
Forschungsberichte der Fakultät IV
Elektrotechnik und Informatik

Enhanced BARM —
Authentic Reporting to
External Platforms

Patrick Stewin

Technische Universität Berlin

Technical Report

Bericht-Nummer: 2014-03
ISSN: 1436-9915

September 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DepositOnce

https://core.ac.uk/display/326320839?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Enhanced BARM∗ — Authentic

Reporting to External Platforms†

Patrick Stewin
Security in Telecommunications, TU Berlin

patrickx@sec.t-labs.tu-berlin.de

1 Introduction

Our motivation for implementing an authentic channel application for state re-
porting is to deliver BARM’s measurement results to an external platform pro-
tected from Direct Memory Access based malicious software (DMA malware).
The external communication partner can evaluate the transmitted measure-
ments to check if the counterpart has been attacked by DMA malware. The
measurement results are based on processor register values (see [1, Section 3]).
To exclude malware on the Network Interface Card (NIC) from modifying and
forging outgoing network packets we need a secure communication channel.
Such a channel not only assures confidentiality, integrity, and freshness of the
transmitted data, but also authenticity of the channel endpoints. To implement
such a channel we adapt the concept of a trusted channel that we presented in
prior work [2, 3].

A trusted channel is a communication channel that implements secure chan-
nel properties and additionally binds communication endpoint state information
to the communication session. Deploying a secure channel based on IPsec or
TLS is insufficient in our case. IPsec or TLS based secure channels ensure
confidentiality, integrity and freshness of the transmitted data. However, these
channels are not bound to the actual communication endpoint. We implement
the trusted channel based reporting application for BARM to prevent at least
the following attacks. Such attacks could be conducted by malware that is ex-
ecuted on the network interface card. The malware could prevent BARM from
communicating with the external platform by blocking or corrupting outgoing
network packets. An attacker could also use such malware to steal key mate-
rial, which is present in the host main memory, of the secure channel via DMA.
Afterwards, the attacker can conduct a MitM attack. The malware could also
relay the platform state information of a third platform, which is not attacked
by DMA malware, to the external administrator platform. This means that the
administrator platform could be tricked by conducting a relay attack.

We require at least secure channel properties (requirement R1) to ensure
confidentiality, integrity, and freshness of the transfered data for our authen-

∗The Bus Agent Runtime Monitor BARM is presented in [1].
†This technical report is based on Chapter 6 of the author’s PhD thesis Detecting

Peripheral-based Attacks on the Host Memory.

1

tic reporting channel [see 2, p.32]. The confidentiality property ensures that
the attacker only gets a minimal amount of information. The integrity prop-
erty ensures that corrupted network packets will be revealed immediately. The
freshness property prevents the attacker from conducting a replay attack where
a valid communication session is recorded to be replayed at some later time. To
reveal an attack that is blocking packets that contain platform state information
we introduce so-called heartbeat messages as payload that has to be sent during
the communication session. A heartbeat in computing is a signal that indicates
that, e. g., the corresponding software is still up and running [4].

The heartbeat message consists of the current BARM measurement and log
information if an attack was prevented. If the network interface card has been
stopped due to an attack heartbeat messages will no longer be received by the
external platform. This behavior is interpreted by the external platform as a
NIC-based attack. The transmitted information also includes state changes.
State changes were also considered by the trusted channel concept [2, 3], but
efficient and effective runtime monitoring with negligible performance overhead
as implemented in BARM was missing [see 2, p.36]: “A state change on one
platform is noticed by CM (an efficient monitoring agent assumed [. . .]”. BARM
represents the missing “monitoring agent” in our DMA malware scenario.

Compared to prior work [2, 3] the trust and adversary model for our DMA
malware scenario does not require trusted computed mechanisms as proposed by
the Trusted Computing Group (TCG)1. Our channel is not based on a Trusted
Platform Module (TPM, see [5] for example) since we do not rely on load-time
code integrity checks. Channel linkage to load-time measurements stored in a
TPM is not required in our application. We require that the results determined
by BARM are bound to our channel (requirement R2). This is necessary during
the negotiation of the communication session as well as during the communica-
tion session itself.

Please note that we do not count on the Input/Output Memory Management
Unit (I/OMMU) such as Intel’s Virtualization Technology for Directed I/O (In-
tel VT-d, see [6]) implementation. This is another difference to the trust model
of our prior work [2]. This technology was introduced shortly before our results
were published [2]. This means that previous authors had not been confronted
with I/OMMU issues as presented in [7, Section 8]. Previous works assumed
that drivers capable of configuring the I/OMMU correctly exist. For this work
we analyzed the I/OMMU in more detail and we decided not to rely on VT-d
for our authentic reporting channel. Our prior work also introduced the require-
ment for privacy (requirement R3). This means, the channel considered the least
information paradigm to minimize the disclosure of platform state information
to only the bare necessities.

The main contributions of this work are as follows:

• Authentic reporting channel that excludes the network interface
card from the endpoint: Malware executed on the network interface
card is able to steal secret key material from the main memory to con-
duct a MitM attack. Hence, we developed an authentic reporting channel
that ensures that only the host CPU is the communication endpoint. Our
channel is based on the secure channel protocol TLS. We adapt the TLS
protocol to exchange BARM measurements and to bind the channel to its

1http://www.trustedcomputinggroup.org/

2

supposed endpoint. An additional feature of our communication channel
is platform state change reporting. This means that our runtime monitor
BARM permanently delivers every state change regarding DMA malware
to the communication partner via the authentic reporting channel. Our
TLS modifications are based on TLS extensions. This means that our
channel is compliant with the TLS specification. Our TLS compliant chan-
nel is the first channel that considers platform state reporting regarding
DMA malware. It is also the first channel that is based on an implemented
effective and efficient runtime monitor to report state changes. Previous
work only assumed the presence of such a runtime monitor.

• Analysis of the ethernet controller: Our communication channel re-
quires the network interface card. Hence, the ethernet controller will in-
duce bus transactions. These bus transactions must be considered by
BARM. This work demonstrates how the ethernet controller can be in-
tegrated into BARM’s detection model, i. e., how to utilize the ethernet
controller as an additional bus agent.

• Enhancing BARM’s detection model with a new parameter: The
ethernet controller transfers data packets, which size is greater than the
size of address pointers and keystroke codes. We demonstrate that the
cache line size is an important parameter for BARM’s detection model.
The cache line size is necessary to compute the number of expected bus
transactions correctly.

• Exploiting additional performance monitoring unit events: We
demonstrate that certain performance monitoring unit configurations can
be exploited to distinguish between memory read bus transactions and
memory write bus transactions. This enables us to check if the number of
expected read bus transactions and expected write bus transactions that
are caused by the ethernet controller are correctly determined by BARM’s
detection model.

