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Abstract: The Expectation-Maximization algorithm is adapted to the extended Kalman filter to multiple
GNSS Precise Point Positioning (PPP), named EM-PPP. EM-PPP considers better the compatibility of
multiple GNSS data processing and characteristics of receiver motion, targeting to calibrate the process
noise matrix Qt and observation matrix Rt, having influence on PPP convergence time and precision,
with other parameters. It is possibly a feasible way to estimate a large number of parameters to
a certain extent for its simplicity and easy implementation. We also compare EM-algorithm with
other methods like least-squares (co)variance component estimation (LS-VCE), maximum likelihood
estimation (MLE), showing that EM-algorithm from restricted maximum likelihood (REML) will be
identical to LS-VCE if certain weight matrix is chosen for LS-VCE. To assess the performance of the
approach, daily observations from a network of 14 globally distributed International GNSS Service
(IGS) multi-GNSS stations were processed using ionosphere-free combinations. The stations were
assumed to be in kinematic motion with initial random walk noise of 1 mm every 30 s. The initial
standard deviations for ionosphere-free code and carrier phase measurements are set to 3 m and
0.03 m, respectively, independent of the satellite elevation angle. It is shown that the calibrated Rt

agrees well with observation residuals, reflecting effects of the accuracy of different satellite precise
product and receiver-satellite geometry variations, and effectively resisting outliers. The calibrated Qt

converges to its true value after about 50 iterations in our case. A kinematic test was also performed
to derive 1 Hz GPS displacements, showing the RMSs and STDs w.r.t. real-time kinematic (RTK) are
improved and the proper Qt is found out at the same time. According to our analysis despite the
criticism that EM-PPP is very time-consuming because a large number of parameters are calculated
and the first-order convergence of EM-algorithm, it is a numerically stable and simple approach to
consider the temporal nature of state-space model of PPP, in particular when Qt and Rt are not known
well, its performance without fixing ambiguities can even parallel to traditional PPP-RTK.

Keywords: EM-algorithm; multi-GNSS; PPP; process noise; observation covariance matrix; extended
Kalman filter; machine learning
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1. Introduction

Since Precise Point Positioning (PPP) emerged [1,2], people are primarily focusing on improving
precise orbit and clock products, developing new algorithms to solve for ambiguities, to accelerate its
convergence and expand its applications such as PPP-real-time-kinematic (PPP-RTK), triple frequency
PPP [3], ionosphere-constraint PPP and low-cost receiver PPP [4–10].

Generally, PPP can be realized by the least-squares method (including sequential least-squares) or
extended Kalman filter. The least-squares method is for static state estimation and thus does not reflect
varying user dynamics. To work the same as Kalman filter, the process noise matrix is added to the
gain matrix of the sequential least-squares method to adjust receiver clock behavior and atmospheric
activity and so on, which is named as a sequential filter [2]. Hence, in the following paper, the authors
will only consider the Kalman filter for PPP data processing.

Although both the process noise Qt and observation covariance matrix Rt are the key to Kalman
filter, limited attention is paid to the fundamental problem for multi-GNSS PPP. Qt and Rt must be
consistent with state dynamics and measurement accuracy, respectively. For example, if the value
of Qt is too small, the estimated state will lose its minimum mean squared error property, and if the
value of Qt is too large with respect to the correct one, the estimated state will oscillate around the true
value. Moreover, because of ground deformation and specific surroundings, Qt should not be kept
fixed to calculate the optimal estimates. In other words, Qt should evolve with time and a proper Qt

will shorten the PPP convergence time. If Qt is improper, it may damage PPP convergence sometimes.
As for GNSS, Rt not only depends on the measurement accuracy, elevation of the satellite, orbit

and clock error, atmospheric delay error, multipath, missing data, etc. but possibly deteriorate after a
lapse of a period. What is more, the assumption, frequently used in geodesy, that different types of
measurements have a fixed error ratio is not always true, because the ratio is closely linked to receivers
and antenna types, and to the performance of satellite system itself. For example, while fusing multiple
GNSS, the weight of measurements of GPS is intended to be higher, other GNSS systems to be lower.
It is not easy to give a prior accurate ratio.

Generally, four methods are often applicable to calibrate Qt and Rt. The first one is based on the
innovation property of the Kalman filter, in which a moving-window recursive way is used to identify
Qt and Rt [11–14]. However, none of them can maintain the positive semi-definiteness of the estimated
covariances. To solve this problem, Odelson developed the autocovariance least-squares method for
estimating covariances using a lagged autocovariance function [15]. This kind of least-squares method
depends on the user-defined autocovariance function.

The second scheme to recognize Qt and Rt is the multiple model adaptive estimation (MMAE) [13,16].
MMAE runs a bank of Kalman filter in parallel, every one of them is driven by its pair of Qt and Rt.
The final Qt and Rt are thought of as the weighted sum of the estimates of individual Kalman filter.

In the third scheme, M-estimator is introduced into an adaptive Kalman filter to increase its
resistance to outliers, where an adaptive factor α to state error covariance matrix is constructed [17,18].
Yet, choosing a value for α is still very challenging. An improper α will result in biased results.

Another attractive scheme is the least-squares variance component estimation (LS-VCE) [19],
which is based on least-squares principles. Similar to restricted maximum likelihood (REML), LS-VCE
does not use observations directly but combine observations to exclude any fixed effects. However,
LS-VCE needs to define the weight matrix on the user‘s own and increase its complexity.

In this contribution, a machine learning algorithm, the Expectation-Maximization (EM) algorithm,
is developed to the extended Kalman filter to estimate PPP states,

→
x t, together with a large number of Qt

and Rt. The EM-algorithm, which can be classified as the first scheme, works in an iterative procedure
to locate maximum likelihood estimates of parameters. Its iteration consists of two steps: Expectation
and Maximization. In the Expectation step, a function for the expectation of the log-likelihood is
computed using the estimates of the current parameters. In the Maximization step, estimates of
parameters are updated by maximizing the expected log likelihood function.
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On the one hand, the main drawback of the EM-algorithm is that it converges slowly and
needs heavy computation. Here the convergence refers to finding maximum likelihood estimator of
parameters, not the PPP convergence time. However, for example, its convergence can be accelerated
using the Aitken method or conjugate method [20].

On the other hand, it is fairly simple, and has robust convergence and deals conveniently with
problems having a lot of parameters. For such problems, it is often the only algorithm to a large
extent [19]. It is also capable of finding Kalman parameters even if we have missing data. In addition,
it can detect outliers by introducing small weights for large outliers and can even estimate the
outliers [21]. In contrast, the outliers are not removed but automatically downweighed in our article,
since outliers sometimes take some useful information.

