorphism) in the target language. It is well-known that termination and local
con�uence implies con�uence and hence functional behaviour. Since termination has been
analyzed already in [5] the main aim of this paper is to analyze local con�uence in the
view of functional behaviour for model transformations based on general TGGs. Our new
technique is implicitly based on our constructions in [5], where the �on-the-�y� construction
uses source and forward rules, which can be generated automatically from the triple rules.
In this paper, we introduce forward translation rules which combine the source and forward
rules using additional translation attributes for keeping track of the source elements that
have been translated already. The �rst main result of this paper shows that there is a
bijective correspondence between model transformations based on source consistent forward
sequences and those based on forward translation sequences. Furthermore, we introduce
an equivalent concept based on triple graphs with interfaces for handling the translation
attributes by separating them from the source model in order to keep the source model
unchanged.

In contrast to non-deleting triple rules, the corresponding forward translation rules are
deleting and creating on the translation attributes. This means that some transformation
steps can be parallel dependent. In this case we can apply the well-known critical pair
analysis techniques to obtain local con�uence. Since they are valid for all M-adhesive
systems (called weak adhesive HLR systems in [3]), they are also valid for typed attributed
triple graph transformation systems. In fact, our model transformations based on forward
translation rules can be considered as special case of the latter. However, we do not need
general local con�uence, because local con�uence for transformations of all those source
graphs, which do not belong to the source language, is not relevant for the functional
bahaviour of a model transformation. In fact, we only analyze a weaker property, called
translation con�uence. This leads to our second main result, the functional behaviour of
model transformations based on translation con�uence. We have applied this technique
for showing functional behaviour of our running example, the model transformation from
class diagrams to database models, using our tool AGG [24] for critical pair analysis. Note
that standard techniques are not applicable to show functional behaviour based on local

2

con�uence.
This paper is organized as follows: In Sec. 2 we review the basic notions of TGGs and

model transformations based on forward rules. In Sec. 3 we introduce forward translation
rules and characterize in our �rst main result model transformations in the TGG approach
by forward translation sequences. In Sec. 4 we show in our second main result how func-
tional behaviour of model transformations can be analyzed by translation con�uence and
we apply the technique to our running example. While the presented concept for model
transformations using translation attributes relies on a modi�cation of the additional at-
tributes within the source mode, Sec. 5 presents how the manipulation of the source model
is avoided by externalizing the translation attributes using interface graphs. Related work
and our conclusion - including a summary of our results and future work - is presented in
Sections 6 and 7, respectively.

This technical report is an extended version of [13] and presents the full proofs and the
concept of triple graphs with interfaces.

2 Review of Triple Graph Grammars

Triple graph grammars [21] are a well known approach for bidirectional model transfor-
mations. Models are de�ned as pairs of source and target graphs, which are connected via
a correspondence graph together with its embeddings into these graphs. In [15], Königs
and Schürr formalize the basic concepts of triple graph grammars in a set-theoretical way,
which is generalized and extended by Ehrig et al. in [1] to typed, attributed graphs. In
this section, we review main constructions and results of model transformations based on
triple graph grammars [22, 5].

A triple graph G =(GS ←sG−− GC −tG−→ GT) consists of three graphs GS, GC , and GT ,
called source, correspondence, and target graphs, together with two graph morphisms
sG : GC → GS and tG : GC → GT . A triple graph morphism m = (mS, mC , mT) : G→ H
consists of three graph morphisms mS : GS → HS, mC : GC → HC and mT : GT → HT

such that mS ◦ sG = sH ◦mC and mT ◦ tG = tH ◦mC . A typed triple graph G is typed
over a triple graph TG by a triple graph morphism typeG : G→ TG .

src

Association

name: String
FKey cols

fkeys
referencesdest

fcols

pkey
attrs

type

parent

type

TGS TGC TGT

CT

AFK

AC

110..1

0..1

1

0..1
Class

name: String

Attribute

name: String

is_primary: boolean

Table

name: String

Column

type: String

name: String

PrimitiveDataType

name: String

0..1

Figure 1: Triple type graph for CD2RDBM

3

Example 1 (Triple Type Graph). Fig. 1 shows the type graph TG of the triple graph
grammar TGG for our example model transformation CD2RDBM from class diagrams to
database models. The source component TGS de�nes the structure of class diagrams while
in its target component the structure of relational database models is speci�ed. Classes
correspond to tables, attributes to columns, and associations to foreign keys. Throughout
the example, originating from [1], elements are arranged left, center, and right according
to the component types source, correspondence and target. Morphisms starting at a corre-
spondence part are speci�ed by dashed arrows. Furthermore, the triple rules of the grammar
shown in Fig. 2 ensure several multiplicity constraints, which are denoted within the type
graph. In addition, the source language CD only contains class diagrams where classes
have unique primary attributes and subclasses have no primary attributes to avoid possible
confusion.

Note that the case study uses attributed triple graphs based on E-graphs as presented
in [1] in the framework ofM-adhesive categories (called weak adhesive HLR in [3]).

(LS
trS ��

L LC
sLoo

trC ��

tL // LT)
trT ��

(RSR
tr ��

RCsR

oo
tR
// RT)

L
m
��

� � tr // R
n
��

(PO)

G
� �

t
// H

Triple rules synchronously build up source
and target graphs as well as their correspon-
dence graphs, i.e. they are non-deleting. A
triple rule tr is an injective triple graph mor-
phism tr = (trS, trC , trT) : L→ R and w.l.o.g. we assume tr to be an inclusion. Given a

triple graph morphism m : L→ G, a triple graph transformation (TGT) step G =
tr,m
==⇒ H

from G to a triple graph H is given by a pushout of triple graphs with comatch n : R→ H
and transformation inclusion t : G ↪→ H. A grammar TGG = (TG , S,TR) consists of a
triple type graph TG , a triple start graph S and a set TR of triple rules.

:Class

name=n
:CT

:Table

name=n

Class2Table(n:String)
++

++
++

:parent

S1:Class

:Class

name=n

:CT :Table

:CT

Subclass2Table(n:String)

++++

++

:Class :Table

:src

:Class

:dest

:FKey

:Table

:cols

:fkeys

:references

:pkey

++

:CT

:AFK

:CT

++

++ ++

++
++

++ ++

++
:fcols:Association

name = an

:Column

type = t

name = an+“_“+cn

Association2ForeignKey(an:String)

:cols

:AC

S1:Class

:Attribute

name=n

primary=true

:attrs

C1:

CT T1:Table

++

++

++

++
++

:Column

name=n

type=t

PrimaryAttr2Column(n:String, t:String)

:PrimitiveDataType

name=t

:type
++

:pKey
++

++

++

:Column

type = t

name = cn

Figure 2: Rules for the model transformation Class2Table

4

Example 2 (Triple Rules). The triple rules in Fig. 2 are part of the rules of the grammar
TGG for the model transformation CD2RDBM . They are presented in short notation, i.e.
left and right hand sides of a rule are depicted in one triple graph. Elements, which are cre-
ated by the rule, are labeled with green "++" and marked by green line colouring. The rule
�Class2Table� synchronously creates a class in a class diagram with its corresponding table
in the relational database. Accordingly, subclasses are connected to the tables of its super
classes by rule �Subclass2Table�. Attributes are created together with their corresponding
columns in the database component. The depicted rule �PrimaryAttr2Column� concerns
primary attributes with primitive data types for which an edge of type �pKey� is inserted
that points to the column in the target component. This additional edge is not created for
standard attributes, which are created by the rule �Attr2Column�, which is not depicted. Fi-
nally, the rule �Association2ForeignKey� creates associations between two classes together
with their corresponding foreign keys and an additional column that speci�es the relation
between the involved tables.

(LS
trS ��

∅oo

��

// ∅)
��

(RS ∅oo // ∅)

source rule trS

(RS
id ��

LC
trS◦sLoo

trC ��

tL // LT)
trT��

(RS RC
sRoo tR // RT)

forward rule trF

The operational rules for model transformations are automatically derived from the
set of triple rules TR. From each triple rule tr we derive a forward rule trF for forward
transformation sequences and a source rule trS for the construction resp. parsing of a
model of the source language. By TRS and TRF we denote the sets of all source and
forward rules derived from TR. Analogously, we derive a target rule trT and a backward
rule trB for the construction and transformation of a model of the target language leading
to the sets TRT and TRB.

A set of triple rules TR and the start graph ∅ generate a visual language VL of
integrated models, i.e. models with elements in the source, target and correspondence
component. The source language V LS and target language VLT are derived by projection
to the triple components, i.e. V LS = projS(V L) and V LT = projT (V L). The set V LS0 of
models that can be generated resp. parsed by the set of all source rules TRS is possibly
larger than VLS and we have VLS ⊆ VLS0 = {GS |∅ =⇒∗ (GS ← ∅ → ∅) via TRS}.
Analogously, we have V LT ⊆ V LT0 = {GT |∅ =⇒∗ (∅← ∅→ GT) via TRT}.

As introduced in [1, 5] the derived operational rules provide the basis to de�ne
model transformations based on source consistent forward transformations G0 =⇒∗ Gn

via (tr 1,F , . . . , trn,F), short G0 =
tr∗F==⇒ Gn. Source consistency of G0 =

tr∗F==⇒ Gn means that

there is a source sequence ∅ =
tr∗S=⇒ G0 such that the sequence ∅ =

tr∗S=⇒ G0 =
tr∗F==⇒ Gn is match

consistent, i.e. the S-component of each match mi,F of tr i,F (i = 1 . . . n) is uniquely de-
termined by the comatch ni,S of tr i,S, where tr i,S and tr i,F are source and forward rules

of the same triple rules tr i. Altogether the forward sequence G0 =
tr∗F==⇒ Gn is controlled

by the corresponding source sequence ∅ =
tr∗S=⇒ G0, which is unique in the case of match

consistency.

5

De�nition 1 (Model Transformation based on Forward Rules). A model transformation

sequence (GS, G0 =
tr∗F=⇒ Gn, GT) consists of a source graph GS, a target graph GT , and a

source consistent forward TGT-sequence G0 =
tr∗F=⇒ Gn with GS = G0,S and GT = Gn,T .

A model transformation MT : VLS0 V VLT0 is de�ned by all model transformation se-

quences (GS, G0 =
tr∗F=⇒ Gn, GT) with GS ∈ VLS0 and GT ∈ VLT0. All the corresponding

pairs (GS, GT) de�ne the model transformation relation MTRF ⊆ VLS0 × VLT0.