The following section starts with a description of the authentic reporting
channel model. Afterwards, we explain how we implemented this model.

2 Implementation Independent Model

Our channel model considers client C (target platform) and server S (external
platform) communication. Each endpoint may request platform state informa-
tion (i. e., BARM measurements) of the peer. A local security policy determines
what exactly happens after the platform state information of the peer has been
evaluated. Our authentic reporting channel is controlled by host CPU software.
The channel can be negotiated through a potentially compromised network in-
terface card. We describe a high-level protocol for negotiating and maintaining
an authentic reporting channel in the following section. Please note, in the
following we omit the superscript C and S due to the symmetric protocol char-
acteristic.

3

Figure 1: Negotiating an Authentic Reporting Channel

ClientClient

NICCNICC

KC

sign
:= (PKC

sign
, SKC

sign
)

CertC, sec_paramC

CertC := (PKC

sign
, BARM_IDC)

CertC, sec_paramC

NICSNICS

CertC, sec_paramC

ServerServer

KS

sign
:= (PKS

sign
, SKS

sign
)

CertS := (PKS

sign
, BARM_IDS)

verify(CertC)

CertS, sec_paramS
CertS, sec_paramS

CertS, sec_paramS

verify(CertS)
SigStDS := sign(state_dataS, SKS

sign
)

state_dataS, SigStDS
state_dataS, SigStDS

state_dataS, SigStDS

verify(SigStDS, PKS

sign
)

SigStDC := sign(state_dataC, SKC

sign
)

state_dataC, SigStDC
state_dataC, SigStDC

state_dataC, SigStDC

verify(SigStDC, PKC

sign
)

verify(state_dataS)

verify(state_dataC)

compute(SeKey)compute(SeKey)

authentic reporting channel

SeKey confirmation

check(sec_paramS)

check(sec_paramC)

Negotiating an authentic reporting channel between Client C

(target platform) and Server S (e. g., external administrator

platform).

NIC Network Interface Card
Ksign Asymmetric signing key pair (PKsign, SKsign) bound to

host CPU software components
PK Public key
SK Secret key
Cert Certified public key part of key pair bound to host CPU

software components
BARM ID Host CPU software components identifier
sec param Required security parameters
state data Platform state data determined by BARM
SigStD Signature of platform state data
SeKey Session key

4

2.1 Negotiating an Authentic Reporting Channel

One important idea of our authentic reporting channel is to prevent platform
peripherals from accessing sensitive information that is related to the channel
such as secret key material. Only host CPU software is allowed to use sensi-
tive channel information. Please note, a peripheral could steal such information
via DMA. However, BARM will reveal and stop this kind of DMA attack, see
[1, Section 5.3]. Figure 1 depicts the handshake protocol for negotiating an
authentic reporting channel for BARM. In order to conduct the handshake,
both parties require a signing key Ksign that is an asymmetric key pair, i. e.,
Ksign := (PKsign, SKsign). Furthermore, both peers require a certificate Cert,
which includes PKsign as well as a host CPU software components identifier
(BARM ID). This certificate is issued by a trusted party, which can be the
external administrator platform. The signing key and the certificate are cre-
ated before negotiating an authentic reporting channel. Each peer verifies the
certificate including BARM ID of its counterpart.

The creation of the channel begins with the negotiation of security parame-
ters. This means that each party sends its certificate as well as security require-
ments in the form of security parameters to the peer. The security parameters
determine which party reports its platform state information. Each peer checks
if the security requirements of the counterpart are acceptable. In the next step,
each party sends its platform state data (the current BARM measurement) to
the peer. The state data is digitally signed and the corresponding signature is
transmitted together with the state data. This ensures that the received state
data has been sent by the expected communication partner. Both parties verify
the signature with PKsign that was sent by the peer as part of the certificate
Cert. If the signature is valid both parties verify the state data. The handshake
may be aborted due to DMA malware that attacks the peer. This is the case
when the transmitted BARM measurement result is greater than the tolerance
value T (see [1, Section 4.3]). After both client and server have verified the
exchanged data successfully the same session key is computed and confirmed by
both platforms. The computed session key will be bound to the communication
session. After the confirmation the authentic communication session is in place
and both peers start to periodically send heartbeat messages.

State Change The heartbeat messages either confirm the current platform
state or they report a state change. The reported platform state can reveal
that the peer is under a DMA malware attack, that the suspicious peripheral
could be stopped, or that no attack has been detected. If the peer stops sending
heartbeat messages, the local platform assumes that the peer has been attacked
by DMA malware executed on the network interface card. In this case, BARM
has successfully terminated the ongoing DMA attack by stopping the network
interface card. Depending on the local security policy a platform can tear down
the channel, continue with the current session key, or renegotiate the channel.
It is advantageous to continue with the current session key if the heartbeat
message reports that the attack could be stopped immediately and if the local
security policy states that this case is tolerable. To be more precise, it can
make sense if the platform can continue to operate normally without the affected
peripheral. In the case of an involved administrator platform, we expect that
the administrator will analyze the attack in more detail as soon as possible to

5

remove the DMA malware from the compromised peripheral or, if absolutely
necessary, to exchange the compromised peripheral or chipset with a benign
one.

3 Implementation of the Authentic Reporting
Channel for BARM

BARM as presented in [1] is insufficient for the authentic channel based report-
ing application. When BARM sends network packets, it also causes bus activity
that needs to be considered by BARM’s detection model. To implement an au-
thentic channel application for our DMA malware scenario we have (i) enhanced
BARM’s detection model, see Section 3.1 and (ii) modified the TLS protocol to
bind BARM’s measurement (state information) to that channel, see Section 3.2.

3.1 Bus Master Analysis: Ethernet Controller

To consider the ethernet controller in BARM’s detection model we have to de-
termine the expected bus activity value AETH

e . Hence, we conducted a similar
bus master analysis as presented in [1, Section 4.2] for the ethernet controller
of our target platform. We analyzed the ethernet controller (namely Ether-
net Controller: Intel Corporation 82566DM-2 Gigabit Network Connection (rev
02) [8]) of the same target platform as the previous experiments, see [7, 1]. The
corresponding ethernet controller Linux device driver is e1000e.ko. To simplify
our analysis we configured the driver to use legacy interrupts and no interrupt
delays as well as no interrupt throttling. We also disabled checksumming and
segmentation offloading for the network device.

The ethernet controller works with so-called descriptor rings, i. e., the trans-
mit descriptor ring and the receive descriptor ring, see Figure 2. Each ring
consists of 256 descriptors. A descriptor has a size of 16 bytes. This means
that the device driver allocates 4096 bytes for each ring. If the host intends
to send network packets, it prepares transmit descriptors and informs the eth-
ernet controller that new descriptors are ready to be processed. The ethernet
controller reads the descriptors via DMA from the host memory. After evaluat-
ing the descriptor the controller copies the network packet data from the host
memory address that is present in the descriptor (see Figure 2) to its internal
memory to be able to send the packet. If the ethernet controller has processed
the descriptor, the controller “returns” the descriptor to the host by writing the
descriptor done bit in the status field of the descriptor via DMA. When re-
ceiving network packets the process is similar except that the ethernet controller
writes the network packet data into the host memory.