The paper is organized as follows, after clarifying the importance to calibrate Qt and Rt, the EM
algorithm is introduced in the first section. Next, the state space model of PPP is reviewed from a point
of machine learning and the methodology to adapt the EM-algorithm for extended Kalman filter for
PPP is explained theoretically in detail. Thirdly, we compare the EM-algorithm with other methods,
the static and kinematic instances are also given to demonstrate EM-PPP performance to improve the
accuracy and reliability of PPP. Finally, the results are analyzed and the conclusion is drawn.

2. State Space Model for PPP

The state-space model allows to process GNSS data in a uniformed form. It is characterized as
two equations: the state equation, which comprises a series of vector

→
x t, (1 ≤ t ≤ N, N is the number of

epochs), and the observation equation. The state
→
x t cannot be observed directly, usually called hidden

states, which is driven by hidden process noise. In this article the state-space model is described as the
Kalman filter.

2.1. State Equation

The hidden state
→
x t of multi-GNSS PPP Kalman filter involves five types of parameters: three

components of receiver coordinates, receiver clock error, system time difference w.r.t. GPS, troposphere
zenith wet delay and ambiguities. Using subscript t to denote a specific time epoch, the state at time t
evolves from the state at (t− 1) according to:

→
x t = Φt

→
x t−1 +

→
ωt (1)

where Φt is the transition matrix and
→
ωt the state process noise, which is assumed to be drawn from a

zero-mean multivariate normal distribution, with covariance:
→
ωt ∼ N(0, Qt). Initial condition

→
x 0 is

assumed to be a Gaussian vector with the a priori information E{
→
x 0} =

→
µ0, Cov(

→
x 0) = P0.

The state transition matrix and the process noise matrix in static mode is defined for the
position block:

Φt =


1 0 0
0 1 0
0 0 1


t

, Qt =


Qx 0 0
0 Qy 0
0 0 Qz


t

(2)

where Qx, Qy and Qz are the random process noise in X, Y and Z direction, respectively.
In addition to position parameters, the velocity parameters are also included in the state vector

for our kinematic processing, whose system model for position and velocity block in the extended
Kalman filter is given as:
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Φt =



1 ∆t 0 0 0 0
0 1 0 0 0 0
0 0 1 ∆t 0 0
0 0 0 1 0 0
0 0 0 0 1 ∆t
0 0 0 0 0 1


, Qt =



qx∆t3

3
qx∆t2

2 0 0 0 0
qx∆t2

2 qx∆t 0 0 0 0

0 0
qy∆t3

3
qy∆t2

2 0 0

0 0
qy∆t2

2 qy∆t 0 0

0 0 0 0 qz∆t3

3
qz∆t2

2

0 0 0 0 qz∆t2

2 qz∆t


(3)

The corresponding state vector is
→
x t =

[
x vx y vy z vz

]
for position and velocity

block. The process noise matrix Qt is uniquely determined by qx, qy and qz, which are named as
acceleration variance.

2.2. Observation Equation

The observation equation, that we used, is the double frequency ionosphere-free combination for
multi-GNSS [22]:

PCi,S
r = ρi

r + cdtG
r + TS

r + mi
r·ztdr + εi,S

r,PC (4)

LCi,S
r = ρi

r + cdtG
r + TS

r + mi
r·ztdr + λS

LC·N
S
r,LC + εi,S

r,LC (5)

where subscript r indicates the receiver, superscript i represents the satellites, superscript S indicates
GNSS constellation, following the convention of Rinex3.x (G: GPS, E: GALILEO, R: GLONASS and
C: BEIDOU). PCi,S

r and LCi,S
r are the ionosphere-free combinations of code pseudo-range and phase

observations (unit: m) respectively, which have already corrected satellite clock, the relativity effect,
solid Earth tides, polar tides, ocean tides, phase wind up and a priori troposphere delay using
troposphere model [23,24]. ρi

r is the geometry distance between receiver and satellite, cdtG
r is receiver

clock (unit: m), the superscript G of cdtG
r implies that GPS time is selected as the reference time, TS

r is
the system time difference in meters of system S to GPS time. Specifically, for S = G, TG

r is zero. mi
r is

troposphere mapping function and ztdr is troposphere zenith wet delay, λS
LC is the wavelength of LC

combination corresponding to system S and NS
r,LC is the LC ambiguity. εi,S

r,PC and εi,S
r,LC indicate other

unmodeled errors or noise.
Equations (4) and (5) are nonlinear, the extended Kalman filter (EKF) can be used for nonlinear

state estimation. For easy description, they are rewritten in a general form:

→
y t = h

(
→
x t

)
+
→
v t (6)

where
→
y t =

[
y1 · · · y j . . . ykt

]
is the observation vector, kt is the number of observations at

epoch t, y j ∈ {PCi,S
r , LCi,S

r },
→
v t is the observation noise satisfying

→
v t ∼ N(0, Rt), Rt is the observation

noise covariance matrix at epoch t.

2.3. Kalman Filter

Let Ym =
{
→
y 1, . . . ,

→
y m

}
denote all observations from epoch 1 to epoch m, and

→
x t|m represent

the estimate of
→
x t given observations Ym, we have predicted state estimate and predicted

covariance estimate:
→
x t|t−1 = Φt

→
x t−1|t−1 (7)

Pt|t−1 = ΦtPt−1|t−1Φ′t + Qt (8)

After linearization of Equation (6) at predicted state
→
x t|t−1,

→
e t|t−1 ≈ Ht

(
→
x t −

→
x t|t−1

)
+
→
v t (9)
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where Ht =
∂
→
y

∂
→
x

∣∣∣∣∣→
x t|t−1

,
→
e t|t−1 =

→
y t − h

(
→
x t|t−1

)
.
→
e t|t−1 is called innovations or measurement residuals,

then the Kalman filter is obtained:

Kt = Pt|t−1H′t
(
HtPt|t−1H′t + Rt

)−1
(10)

→
x t|t =

→
x t|t−1 + Kt

→
e t|t−1 (11)

Pt|t = (I −KtHt)Pt|t−1 (12)

where
→
x t|t and Pt|t are the updated Kalman estimate and the updated covariance estimate.

2.4. Kalman Smoothing

The Kalman smoother estimator could be obtained [25]:

→
x t−1|N =

→
x t−1|t−1 + Jt−1

{
→
x t|N −

→
x t|t−1

}
(13)

Pt−1|N = Pt−1|t−1 + Jt−1
(
Pt|N − Pt|t−1

)
J′t−1 (14)

where Jt−1 = Pt−1|t−1φt
′[Pt|t−1]

−1 , 1 ≤ t ≤ N, N is the number of epochs.
Kalman lag-one covariance holds with the starting condition

PN,N−1|N = (I −KNHN)ΦNPN−1|N−1 (15)

for t = N, N − 1, . . . , 2

Pt−1,t−2|N = Pt−1|t−1 J′t−2 + Jt−1
(
Pt,t−1|N −ΦtPt−1|t−1

)
J′t−2 (16)

3. EM-PPP

The EM-algorithm is based on the innovation of the likelihood function to compute maximum
likelihood estimation [25,26]. The likelihood function describes the probability of the observations,
given a set of parameters. The parameters are found such that they maximize the likelihood function.
The derivative of the likelihood function or log-likelihood is not always tractable. Therefore, iterative
methods like Expectation-Maximization algorithms are very effective to find numerical solutions for
the parameter estimates.