In [1, 5] we have proved that source consistency ensures completeness and correctness of
model transformations based on forward rules with respect to the language VL of integrated
models. Moreover, source consistency is the basis for the on-the-�y construction de�ned
in [5].

3 Model Transformations based on Forward Translation

Rules

Model transformations as de�ned in the previous section are based on source consistent
forward sequences. In order to analyze functional behaviour, we present in this section a
characterizion by model transformations based on forward translation rules, which integrate
the control condition source consistency using additional attributes (see Thm. 1). For each
node, edge and attribute of a graph a new attribute is created and labeled with the pre�x
�tr �. If this pre�x is used already for an existing attribute, then a unique extended pre�x
is chosen.

The extension of forward rules to forward translation rules is based on new attributes
that control the translation process according to the source consistency condition. For
each node, edge and attribute of a graph a new attribute is created and labeled with the
pre�x �tr �. Given an attributed graph AG = (G, D) and a family of subsets M ⊆ G for
nodes and edges, we call AG′ a graph with translation attributes over AG if it extends
AG with one boolean-valued attribute tr_x for each element x (node or edge) in M and
one boolean-valued attribute tr_x_a for each attribute associated to such an element x
in M . The family M together with all these additional translation attributes is denoted
by AttM . Note that we use the attribution concept of E-Graphs as presented in [3], where
attributes are possible for nodes and edges.

De�nition 2 (Family with Translation Attributes). Given an attributed graph AG =
(G, D) we denote by |G| = (V G

G , V D
G , EG

G , ENA
G , EEA

G) the underlying family of sets con-
taining all nodes and edges. Let M ⊆ |G|, then a family with translation attributes
for (G, M) extends M by additional translation attributes and is given by AttM =
(V G

M , V D
M , EG

M , ENA, EEA) with:

• ENA = ENA
M ·∪ {tr_x | x ∈ V G

M} ·∪ {tr_x_a | a ∈ ENA
M , srcNA

G (a) = x ∈ V G
G },

• EEA = EEA
M ·∪ {tr_x | x ∈ EG

M} ·∪ {tr_x_a | a ∈ EEA
M , srcEA

G (a) = x ∈ EG
G}.

6

De�nition 3 (Graph with Translation Attributes). Given an attributed graph AG =
(G, D) and a family of subsets M ⊆ |G| with {T,F} ⊆ V D

M and let AttM be a family
with translation attributes for (G, M). Then, AG′ = (G′, D) is a graph with translation
attributes over AG, where |G′| is the gluing of |G| and AttM over M , i.e. the sets of nodes
and edges are given by componentwise pushouts and the source and target functions are
de�ned as follows:

• srcG
G′ = srcG

G, trgG
G′ = trgG

G,

• srcX
G′(z) =

{
srcX

G (z) z ∈ EX
G

x z = tr_x or z = tr_x_a
for X ∈ {NA, EA},

• trgX
G′(z) =

{
trgX

G (z) z ∈ EX
G

T or F z = tr_x or z = tr_x_a
for X ∈ {NA, EA}.

M
� � //

� _

��
(PO)

AttM

��
|G| // |G′|

AttvM , where v = T or v = F, denotes a family with translation attributes where all
attributes are set to v. Moreover, we denote by AG ⊕ AttM that AG is extended by the
translation attributes in AttM i.e. AG ⊕ AttM = (G′, D) = AG ′. Analogously, we use
the notion AG ⊕ Attv

M for translation attributes with value v and we de�ne Attv(AG) :=
AG⊕ Attv|G|.

The extension of forward rules to forward translation rules ensures that the e�ective
elements of the rule may only be matched to those elements that have not been translated
so far. A �rst intuitive approach would be to use NACs on the correspondence component
of the forward rule in order to check that the e�ective elements are unrelated. However, this
approach is too restrictive, because e.g. edges and attributes in the source graph cannot be
checked separately, but only via their attached nodes. Moreover, the analysis of functional
behaviour of model transformations with NACs is general more complex compared to using
boolean valued translation attributes instead. Thus, the new concept of forward translation
rules extends the construction of forward rules by additional translation attributes, which
keep track of the elements that have been translated at any point of the transformation
process. This way, each element in the source graph cannot be translated twice, which is
one of the main aspects of source consistency. For that reason, all translation attributes of
the source model of a model transformation are set to false and in the terminal graph we
expect that all the translation attributes are set to true. Moreover, also for that reason, the
translation rules set to true all the elements of the source rule that would be generated by
the corresponding source rule. This requires that the rules are deleting on the translation
attributes and we extend a transformation step from a single (total) pushout to the classical
double pushout (DPO) approach [3]. Thus, we can ensure source consistency by merely

7

using attributes in order to completely translate a model. Therefore, we call these rules
forward translation rules, while pure forward rules need to be controlled by the source
consistency condition. Note that the extension of a forward rule to a forward translation
rule is unique.

De�nition 4 (Forward Translation Rule). Given a triple rule tr = (L→ R), the forward

translation rule of tr is given by trFT = (LFT ←lFT−− KFT −rFT−−→ RFT) de�ned as follows using
the forward rule (LF −trF−→ RF) and the source rule (LS −trS−→ RS) of tr , where we assume
w.l.o.g. that tr is an inclusion:

• KFT = LF ⊕ AttTLS
,

• LFT = LF ⊕ AttTLS
⊕ AttFRS\LS

,

• RFT = RF ⊕ AttTLS
⊕ AttTRS\LS

= RF ⊕ AttTRS
,

• lFT and rFT are the induced inclusions.

:parent

S1:Class

:Class

name=n

:CT :Table

:CT

Subclass2Table(n:String)

++++

++

S2:parent

tr=[F)T]

S3:Class

name=n

tr=[F)T]

tr_name=[F)T]

:CT :Table

:CT

Subclass2TableFT(n:String)

S1:Class

tr=T

S2:parent
tr=F

:CT :Table

Subclass2TableFT(n:String)

S1:Class

tr=T

LHS

S2:parent
tr=T

S3:Class
name=n
tr=T
tr_name=T

:CT :TableS1:Class

tr=T

RHS

:CT

++

T
rip

le
 R

u
le

F
o

rw
a

rd
 T

ra
n

s
la

tio
n

 R
u

le

F
o

rw
a

rd
 T

ra
n

s
la

tio
n

 R
u

le
 (E

x
p

lic
it L

H
S

 a
n

d
 R

H
S

)

S3:Class
name=n
tr=F
tr_name=F

)

Figure 3: Forward translation rule Subclass2TableFT (n : String)

Example 3 (Derived Forward Translation Rules). Figure 3 shows the derived forward
translation rule �Subclass2TableFT � for the triple rule�Subclass2Table� in Fig. 2. Note that
we abbreviate “tr_x� for an item (node or edge) x by �tr � and �tr_x_a� by �tr_type(a)�
in the �gures to increase readability. The compact notation of forward translation rules
speci�es the modi�cation of translation attributes by �[F⇒ T]�, meaning that the attribute
is matched with the value �F� and set to �T� during the transformation step. The de-
tailed complete notation of a forward translation rule is shown on the right of Fig. 3 for
�Subclass2TableFT �.

8

From the application point of view a model transformation should be injective on the
structural part, i.e. the transformation rules are applied along matches that do not identify
structural elements. But it would be too restrictive to require injectivity of the matches
also on the data and variable nodes in the abstract syntax graphs of models, because the
matching should allow to match two di�erent variables in the left hand side of a rule to the
same data value in the host graph of a transformation step. Thus, this notion of almost
injective matches applies to all model transformations based on abstract syntax graphs with
attribution. For this reason we introduce the notion of almost injective matches, which
requires that matches are injective except for the data value nodes. This way, attribute
values can still be speci�ed as terms within a rule and matched non-injectively to the same
value.

De�nition 5 (Almost Injective Match and Completeness). An attributed triple graph mor-
phism m : L → G is called almost injective, if it is non-injective at most for the set of

variables and data values in LFT . A forward translation sequence G0 =
tr∗FT==⇒ Gn with al-

most injective matches is called complete if Gn is completely translated, i.e. all translation
attributes of Gn are set to true (�T�).

In order to prove Fact 1, which is needed for the equivalence in Thm. 1 of model
transformations based on forward rules and those based on forward translation rules, we
�rst prove Lemma 1, which states the equivalence for a single step using the on-the-
�y construction of [5]. For this purpose, we recall the main de�nition of partial source
consistency, partial match consistency and forward consistent matches.

De�nition 6 (Partial Match and Source Consistency). Let TR be a set of triple rules and
let TRF be the derived set of forward rules. A sequence

∅ = G00 =
tr∗S=⇒ Gn0 ↪−gn−→ G0 =

tr∗F=⇒ Gn

de�ned by pushout diagrams (1) and (3) for i = 1 . . . n with GC
0 = ∅, GT

0 = ∅ and inclusion
gn : Gn0 ↪→ G0 is called partially match consistent, if diagram (2) commutes for all i, which
means that the source component of the forward match mi,F is determined by the comatch
ni,S of the corresponding step of the source sequence with gi = gn ◦ tn,S . . . ti−1,S.

Li,S
� � tri,S //

mi,S ��

Ri,S
ni,S��(1)

� � // Li,F

(2) mi,F ��

� � tri,F // Ri,F
ni,F��(3)

Gi−1,0
� �

ti,S
// Gi,0

� �

gi

// G0
� � // Gi−1

� �

ti,F
// Gi

A forward sequence G0 =
tr∗F=⇒ Gn is partially source consistent, if there is a source

sequence ∅ = G00 =
tr∗S=⇒ Gn0 with inclusion Gn0 ↪−gn−→ G0 such that G00 =

tr∗S=⇒ Gn0 ↪−gn−→
G0 =

tr∗F=⇒ Gn is partially match consistent.

De�nition 7 (Forward Consistent Match). Given a partially match consistent se-

quence ∅ = G00 =
tr∗S=⇒ Gn−1,0 ↪−gn−→ G0 =

tr∗F=⇒ Gn−1 then a match mn,F :

9

Ln,F → Gn−1 for trn,F : Ln,F → Rn,F is called for-
ward consistent if there is a source match mn,S such
that diagram (1) is a pullback.

Ln,S
� � //

mn,S ��

Rn,S
� � // Ln,F

(1) mn,F��
Gn−1,0

� �

gn−1

// G0
� � // Gn−1

We �rst proof the equivalence of forward translation sequences and source consistent
forward transformations for single steps as stated by Lemma 1.