Cache Line Size To integrate the ethernet controller as a bus master into
BARM’s detection model we have to consider that the size of network packets
is usually greater than keystroke codes, see [1, Section 4.2]. Keystroke codes are
transfered via one bus transaction. This is not valid for network packets that
have a size of 1514 bytes for example. To be able to determine how many bus
transactions are necessary to transfer a particular amount of data we introduce a
new parameter, i. e., the cache line size. The system cache is organized in cache

6

Figure 2: Transmit/Receive Descriptor Ring Structure

0
1
2

252
253
254
255

...

256 descriptors
→ 4096 bytes

...

address

lengthstatus

...

de
sc

rip
to

r
do

ne
 b

it

3
4

64 bytes → cache line size

1 descriptor → 16 bytes

When the device driver informs the NIC that new network

packets are ready to be transmitted, the ethernet controller

reads transmit descriptors from the descriptor ring. The con-

troller also reads the corresponding packets of the size that is

stored in the length field of the descriptor from the host mem-

ory address that is stored in the address field of the descriptor.

The ethernet controller writes the descriptor done bit in the

status field of the descriptor if the the descriptor has been

processed. When new network packets arrive from the net-

work, the ethernet controller reads receive descriptors from

the descriptor ring. Afterwards, the controller writes the cor-

responding packets of the size that is stored in the length field

of the descriptor to the host memory address. The address

is stored in the address field of the descriptor. The ethernet

controller writes the descriptor done bit in the status field of

the descriptor if the the descriptor has been processed.

Figure 3: Transmit Descriptor/Receive Descriptor Dump of the e1000e.ko

Driver

Descriptor NumberDescriptor Number

Host Memory AddressHost Memory Address

LengthLength

Cache Line Size alignedCache Line Size aligned

Cache Line Size unalignedCache Line Size unaligned

The dump reveals the most important information to derive

the number of bus transactions caused by the ethernet con-

troller. Some host memory addresses are not cache line size

aligned. This can result in an additional bus transaction.

7

lines. Memory accesses are handled in cache lines of a certain cache line size
C ∈ N [see 9, p.223]. C is 64 bytes for our platform [see 10, p.17]. That means,
if one word is requested from main memory, 64 bytes are actually transfered in
one memory transaction. It is assumed that data that is adjacent in the host
memory will likely be accessed in a subsequent operation. If so, these bytes are
already in the cache and no additional transaction is needed. Memory access of
peripherals is also handled in cache lines. It is possible that such a transaction
must be snooped to ensure a coherent cache line [see 10, p.27].

The descriptor dump of the e1000e.ko driver depicts the host memory ad-
dresses of the network packet data, see Figure 3. The dump also reveals that
not every address is cache line size aligned. This means that the number of
bus transactions required to transfer the network packet data via DMA is not
necessarily the value stored in the length field divided by the cache line size.
Another important point relates to the receive descriptor handling. According
to Intel [8] the ethernet controller optimizes the process of returning receive de-
scriptors. That means, when receiving packets the ethernet controller does not
write the descriptor done bit for each descriptor individually. Instead, it
“collects” four descriptors that belong to the same cache line to be able to write
four descriptor done bits with one bus transaction, see Figure 2. We con-
sider both scenarios for the equation to compute the expected bus transactions
caused by the ethernet controller.

Expected Bus Activity of the Ethernet Controller AETH
e (see [1, Sec-

tion 3]) Due to our analysis we define the expected bus activity of the ethernet
controller as follows:

AETH
e = ATXreads

e +ATXwrites
e +ARXreads

e +ARXwrites
e (1)

ATXreads
e is the expected bus activity that is caused by memory reads when

transmitting a packet. ATXwrites
e represents activity that is caused by memory

writes. Analogously, ARXreads
e and ARXwrites

e are introduced to consider the
bus activity when receiving network packets. To compute ATXreads

e , ATXwrites
e ,

ARXreads
e , and ARXwrites

e for one BARM sampling interval we have to consider
the cache line size for the memory buffers that are read and written. That means
for the memory buffer that stores the network packet data in host memory we
have to align the memory buffer start address, which is stored in the address

field (hma ∈ N) of a descriptor, to the previous cache line size aligned address.
The result is ba start ∈ N:

ba start = hma − (hma mod C) (2)

The alignment for the memory buffer end address (ba end ∈ N), which is
the sum of the value in the address field (hma) and the value of the length

field (len ∈ N) of a descriptor is as follows:

ba end = hma + len + C − ((hma + len) mod C) (3)

The same alignment is required for descriptor transfers. The transfer start
address is determined by the descriptor number of the last descriptor of the
previous sampling interval (old d ∈ N). The transfer end address is determined
by the descriptor number of the last descriptor of the current sampling interval

8

(cur d ∈ N). When considering the cache line size the alignment results in de-
scriptor numbers d start ∈ N and d end ∈ N as follows (D ∈ N is the descriptor
size in bytes, i. e., 16 bytes in our case):

d start = old d − ((old d × D) mod C)
D

(4)

d end =
cur d × D + C − ((cur d × D) mod C)

D
(5)

For one sampling interval ATXreads
e , ATXwrites

e , ARXreads
e , and ARXwrites

e are
computed as follows:

ATXreads
e =

cur dTX−old dTX∑
n=1

(
1 +

ba endTX
n − ba startTX

n

C

)
(6)

It is necessary to add 1 memory read bus transaction for each transmit
descriptor because of the corresponding descriptor fetch that is (according to our
experiments) not optimized in terms of cache lines. This is handled differently
when writing the descriptor done bit. In this case the ethernet controller
tries to write as many descriptor done bits as possible. The maximum is
four bits for one bus transaction.

ATXwrites
e =

(d endTX − d startTX) × D
C

(7)

When receiving network packets, memory reads only occur due to receive
descriptor fetching. We determined that the ethernet controller fetches four
receive descriptors (equals to the cache line size) with one memory read bus
transaction during our experiments. We use the indicator function with N :=
{n ∈ [old dRX , cur dRX] | (n × D mod C) = 0} in the following equation:

ARXreads
e =

cur dRX∑
n=old dRX

1N (n) (8)

The number of expected bus transactions due to memory writes are as fol-
lows:

ARXwrites
e =

cur dRX−old dRX∑
n=1

ba endRX
n − ba startRX

n

C

+
(d endRX − d startRX) × D

C

(9)

We expect that network packet data must be copied to the host memory and
that corresponding descriptor done bits will be written to the descriptors in
the host memory.