Denoting Θ = {
→
µ0, P0, Qt, Rt

∣∣∣∣t = 1, . . . , N}, X = {
→
x 0,
→
x 1, . . . ,

→
x N} , Y = {

→
y 1, . . . ,

→
y N}. Y is thought

of as incomplete data, and {X, Y} as complete data. Specifically for PPP, the log likelihood of the
parameters of the state space model is approximately derived (ignoring constant):

2 log LX,Y(Θ) = − log
∣∣∣∣Σ0

∣∣∣∣−(→x 0 −
→
µ0)

′

Σ−1
0 (
→
x 0 −

→
µ0)

−

N∑
t=1

log|Qt| −
N∑

t=1
(
→
x t −Φt

→
x t)
′

Q−1
t (
→
x t −Φt

→
x t)

−

N∑
t=1

log|Rt| −
N∑

t=1
(
→
y t − h(

→
x t|N))

′

R−1
t (
→
y t − h(

→
x t|N)

(17)

Since the hidden states
→
x t are unknown, only the expected value of the log likelihood conditioned

on Y is accessible, as a result, the observation equation is expanded at smoother point
→
x t|N.

The Expectation (E-step) of EM algorithm for PPP requires computing the expected log-likelihood
at the jth iteration:

Ω(Θ
∣∣∣Θ( j−1) ) = E{2 log LX,Y(Θ)

∣∣∣Y, Θ( j−1)
} (18)
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then the parameters are recalculated at the Maximization step (M-step):

Θ( j) = argmax
Θ

Ω
(
Θ
∣∣∣Θ( j−1)

)
(19)

The two steps are repeated until the Θ( j) converges.
The EM-PPP is terminated when the following convergence criterion is reached:

R-log =

∣∣∣∣∣∣`( j)
− `( j−1)

`( j)

∣∣∣∣∣∣ < ε or j ≥ maximum number o f iterations (20)

where ε is a small predefined amount and `( j) is equal to

`( j) =
N∑

t=1

log
∣∣∣HtPt|t−1H′t + Rt

∣∣∣+ N∑
t=1

(
→
e t|t−1

)′(
HtPt|t−1H′t + Rt

)−1(→
e t|t−1

)
(21)

A flowchart of our EM-PPP procedure is shown in Figure 1. In the initialization step, GNSS data
preprocessing is performed including data integrity checking, cycle slips and outliers detection, phase
center offset (PCO) and phase center variations (PCV) correction, synchronization of receiver clock
using only code range measurements and initialization of parameters Θ. It also initializes the hidden
state

→
x 0, sharing of the same processing noise Qt across the time step t = 1, . . . , N.
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In the next step, the extended Kalman filter Equations (10)–(12) are implemented to compute a
series of hidden states and their covariance. If the convergence condition Equation (20) is not satisfied,
then Kalman smoothing is used to calculate smoothed state estimates and involved covariance matrix
Equations (13)–(16), which is prepared for the E-step: calculation of the expected log likelihood function
Equation (22). All parameters of Θ are updated during the M-step and prepared for the next iteration
Equation (27).



Mathematics 2020, 8, 502 7 of 20

3.1. E-Step

Taking the expectation upon Equation (17) over conditional distribution of the latent given
observed data, we find immediately:

Ω
(
Θ
∣∣∣Θ( j−1)

)
= E

{
−2lnLX,Y(Θ)

∣∣∣Y}
= ln|Σ0|+ tr[Σ−1

0 E{ (
→
x 0 −

→
µ0)(

→
x 0 −

→
µ0)

′
∣∣∣∣Y }] + N∑

t=1
ln|Qt|

+
N∑

t=1
tr[Q−1

t E{(
→
x t −Φt

→
x t−1)(

→
x t −Φt

→
x t−1)

′
∣∣∣∣Y} ] + N∑

t=1
ln|Rt|

+
N∑

t=1
tr
[
R−1

t E
{(
→
y t − h

(
→
x t

))(
→
y t − h

(
→
x t

))′∣∣∣∣Y}]
(22)

where
E{(
→
x 0 −

→
µ0)(

→
x 0 −

→
µ0)

′

|Y} = P0|N + (
→
x 0|N −

→
µ0)(

→
x 0|N −

→
µ0)

′

(23)

E{(
→
x t −Φt

→
x t−1) (

→
x t −Φt

→
x t−1)

′

|Y}

= Pt|N +
→
x t|N

→
x
′

t|N + Φt(Pt−1|N +
→
x t−1|N

→
x
′

t−1|N)Φt
′

−Φt(Pt,t−1|N +
→
x t|N

→
x
′

t−1|N)
′

− (Pt,t−1|N +
→
x t|N

→
x t−1|N

′

)Φt
′

(24)

Using Taylor series expression

→
y t ≈ h

(
→
x t|N

)
+ Ht|N

(
→
x t −

→
x t|N

)
+
→
v t, (25)

where Ht|N =
∂
→
y

∂
→
x

∣∣∣∣∣→
x t|N

, and let
→
e t|N =

→
y t − h

(
→
x t|N

)
, ∆
→
x t|N =

→
x t −

→
x t|N, we get

E
{(
→
y t − h

(
→
x t

))(
→
y t − h

(
→
x t

))′∣∣∣∣Y}
≈
→
e t|N

→
e
′

t|N + Ht|NPt|NH′t|N (26)

3.2. M-Step

Similar to complete-data weighted maximum likelihood estimation, from the first differential of
Ω

(
Θ
∣∣∣Θ( j−1)

)
, the maximum likelihood estimators are updated as follows:

→
µ0 =

→
x 0|N

Σ0 = P0|N

Qt = E{(
→
x t −Φt

→
x t−1)(

→
x t −Φt

→
x t−1)

′

|Y}

Qt = E{(
→
x t −Φt

→
x t−1)(

→
x t −Φt

→
x t−1)

′

|Y}

(27)

For simplicity, the initial covariance P0, and the measurement covariance Rt are assumed to be a
diagonal matrix:

P0 = diag
(
q01, q02, . . . , q0k0

)
Rt = diag(rt1, rt2, . . . , ttmt)

where k0 indicates the dimension of the hidden state vector at initial epoch and mt is the dimension of
the observation vector at epoch t.