Lemma 1 (Forward translation step). Let TR be a set of triple rules with tr i ∈ TR and
let TRF be the derived set of forward rules. Given a partially match consistent forward

sequence ∅ = G00 =
tr∗S=⇒ Gi−1,0 ↪−gi−1−−→ G0 =

tr∗F=⇒ Gi−1 and a corresponding forward translation

sequence G′0 =
tr∗FT==⇒ G′i−1, both with almost injective matches, such that G′i−1 = Gi−1 ⊕

AttFG0\Gi−1,0
⊕ AttTGi−1,0

.Then the following are equivalent:

1. ∃ TGT-step Gi−1 =
tri,F ,mi,F
=====⇒ Gi with forward consistent match mi,F

2. ∃ translation TGT-step G′i−1 =
tr i,FT ,mi,FT
=======⇒ G′i

and we have G′i = Gi ⊕ AttFG0\Gi,0
⊕ AttTGi,0

.

Proof. For simpler notation we assume w.l.o.g. that rule morphisms are inclusions and
matches are inclusions except for the data value component.

Constructions:
1. TGT-step Gi−1 =

trF==⇒ Gi with forward consistent match is given by

Li,S
� � tri,S //

mi,S ��

Ri,S
ni,S��(1)

� � // Li,F

(2) mi,F ��

� � tri,F // Ri,F
ni,F��(3)

Gi−1,0
� �

ti,S
// Gi,0

� �

gi

// G0
� � // Gi−1

� �

ti,F
// Gi

where (1) and (3) are pushouts and pullbacks, (2) commutes, and since mi,F is forward
consistent we have by Def. 7 that (2) and therefore also (1 + 2) is a pullback.

(1 + 2) is a pullback
⇔ mi,F (Li,F) ∩Gi−1,0 = mi,F (Li,S)
⇒ mi,F (Li,F \ Li,S) ∩Gi−1,0 = ∅.

2. Translation TGT-step G′i−1 =
tr i,FT ,mi,FT
=======⇒ G′iis given by (PO1), (PO2)

Li,FT

��
(PO1)

Ki,FT

��

oo //

(PO2)

Ri,FT

��
G′i−1 D′i−1

oo // G′i

Li,FT = Li,F ⊕ AttTLi,S
⊕ AttFRi,S\Li,S

Ki,FT = Li,F ⊕ AttTLi,S

10

Li,FT = Ri,F ⊕ AttTLi,S
⊕ AttTRi,S\Li,S

= Ri,F ⊕ AttTRi,S

Direction 1.⇒ 2. : We construct (PO1), (PO2) as follows from diagrams (1)− (3):

Li,F ⊕ AttTLi,S
⊕ AttFRi,S\Li,S

mi,F

��

(PO1)

�� ��

Li,F ⊕ AttTLi,S

mi,F

��
(PO2)

��

trFT //oo Ri,F ⊕ AttTRi,S

ni,F

�� ��

Gi−1 ⊕ AttTGi−1,0
⊕AttFG0\Gi−1,0

Gi−1 ⊕ AttTGi−1,0

⊕AttFG0\Gi,0

//oo
Gi ⊕ AttTGi,0

⊕AttFG0\Gi,0

The match mi,FT is constructed as follows:

mi,FT (x) =

mi,F (x), x ∈ Li,F

tr_mi,F (y), x = tr_y, srcLFT
(x) = y

tr_mi,F (y)_a, x = tr_y_a, srcLFT
(x) = y

The match mi,F is injective except for the data value nodes. For this reason, the match
mi,FT is an almost injective match, i.e. possibly non-injective on the data values.

Pushouts (PO1), (PO2) are equivalent to pushouts (0), (3) below without translation
attributes. Thus, the additional translation attributes are not involved in these pushouts.

Li,F

��
(0)

Li,F

��

idoo //

(3)

Ri,F

��
Gi−1 Gi−1

idoo // Gi

We now consider the translation attributes.
Let Ei,0 = (G0 \Gi−1,0)\ (ni,S(Ri,S \Li,S)) constructed componentwise on the sets of nodes
and edges. This implies that Ei,0 is a family of sets and not necessarily a graph, because
some edges could be dangling. However, we only need to show the pushout properties
for these sets, because the boundary nodes and context is handled properly in pushouts
(0), (3) before and the translation attribute edges for the items in Ei,0 are derived uniquely
according to Def. 3. Thus, we have the following pushouts for the translation attributes:

Li,S

��
POT

1

Li,S
oo

��
Gi−1,0 Gi−1,0

oo

(Ri,S \ Li,S)

��
POF

1

∅oo

��
(G0 \Gi−1,0) Ei,0

oo

Li,S
//

��
POT

2

Ri,S

��
Gi−1,0

// Gi,0

∅ //

��
POF

2

∅

��
Ei,0

// Ei,0

Pushout (POT
1) is a trivial pushout, (POF

1) is pushout by the de�nition of Ei,0, (POT
2)

is a pushout by (1) and (POF
2) is a trivial pushout. Using pushout (1) for the source step

we have Gi,0 = Gi−1,0∪(ni,S(Ri,S \Li,S)) and thus, Ei,0 = (G0 \Gi−1,0)\(ni,S(Ri,S \Li,S)) =
G0 \ (Gi−1,0 ∪ ni,S(Ri,S \ Li,S)) = (G0 \Gi,0). This implies G′i = Gi ⊕ AttTGi,0

⊕ AttFG0\Gi,0
.

Direction 2.⇒ 1. :
We construct diagrams (1) − (3) from pushouts (PO1), (PO2). The pushouts (PO1)

11

and (PO2) without translation attributes are equivalent to the pushouts (0), (3) and
(POT

1), (POF
1), (POT

2), (POF
2) for families of sets. They do not overlap, because the have

di�erent types according to the construction of the type graph with attributes by Def. 3.
The match is a forward translation match and thus, it is injective on all components except
the data value nodes. It remains to construct diagrams (1) and (2) for graphs with (1) as
a pushout. Since the C- and T -components of (1) and (2) are trivial it remains to con-
struct the corresponding S-components, denoted here by LS

i,S for Li,S etc. The morphisms

LS
i,S ↪−

trS
i,S−−→ RS

i,S −id−→ LS
i,F −

mS
i,F−−→ GS

i−1 are given already as graph morphisms. By (POT
2) we

have a pushout in family of sets and GS
i−1,0 ⊆ GS

0 = GS
i−1 by assumption leads to a unique

GS
i−1,0 ↪−→ GS

i−1 = GS
0 , such that (4) and (5) below commute for families of sets, using that

(POT
2)S is a pullback and hence, also (POT

2)S + (4) is a pullback for families of sets.

LS
i,S

� � //

��
(POT

2)S

RS
i,S

id //

��
(4)

LS
i,F

��
GS

i−1,0
//

88
GS

i,0
//

(5)

GS
i−1 GS

0

Since LS
i,S ↪−

trS
i,S−−→ RS

i,S −id−→ LS
i,F −

mS
i,F−−→ GS

i−1 = GS
0 and GS

i−1,0 ↪−→ GS
0 are graph morphisms

by assumption and GS
i−1,0 ↪−→ GS

0 is injective, we also have that LS
i,S −→ GS

i−1 is a graph
morphism such that (POT

2)S becomes a pushout in Graphs with unique source and target
maps for GS

i,0. Finally, this implies that GS
i,0 −→ GS

i−1 = GS
0 is an injective graph morphism

and w.l.o.g. an inclusion. Hence, we obtain the diagrams (1) and (2) for triple graphs
from (POT

2)S and (4) for graphs, where (4) is a pushout and a pullback and (1) + (2) is a
pullback by pullback (1) and injective Gi,0 ↪−→ G0 ↪−→ Gi−1.

Using pushout (1) for families of sets given by (POT
2)S we have Gi,0 = Gi−1,0∪ni,S(Ri,S\

Li,S) and thus, Ei,0 = (G0 \Gi,0) implying G′i = Gi ⊕ AttTGi,0
⊕ AttFG0\Gi,0

.

Now we are able to show the equivalence of complete forward translation sequences
with source consistent forward sequences as stated by Fact 1 below.

Fact 1 (Complete Forward Translation Sequences). Given a triple graph grammar TGG =
(TG , ∅,TR) and a triple graph G0 = (GS ← ∅ → ∅) typed over TG. Let G′0 =
(AttF(GS)← ∅→ ∅). Then, the following are equivalent for almost injective matches:

1. ∃ a source consistent TGT-sequence G0 =
tr∗F==⇒ G via forward rules and G =

(GS ← GC → GT).

2. ∃ a complete TGT-sequence G′0 =
tr∗FT==⇒ G′ via forward translation rules and G′ =

(AttT(GS)← GC → GT).

Proof.

1.⇔ G0 =
tr1,F ,m1,F
======⇒ G1 =

tr2,F ,m2,F
======⇒ G2 . . . =

trn,F ,mn,F
======⇒ Gn = G, where each match is forward

consistent according to Thm. 1 in [5].

12

2.⇔ G′0 =
tr1,FT ,m1,FT
=======⇒ G′1 =

tr2,FT ,m2,FT
=======⇒ G′2 . . . =

trn,FT ,mn,FT
========⇒ G′n = G′.

It remains to show that G′0,S = AttF(GS) and G′S = AttT(GS).
We apply Lemma 1 for i = 0 with G0,0 = ∅ up to i = n with Gn,0 = G0 and using
G0,S = GS we derive:
G′0,S = G0,S ⊕ AttTG0,0

⊕ AttFG0,S\G0,0,S
= G0,S ⊕ AttFG0,S

= GS ⊕ AttFGS
= AttF(GS).

G′S = G′n,S = Gn,S⊕AttTGn,0,S
⊕AttFG0,S\Gn,0,S

= Gn,S⊕AttTGn,0,S
= GS⊕AttTGS

= AttT(GS).

Now, we de�ne model transformations based on forward translation rules in the same
way as for forward rules in Def. 1, where source consistency of the forward sequence is
replaced by completeness of the forward translation sequence. Note that we can separate
the translation attributes from the source model as shown in Sec. 5 in order to keep the
source model unchanged.