9

Figure 4: BUS TRANS Event Counter

BUS_TRANS_MEM

BUS_TRANS_P

BUS_TRANS_INVAL

BUS_TRANS_BURST

The sum of BUS TRANS BURST, BUS TRANS P and BUS TRANS INVAL

counts results in BUS TRANS MEM counts [11].

Exploiting Additional BUS TRANS Events We verified Equation 1 with fur-
ther BUS TRANS event counter (see Figure 4) that are basically subsets of the
event BUS TRANS MEM. We determined that the event counter BUS TRANS P counts
the memory reads of a peripheral and that the event counter BUS TRANS INVAL

counts the memory writes of a peripheral. We used these counters in con-
junction with THIS AGENT and ALL AGENTS name extensions as described in [1,
Section 4.2] to distinguish bus transactions caused by the host CPU and bus
transactions caused by the peripheral. The event BUS TRANS BURST did not oc-
cur during our experiments. The number of bus transactions caused by the eth-
ernet controller is computed according to Equation 1 when the e1000e.ko driver
function e1000 clean tx irq or e1000 clean rx irq is called. We enhanced
BARM as introduced in [1] to consider AETH

e as described in this section.

3.2 Implementation based on OpenSSL

OpenSSL is a popular software toolkit that implements cryptographic mecha-
nisms such as the SSL/TLS protocol and the encoding/decoding of X.509 certifi-
cates. The toolkit provides the developer with shared libraries, i. e., libssl and
libcrypto. The openssl command line tool also makes use of these libraries.
Applications that require the cryptographic mechanisms provided by OpenSSL
can use the libraries directly. Note, the implementation presented in this section
is based on our [3] previous trusted channel implementation. Our modifications
are based on TLS and TLS related Request for Comments (RFC) documents,
i. e., RFC4366 and RFC4680. Hence, the modifications are compliant with the
TLS specification.

The TLS handshake protocol used to negotiate a session key of a secure chan-
nel needs to be adapted to consider BARM’s measurement results. Considering
the measurement results during the handshake enables the peer to determine if
the target platform is already attacked by DMA malware. This helps the peer to
decide if the target platform is trustworthy. The peer can abort the handshake
of the authentic reporting channel if the other endpoint is considered untrust-
worthy. Note, due to our trust model we consider the host CPU as a channel
endpoint. Other computing environments including the network interface card

10

do not belong to the endpoint. We use asymmetric cryptography mechanisms
and certificates to authenticate endpoints. In the following paragraphs we de-
scribe the used key exchange and certificate. We also describe extensions for
the TLS Hello messages. Extensions to the TLS protocol are considered by
Dierks and Rescorla [12]. To transmit BARM measurement results (platform
state data) additional handshake messages are required. We use Supplemental
Data messages for this purpose.

Key Exchange Type Our implementation of the authentic report channel is
based on an adapted version of the TLS Diffie-Hellman Ephemeral RSA (DHE-
RSA) handshake.2 That means, to authenticate endpoint data an RSA signing
key pair is used. For the negotiation of the session key Diffie-Hellman values are
used. The public Diffie-Hellman part that is transmitted to the peer is signed
by the secret part of the RSA signing key pair.

Endpoint Certificate To authenticate the endpoints, certificates (see cert in
Figures 6 and 7) are exchanged during the TLS handshake. When using DHE-
RSA, the certificates exchanged via Certificate messages contain the public part
PKsign of the signing key pair Ksign := (SKsign, PKsign). We have to ensure
that the secret key SKsign is only available to the endpoint. Our certificates
include a BARM related identifier to bind the TLS-based authentic reporting
channel to the endpoint. A certificate that includes a BARM identifier is issued
by a trusted third party that vouches for a correct BARM installation on the
target platform and that the secret key part SKsign is only available on that
endpoint. Hence, the certificate cert links the signing key Ksign to the endpoint
that executes BARM. Ksign key pairs must be used to authenticate data sent
by the client C and server S during the handshake. This eventually binds the
transmitted platform state data to the authentic reporting channel. The trusted
third party that vouches for the correct BARM installation and for the secret
signing key part SKsign could be the administrator who also runs the evaluation
platform that receives platform state data (BARM measurements) from the
target platform. The used certificate is actually a normal TLS certificate that
includes the BARM related identifier. The certificate as well as the signing key
pair Ksign are deployed together with BARM and are considered as long-lived.

Modifications to Hello Messages We use the ClientHello and ServerHello
messages to negotiate the security parameters of the authentic reporting chan-
nel, see Figure 6. The client platform C that runs BARM starts the adapted TLS
client and sends the ClientHello message to the server platform S. The server
replies with ServerHello. The Hello messages include the security parameters
sec param (see Section 2) of the corresponding peer, see Figure 6. The security
parameters determine which endpoint has to provide platform state data, i. e.,
BARM measurements. We use Hello message extensions [12] to exchange se-
curity parameters. Our OpenSSL-based implementation makes use of the TLS
Hello Extensions as described in RFC4366 [14]. A patch for OpenSSL (0.9.8.x)

2As described in prior work [3] other key exchange methods such as RSA and DH-RSA can
also be used to implement a trusted channel based authentic reporting application.

11

Figure 5: TLS Handshake Considering Hello Extensions and Supplemental Data
Extensions

ClientClient ServerServer

ClientHello[client data]

server extension callback

ServerHello[server data]

client extension callback

server supplemental data callback

SupplementalData

ServerHelloDone

client supplemental data callback

SupplementalData

Finished

Finished

client finish callback server finish callback

The ClientHello message contains client data and the Server-

Hello message contains server data. Additional Supplemen-

talData messages contain client supplemental data and server

supplemental data. Supplemental data is also considered as

TLS extension. (based on [13])

12

implements the hello extensions, see Figure 5.3 The patch modifies code related
to the library libssl. We use this patch for our authentic reporting channel
application implementation.

The patch provides an interface that allows the developer to register new TLS
extensions [see 13]. A TLS extension that is represented by the TLSEXT GENERAL

object transmits generic data. The application that uses TLS specifies the data
format of the generic data. TLS extensions consist of a type, the data length,
and the generic data (type-length-value format) as well as certain flags4 and
callback functions that implement the required extension logic. Callbacks (see
Figure 5) are only triggered on the peer that instantiated the corresponding
TLSEXT GENERAL object. The generic data that is transmitted via a Hello mes-
sage is one generic datum. In our implementation the TLS extension that is
exchanged via Hello messages (hello extension) is:

• ARCH NEGOTIATION EXT: This extension (EXT) for our authentic reporting
channel (ARCH) is used to negotiate security parameters sec param.