4. EM Compared to MLE and LS-VCE

In literature [19], a comprehensive comparison is demonstrated between different estimation
principles such as LS-VCE, best linear unbiased estimator (BLUE), best invariant quadratic unbiased
estimator (BIQUE), minimum norm quadratic unbiased estimator (MINQUE) and restricted maximum
likelihood estimator (REML). As shown previously in Section 3.1, the EM algorithm may be thought
of as maximum likelihood estimation (MLE), but which finds the ML estimator in an iterative way.
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EM can be realized based on REML as well. Therefore, an additional comparison between EM variance
estimation and LS-VCE and MLE is adequate.

To make theoretical analysis easy and consistent, in the following we first introduce how to covert
Kalman filter to least-squares. Then we directly give different (co)variance estimators according to
their distribution assumptions and the reason why the EM-algorithm is preferable in our solution.

4.1. From Kalman Filter to Least Squares

The linear (extended) Kalman equation can be transformed into the least-squares function model,
which allows the following EM algorithm to be compared with LS-VCE on the same function model
and makes the theoretical analysis easy and convenient. To do so, the state Equation (1) and the
observation Equation (6) are expanded at a priori value and organized as the function model:

→
y = A

→
x +

→
w

E{
→
w} = 0, D{

→
w} = E{

→
w
→
w
′

} = Q = Q0 +
p∑

k=1
σkQk

(28)

with
→
y = [ 0 d

→
y 1
′

0 · · · 0 d
→
y N
′

]
′

A =



Φ1 −1 0 · · · 0 0
0 H1 0 · · · 0 0
0 Φ2 −1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · ΦN −1
0 0 0 · · · 0 HN


→
x = [ d

→
x 0
′

d
→
x 1
′

d
→
x 2
′

· · · d
→
x N−1

′

d
→
x N
′

]
′

where the a priori
→
x

0
i , (i = 0, . . . , N) value is subtracted from the original state vector

→
x i, leading to

d
→
x i =

→
x i −

→
x

0
i and d

→
y i =

→
y i −

→
y

0
i , N is the number of epochs. The m× n matrix A is full column rank.

The cofactor matrices Qk, are assumed to be known and their weighted sum Q0 +
p∑

k=1
σkQk is assumed

to be positive definite and Qk, (k = 1, . . . p) are linearly independent, and the (co)variance components
σk are unknown parameters. Matrix Q0 is the known part of the variance matrix [19].

4.2. Least-Squares EM

Similar to Section 3, we can calculate the non-constant part of the full log-likelihood function
and then conditional expectation on the observation

→
y and Q( j), given the data

→
y and the jth iteration

estimates of (co)variance components σ( j)
k or Q( j):

Ω(Q|
→
y , Q( j)) = E{L|

→
y , Q( j)

} = log Q + E{tr((
→
y −A

→
x )
′

Q−1(
→
y −A

→
x ))|

→
y }

= log Q + tr(Q−1E{(
→
y −A

→
x )(
→
y −A

→
x )
′

|
→
y })

(29)

where
E{(
→
y −A

→
x )(
→
y −A

→
x )
′

|
→
y } = (

→
y −Ax̂)(

→
y −Ax̂)

′

+ AQ( j)
x̂ A′Z( j)

ML

x̂ = (A′(Q( j))
−1

A)
−1

A′(Q( j))
−1→

y
(30)

M-step:
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Maximizing the likelihood of the completed data based on Equation (29), the new estimates σ( j+1)
k

are calculated as 
σ
( j+1)
1

...

σ
( j+1)
p

 = (A′vEMWvEMAvEM)−1A′vEMWvEM vec
(
Z( j)

EM −Q0

)
(31)

where AvEM =
[

vec
(
Q( j)

1

)
· · · vec

(
Q( j)

p

) ]
, WvEM = (Q( j))

−1
⊗ (Q( j))

−1
, ⊗ is the Kronecker product

and vec is vec-operator.
Equations (29) and (31) are the EM algorithm for ML estimation. If convergence is reached, set

σk = σ
( j)
k , otherwise increase j by one and return to E-step.

4.3. MLE

Once the general structure of probability density function is known, MLE can be simply realized
and therefore used widely. If a multivariate normal distribution is given, the (co)variance components
takes form: 

σ1
...
σp

 = (A′vMLEWvMLEAvMLE)
−1A′vMLEWvMLE vec(ZMLE −Q0) (32)

where AvMLE =
[

vecQ1 · · · vecQp
]
, WvMLE = Q−1

⊗Q−1.
From Equations (31) and (32), we know that least-squares EM and MLE estimators share the

same design matrix and weight matrix. Their difference is mainly caused by the pseudo observation

vec
(
Z( j)

EM −Q0

)
and vec(ZMLE −Q0). Z( j)

EM for EM-algorithm includes the effects of both observation

post-residuals and the accuracy of the estimates x̂. In contrast, ZMLE for MLE consider only the
observation post-residuals. Therefore, MLE estimator is probably over-optimistic to EM.

However, if the REML principle is used to derive the EM-algorithm, the effect of x̂ is implicitly
removed. Then, the EM-algorithm based on REML will be equivalent to the REML estimator.

4.4. LS-VCE

Another important problem is that the EM-algorithm and MLE do not take the loss of degrees of
freedom from the estimation of

→
x into account. Borrowing the idea of REML, LS-VCE overcomes this

problem based on (n− p) independently error contrasts. Specifically, let

t̂ = B′
→
y , Qt̂ = B′QB (33)

where
→

t is misclosure vector, B is m× (m− n) matrix satisfying B′A = 0, rank(B) = m− n = b. Then
LS-VCE estimator is obtained:

σ1
...
σp

 = (A′vLS−VCEWvLS−VCEAvLS−VCE)
−1A′vLS−VCEWvLS−VCE vec(ZLS−VCE −Q0) (34)

with AvLS−VCE =
[

vec(B′Q1B) · · · vec
(
B′QpB

) ]
, ZLS−VCE = t̂t̂′, WvLS−VCE is a user-defined weight

matrix. If WvLS−VCE is set to Qt̂ ⊗Qt̂, LS-VCE is the same as EM-algorithm based on REML.
LS-VCE is derived purely based on the least-squares method and we do not make any assumption

on a probability density function (PDF). In contrast, EM-algorithm, MLE and REML are built upon a
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certain distribution, which explains why when applying LS-VCE, it is necessary for users to set weight
matrix on their own.

4.5. Preference for Recursive EM

As discussed previously, the EM-algorithm can be implemented as either recursive form or batch
form like MLE and LS-VCE. In our solution, we prefer the EM-algorithm based Kalman filter to
other methods.