De�nition 8 (Model Transformation Based on Forward Translation Rules). A model

transformation sequence (GS, G′0 =
tr∗FT==⇒ G′n, GT) based on forward translation rules consists

of a source graph GS, a target graph GT , and a complete TGT-sequence G′0 =
tr∗FT==⇒ G′n with

almost injective matches, G′0 = (AttF(GS)← ∅→ ∅) and G′n = (AttT(GS)← GC → GT).
A model transformation MT : VLS0 V VLT0 based on forward translation rules is de�ned

by all model transformation sequences (GS, G′0 =
tr∗FT==⇒ G′n, GT) based on forward translation

rules with GS ∈ VLS0 and GT ∈ VLT0. All these pairs (GS, GT) de�ne the model transfor-
mation relation MTRFT ⊆ VLS0×VLT0. The model transformation is terminating if there
are no in�nite TGT-sequences via forward translation rules and almost injective matches
starting with G′0 = (AttF(GS)← ∅→ ∅) for some source graph GS.

The main result of this section in Thm. 1 below states that model transformations
based on forward translation rules are equivalent to those based on forward rules.

Theorem 1 (Equivalence of Model Transformation Concepts). Given a triple graph
grammar, then the model transformation MTF : VLS0 V VLT0 based on forward rules
and the model transformation MTFT : VLS0 V VLT0 based on forward translation
rules, both with almost injective matches, de�ne the same model transformation relation
MTRF = MTRFT ⊆ VLS0 × VLT0.

Proof. The theorem follows directly from Def. 1, Def. 8 and Fact 1.

Remark 1. It can be shown that the model transformation relation MTR de�ned by the
triple rules TR coincides with the relations MTRF and MTRFT of the model transforma-
tions based on forward and forward translation rules TRF and TRFT , respectively.

The equivalence of model transformations in Thm. 1 above directly implies Thm. 2
beneath, because we already have shown the results for model transformations based on
forward rules in [5]. Note that the provided condition for termination is su�cient and in
many cases also necessary. The condition is not necessary only for the case that there are
some source identic triple rules, but none of them is applicable to any integrated model in
the triple language VL.

13

Theorem 2 (Termination, Correctness and Completeness). Each model transformation
MT : VLS0 V VLT0 based on forward translation rules is

• terminating, if each forward translation rule changes at least one translation attribute,

• correct, i.e. for each model transformation sequence (GS, G′0 =
tr∗FT==⇒ G′n, GT) there is

G ∈ VL with G = (GS ← GC → GT), and it is

• complete, i.e. for each GS ∈ V LS there is G = (GS ← GC → GT) ∈ VL with a

model transformation sequence (GS, G′0 =
tr∗FT==⇒ G′n, GT).

Proof. By Def. 4 we have that a rule changes the translation attributes i� the source rule of
the original triple rule is creating, which is a su�cient criteria for termination by Thm. 3 in
[5]. The correctness and completeness are based on Thm. 1 above and the proof of Thm. 3
in [4]. Note that Thm. 3 in [4] states a weaker result of correctness and completeness for
source consistent forward transformations.

However, the proof is based on the composition and decomposition of triple graph
transformation sequences shown by Thm. 1 in [1]. In more detail, each triple transformation

sequence ∅ =
tr∗
=⇒ Gn can be decomposed into a match consistent triple transformation

sequence ∅ =
tr∗S=⇒ Gn,0 =

tr∗F==⇒ Gn, which means that the forward sequence Gn,0 =
tr∗F==⇒ Gn is

source consistent. Vice versa, given a source consistent forward sequence Gn,0 =
tr∗F==⇒ Gn,

there there is a source sequence ∅ =
tr∗S=⇒ Gn,0 such that the triple transformation sequence

∅ =
tr∗S=⇒ Gn,0 =

tr∗F==⇒ Gn is match consistent and can be composed to the triple sequence

∅ =
tr∗
=⇒ Gn.
Now, given a model transformation sequence based on forward translation rules

(GS, G′0 =
tr∗FT==⇒ G′n, GT) we have by Thm. 1 thate there is model transformation sequence

based on forward rules (GS, G0 =
tr∗F==⇒ Gn, GT), which means by de�nition that G0 =

tr∗F==⇒ Gn

is source consistent. Source consistency implies by de�nition that there is a source se-

quence ∅ =
tr∗S=⇒ Gn,0 = G0 such that ∅ =

tr∗S=⇒ Gn,0 =
tr∗F==⇒ Gn is match consistent and can be

composed to the triple sequence ∅ =
tr∗
=⇒ Gn by the composition result Thm. 1 in [1]. This

means that the model transformation based on forward translation rules is correct.
Vice versa, given Gn ∈ VL there is a triple transformation sequence ∅ =

tr∗
=⇒ Gn and

using the decomposition result in Thm. 1 in [1] we derive the model transformation se-

quence based on forward rules (GS, G0 =
tr∗F==⇒ Gn, GT) and �nally, the equivalence result

in Thm. 1 leads to the model transformation sequence based on forward translation rules

(GS, G′0 =
tr∗FT==⇒ G′n, GT), i.e. the model transformation based on forward translation rules

is complete.

Example 4 (Model Transformation). Figure 4 shows a triple graph G ∈ VL. By Thm. 1
and Thm. 2 we can conclude that the class diagram GS of the source language can be

14

3:Table

 name=“Company“

10:FKey

7:fkeys

20:cols

6:src

11:dest

16:parent

21:pkey

8:Association

name = “employee“

1:Class

name=“Company“

14:Class

name=“Person“

18:Class

name=“Customer“

27:PrimitiveDataType

name = “int“

23:Attribute

is_primary = true

name=“cust_id“

25:Column

type = “int“

name = “cust_id“

22:attrs

17:Table

name=“Person“

5:Column

type = “int“

name = “employee_cust_id“

4:cols

12:fcols
13:references

23:type

:CT

:CT

:AFK

:CT

AC

GS GT

Figure 4: Result of a model transformation after removing translation attributes

translated into the relation database model GT by the application of the forward translation

rules, i.e. there is a forward translation sequence G0 =
tr∗FT==⇒ Gn starting at the source model

with translation attributes G0 = (AttF(GS) ← ∅ → ∅) and ending at a completely trans-
lated model Gn = (AttT(GS) ← GC → GT). Furthermore, any other complete translation
sequence leads to the same target model GT (up to isomorphism). We show in Ex. 7 in
Sec. 4 that the model transformation has this functional behaviour for each source model.

4 Analysis of Functional Behaviour

When a rewriting or transformation system describes some kind of computational process,
it is often required that it shows a functional behaviour, i.e. every object can be trans-
formed into a unique (terminal) object that cannot be transformed anymore. One way of
ensuring this property is proving termination and con�uence of the given transformation
system. Moreover, if the system is ensured to be terminating, then it su�ces to show local
con�uence according to Newman's Lemma [17].

We now show, how the generation and use of forward translation rules enables us
to ensure termination and then to adapt and apply the existing results [3] for showing
local con�uence of the transformation system leading to functional behaviour of the model
transformation.

The standard approach to check local con�uence is to check the con�uence of all critical
pairs P1 ⇐ K ⇒ P2, which represent the minimal objects where a con�uence con�ict may
occur. The technique is based on two results. On one hand, the completeness of critical
pairs implies that every con�uence con�ict G1 ⇐ G ⇒ G2 embeds a critical pair P1 ⇐
K ⇒ P2. On the other hand, it is also based on the fact that the transformations P1

∗⇒
K ′

∗⇐ P2 obtained by con�uence of the critical pair can be embedded into transformations
G1

∗⇒ G′
∗⇐ G2 that solve the original con�uence con�ict. However, as shown by Plump

[19, 20] con�uence of the critical pairs is not su�cient for this purpose, but a slightly
stronger version, called strict con�uence. This result is also valid for typed attributed

15

graph transformation systems [3] and we apply them to show functional behaviour of
model transformations in the following sense.

De�nition 9 (Functional Behaviour of Model Transformations). A model transformation
has functional behaviour if each model GS of the source language LS ⊆ VLS is transformed
into a unique terminal model GT and, furthermore, GT belongs to the target language VLT .

In our approach, we know that the forward translation rules that we generate for
performing model transformations are terminating if each of them changes at least one
translation attribute. In contrast to that, termination of model transformation sequences
based on forward rules requires an additional control structure - being source consistency
in [5] or a controlling transformation algorithm as e.g. in [22]. A common alternative way
of ensuring termination is the extension of rules by NACs that prevent an application at
the same match. However, termination is only one aspect and does not ensure correctness
and completeness of the model transformation. In particular, this means that matches
must not overlap on e�ective elements, i.e. elements that are created by the source rule,
because this would mean to translate these elements twice. But matches are allowed to
overlap on other elements. Since the forward rules are identic on the source part there
is no general way to prevent a partial overlapping of the matches by additional NACs
and even nested application conditions [12] do not su�ce. Nevertheless, in our case study
CD2RDBM partial overlapping of matches can be prevented by NACs using the created
correspondence nodes, but this is not possible for the general case with more complex rules.

Therefore, an analysis of functional behaviour based on the results for local con�uence
strictly depends on the generation of the system of forward translation rules. This means
that, in principle, to prove functional behaviour of a model transformation, it is enough
to prove local con�uence of the forward translation rules. However, local con�uence or
con�uence may be to strong to show functional behavior in our case. In particular, a
model transformation system has a functional behavior if each source model, GS, can be
transformed into a unique target model, GT . Or, more precisely, that (AttF(GS) ← ∅ →
∅) can be transformed into a unique completely translated graph (AttT(GS)← GC → GT).
However, this does not preclude that it may be possible to transform (AttF(GS)← ∅→ ∅)
into some triple graph (G′S ← G′C → G′T) where not all translation attributes in G′S are set
to true but no other forward translation rule is applicable. This means that, to show the
functional behaviour of a set of forward translation rules, it is su�cient to use a weaker
notion of con�uence, called translation con�uence.

De�nition 10 (Translation Con�uence). Let TRFT be a set of forward translation rules
for the source language LS ⊆ VLS. Then, TRFT is translation con�uent if for every triple
graph G = (AttF(GS) ← ∅ → ∅) with GS ∈ LS ⊆ VLS0, we have that if G

∗⇒ G1

and G
∗⇒ G2 and moreover G1 and G2 are completely translated graphs, then the target

components of G1 and G2 are isomorphic, i.e. G1,T
∼= G2,T .

The di�erence between con�uence with terminal graphs and translation con�uence is
that, given G1

∗⇐ G
∗⇒ G2, we only have to care about the con�uence of these two trans-

formations if both graphs, G1 and G2 are translatable into a completely translated graph

16

and furthermore, that they do not necessarily coincide on the correspondence part. This
concept allows us to show the second main result of this paper in Thm. 3 that characterizes
the analysis of functional behaviour of model transformations based on forward translation
rules by the analysis of translation con�uence, which is based on the analysis of critical
pairs.