Client as well as server register hello extensions (TLSEXT GENERAL objects)
if they want to handle them. If a peer receives a Hello message that contains
the registered extension, the peer calls the corresponding extension callback, see
Figure 5.

Supplemental Data Messages for Platform State Data The client plat-
form C as well as the server platform S can provide platform state data. We use
so-called SupplementalData messages (see Figure 5) as specified by the Internet
Engineering Task Force Networking Group in RFC4680 [15] to transmit platform
state data. The OpenSSL patch also implements SupplementalData messages
for OpenSSL (0.9.8.x).5 The details of the implementation of this patch are
explained by Davide Vernizzi [13]. As described in RFC4680 supplemental data
is also used to transmit generic data. The peer determines whether or not the
generic data needs to be transmitted using hello extensions. The OpenSSL
patch also enables us to define supplemental data extensions that we need for
our authentic reporting channel. Supplemental data extensions also consist of
a type, the generic data, the data length, and callback functions. Supplemental
data transmitted using the SupplementalData message can be a stack of several
generic data. In our implementation the extensions to exchange generic data
via SupplementalData messages are:

• ARCH SUPP DATA C EXT: This extension is used to transmit the platform
state data PSDC (supplemental data) from the client C to the server S.

• ARCH SUPP DATA S EXT: This extension is used to transmit the platform
state data PSDS (supplemental data) from the server S to the client C.

3The TLS hello extensions and supplemental data patch can be found at http://openss

l.6102.n7.nabble.com/PATCH-TLS-hello-extensions-and-supplemental-data-td38202.html
[accessed 25 February 2014]

4The extension flags are client required (the client will abort if the server ignores the
extension where this flag has been set), server send (the server will send the extension where
this flag has been set), and received (internal use, e. g., to check duplicates).

5See Footnote 3

13

The patched OpenSSL software handles generic data as presented in Fig-
ure 5. Callback functions that also belong to the TLS extensions are called
to process the generic data according to the required extension logic. Analo-
gous to hello extensions, client and server have to register for supplemental data
extensions that they want to handle via the corresponding supplemental data
callbacks. Figure 6 and 7 depict how our generic data (hello extensions as well
as supplemental data extensions) is handled using the callback functions during
the adapted TLS handshake.

In our proof of concept implementation the generic data format used to
exchange platform state data PSD via supplemental data is quite simple:

• barm measurement: This data field contains the BARM measurement
taken by the BARM Linux kernel module.

• Devices flag pair list: We use a devices flag pair list to communicate if a
peripheral is attacking the target platform. The first flag represents if the
corresponding device started to attack the host and, if so, the second flag
states if the malicious device could be stopped. The devices flag pair list
looks as follows:

– (uhci attack, uhci disabled): This flag pair represents the Uni-
versal Host Controller Interface Controller (UHCI, see [1, Section 4.2])
controller.

– (... attack, ... disabled): [further devices]

– (me attack, me disabled): This flag pair represents the manage-
ability engine.

• nonceSD: nonceSD consists of the two elements:

– nonceC (client random)

– nonceS (server random)

The signature SigPSD on the platform state data PSD is also sent to the
peer via the SupplementalData message, see Figure 6 and 7. By doing so, the
platform state data PSD is also bound to the corresponding secure channel.
The nonceSD included in the supplemental data is compared with nonceC and
nonceS (sent via the Hello messages) to guarantee freshness of the received
platform state data PSD. To authenticate and to be able to check the integrity
of platform state data PSD, we use the secret part SKsign of the signing key pair
to sign PSD. To be able to verify the signature each peer provides the certificate
that contains the public key part PKsign using the Certificate message directly
after transmitting the SupplementalData message, see Figures 6 and 7. The
BARM measurement results that are also part of the supplemental data are
evaluated to derive the trustworthiness of the peer. Depending on the derived
trustworthiness the local platform takes measures according to the local security
policy.

Session Key Computation The session key SeK is computed on both peers
as usual. Since we use DHE-RSA, the secure channel that uses SeK is eventually
linked to the endpoints (host CPUs). The exchanged DH parts are signed using

14

Figure 6: Adapted TLS-DHE-RSA Handshake for the Authentic Reporting
Channel (a)

ClientHello(nonceC, sec_paramC)

server extension callback

ServerHello(nonceS, sec_paramS)

client extension callback server supplemental data callback

SupplementalData(PSDS, SigS

PSD
)

CertificateRequest()
ServerHelloDone()

client supplemental data callback

get(nonceC, sec_paramC)

get(nonceS, sec_paramS)

● get(PSDS)
● SigS

PSD
 ← encrypt(digest(PSDS); SKS

sign
)

● eval(sec_paramS)

Certificate(certS)

get(DHS

public
, DHS

secret
)

SigS

DH
 ← encrypt(digest(DHS

public
); SKS

sign
)

ServerKeyExchange(DHS

public
, SigS

DH
)

eval(digest(DHS

public
) = decrypt(SigS

DH
; PKS

sign
))

get(certS)

● eval(sec_paramC)
● server_send := 1

● get(PSDC)
● SigC

PSD
 ← encrypt(digest(PSDC); SKC

sign
)

ServerServerClientClient

Modifications that were made to the TLS handshake are high-

lighted in bold text. The adapted handshake is continued in

Figure 7.

15

Figure 7: Adapted TLS-DHE-RSA Handshake for the Authentic Reporting
Channel (b)

[ChangeCipherSpec]
Finished()

client finish callback server finish callback

SupplementalData(PSDC, SigC

PSD
)

get(certC)
Certificate(certC)

get(DHC

public
, DHC

secret
)

ClientKeyExchange(DHC

public
)

Sig
prev

 ← encrypt(digest(prev); SKC

sign
)

CertificateVerify(Sig
prev

)

eval(digest(prev) = decrypt(Sig
prev

; PKC

sign
))

compute(DH
result

)

ms ← PRF('ms', nonceC, nonceS, DH
result

)

compute(SeK)

compute(DH
result

)

ms ← PRF('ms', nonceC, nonceS, DH
result

)

compute(SeK)

● eval(digest(PSDC) = decrypt(SigC

PSD
; PKC

sign
))

● eval(PSDC)

● eval(digest(PSDS) = decrypt(SigS

PSD
; PKS

sign
))

● eval(PSDS)

authentic reporting channel

ServerServerClientClient

After the handshake has been finished the authentic reporting

channel is used by BARM to transmit heartbeat messages in

a regular interval to communicate platform state changes, i. e.,

to report a DMA malware based attack.

16

the secret part of Ksign (SKsign) that links the DH values to Ksign. The signing
key pair Ksign is bound to exactly one endpoint due to the certificate issued by
the trusted third party that vouches for the fact that SKsign is only available
on the endpoint. Hence, the session key is also bound to the endpoint.