Recursive EM discriminates between the process noise and the observation noise. For GNSS,
the process noise is usually different from observation noise. The process noise is directly connected to
the geophysical phenomenon, which has not only linear but also non-linear variations, and suffers both
time and spatial correlations [27–29]. As a result, it is relatively more difficult to estimate the process
noise than the observation covariance matrix. Other batch methods mix the two types of stochastic
processes with different behavior, which will bring us extra trouble.

Recursive EM can process data in not only post mode, but also in real-time mode. In both modes,
data is processed epoch by epoch, allowing us to dynamically adjust the weight matrix, monitoring
time-varying behavior and detecting abrupt motion.

5. Validation

5.1. Static PPP Scheme

A total of 14 IGS multi-GNSS stations are selected to assess the performance of EM-PPP (Figure 2).
Those stations are evenly distributed on the Earth and track as many GNSS constellations as possible,
covering not only the continent but also coastal and polar regions.
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Daily GNSS measurements from those IGS stations observed during DOY 119 in 2017 are used
in this study. The true coordinate benchmarks are from IGS weekly solutions. The final GFZ Beidou
multi-GNSS (GBM) products of the satellite orbits and clocks are applied (ftp://cddis.gsfc.nasa.gov/

pub/gps/products/mgex/). The used precise orbit correction has a sampling interval of 15 min while
the precise clock has a sampling interval of 30 s, both generated at GFZ. For GPS, we aligned C1 to P1
using CODE differential code bias (DCB) product (ftp://ftp.aiub.unibe.ch/CODE/2017/). The frequency
bands we used are L1 and L2 for GPS, G1 and G2 for Glonass, E1 and E5a for Galileo, B1 and B2
for BeiDou [9]. Receiver and satellite PCO and PCV were corrected using igs14.atx. solid Earth
tides, pole tide and ocean tides are removed according to IERS Conventions 2010. For troposphere
delay estimation, the zenith dry component of tropospheric delays was corrected with the a priori
Niell model [24]. The zenith wet delay (ZWD) is estimated as an unknown parameter. Then, 24-h
observation data sets with a sampling interval of 30 s were processed for all stations. The elevation
cut-off was set to 6 degrees.

ftp://cddis.gsfc.nasa.gov/pub/gps/products/mgex/
ftp://cddis.gsfc.nasa.gov/pub/gps/products/mgex/
ftp://ftp.aiub.unibe.ch/CODE/2017/
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The initial guess of receiver coordinates is intentionally deviated by 100 m from IGS station
solution. A priori standard deviation (std) of PC is set to 3 m, a priori std of LC to 0.03 m for pseudo-range
combination (PC) and carrier phase combination (LC) combination, respectively.

The starting values for Qt are shown in Table 1. Random walk noise process with a spectral
density equal to 1.0 mm/

√
30 s is imposed on coordinates, which means a 1.0 mm disturbance very

30 s for IGS station in North, East and Up. It is not true in reality of course, but useful for test purposes.
The receiver clock offset is supposed to be white noise. Zenith wet delay (ZWD) and inter-system bias
(ISB) are modeled as random walk noise. Ambiguities can be considered as constant or random walk
noise with very small spectral density.

Table 1. Initial guess Qt for static PPP: ZWD is the zenith wet delay of the troposphere, ISB is the
system time difference with respect to GPS time.

X Y Z cdtr ZWD ISB Ambiguities

Qt
1.0 mm

30 s
1.0 mm

30 s
1.0 mm

30 s 9.0× 1010 m 1.0 cm
√

h
3.0×10−6m
√

s 0.0

If the maximum number of iteration is reached and EM-PPP does not converge, smaller spectral
density should be assigned for X, Y and Z for the next cycle.

5.2. Kinematic PPP Scheme

Another kinematic dataset was used to further validate the performance of the EM-PPP. The data
was collected at Wuhan, China, in November 14, 2013. The sampling interval is 1 Hz and the observed
time span is about one hour. The final CODE precise satellite orbit and 5 s clock products are used to
estimate the 1 Hz GPS displacements. The ambiguity-fixed double differenced real-time kinematic
(RTK) solutions are adopted as the reference to assess the performance of kinematic EM-PPP solution.

The initial acceleration variance is assumed to be 10 m2

s3 for position and velocity states (Table 2),
which can be used to calculate the process noise matrix for position and velocity. The initial Qt for
receiver clock is modeled as white noise and estimated epoch-wisely. ZWD and ambiguities are also
modeled as random walk processes with initial spectral density 0.01 cm/

√
s and 0.0 m/

√
s, respectively.

Table 2. Initial guess Qt for kinematic PPP: ZWD is zenith wet delay of troposphere.

qx qy qz cdtr ZWD Ambiguities

Qt 10 m2

s3
10 m2

s3
10 m2

s3 (100 m)2 0.01 cm/
√

s 0.0

6. Results and Discussion

6.1. Static EM-PPP Solution

It is found that EM-PPP usually converges after the iteration counter reaches 50. The positioning
errors are shown in Table 3, including PPP results at 1st iteration with the biased stochastic model,
and the results after 50 iterations of calibration to assess EM-PPP performance. EM-PPP convergence
in our research means that the square root of 3D positioning errors of the last 20 consecutive epochs is
less than 10 cm.

Table 3 indicates that when the biased Qt and Rt are fed in the beginning, PPP 3D errors are up
to decimeters for a few stations. Horizontal errors are often greater than vertical errors, which is not
consistent with the property of GNSS, because of inappropriate process noise matrix and measurement
noise covariance matrix. After 50 iterations, the position errors are reduced to within 1 cm in North,
East and Up direction on average using our EM-PPP algorithm. The mean 3D error is reduced to
1.77 cm without fixing ambiguities. The overall decrease percentage on average is 66.91%, 66.16%,
71.60% in North, East and Up direction, respectively, 69.95% for 3D errors.
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Table 3. Statistics of EM-PPP absolute positioning errors (cm) with respect to IGS stations solution. All
sites except YEL2 are processed using multiple GNSS observations. YEL2 is processed using only GPS
data to verify the algorithm for single GNSS constellation. The ambiguities are not fixed.