In Ex. 7 we will show that the set of forward translation rules of our model trans-
formation �CD2RDBM � is translation con�uent and hence, we have functional behaviour
according to the following Thm. 3. In future work we will give su�cient conditions in order
to ensure translation con�uence, which will lead to a more e�cient analysis technique for
functional behaviour.

Theorem 3 (Functional Behaviour). A model transformation based on forward translation
rules has functional behaviour, i� the corresponding system of forward translation rules is
translation con�uent.

Proof. �if�: For GS ∈ LS ⊆ VLS, there is a transformation ∅ =
tr∗S=⇒ (GS ← ∅→ ∅) = G0

via source rules leading to a source consistent transformation G0 =
tr∗F=⇒ Gn = (GS ← GC →

GT) (see [5, 1]). Using Fact 1, there is also a complete transformation G′0 = (AttF(GS)←
∅ → ∅) =

tr∗FT==⇒ (AttT(GS) ← GC → GT) = G′n leading to (GS, GT) ∈ MTRFT . For

any other complete transformation via forward translation rules tr
∗
FT we have G′0 =

tr
∗
FT==⇒

(AttT(GS)← G′C → G′T). Translation con�uence implies that GT
∼= G′T , i.e. GT is unique

up to isomorphism.
�only if�: For GS ∈ LS ⊆ V LS, suppose G =

∗⇒ G1 and G =
∗⇒ G2 with

G = (AttF(GS) ← ∅ → ∅) and G1, G2 are completely translated. This means that
(GS, G1,T), (GS, G2,T) ∈ MTRFT , and the functional behaviour of the model transforma-
tion implies that G1,T

∼= G2,T .

In order to provide tool support for the analysis of functional behaviour of model trans-
formations we apply the �attening construction as presented in [4] for triple graphs and
derive a �plain� graph grammar GG . The analysis of GG can be performed using the im-
plemented critical pair analysis of the tool AGG [24] for typed attributed graph grammars
which allows to generate and analyze all critical pairs of a grammar. In order to apply the
�attening construction we additionally require that the correspondence component TGC

of the type graph TG is discrete, i.e. has no edges. This condition is ful�lled for our case
study and many others as well. An extension of the tool AGG to general triple graphs will
be part of future work.

The �attening of a triple graph G = (GS ←sG−− GC −tG−→ GT) is a (single plain) graph F(G)
obtained by disjoint union of the components GS, GC and GT extended by additional edges
LinkS and LinkT , which encode the internal morphisms sG and tG.

De�nition 11. Flattening Construction: Given a triple graph G = (GS ←sG−− GC −tG−→
GT) the �attening F(G) of G is a plain graph de�ned by the disjoint union F(G) =
GS + GC + GT + LinkS(G) + LinkT (G) with links (additional edges) de�ned by

17

LinkS(G) = {(x, y) |x ∈ VGC
, y ∈ VGS

, sG(x) = y},
LinkT (G) = {(x, y) |x ∈ VGC

, y ∈ VGT
, tG(x) = y}

with srcF(G)((x, y)) = x and tgtF(G)((x, y)) = y for (x, y) ∈ LinkS ∪LinkT . Given a triple
graph morphism f = (fS, fC , fT) : G→ G′ the �attening F(f) : F(G)→ F(G′) is de�ned
by F(f) = fS + fC + fT + fLS + fLT with fLS : LinkS(G)→ LinkS(G′), fLT : LinkT (G)→
LinkT (G′) de�ned by fLS((x, y)) = (fC(x), fS(y)) and fLT ((x, y)) = (fC(x), fT (y)).

S2:parent
tr=F

c3:

CT :TableS1:Class

tr=T

L

S2:parent
tr=T

S3:Class
name=n
tr=T
tr_name=T

c3:

CT :TableS1:Class

tr=T

R

:CT

S3:Class
name=n
tr=F
tr_name=F

c1:morph c2:morph c1:morph c2:morph

:morph :morph

)

Figure 5: Flattening of the forward translation rule Subclass2TableFT

Example 5 (Flattened Forward Translation Rule). Figure 5 shows the result of the �atten-
ing construction applied to the forward translation rule Subclass2TableFT , which is depicted
in the right part of Fig. 3. The triple graphs are �attened to plain graphs, where each map-
ping of the internal graph morphisms of the triple graphs is encoded as an explicit edge of
type morph denoted by a solid line. The �gure shows the one-to-one relationship between
the forward translation rule and the �attened rule.

Using Thm. 1 we know that the system of forward translation rules has the same
behaviour as the system of forward rules controlled by the source consistency condition.
Therefore, it su�ces to analyze the pure transformation system of forward translation
rules without any additional control condition. This allows us furthermore, to transfer the
analysis from a triple graph transformation system to a plain graph transformation system
using Thm. 2 in [4], which states that there is a one-to-one correspondence between a triple
graph transformation sequence and its �attened plain transformation sequence. Hence, we
can analyze con�uence, in particular critical pairs, of a set of triple rules by analyzing the
corresponding set of �attened rules. This allows us to use the tool AGG for the generation
of critical pairs for the �attened forward translation rules.

Example 6 (Generation of Critical Pairs). The tool AGG generates four critical pairs
for the �attened forward translation rules of CD2RDBM using the maximum multiplicity
constraints according to Fig. 1.

The overlapping graph for the combination (SC2T ,C2T) is the same as for the com-
bination (C2T , SC2T) and it is shown in Fig. 6b. Given a subclass node then both rules,
SC2TFT and C2TFT are applicable, but lead to di�erent results. We will show in Ex. 7
that these critical pairs do not a�ect the functional behaviour.

The overlapping graphs for the combination (A2FK ,A2FK) contain in both cases a
table with two primary keys. Assume that we can embed this overlapping graph into a

18

(a) Table of generated critical pairs

(b) Overlapping graph for (SC2T ,C2T)

(c) (A2FK ,A2FK): overlapping 1 (d) (A2FK ,A2FK): overlapping 2

Figure 6: Critical pair generation in AGG with overlapping graphs

�attened intermediate graph of a transformation sequence via the forward translation rules
starting with a valid source model. This implies that the table is related to a set of classes
with a shared root class w.r.t. the parent edges. However, the source language forbids
primary attributes for subclasses and allows at most one primary attribute for the top
most class within a hierarchy according to Ex. 1. This means that the forward translation
rule �PrimaryAttr2ColumnFT � will never create a second primary attribute for a table
and both overlapping graphs cannot be embedded into any intermediate graph of a model
transformation sequence.

Example 7 (Functional Behaviour). We show functional behaviour of the model transfor-
mation CD2RDBM using Thm. 3. But note that that we focus on the source language of
class diagrams CD = LS ⊂ VLS as speci�ed in Ex. 1, i.e. class diagrams, where subclasses

19

S2:parent
tr=F

S3:Class

name=n

tr=F

tr_name=F

:CT :TableS1:Class

tr=T

S3:Class

name=n

tr=T

tr_name=T

:CT :TableS1:Class

tr=T

:CT :Table

)

S2:parent
tr=F

K

P2

S3:Class

name=n

tr=T

tr_name=T

:CT :TableS1:Class

tr=T

:CT

S2:parent
tr=T

P1

)

!

Subclass2TableFT Class2TableFT

(a) Critical pair for the rules Subclass2TableFT and Class2TableFT

G0

∗
��

Gk−1

p2,m2

�&
DD

DD
DD

DD

DD
DD

DD
DD

p1,m1

x� yy
yy

yy
yy

yy
yy

yy
yy

Gk

∗

��

G′k

∗

��
Gn G′l

(b) Diverging Situation

G0

∗
��

Gk−1

p2,m2

�'G
GGGGGGG

GGGGGGGG
p1,m1

w� wwwwwwww

wwwwwwww

Gk

p2,m′2

�'G
GGGGGGGG

GGGGGGGGG

p3,m3

��

G′k

p4,m4

��

p1,m′1

w� xxxxxxxxx

xxxxxxxxx

Gk+1

∗
��

H G′k+1

∗
��

Gn G′l

(c) Case for parallel independence

Figure 7: Diverging sequences s1 and s2

do not have primary attributes and the top most super classes may have at most one pri-
mary attribute to avoid confusion. The system is terminating, because all rules are source
creating, but the system is not con�uent w.r.t. terminal graphs. The critical pairs for
the combination (A2FK ,A2FK) can be neglected, because the overlapping graph cannot be
embedded into any intermediate graph of a transformation via the forward translation rules
as explained in Ex. 6. The remaining two critical pairs are symmetric, thus it is su�cient

to consider the pair (P1 ⇐SC2TFT====== K =
C2TFT====⇒ P2) shown in Fig. 7a. The edge �S2� is labeled

with �F� while its source node is labeled with �T�. The only forward translation rule which
can change the translation attribute of a �parent�-edge is �SC2TFT �, but it requires that the
source node is labeled with �F�. Thus, no forward translation sequence where rule �C2TFT �

20

is applied to a source node of a parent edge, will lead to a completely translated graph.
Now, assume that our system is not translation con�uent by two diverging complete

forward translation sequences s1 = (G =
∗⇒ Gn) and s2 = (G =

∗⇒ G′l) as shown in Fig. 7b. If
the �rst diverging pair of steps in s1 and s2 is parallel dependent we can embed the critical
pair and have that one sequence is incomplete, because the particular edge �S2� remains
untranslated. Otherwise, the steps are parallel independent and we can merge them using
the Local Church Rosser (LCR) Thm. leading to possibly two new diverging pairs of steps

(Gk+1 ⇐p3,m3
==== Gk =

p2,m′2===⇒ H) as shown in Fig. 7c. If they are dependent we can embed
the critical pair. If the rule p = 3 = C2TFT we can conclude that Gn is not completely
translated. Thus, we have that p2 = C2TFT and by LCR we can re�ect this step back to
Gk−1 =

p2,m2
===⇒ G′k and have that G′k cannot be completely translated. This means that the

diverging steps (Gk+1 ⇐p3,m3
==== Gk =

p2,m′2===⇒ H) are again parallel independent. By induction

this leads to the �nal situation (Gn ⇐p∗,m∗
==== Gn−1 =

p2,m′′2===⇒ H) and we have can conclude that
the steps are parallel independent. Since Gn is completely translated we have that H ∼= Gn

and all together Gn
∼= G′l because we have termination.