Heartbeat Messages After the handshake has been completed, BARM uses
the negotiated channel to send heartbeat messages in a regular interval to the
external administrator platform. These messages contain the current BARM
measurement and the devices flag pair list in a similar PSD format that has
been used during the handshake. Only nonceSD is missing. The regular heart-
beat messages are used by BARM to report platform state changes, i. e., a DMA
malware based attack. If the external platform does not receive heartbeat mes-
sages anymore we assume that the NIC tried to attack the host platform and
BARM was able to successfully stop the attack. It is also possible that malware
that is executed on the NIC blocks the heartbeat messages. If so, the attack is
also revealed.

4 Evaluation

We use the same platform and basic evaluation configuration as described in [1,
Section 5] to evaluate the enhanced BARM. Please note, only the client platform
must transmit platform state data.

4.1 Expected Bus Activity Validation

To validate Equation 1 we conducted different tests. The evaluation results
are depicted in Figure 8. The results reveal larger fluctuations in BARM mea-
surement results when the ping, scp and wget command cause network traffic.
Table 1 provides information on the cause of the larger fluctuations. The table
presents BARM measurements that were taken during the download of a 1 GB
file using the wget command. The applied sampling interval was 32 ms. The ta-
ble depicts that a larger positive discrepancy (see BARM sample 125924: 13 bus
transactions) is followed by a larger negative discrepancy (see BARM sample
125925: −12 bus transactions). We assume that a positive discrepancy occurs
when network packets were already copied to the host memory by the ethernet
controller, but BARM was unable to evaluate the corresponding receive descrip-
tors in the current sampling interval. These descriptors are available in the next
sampling interval. Hence, BARM evaluates the descriptors in the next interval,
which in turn results in a negative discrepancy. BARM subtracts expected bus
transactions from the measured transactions that were actually measured in the
last sampling interval.

As depicted in Table 1, the positive and negative values compensate one
another. Thus, the fluctuation can be minimized by simply adding positive and
negative BARM measurement values. As presented in Table 1, a pair of posi-
tive and negative measurement values can also occur the other way around (see
BARM samples 125926 and 125927, for example). This means that the nega-
tive value is determined before the positive value. We assume that this occurs
when BARM has already analyzed transmit descriptors when the corresponding
packets were not copied by the ethernet controller yet. Hence, BARM already

17

Table 1: BARM Measurement Values Revealing Fluctuations

BARM BARM BARM BARM
sampling number measurement value sampling number measurement value

125912 5 125944 2
125913 2 125945 25
125914 3 125946 -48
125915 2 125947 28
125916 3 125948 0
125917 0 125949 3
125918 0 125950 5
125919 1 125951 1
125920 2 125952 13
125921 -17 125953 -21
125922 22 125954 5
125923 1 125955 2
125924 13 125956 2
125925 -12 125957 -1
125926 -15 125958 4
125927 22 125959 3
125928 5 125960 -21
125929 0 125961 25
125930 -2 125962 2
125931 5 125963 -2
125932 2 125964 3
125933 5 125965 2
125934 0 125966 5
125935 -2 125967 2
125936 9 125968 -1
125937 2 125969 2
125938 3 125970 2
125939 -2 125971 6
125940 8 125972 0
125941 -3 125973 1
125942 0 125974 2
125943 5 125975 3

The sampling numbers and the corresponding measurement

values taken are from the measurement log that was taken

when downloading a 1GB file from http://download.thinkbroadb

and.com/1GB.zip [accessed 25 February 2014]. The BARM sam-

pling interval was 32ms.

18

Figure 8: Expected Bus Activity Evaluation with Network Traffic

D
is

cr
ep

an
cy

 in
N

um
be

r
of

Bu
s

Tr
an

sa
ct

io
ns

−60

−40

−20

0

20

40

60

−60

−40

−20

0

20

40

60

Network Traffic Test
BARM ARCH ping scp wget wget'

We evaluated the expected bus activity for six different test

cases. The discrepancy is visualized in the form of boxplots.

In the first case (BARM) we only run the enhanced BARM and

in the second case we run the enhanced BARM together with

the OpenSSL-based authentic reporting channel. We took 100

BARM measurements in both cases. BARM and the authentic

reporting channel are also active in the remaining test cases

(ping, scp, wget, wget’). We executed the ping command with a

1000 bytes payload 100 times (ping). In the case of scp we copied

a 100MB file from an external platform to our target platform

100 times. In the wget case we downloaded a 1GB file from

http://download.thinkbroadband.com/1GB.zip [accessed 25 Febru-

ary 2014] using the wget command. We applied a BARM sam-

pling interval of 32ms for all test cases except the last one

(wget’). The boxplot for the wget’ case represents the result

when using a sampling interval of 1024ms during a wget down-

load of a 1GB file.

19

Figure 9: Relative Performance Overhead for Different Reporting Intervals and
Constant Sampling Interval

Re
la

ti
ve

 O
ve

rh
ea

d

0.96

0.98

1

1.02

1.04

0.96

0.98

1

1.02

1.04

NET Benchmark

1024ms
32ms
inactive (baseline)

The figure compares the results of three measurement series.

The first measurement series (inactive) represents the baseline.

Inactive means that BARM was not running and no heartbeat

messages were sent. A bar in the figure represents the mean of

100 measurements. We measured the clock cycles (with time

stamp counters) that are needed to copy a 100MB file from

an external platform with the scp command. Measurements

were taken for a reporting interval of 32ms and for a reporting

interval of 1024ms. In both cases we used the same BARM

sampling interval of 32ms. The relative performance overhead

when sending a heartbeat message every 32ms is approximately

4.5%. The overhead is only approximately 0.5% when sending

the message every 1024ms.

subtracts the expected bus transactions from the measured ones before they are
actually measured. The transactions are measured in the next sampling interval
that results in a larger positive discrepancy.

We examined the described behavior with two sampling intervals when using
the wget command to download a 1 GB file. As depicted in Figure 8, the
fluctuations are larger when using wget with a sampling interval of 32 ms (see
wget) compared to a sampling interval of 1024 ms (see wget’).