No. Site 1st Iteration 50th Iteration

North East Up 3D North East Up 3D

1 ALIC 4.32 12.17 4.38 13.64 0.89 1.47 0.24 1.74
2 CAS1 2.49 2.23 2.97 4.48 1.58 0.80 0.91 2.00
3 GMSD 0.29 0.13 2.38 2.41 0.22 0.59 1.22 1.38
4 ISTA 2.11 1.44 1.02 2.75 2.11 0.07 0.95 2.33
5 JFNG 3.32 3.65 5.48 7.39 0.75 0.52 0.64 1.12
6 KOKV 0.88 4.97 3.43 6.11 0.54 2.13 3.20 3.89
7 KOUR 0.15 2.38 2.27 3.30 1.06 0.76 0.39 1.37
8 MAL2 1.21 2.99 5.67 6.53 1.23 1.50 0.98 2.18
9 MAS1 3.38 1.15 1.67 3.94 1.36 1.22 1.00 2.09

10 OHI3 16.47 2.94 4.83 17.42 1.13 0.44 0.55 1.34
11 REDU 0.76 0.39 5.19 5.25 0.56 0.59 0.40 0.91
12 ULAB 1.47 0.04 0.19 1.48 0.71 0.60 0.30 0.98
13 YEL2 0.61 2.17 2.72 3.54 0.34 0.93 0.12 1.00
14 ZIM2 0.15 0.49 4.15 4.19 0.03 1.02 2.25 2.47

average 2.69 2.66 3.31 5.89 0.89 0.90 0.94 1.77

To see what happened to the process noise Qt and the observation covariance matrix Rt before
and after calibration, an example of JFNG station located in China is illustrated.

The residuals for PC and the corresponding formal errors are shown in Figure 3. The residuals for
LC and the corresponding formal errors against satellite elevation angles after calibration are shown
in Figure 4. To be clear, PC and LC residuals for BeiDou are plotted separately from those for GPS,
Glonass and Galileo.
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Figure 3. EM-PPP absolute pseudo-range combination (PC) residuals and formal errors of JFNG
station at 50th iteration: Left two pictures are the PC residuals and their formal errors (square root of
observation matrix Rt) of GPS, Glonass and Galileo, respectively. Similarly, the right two pictures show
the PC residuals and formal errors of BeiDou.
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Figure 4. EM-PPP carrier phase combination (LC) residuals and formal errors of JFNG station at 50th
iteration: Left two pictures are the LC residuals and formal errors (square root of the observation
covariance matrix) for GPS, Glonass and Galileo, respectively. Similarly, the right two pictures show
the LC residuals and formal errors for BeiDou.

The results allow us to examine the relationship between Rt and the residuals. It is clearly shown
that formal errors of Rt are changed from 3 m to vary about between 0 and 10 m for PC, and from
0.03 m to vary about between 0 and 0.6 m for LC. The big outliers of LC are due to the non-convergence
at the initial epoch and EM-PPP does not fully converge at some epochs. Although Rt variations,
similar to the residuals-varying pattern, are dependent on the satellite elevation angle, LC formal error
of BeiDou Rt at the elevation of about 20 degrees is greater than the lower degree formal error (refer to
the bottom right picture in Figure 4). Clearly, it is not advisable to choose observation weight only
according to the satellite elevation angle. Another example is station ISTA, where Glonass Rt for PC at
satellite elevation higher than 50 degrees is almost as great as lower degree errors (not plotted here).
In addition, random or systematic outliers are downweighed accordingly for both PC and LC.

It can also be observed that BeiDou PC residuals peak are almost 6 m, worse than GPS, Glonass
and Galileo at JFNG. In fact, the biggest error source comes from GEO C05 and IGSO C06, C07 and
C08, probably due to their poor orbit accuracy and clock offset, because the residuals of those satellites
show less independence of satellite elevation angle. Rt is different among GPS, Glonass and Galileo.

Thus Rt not only reflects the accuracy of measurement type itself, elevation-dependent, characteristics
of GNSS constellation, but also the quality of GNSS satellite orbit and clock products, and should
be adjusted dynamically. Consequently, EM-PPP is effective to calibrate Rt automatically and
suppress outliers.

In general, Qt can be adjusted to its correct value, which is zero in our case, after less than ten
iterations, as shown in Figure 5. The initial square root of Qt in North, East and Up directions are
0.001 m/

√
30 s. Qt becomes zero at the sixth iteration in all three components and position solution at

the last epoch varies little.
It has to be pointed out that EM-PPP suffers local extrema problems like other alternative methods.

It is not an algorithm to locate the global maxima, therefore EM-PPP is sensitive to initial guesses.
To escape from this local extrema trap, several sets of initialization schemes can be used, and select the
best one selected as the final result.
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Figure 5. Effects of EM-PPP iteration number on the position errors (top) and variations of the square
root of Qt at last epoch on station JFNG.

6.2. Kinematic EM-PPP Solution

Figure 6 is the tracking route recovered by the EM-PPP at the 500th iteration. The relative
log-likelihood versus iterations is plotted in Figure 7, where the results at the first iteration correspond
to the solution to the traditional PPP (TPPP). The relative log likelihood decreases gradually from 1.0 to
8.665 × 10−7 and forms a concave curve. The less the relative log-likelihood, the less perturbative the
EM-PPP solution becomes with respect to the RTK solution. As the iterative number grows to about
150, the EM-PPP solution converges nearly completely.Mathematics 2020, 8, x FOR PEER REVIEW 15 of 21 
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Illustrated in Figure 8 are the positioning errors of the traditional PPP solution and EM-PPP
solution at the 500th iteration with respect to the reference coordinates in the Up, East and North
directions. It is observed that EM-PPP solutions are much more stable in all directions when compared
to TPPP solutions. The TPPP solution in the East changes wobbly in comparison to the North and Up
due to greater acceleration in the East (Figure 9), which leads to a larger bias in the East.Mathematics 2020, 8, x FOR PEER REVIEW 16 of 21 
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Figure 8. GPS-only kinematic positioning errors with respect to real-time kinematic (RTK): (a) traditional
PPP errors, (b) EM-PPP positioning errors at the 500th iteration. Traditional PPP and EM-PPP share the
same initial conditions.
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Figure 9. Acceleration time series derived from second-order differencing RTK position time series in
Up, East and North: (a) acceleration in Up. (b) Accelerations in the East and North.

In fact, the position and velocity (PV) model of our kinematic state equation is assumed to be a
constant velocity model, which means the acceleration is zero. However, the realistic acceleration of
the vehicle is no zero, which results in systematic bias and unstable solution.

Figures 10 and 11 describe the EM-PPP RMSs and STDs with respect to RTK against the number
of iterations, respectively. Obviously, after about 40 iterations, RMSs in Up and North are decreasing
and the solutions are improved in those two directions. In contrast to Up and North direction, in the
East direction it presents a decrease from 9.7 cm falling to 7.6 cm and then increases up to 8.5 cm for
the RMS. However, the combined effects of all three directions get decreasingly 3D RMS, proving that
EM-PPP does improve the positioning accuracy in the kinematic mode in our case, and apparently
converges with increasing iterations, consistent with the EM theory, though there is a little disturbance
because of the existing system bias and outliers of pseudo-range. It can be imagined that a better result
can be expected if acceleration observations are also observed.
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Figure 11. EM-PPP STDs w.r.t. RTK solution in Up, East and North (unit: m).