Thus, the system is translation con�uent and we can apply Thm. 3 showing the func-
tional behaviour of the model transformation CD2RDBM for the considered source language
LS = CD .

5 Model Transformation via Interfaces

During the execution of a model transformation the given source model may be simulta-
neously used by other applications within an MDA environment and therefore, the model
transformation should not modify the source model. Considering our case study, the model
transformation transforms class diagrams to data base tables. However, the class diagram
may be additionally used for documenting the system structure and thus, should be avail-
able unchanged for the software development groups. Furthermore, other interrelated
models may rely on a synchronized connection to the class diagram, e.g. a synchronization
with corresponding block diagrams is common in the automotive domain as presented in
[9].

For this reason, we now present how the concept of model transformations based on
forward translation rules with translation attributes can be equivalently implemented using
a marking structure that points to the handled elements of the source model leaving the
source model itself unchanged. This way the additional structure necessary for ensuring
the correctness and completeness of the model transformation is externalized from the
source model and kept separately. More precisely, a triple graph consisting of the source,
correspondence and target model is extended by an additional triple graph, called interface
graph, which speci�es the elements of the source model that have been translated so far.
This means that the boolean valued translation attributes are represented by the presence
and absence of elements in the interface graph. This way, the concept of translation
attributes can be used for the analysis of functional behaviour of a model transformation,

21

while the equivalent concept using interfaces is used for implementations that need to
ensure the preservation of the source model.

De�nition 12 (Category of Triple Graphs with Interfaces). A triple graph with interface
IG = (IIG , GIG , iIG) is given by a triple graph morphism iIG : IIG → GIG in the category
TrGraphs of triple graphs, where IIG is the interface for the triple graph GIG . A morphism
m : IG1 → IG2 between triple graphs with interfaces with (IGk = (Ik, Gk, ik))(k=1,2) is
given by a pair m = (mI , mG) of triple graph morphisms mI : I1 → I2 and mG : G2 → G2

compatible with the interface morphisms, i.e. i2 ◦mI = mG ◦ i1. The category TrGraphsI
consists of triple graphs with interfaces as objects and morphisms between triple graphs with
interfaces as morphisms.

I1
i1 //

mI
��

(=)

G1

mG
��

I2
i2 // G2

Transformation steps within the category of triple graphs with interfaces are constructed
componentwise, i.e. by two pushouts, one for the interface triple graph and one for the
main triple graph. The new interface morphism of the resulting triple graph with interface
is induced by the pushout property, such that a rule is applicable at any match.

De�nition 13 (Transformations in TrGraphsI). A rule tr in TrGraphsI is an injective
morphism tr : L → R. Given a morphism m : L → IG, called match, the transformation
step IG =

tr
=⇒ IH is given by a pushout in TrGraphsI, which is constructed componentwise

for the I- and G-components and the new interface morphism iIH is induced by the pushout

in the I-component. The transformation step is interface-consistent, if (I0 −fI−→ I1 −
f ′G◦i1−−−→

G3 ←
g′G◦i2−−−− I2 ←fI−− I0) in Cube (2) beneath is a pullback in TrGraphs.

IG0
f //

g

��
(PO)

IG1

g′

��
IG2

f ′ // IG3

(1)

I0
fI //

gI

��

i0
 A

AA
I1

��

i1
 A

AA

G0
//

��

G1

f ′G

��
I2

//

i2
 A

AA
I3 i3

G2

g′G

// G3

(2)

Moreover, triple graphs with interfaces form an M-adhesive category as presented in
[6], which are a generalization of weak adhesive HLR in [3]. This way, the important HLR
results valid for allM-adhesive categories are available.

De�nition 14 (M-adhesive category). A pair (C,M) containing a category C and a
morphism classM is called aM-adhesive category if:

1. M is a class of monomorphisms closed under isomorphisms, composition (f :
A→ B ∈M, g : B → C ∈ M ⇒ g ◦ f ∈ M), and decomposition
(g ◦ f ∈M, g ∈M⇒ f ∈M).

22

2. C has pushouts and pullbacks along M-morphisms, and M-morphisms are closed
under pushouts and pullbacks.

3. Pushouts in C alongM-morphisms are weak VK squares, i.e. the VK square property
holds for all commutative cubes with m, a, b, c, d ∈M (see 8).

A
f

~~}}}
} m

 A
AA

A

(1)C

n A
AA

A B

g~~}}
}}

D

A′f ′

rreeeeeeeeeeeeeeee m′

))SSSSSSS

a

��

C ′

n′ ((RRRRRRR

c

��

B′

g′ffffffffffff

rrfff

b

��

D′

d

��

(2)

A

(1)

feeee

rreeeeeeeeeeee m
))SSSSSSS

C
n))SSSSSSS B

grreeeeeeeeeeeeeeeee

D

Figure 8: Pushout (1) and commutative cube (2) for VK property.

Fact 2. The category (TrGraphsI,M) with the classM of morphisms that consist of two
triple graph morphisms inM for (TrGraphs,M) is anM-adhesive category.

Proof. The categoryTrGraphsI can be constructed as comma categoryCommCat(F, G, I)
with I = {1}, F = G = IDTrGraphs. We further have that (TrGraphs,M) is an M-
adhesive category withM the class of morphisms that consist of attributedM-morphisms
for each triple component within (AGraphsATG,M). Since F and G preserve pushouts
and pullbacks we have by item 4 in Thm. 4.15 in [3] that (TrGraphsI,M) is a weak
adhesive HLR category and hence, also anM-adhesive category.

In order to perform model transformations based on triple rules with interfaces the
operational rules, called forward translation rules with interfaces, are derived analogously
to the forward translation rules with translation attributes in Def. 4. The boolean values of
the translation attributes correspond to the absence (F) and presence (T) of the elements in
the source component. This means that the e�ective elements of a forward rule are created
within the interface part of the forward translation rule with interfaces and all other source
elements are preserved within the interface part. Moreover, the correspondence and target
components of the interface graphs are always empty.

23

De�nition 15 (Forward Translation Rule with Interfaces). Given a triple rule tr =
(trS, trC , trT) : L → R with (trX : LX → RX)(X=S,C,T) its forward translation rule with
interfaces trFI : IL→ IR is a morphism in TRGraphsI with

IIL = (LS ←− ∅ → ∅), GIL = (RS ←tr
S◦sL−−−− LC −tL−→ LT),

IIR = (RS ←− ∅ → ∅), GIR = (RS ←sR−− RC −tR−→ RT), and
trFI ,I = (trS, ∅, ∅), trFI ,G = (idRS , trC , trC).

TrGraphsI TrGraphs Graphs

triple
rule tr

L

tr
��7

77
77

77

R

LS

trS

��6
66

66
6 LC

trC

��7
77

77
77

sLoo tL // LT

trT

��7
77

77
77

RS RC
sRoo tR // RT

forward
transla-
tion rule
with in-
terfaces
trFI

LFI
trFI

��=
==

=

RFI

LS

��

trS

��9
99

9

RS

��

LF

trF ��9
99

9

RF

LS

trS

��

��>
>>

> ∅oo //

��

��:
::

: ∅

��

��>
>>

>>

RS

id

��

∅oo //

��

∅

��

(RS

id ��;
;;

; LC
trS◦sLoo tL //

trC

��

LT)

trT ��
(RS RCsHoo tH // RT)

Def. 15 shows that the forward translation rule with interfaces trFI of a triple rule tr is
composed of the source rule trS and the forward rule trF , where the source rule concerns
the interfaces. In order to perform model transformations along almost injective matches
as in Sec. 3 we lift the notion of almost injective matches to the case with interfaces by
requiring that both the interface and the main components are almost injective in the
category of triple graphs.

De�nition 16 (Almost injective Match in TrGraphsI). An almost injective match mFI =
(mS, mF) in TrGraphsI is given by two almost injective matches mS, mF in TrGraphs
according to Def. 5.

In Thm. 4 we show that interface consitency is a su�cient and necessary condtion for
the correctness and completeness of model transformations in TrGraphsI. Hence, we �rst
characterize interface consistency by showing that the pullback condition is equivalent to
the condition that the induced interface morphism is anM-morphism.

Fact 3 (Characterization of Interface Consistency). Let IG =
trFI ,mFI=====⇒ IG ′ be a transforma-

tion in TrGraphsI via a forward translation rule with interface and an almost injective
match, where the interface morphism iIG : I → G is inM. Then, the transformation is in-
terface consistent i� the induced interface morphism i′ : I ′ → G′ is anM-monomorphism.

Proof. Direction �⇒�: According to Def. 13 for interface consistency we have the
following pullback (2) for the source component with respect to the source component of
the transformation step shown in diagram (1):

24

LS trS
//

mS
S

��

""D
DD

RS

��

id
""E

EE

RS //

��

RS

mS
F

��
IS //

iS
""D

DD
I ′S

i′S
""

GS id // GS

(1)

LS // //

mS
S
��

(2a)

RS

mS
F

��

nS
S
��

IS // t
S
//

!!

iS
..

I ′S

i′S

!!
(2b)

GS

(2)

The morphism iS ∈M by assumption and tS ∈M becauseM-morphisms are preserved
by pushouts. This implies for the algebra part that tSD and iSD are isomorphisms and by
commutativity of (2b) we derive that i′S = tSD ◦ (iSD)−1 is an isomorphism. The match is
a forward translation match and thus, by Def. 5 we have that it is injective on all parts
except on the data values. The pushout (1) is constructed componentwise for each E-graph
component and thus, we can analyze i′ for each component separately. Using Thm. 4.7
in [16] for e�ective unions in adhesive categories and thus in particular for Sets in each of
the remaining E-graph components we derive that i′S is injective .

Concerning the complete triple morphism i′ we have that the correspondence and target
component of the interface part of the rule trFI consists of empty graphs and empty
morphism and therefore i′ coincides with i on these components. This leads to i′ ∈M.

Direction �⇐�: The square (2a) is a pushout along an M-morphism and thus a
pullback. Pullbacks can be extended by M-monomorphisms, because pullbacks can be
extended by monomorphisms in general. Therefore, Diagram (2) is a pullback.

Fact 4 below shows that the application of a forward translation rule with interfaces is
composed of transformation steps in TrGraphs using the source and forward triple rules
in a compatible way. This builds the basis for showing the correctness and completeness
of model transformations based on forward translation rules with interfaces in Thm. 4.