4.2 Network Performance Overhead Evaluation

We conducted a network benchmark to reveal the network performance overhead
that is caused by the enhanced BARM version. The enhanced BARM version
permanently sends heartbeat messages. The results are presented in Figure 9.
The results in Figure 9 reveal a relative performance overhead of approximately
4.5 % when sending the heartbeat message every 32 ms. This interval length
corresponds the the BARM sampling interval. It is not necessary to use the

20

Figure 10: Evaluating Enhanced BARM at an Arbitrary Point during Runtime
with the Authentic Reporting Channel

N
um

be
r

of
Bu

s
Tr

an
sa

ct
io

ns

0
200
400
600
800

1,000
1,200

Sampling in 32 ms Steps
0 5 10 15 20 25 30 35 40

no-DAGGER
DAGGER
Tolerance Value

DAGGER
detected

DAGGER
stopped

The conducted experiment is similar to the experiment pre-

sented in [1, Section 5.3]. BARM’s sampling interval was 32ms

and the tolerance value was 50 bus transactions. This time

BARM considers the ethernet controller as an additional bus

master that allowed us to start our authentic reporting chan-

nel. Heartbeat messages were sent every 32ms. The figure

compares three curves, i. e., the tolerance value T , BARM’s

measurement results without any attack, and BARM’s mea-

surement results with a DAGGER attack.

same interval for reporting as for BARM measurement sampling due to the
heartbeat message format that we use to transmit platform state data. The
devices flag pair list represents a history of malicious peripherals. Hence, the
network performance overhead for 32 ms sampling and reporting interval can
be avoided. The only requirement is that the sampling interval is less or equal
than the reporting interval.

4.3 Test with DAGGER

We repeated the DMA malware DAGGER6 test (see [1]) with our enhanced
bus agent runtime monitor BARM. The results are summarized in Figure 10,
Figure 11, and Figure 12. We attacked the target platform at an arbitrary
point in time during runtime. Figure 10 confirms that the enhanced BARM
could reveal the DMA attack as well as stop the malicious peripheral. The
excerpt from the log in Figure 11 and Figure 12 belong to the same experiment
that was the basis for Figure 10.

5 Security Considerations

In this section we informally evaluate the security requirements that we intro-
duced in the beginning of this technical report. A formal proof is outside the
scope of this work. Many research related to security proofs of the TLS proto-
cols have been published in the past. An overview is presented by Kohlweiss
et al. [16]. The research also considers multiple TLS variants. We assume that

6The Direct Memory Access based keystroke code loGGER DAGGER is presented in [7].

21

Figure 11: BARM Authentic Reporting Channel – Client Side

The figure presents a part of BARM’s log output. BARM

is deployed on the target platform, i. e., the client. The log

output demonstrates that BARM revealed a DMA attack and

that BARM was able to stop the malicious peripheral.

our TLS-based channel can also be formally proven. However, the focus of this
work is the enhanced BARM that considers the network interface card. Hence,
we review the extent to which our enhanced BARM fulfills the requirements for
a secure channel (R1), binding of BARM measurements to the secure channel
(R2), and privacy (R3).

• R1 – Secure channel properties: Due to the applied TLS protocol the
secure channel properties confidentiality, integrity, authenticity as well as
freshness are ensured for the communication channel. Due to the enhanced
BARM these properties are also ensured on the endpoint, i. e., the host
CPU. Given that the attacker has to search for valuable data, BARM en-
sures the integrity and the confidentiality of data that is present in the
main memory. The attacker could merely randomly write to or read from
the main memory without searching for valuable data. The attacker also
needs to search for nonces, key material or the session key SeK as well as
the private part of the signing key pair SKsign to attack the communica-
tion session. Hence, the enhanced BARM also takes care of the properties
authenticity and freshness on the endpoint due to the detection of addi-
tional bus traffic when the attacker searches in the main memory.

The attacker can only conduct a MitM attack if the attacker is able to steal
private key material or the session key via DMA. Scanning the memory for
this data will be detected by BARM. BARM can also identify the malicious
device. Hence, the access to the main memory can be prevented. Note,
the host CPU could enforce the attacker to cause more bus transactions by
storing parts of the sensitive data in processor registers. This technique
was proposed in [17], for example. This will not protect the sensitive
data, since DMA attacks can be used to dump the content of processor
registers into the main memory. However, such an attack will cause more
bus activity, which will also be detected by BARM.

22

Figure 12: BARM Authentic Reporting Channel – Server Side

The figure depicts the log output of the adapted OpenSSL

server. The log consists of the TLS handshake messages, call-

back call messages, and received BARM measurements. The

measurement values are the same as presented in Figure 11.

The BARM instance that is deployed on the client side was

able to stop the attack. In this example, the local security

policy tolerates the stopped attack. Alternatively, the server

could have torn down the channel when the server received

the BARM measurement of 441 bus transactions. The server

was also configured with T = 50 bus transactions.

23

The attacker could attempt to modify BARM measurements. To do so,
the attacker could try to find the variables in the main memory where
BARM stores the values of the performance monitoring units that we
exploit to reveal DMA attack. However, the DMA-based search would be
revealed by BARM. Alternatively, the attacker could try to modify the
host CPU registers that correspond to the performance monitoring units
used by BARM. The attacker has no direct access to host CPU registers.
However, the attacker needs to find a memory area to store host CPU
instructions that modify the performance monitoring processor registers.
It is required that the host CPU will sooner or later consider the memory
area, which contains the malicious instructions. Again, the attacker has
to search for such an area via DMA and this DMA-based search will be
revealed by BARM.

• R2 – Binding of BARM measurements to the secure channel:
Authenticity of an endpoint is ensured by providing the certificate cert
that includes the BARM identifier and the public key part of the signing
key pair PKsign. The certificate is signed by a trusted party. Two factors
ensure that the BARM measurements are bound to the channel. First, the
BARM measurement that is transmitted during the handshake is signed
using the endpoint’s secret part of the signing key SKsign. Second, the
exchanged DH values that are used for the session key computation are
also signed with SKsign. Hence, not only the first transmitted BARM
measurement as well as the DH values are bound to the channel endpoint,
but also the session key SeK that eventually establishes the secure com-
munication channel for authentic state reporting. This means that every
heartbeat message is also bound to the channel endpoint. These messages
are only transmitted in encrypted form via the channel that is protected
by SeK.

The endpoint’s authenticity also prevents a relay attack where the at-
tacker could send a request to a third platform to sign platform state data
PSD that includes a BARM measurement value that is less than 50 bus
transactions. The third platform has no access to SKsign of the target
platform. That means, we can exclude that the attacker is able to conduct
a relay attack. Alternatively, the attacker could try to forge a PSD sig-
nature. To do so, the attacker requires SKsign that is present in the main
memory. Again, when the attacker searches for SKsign via DMA, BARM
will reveal this attack and the memory access will be prevented. Hence,
we can conclude that the attacker is unable to forge digital signatures.

• R3 – Privacy: The only sensitive data that is transmitted unencrypted
is the first BARM measurement value that is sent to the peer during the
handshake. While a compromised network interface card could be used to
intercept this value, it is unlikely that this first measurement value is of use
for an attacker. It is independent of further measurement values, which
are required to identify when BARM determines −T bus transactions.
Hence, we can conclude that our authentic reporting channel adheres to
the least information paradigm.