As for STDs with respect to RTK, they are consistently increasing in all three directions when
EM-PPP continues its iteration. The STDs decrease from 4.0 cm, 8.4 cm and 2.5 cm to 3.5 cm, 1.6 cm
and 1.6 cm in Up, East and North components, respectively. In other words, the STDs are improved by
12.5%, 80.9% and 36.0% in Up, East and North, accordingly.

Given Figure 12 is the estimates of geodetic coordinates B, L and H, and their estimates of the
square root of Qt after the 500th iteration. It is noted that the coordinates simultaneously stay stable
or alternatively change sharply in all three directions, telling that the moving patterns of the vehicle
switch between static and kinematic status from time to time. Theoretically, the process Qt should
change between zero and positive values. Obviously, the estimates of the square root Qt, displayed in
Figure 12b–f agree well with variations of coordinates. Time-varying Qt is identified, which takes the
concrete dynamic mode into consideration.
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Figure 12. EM-PPP estimates of the Geodetic coordinates B, L, H and their correspondingly calibrated
Qt after the 500th iteration: (a) Latitude estimates B (degree). (b) The square root of Qt of B (m).
(c) Longitude estimates L (degree). (d) The square root of Qt of L (m). (e) Height estimates H (m).
(f) The square root of Qt of H (m).



Mathematics 2020, 8, 502 18 of 20

If much smaller initial acceleration variances are given, for example 0.01 m2

s3 rather than 10 m2

s3 for
position and velocity states, it can be shown that our algorithm can still recover the process noise
matrix as well and makes no difference. As a result, the user can choose values for Qt randomly to a
large extent.

7. Conclusions

A machine learning algorithm, EM algorithm, is adapted particularly to the extended Kalman
filter to calibrate the process noise matrix and observation covariance noise matrix for PPP. The main
advantage of EM-PPP is in fact that it is straightforward, simple, (locally) optimal and able to estimate
large amounts of parameters and thus competent in calibrating the time-varying process noise and
observation covariance for PPP state-space model, though its execution is time-consuming. The basic
framework of EM-PPP is not limited to multi-PPP and can be applied to other fields of geodesy.

The whole procedure of EM-PPP is comprised of three parts: initialization, feedforward and
backpropagation. In the beginning, the GNSS preprocess is performed to check the availability of the
required data and mainly recognize cycle slips. Next, the whole process iterates between the estimation
of hidden state and expectation and maximization.

The EM-algorithm is then compared with MLE and LS-VCE methods. We choose the recursive
algorithm because it is superior to separate the process noise and observation variance, and to monitor
time-varying behavior.

The approach was verified by selecting a global distribution of 14 IGS multi-GNSS station
without fixing ambiguities. Based on the presented results, it concluded that EM-PPP is well suited
for dynamically determining the time-varying process noise and observation noise. The calibrated
observation variance matches the observation residuals from low satellite elevation angle to high
satellite elevation angle. It resists orbit and clock errors and outliers through downweighing abnormal
observations at different epochs, which is an alternative reasonable solution in contrast to the popular
way that assigns weight according to the satellite elevation angle. People do not need to worry about
separating observations into different categories carefully based on different GNSS constellations to
estimate variance components like variance component estimation (VCE).

The spectral density of the assumed kinematic IGS station with 1 mm disturbance every 30 s
in North, East and Up direction was estimated to be zero, implying that stations are static, which is
consistent with reality.

An additional kinematic test was also implemented and reasonable values of Qt are found when
biased initial Qt guess was given. The position errors are reduced in Up, East and North direction,
respectively, w.r.t. RTK. In particular the STDs with respect to RTK are improved by 12.5%, 80.9% and
36.0% in Up, East and North, further showing that EM-PPP is also beneficial to kinematic PPP.

It has been confirmed that the EM-PPP is competitive for the calibration of the PPP stochastic
model dynamically. The main drawback of this approach is that it converges slowly due to its first-order
convergence. In the future, online EM-PPP may be derived to process GNSS data in real-time to
overcome this problem if a large number of observations are available.

Author Contributions: X.Z. conceived and designed the algorithm; P.L. provided the kinematic GNSS data and
helped validate the algorithm; M.G. supervised the whole procedure, and continuously discussed and analyzed
the results and gave constructive suggestions; R.T. and X.L. participated in the experimental investigation; H.S.
helped edit and revise the paper. All authors have read and agreed to the published version of the manuscript.

Funding: This research is funded by the China Scholarship Council (CSC).

Acknowledgments: X.Z. is financially supported by the China Scholarship Council (CSC) for his study at the
German Research Centre for Geosciences (GFZ). We thank the IGS and GFZ for providing GNSS observations,
DCBs, precise orbit, and clock products. Our research is also partly supported by the Chinese Academy of
Sciences (CAS) program of “Light of West China” (Grant No. 29Y607YR000103), Chinese Academy of Sciences,
Russia and Ukraine and other countries of special funds for scientific and technological cooperation (Grant No.
2BY711HZ000101). This work is also partly supported by the National Natural Science Foundation of China
(Grant No: 41674034, 41974032, 11903040), the Chinese Academy of Sciences (CAS) programs of “Pioneer Hundred



Mathematics 2020, 8, 502 19 of 20

Talents” (Grant No: Y923YC1701), and the Chinese Academy of Sciences (CAS) program of “Western Youth
Scholar” (Grant No: Y712YR4701, Y916YRa701), as well as “The Frontier Science Research Project” (Grant No:
QYZDB-SSW-DQC028). We also thank the reviewers for their careful review.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Zumberge, J.F.; Heflin, M.B.; Jefferson, D.C.; Watkins, M.M.; Webb, F.H. Precise point positioning for the
efficient and robust analysis of GPS data from large networks. J. Geophys. Res. Solid Earth 1997, 102, 5005–5017.
[CrossRef]

2. Kouba, J.; Héroux, P. Precise point positioning using IGS orbit and clock products. GPS Solut. 2001, 5, 12–28.
[CrossRef]

3. Li, P.; Zhang, X.; Ge, M.; Schuh, H. Three-frequency BDS precise point positioning ambiguity resolution
based on raw observables. J. Geod. 2018, 92, 1357–1369. [CrossRef]

4. Ge, M.; Gendt, G.; Rothacher, M.A.; Shi, C.; Liu, J. Resolution of GPS carrier-phase ambiguities in precise
point positioning (PPP) with daily observations. J. Geod. 2008, 82, 389–399. [CrossRef]

5. Laurichesse, D.; Mercier, F.; Berthias, J.; Broca, P.; Cerri, L. Integer ambiguity resolution on undifferenced
GPS phase measurements and its application to PPP and satellite precise orbit determination. Navigation
2009, 56, 135–149. [CrossRef]

6. Collins, P.; Bisnath, S.; Lahaye, F.; Héroux, P. Undifferenced GPS ambiguity resolution using the decoupled
clock model and ambiguity datum fixing. Navigation 2010, 57, 123–135. [CrossRef]

7. Seepersad, G.; Bisnath, S. Reduction of PPP convergence period through pseudorange multipath and noise
mitigation. GPS Solut. 2015, 19, 369–379. [CrossRef]

8. Banville, S.; Collins, P.; Zhang, W.; Langley, R. Global and regional ionospheric corrections for faster PPP
convergence. Navigation 2014, 61, 115–124. [CrossRef]

9. Li, P.; Zhang, X.; Guo, F. Ambiguity resolved precise point positioning with GPS and BeiDou. J. Geod. 2017,
91, 25–40.