Fact 4 (Transformation via a Forward Translation Rule with Interfaces). Let IG =
(G′S, G, iG) be a triple graph with interface, where G = (GS ← GC → GT), G′S = (G′S ←
∅ → ∅). Let further trFI : IL→ IR be a forward translation rule with interfaces of a triple

rule tr = (trS, trC , trT) : L→ R. A transformation step IG =
trFI ,mFI=====⇒ IH in TrGraphsI is

given by the source and forward transformation steps IIG =
trS ,mS====⇒ IIH and GIG =

trF ,mF====⇒ GIH

with matches (mS, mF) = mFI depicted below. The interface morphism iIH is induced by
by the pushout in the source step as shown in Cube (2) for the source component using
mS

F ◦ trS = iSIG ◦mS
S by mFI being a morphism in TrGraphsI, while for the correspondence

and target component we have iCIH = ∅ and iTIH = ∅.
LS

mS

��

((QQQQQQ ∅oo //

��

$$H
HH

H ∅

��

%%JJ
JJJ

RS

nS��

∅oo //

��

∅

��
(G′S

tS
''OO

OO
G′S ∅oo //

""
∅

##
(H ′SH ′S

trS
!)KKK KKK

∅oo // ∅)
source step

25

RS

mS
F
��

&&NN
NN LCoo //

mC ��

&&MM
M LT

mT ��

''OOOO

RS

mS
F��

RCoo //

nC
��

RT

nT

��
(GS

id%%KK
KG GCoo //

tC$$
GT)

tT%%
(GSH

trF
!)JJJJ

JJJJ

HCoo // HT)

forward step

IL
trFI //

mFI

��

IR

nFI

��
IG

t // IH

(1)

LS //

mS
S

��

trS ''NNNNNN RS

��

''OOOOOO

RS //

mS
F

��

RS

��
G′S //

iSIG
''NNNNNN H ′S

iSIH ''
GS // GS

(2)

TrGraphsI source component in Graphs

Proof. It remains to show that (1) is a pushout. First of all, t and nFI are morphisms
in TrGraphsI by the commutativity with the induced morphism iIH , which is direct for
the correspondence and target component with empty graphs and presented for the source
component in (2). Diagram (1) commutes, because it commutes componentwise.

Now, let (IX = (X ′, X, iIX), x1 = (x1,I , x1,G) : IG → IX, x2 = (x2,I , x2,G) : IR → IX)
be a comparison object. This implies, that (X ′, x1,I : G′ → X ′, x2,I : R′ → X ′) is a
comparison object for the pushout in TrGraphs given by the source step and (X, x1,G :
G → X, x2,G : R → X) is a comparison object for the pushout in TrGraphs given by
the forward step. We derive the induced morphism h = (hI , hG) : IH → IX. It remains
to show that h is compatible with the interfaces, i.e. hG ◦ iIH = iIX ◦ hI . This is direct
for the correspondence and target components, because H ′C = H ′T = ∅. For the source
component we have that (X, x1,G◦iSIG , x2,G◦iSIR) is also a comparison object for the pushout
(2) and we derive a unique f : H ′S → X with f ◦nS = xS

1,G◦ id and f ◦ tS = xS
2,G◦ iSIG . Both

conditions are also valid for f = hG ◦ iIH and for f = iIX ◦hI , such that hG ◦ iIH = iIX ◦hI

by uniqueness of f . Thus, (1) is a pushout in TrGraphsI

Now, we de�ne model transformations based on forward translation rules with inter-
faces in the same way as for forward translation rules without interfaces in Derf. 8, where
completeness of the forward translation sequence is replaced by interface consistency of the
forward translation sequence with interfaces.

De�nition 17 (Model Transformation Based on Forward Translation Rules with Inter-

faces). A model transformation sequence (GS, G′0 =
tr∗FI==⇒ G′n, GT) based on forward trans-

lation rules with interfaces consists of a source graph GS, a target graph GT , and an

interface consistent transformation sequence with interfaces G′0 =
tr∗FI==⇒ G′n with almost in-

jective matches, G′0 = ((∅← ∅→ ∅)→ (GS ← ∅→ ∅)) and G′n = ((GS ← ∅→ ∅)→
(GS ← GC → GT)).

26

A model transformation MT : VLS0 V VLT0 based on forward translation rules with in-

terfaces is de�ned by all model transformation sequences (GS, G′0 =
tr∗FI==⇒ G′n, GT) based on

forward translation rules with GS ∈ VLS0 and GT ∈ VLT0. All these pairs (GS, GT) de�ne
the model transformation relation MTRFI ⊆ VLS0 × VLT0. The model transformation
is terminating if there are no in�nite TGT-sequences via forward translation rules and
almost injective matches starting with G′0 = ((∅← ∅→ ∅)→ (GS ← ∅→ ∅)) for some
source graph GS.

The following lemma shows that model transformations in TrGraphsI are one to one
to triple transformation sequences via the triple rules of the given triple graph grammar.
This is the basis for showing the main result of this section in Thm. 4.

Lemma 2 (Forward Translation Sequences with Interfaces). There is a triple transforma-

tion sequence ∅ =
tr∗
=⇒ G in TrGraphs i� there is an interface consistent transformation

(∅, GS, ∅) =
tr∗FI==⇒ (GS, G, i) in TrGraphsI.

Proof. 1. Direction �⇒�:

Let (s1)∅ =
tr1,m1
===⇒ . . . =

trk,mk====⇒ Gk = G be a derivation in TrGraphs.

LS
i

mS
i

��

&&MMMMM LC
i

oo //

mC
i ��

%%KK
KK LT

i

mT
i ��

&&MM
MMM

RS
i

nS
i��

RC
i

oo //

nC
i��

RT
i

nT
i

��
(GS

i tSi&&MM
MGi GC

i
oo //

tCi%%
GT

i) tTi&&
(GS

i+1Gi+1
tr i
 (JJJJJJ

GC
i+1

oo // GT
i+1)

triple step

Using the decomposition result (Thm. 1 in [7]) ⇒ ∀ i ∈ {1, . . . , k} :

(GS
i ←− ∅ → ∅) =

tri,S ,mi,S
=====⇒ (GS

i+1 ←− ∅ → ∅) and

(GS
k ←− GC

i → GT
i) =

tri,F ,mi,F
=====⇒ (GS

k ←− GC
i+1 → GT

i+1) in TrGraphs

with mS
i,F = gS

i+1 ◦ nS
i,S. (∗)

LS
i

mS
i

��

''OOOOOO ∅oo //

��

""E
EEE ∅

��

##G
GGG

G

RS
i

nS
i��

∅oo //

��

∅

��
(GS

i tSi''OO
OO

Gi,0 ∅oo //

""
∅

##
(GS

i+1Gi+1,0
tr i,S

!)JJJJ

∅oo // ∅)
source step

27

RS
i

mS
i,F

��

%%KK
KK

LC
i

oo //

mC
i ��

%%KK
KK LT

i

mT
i ��

&&MM
MMM

RS
i

mS
i,F��

RC
i

oo //

nC
i��

RT
i

nT
i

��
(GS

k id%%KK
K

Gi+1,i GC
i

oo //
tCi%%

GT
i) tTi&&

(GS
kGi+1

tr i,F
 (JJJJ

GC
i+1

oo // GT
i+1)

forward step

⇒ ∀ i ∈ {1, . . . , k} : (GS
i ←− ∅ → ∅) → (GS

k ←− GC
i −→ GT

i) =
tri,FI ,mi,FI
======⇒ (GS

i+1 ←−
∅ → ∅) −

iGi+1−−−→ (GS
k ←− GC

i+1 −→ GT
i+1) in TrGraphsI with mi,F I = (mi,S, mi,F). The

transformation step is given by the source and the forward step and the morphism
iGi+1

is given by the inclusion gi+1 : Gi+1,0 → G0 = (GS
k ←− ∅ → ∅) as in Def. 3 of [5].

In order to show that each step i in TrGraphsI is interface-consistent we can
�rst state that the correspondence and target components are pullbacks, be-
cause the components of the interfaces I0, I1 and I2 in Def. 13 are the empty
graphs. It remains to show the pullback property for the source component.

LS
i

trS
i //

mS
i,S

��

trS
i
 B

BB
RS

i

��

id
""E

EEE

RS
i

//

mS
i,F��

RS
i

mS
i,F

��

GS
i

tSi //

gS
i

 A
AA

GS
i+1

""
GS

k id
// GS

k

(1)

Using (∗) we can apply Thm. 1 and Def. 4 of [5] and derive the following pullback

in TrGraphs: Li,S
� � //

mi,S ��

Ri,S
� � // Li,F

(2) mi,F
��

Gi,0
� �

gi

// G0
� � // Gi

with Gi,0 = (GS
i ←− ∅ → ∅) and Gi = (GS

k ←− GC
i → GT

i). Thus, we have

that (LS
i −

trS
i−→ RS

i −
mS

i,F−−→ GS
k ←

gS
i−− GS

i ←
mS

i,S−−− LS
i) in Cube (1) is a pullback of

(RS
i −

mS
i,F−−→ GS

k ←
gS

i−− GS
i) in Graphs. Together with the pullbacks in the correspon-

dence and target component and commutativity with the empty morphisms we have
the desired pullback in TrGraphs.

2. Direction �⇐�:

Let (s2) : (∅ → GS) =
tr∗FI==⇒ (GS → G) be an interface consistent transformation in

TrGraphsI.

⇒ Each step i in (s2) de�nes a source and a forward transformation step as in the
�rst part. We need to show that the forward match is forward consistent according

28

to Def. 4 in [5]. By the interface-consistency of (s2) we have the pullback property
for Cube (1) before. Thus we derive the pullback property for the source component
of Diagram (2) before. Since Gi,0 has empty graphs on the correspondence and target
component we derive the pullback property for Diagram (2) in TrGraphs. Using
the resulting triple graph with interface in (s1) we know that gk = id and by point
3 of Thm. 1 in [5] we derive a source consistent forward sequence that leads to the
triple sequence (s1) as needed.

The main result of this section in Thm. 1 below states that model transformations
based on forward translation rules with interfaces are equivalent to those based on forward
translation rules without interfaces.

Theorem 4 (Forward Translation Sequences with Interfaces). Given a triple graph gram-
mar, then the model transformation MTFT : VLS0 V VLT0 based on forward translation
rules without interfaces and the model transformation MTFI : VLS0 V VLT0 based on for-
ward translation rules with interfaces, both with almost injective matches, de�ne the same
model transformation relation MTRFT = MTRFI ⊆ VLS0 × VLT0.