24

6 Summary

In this technical report we developed, implemented, and evaluated an authentic
reporting channel application for BARM. This channel is based on the secure
channel protocol TLS. We modified the TLS protocol to consider BARM mea-
surements during the handshake as well as during the rest of the communication
session. Our modifications are based on TLS extensions. This means that our
channel is compliant with the TLS specification. Furthermore, the implemen-
tation of our reporting channel fulfills the security requirements (host CPU
endpoint authenticity and channel binding) that we defined for the DMA mal-
ware scenario. Without the fulfillment of these requirements malware executed
on the network interface card is a threat for an authentic communication with
an external platform.

Our channel is an application for our bus agent runtime monitor if platform
state change reporting is required by a communication partner. The authen-
tic reporting channel transmits the state changes to the peer. We confirmed
BARM’s effectiveness and efficiency with our DMA malware DAGGER in con-
junction with the implemented reporting channel. Previous work that is related
to authentic platform state reporting assumed the presence of an efficient run-
time monitor. However, the corresponding proof of concept implementations
presented in previous work did not include such a monitor. Furthermore, pre-
vious work did also not consider the DMA malware scenario.

We can also conclude that BARM can handle more complex bus masters.
We demonstrated that BARM can not only handle the host CPU, the UHCI
controller, etc., but also the ethernet controller. To integrate the ethernet con-
troller into BARM’s detection model we had to analyze the controller with
regards to memory read and write accesses. We were able to distinguish read
and write accesses by exploiting additional performance monitoring unit config-
urations. However, to eventually determine the number of bus transactions that
are caused by the ethernet controller we had to introduce a new parameter. This
new parameter is the cache line size. According to our evaluation, BARM mea-
surement fluctuations are minimally higher as compared to the BARM version
that does not consider the ethernet controller. Nonetheless, the fluctuations are
still in the range of T = +/−50 bus transactions. Our empirical measurements
revealed that the performance overhead of the authentic reporting application
is negligible if heartbeat messages are sent approximately every second. The
reporting interval can be greater than BARM’s sampling interval. The loss of
DMA malware attack information is prevented by including an attack history
in the heartbeat messages.

References

[1] Patrick Stewin. A Primitive for Revealing Stealthy Peripheral-based At-
tacks on the Computing Platform’s Main Memory. In Proceedings of the
16th International Symposium on Research in Attacks, Intrusions and De-
fenses (RAID), 2013.

[2] Yacine Gasmi, Ahmad-Reza Sadeghi, Patrick Stewin, Martin Unger, and
N. Asokan. Beyond Secure Channels. In Proceedings of the 2007 ACM

25

Workshop on Scalable Trusted Computing, STC ’07, pages 30–40, New
York, NY, USA, 2007. ACM.

[3] Frederik Armknecht, Yacine Gasmi, Ahmad-Reza Sadeghi, Patrick Stewin,
Martin Unger, Gianluca Ramunno, and Davide Vernizzi. An Efficient Im-
plementation of Trusted Channels based on OpenSSL. In Proceedings of
the 3rd ACM Workshop on Scalable Trusted Computing, STC ’08, pages
41–50, New York, NY, USA, 2008. ACM.

[4] The Computer Language Company Inc. Heartbeat. Computer Desk-
top Encyclopedia: http://lookup.computerlanguage.com/host app/sea

rch?cid=C999999&term=heartbeat&lookup.x=27&lookup.y=21 [accessed
25 February 2014], 2013.

[5] Siani Pearson, Boris Balacheff, Liqun Chen, David Plaquin, and Graeme
Proudler. Trusted Computing Platforms: TCPA Technology in Context.
Prentice Hall PTR, Upper Saddle River, NJ, USA, 2002. Hewlett-Packard
Professional Books.

[6] Darren Abramson, Jeff Jackson, Sridhar Muthrasanallur, Gil Neiger, Greg
Regnier, Rajesh Sankaran, Ioannis Schoinas, Rich Uhlig, Balaji Vembu,
and John Wiegert. Intel Virtualization Technology for Directed I/O. Intel
Technology Journal, 10(3):179 –192, August 2006.

[7] Patrick Stewin and Iurii Bystrov. Understanding DMA Malware. In Pro-
ceedings of the 9th Conference on Detection of Intrusions and Malware &
Vulnerability Assessment, 2012.

[8] Intel Corporation. Intel I/O Controller Hub 8/9/10 and
82566/82567/82562V Software Developer’s Manual. Intel Corpora-
tion: http://www.intel.com/content/dam/doc/manual/i-o-control
ler-hub-8-9-10-82566-82567-82562v-software-dev-manual.pdf
[accessed 25 February 2014], July 2009.

[9] Jon Stokes. Inside The Machine: An Illustrated Introduction to Micro-
processors and Computer Architecture. No Starch Press Series. No Starch
Press, 2007.

[10] Intel Corporation. Intel 3 Series Express Chipset Family. Intel Corpo-
ration: http://www.intel.com/Assets/PDF/datasheet/316966.pdf [ac-
cessed 25 February 2014], August 2007.

[11] Intel Corporation. Intel VTune Amplifier 2013 – Document Number:
326734-004. Intel Corporation: http://software.intel.com/sites/pro
ducts/documentation/doclib/iss/2013/amplifier/lin/ug docs/inde

x.htm [accessed 25 February 2014], 2013. External Bus Events.

[12] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol
Version 1.2. Internet Engineering Task Force: http://www.ietf.org/rfc
/rfc5246.txt [accessed 25 February 2014], August 2008. Network Working
Group RFC 5246.

26

[13] Davide Vernizzi. TLS Hello Extensions and Supplemental Data.
Blog: http://tlsext-general.blogspot.de/2008/12/tls-hello-exten
sions-and-supplemental.html [accessed 25 February 2014], December
2008.

[14] S. Blake-Wilson, M. Nystrom, D. Hopwood, J. Mikkelsen, and T. Wright.
Transport Layer Security (TLS) Extensions. The Internet Engineering
Task Force: http://www.ietf.org/rfc/rfc4366.txt [accessed 25 Febru-
ary 2014], April 2006. RFC4366.

[15] S. Santesson. TLS Handshake Message for Supplemental Data. The Inter-
net Engineering Task Force: http://www.ietf.org/rfc/rfc4680.txt [ac-
cessed 25 February 2014], September 2006. RFC4680.

[16] Markulf Kohlweiss, Ueli Maurer, Cristina Onete, Björn Tackmann, and
Daniele Venturi. (De-)Constructing TLS. Cryptology ePrint Archive:
http://eprint.iacr.org/2014/020.pdf [accessed 25 February 2014], Jan-
uary 2014.

[17] Tilo Müller, Andreas Dewald, and Felix C. Freiling. AESSE: A Cold-boot
Resistant Implementation of AES. In Proceedings of the Third European
Workshop on System Security, EUROSEC ’10, pages 42–47, New York,
NY, USA, 2010. ACM.

27