10. Li, P.; Zhang, X.; Ren, X.; Zuo, X.; Pan, Y. Generating GPS satellite fractional cycle bias for ambiguity-fixed
precise point positioning. GPS Solut. 2016, 20, 771–782. [CrossRef]

11. Mehra, R. On the identification of variances and adaptive Kalman filtering. IEEE Trans. Autom. Control 1970,
15, 175–184. [CrossRef]

12. Maybeck, P.S. Combined State and Parameter Estimation for On-Line Applications. Ph.D. Thesis,
Massachusetts Institute of Technology, Cambridge, MA, USA, 1972.

13. Maybeck, P.S. Moving-bank multiple model adaptive estimation and control algorithms: An evaluation.
Control Dyn. Syst. 1989, 31, 1–31.

14. Mohamed, A.; Schwarz, K. Adaptive Kalman filtering for INS/GPS. J. Geod. 1999, 73, 193–203. [CrossRef]
15. Odelson, B.; Lutz, A.; Rawlings, J. The autocovariance least-squares method for estimating covariances:

Application to model-based control of chemical reactors. IEEE Trans. Control Syst. Technol. 2006, 14, 532–540.
[CrossRef]

16. Magill, D. Optimal adaptive estimation of sampled stochastic processes. IEEE Trans. Autom. Control 1965, 10,
434–439. [CrossRef]

17. Yang, Y.; He, H.; Xu, G. Adaptively robust filtering for kinematic geodetic positioning. J. Geod. 2001, 75,
109–116. [CrossRef]

18. Yang, Y.; Gao, W. An optimal adaptive Kalman filter. J. Geod. 2006, 80, 177–183. [CrossRef]
19. Teunissen, P.J.; Amiri-Simkooei, A.R. Least-squares variance component estimation. J. Geod. 2008, 82, 65–82.

[CrossRef]
20. Jamshidian, M.; Jennrich, R.I. Conjugate gradient acceleration of the EM algorithm. J. Am. Stat. Assoc. 1993,

88, 221–228.
21. Koch, K.R. Robust estimation by expectation maximization algorithm. J. Geod. 2013, 87, 107–116. [CrossRef]
22. Cai, C.; Gao, Y. Modeling and assessment of combined GPS/GLONASS precise point positioning. GPS Solut.

2013, 17, 223–236. [CrossRef]
23. Böhm, J.; Niell, A.; Tregoning, P.; Schuh, H. Global Mapping Function (GMF): A new empirical mapping

function based on numerical weather model data. Geophys. Res. Lett. 2006, 33. [CrossRef]

http://dx.doi.org/10.1029/96JB03860
http://dx.doi.org/10.1007/PL00012883
http://dx.doi.org/10.1007/s00190-018-1125-3
http://dx.doi.org/10.1007/s00190-007-0187-4
http://dx.doi.org/10.1002/j.2161-4296.2009.tb01750.x
http://dx.doi.org/10.1002/j.2161-4296.2010.tb01772.x
http://dx.doi.org/10.1007/s10291-014-0395-3
http://dx.doi.org/10.1002/navi.57
http://dx.doi.org/10.1007/s10291-015-0483-z
http://dx.doi.org/10.1109/TAC.1970.1099422
http://dx.doi.org/10.1007/s001900050236
http://dx.doi.org/10.1109/TCST.2005.860519
http://dx.doi.org/10.1109/TAC.1965.1098191
http://dx.doi.org/10.1007/s001900000157
http://dx.doi.org/10.1007/s00190-006-0041-0
http://dx.doi.org/10.1007/s00190-007-0157-x
http://dx.doi.org/10.1007/s00190-012-0582-3
http://dx.doi.org/10.1007/s10291-012-0273-9
http://dx.doi.org/10.1029/2005GL025546


Mathematics 2020, 8, 502 20 of 20

24. Niell, A.E. Global mapping functions for the atmosphere delay at radio wavelengths. J. Geophys. Res.
Solid Earth 1996, 101, 3227–3246. [CrossRef]

25. Shumway, R.H.; Stoffer, D.S. An approach to time series smoothing and forecasting using the EM algorithm.
J. Time Ser. Anal. 1982, 3, 253–264. [CrossRef]

26. Dempster, A.P.; Laird, N.M.; Rubin, D.B. Maximum likelihood from incomplete data via the EM algorithm.
J. R. Stat. Soc. Ser. B (Methodol.) 1977, 39, 1–22.

27. Benoist, C.; Collilieux, X.; Rebischung, P.; Altamimi, Z.; Jamet, O.; Métivier, L.; Chanard, K.; Bel, L. Accounting
for spatiotemporal correlations of GNSS coordinate time series to estimate station velocities. J. Geodyn. 2020,
135, 101693. [CrossRef]

28. Bock, O.; Collilieux, X.; Guillamon, F.; Lebarbier, E.; Pascal, C. A breakpoint detection in the mean model
with heterogeneous variance on fixed time intervals. Stat. Comput. 2020, 30, 195–207. [CrossRef]

29. Jongrujinan, T.; Satirapod, C. Improving the stochastic model for VRS network-based GNSS surveying.
Artif. Satell. 2019, 54, 17–30. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1029/95JB03048
http://dx.doi.org/10.1111/j.1467-9892.1982.tb00349.x
http://dx.doi.org/10.1016/j.jog.2020.101693
http://dx.doi.org/10.1007/s11222-019-09853-5
http://dx.doi.org/10.2478/arsa-2019-0003
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	State Space Model for PPP 
	State Equation 
	Observation Equation 
	Kalman Filter 
	Kalman Smoothing 

	EM-PPP 
	E-Step 
	M-Step 

	EM Compared to MLE and LS-VCE 
	From Kalman Filter to Least Squares 
	Least-Squares EM 
	MLE 
	LS-VCE 
	Preference for Recursive EM 

	Validation 
	Static PPP Scheme 
	Kinematic PPP Scheme 

	Results and Discussion 
	Static EM-PPP Solution 
	Kinematic EM-PPP Solution 

	Conclusions 
	References