Proof. By Lemma 2 we have the equivalence of triple sequence via the triple rules of the
given triple graph grammar and the model transformation sequences based on forward
translation rules with interfaces. Using the correctness and completeness result for model
transformations based on forward translation rules in Thm. 2 we also have the equivalence
of model transformation sequences based on forward rules and the triple sequences. Thus,
model transformation sequences based on forward translation rules with interfaces are
equivalent to model transformation sequences based on forward translation rules without
interfaces.

6 Related Work

As pointed out in the introduction our work is based on triple graph grammars presented
by Schürr et.el. in [22, 21, 15] with various applications in [10, 11, 14, 15, 23]. The formal
approach to TGGs has been developed in [2, 4, 5, 8, 1, 7]. In [1] it is shown how to
analyze bi-directional model transformations based on TGGs with respect to information
preservation, which is based on a decomposition and composition result for triple graph
transformation sequences.

As shown in [2] and [7], the notion of source consistency ensures correctness and com-
pleteness of model transformations based on TGGs. A construction technique for correct
and complete model transformation sequences on-the-�y is presented in [5], i.e. correct-
ness and completeness properties of a model transformation do not need to be analyzed
after completion, but are ensured by construction. In this construction, source consistency
is checked on-the-�y, which means during and not after the construction of the forward
sequence. Moreover, a strong su�cient condition for termination is given. The main con-
struction and results are used for the proof of Fact 1 and hence, also for our �rst main result

29

in Thm. 1. Similarly to the generated forward translation rules in this paper, the generated
operational rules in [18] also do not need an additional control condition. However, the
notion of correctness and completeness is much more relaxed, because it is not based on a
given triple graph grammar, but according to a pattern speci�cation, from which usually
many triple rules are generated.

A �rst approach to analyze functional behaviour for model transformations based on
TGGs was already given in [8] for triple rules with distinguished kernel typing. This strong
restriction requires e.g. that there is no pair of triple rules handling the same source node
type - which is, however, not the case for the �rst two rules in our case study CD2RDBM .
The close relationship between model transformations based on TGGs and those on �plain
graph transformations� is discussed in [4], but without considering the special control
condition source consistency. The treatment of source consistency based on translation
attributes is one contribution of this paper in order to analyze functional behaviour. As
explained in Sec. 3 additional NACs are not su�cient to obtain this result. Functional
behaviour for a case study on model transformations based on �plain graphs� is already
studied in [3] using also critical pair analysis in order to show local con�uence. But the
additional main advantage of our TGG-approach in this paper is that we can transfer the
strong results concerning termination, correctness and completeness from previous TGG-
papers [4, 5] based on source consistency to our approach in Thm. 2 by integrating the
control structure source consistency in the analysis of functional behaviour. Finally there
is a strong relationship with the model transformation algorithm in [22], which provides
a control mechanism for model transformations based on TGGs by keeping track of the
elements that are translated so far. In [5] we formalized the notion of elements that are
translated at a current step by so-called e�ective elements. In this paper we have shown
that the new translation attributes can be used to automatically keep track of the elements
that have been translated so far.

7 Conclusion

In this paper we have analyzed under which conditions a model transformation based
on triple graph grammars (TGGs) has functional behaviour. For this purpose, we have
shown how to generate automatically forward translation rules from a given set of triple
rules, such that model transformations can be de�ned equivalently by complete forward
translation sequences. The main result shows that a terminating model transformation has
functional behaviour if the set of forward translation rules is translation con�uent. This
allows to apply the well-known critical pair analysis techniques for typed attributed graph
transformations with support from the tool AGG to the system of forward translation rules,
which was not possible before, because the control condition source consistency could not
be integrated in the analysis. These techniques have been applied to show functional
behaviour of our running example, the model transformation from class diagrams to data
base models. In order to keep the source model unchanged during the transformation
the translation attributes can be separated from the source model as presented in Sec. 5.

30

Alternatively, the model transformation can be executed using the on-the-�y construction
in [5], which is shown to be equivalent by Thm. 1. In future work we give su�cient
conditions in order to check translation con�uence, which will further improve the analysis
techniques. Moreover, we will extend the results to systems with control structures like
negative application conditions (NACs), rule layering and amalgamation. In order to
extend the main result concerning functional behaviour to the case with NACs, we have to
extend the generation of forward translation rules by extending the NACs with translation
attributes and we have to prove the equivalence of the resulting model transformation with
the on-the-�y construction in [7].

References

[1] H. Ehrig, K. Ehrig, C. Ermel, F. Hermann, and G. Taentzer. Information preserving
bidirectional model transformations. In M. B. Dwyer and A. Lopes, editors, Proc.
FASE'07, volume 4422 of LNCS, pages 72�86. Springer, 2007.

[2] H. Ehrig, K. Ehrig, and F. Hermann. From Model Transformation to Model Inte-
gration based on the Algebraic Approach to Triple Graph Grammars. In C. Ermel,
J. de Lara, and R. Heckel, editors, Proc. GT-VMT'08, volume 10 of EC-EASST.
EASST, 2008.

[3] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Algebraic Graph
Transformation. EATCS Monographs. Springer, 2006.

[4] H. Ehrig, C. Ermel, and F. Hermann. On the Relationship of Model Transformations
Based on Triple and Plain Graph Grammars. In G. Karsai and G. Taentzer, editors,
Proc. GraMoT'08. ACM, 2008.

[5] H. Ehrig, C. Ermel, F. Hermann, and U. Prange. On-the-Fly Construction, Correct-
ness and Completeness of Model Transformations based on Triple Graph Grammars.
In A. Schürr and B. Selic, editors, Proc. ACM/IEEE MODELS'09, volume 5795 of
LNCS, pages 241�255. Springer, 2009.

[6] H. Ehrig, U. Golas, and F. Hermann. Categorical Frameworks for Graph Transforma-
tion and HLR Systems based on the DPO Approach. Bulletin of the EATCS, 2010.
To appear.

[7] H. Ehrig, F. Hermann, and C. Sartorius. Completeness and Correctness of Model
Transformations based on Triple Graph Grammars with Negative Application Con-
ditions. In R. Heckel and A. Boronat, editors, Proc. GT-VMT'09, volume 18 of
EC-EASST. EASST, 2009.

[8] H. Ehrig and U. Prange. Formal Analysis of Model Transformations Based on Triple
Graph Rules with Kernels. In H. Ehrig, R. Heckel, G. Rozenberg, and G. Taentzer,
editors, Proc. ICGT'08, volume 5214 of LNCS, pages 178�193. Springer, 2008.

31

[9] H. Giese and R. Wagner. From model transformation to incremental bidirectional
model synchronization. Software and System Modeling, 8(1):21�43, 2009.

[10] E. Guerra and J. de Lara. Attributed typed triple graph transformation with in-
heritance in the double pushout approach. Technical Report UC3M-TR-CS-2006-00,
Universidad Carlos III, Madrid, Spain, 2006.

[11] E. Guerra and J. de Lara. Model view management with triple graph grammars. In
A. Corradini, H. Ehrig, U. Montanari, L. Ribeiro, and G. Rozenberg, editors, Proc.
ICGT'06, volume 4178 of LNCS, pages 351�366, Heidelberg, 2006. Springer.

[12] A. Habel and K.-H. Pennemann. Correctness of high-level transformation systems
relative to nested conditions. Mathematical Structures in Computer Science, 19:1�52,
2009.

[13] F. Hermann, H. Ehrig, F. Orejas, and U. Golas. Formal Analysis of Functional Be-
haviour of Model Transformations Based on Triple Graph Grammars. In Proc. Int.
Conf. on Graph Transformation. Springer, 2010. to appear.

[14] E. Kindler and R. Wagner. Triple graph grammars: Concepts, extensions, imple-
mentations, and application scenarios. Technical Report TR-ri-07-284, Department
of Computer Science, University of Paderborn, Germany, 2007.

[15] A. Königs and A. Schürr. Tool Integration with Triple Graph Grammars - A Survey.
In Proc. SegraVis School on Foundations of Visual Modelling Techniques, volume 148
of ENTCS, pages 113�150. Elsevier Science, 2006.

[16] S. Lack and P. Soboci«ski. Adhesive Categories. In Proc. FOSSACS 2004, volume
2987 of LNCS, pages 273�288. Springer, 2004.

[17] M. H. A. Newman. On theories with a combinatorial de�nition of "equivalence".
Annals of Mathematics, 43(2):223�243, 1942.

[18] F. Orejas, E. Guerra, J. de Lara, and H. Ehrig. Correctness, completeness and ter-
mination of pattern-based model-to-model transformation. In A. Kurz, M. Lenisa,
and A. Tarlecki, editors, Proc. CALCO'09, volume 5728 of LNCS, pages 383�397.
Springer, 2009.

[19] D. Plump. Hypergraph rewriting: Critical pairs and undecidability of con�uence. In
Term Graph Rewriting: Theory and Practice, pages 201�213. John Wiley, 1993.

[20] D. Plump. Con�uence of graph transformation revisited. In Processes, Terms and
Cycles: Steps on the Road to In�nity: Essays Dedicated to Jan Willem Klop on the
Occasion of His 60th Birthday, volume 3838 of LNCS, pages 280�308. Springer, 2005.

32

[21] A. Schürr. Speci�cation of Graph Translators with Triple Graph Grammars. In
G. Tinhofer, editor, Proc. WG'94, volume 903 of LNCS, pages 151�163. Springer,
1994.

[22] A. Schürr and F. Klar. 15 years of triple graph grammars. In H. Ehrig, R. Heckel,
G. Rozenberg, and G. Taentzer, editors, Proc. ICGT'08, LNCS, pages 411�425.
Springer, 2008.

[23] G. Taentzer, K. Ehrig, E. Guerra, J. de Lara, L. Lengyel, T. Levendovsky, U. Prange,
D. Varro, and S. Varro-Gyapay. Model Transformation by Graph Transformation: A
Comparative Study. In Proc. MoDELS 2005 Workshop MTiP'05, 2005.

[24] TFS-Group, TU Berlin. AGG, 2009. http://tfs.cs.tu-berlin.de/agg.

33

http://tfs.cs.tu-berlin.de/agg

	Introduction
	Review of Triple Graph Grammars
	Model Transformations based on Forward Translation Rules
	Analysis of Functional Behaviour
	Model Transformation via Interfaces
	Related Work
	Conclusion

