
Forschungsberichte
der Fakultät IV – Elektrotechnik und Informatik

Deriving Type Checkers

Martin Zuber and Fabian Linges

Bericht-Nr. 2012 – 09
ISSN 1436-9915

Deriving Type Checkers
[Technical Report 2012-09]

Martin Zuber and Fabian Linges

Technische Universität Berlin
Fakultät IV Elektrotechnik und Informatik

Institut für Softwaretechnik und Theoretische Informatik
Fachgebiet Übersetzerbau und Programmiersprachen

Ernst-Reuter-Platz 7, D-10587 Berlin

{mzuber,linges}@cs.tu-berlin.de

Abstract. The relationship between a type system’s specification and
the implementation of the type checker is a recurring issue when writing
compilers for programming languages and it is an ongoing question if –
and if so, how – the formal description of a type system can be used
to support the compiler writer when implementing the type checking
phase. In this paper we propose type systems formalized by constraint-
based inference rules to form an ideal abstraction to accomplish the task
of automatically deriving type checking functionality from them. We de-
velop a set of algorithms employing the constraint-based flavor of the
rules to perform type checks and present the design and implementation
of a Haskell library utilizing these algorithms to provide functionality
for the type checking phase based on the chosen abstraction.

1 Introduction

Type systems are an essential high level abstraction of modern programming
languages and type checkers are standard components of their compilers. A lan-
guage’s type system needs to be fitted with a formal description to allow the
language designer to reason about certain formal aspects of the system, e.g.,
well-formedness, progress, and preservation.
Questions about the relationship between a type system’s formal description and
its implementation have been addressed in existing work, ranging from mutual
consistency between description and implementation [20,5] to the development of
specification techniques suitable for generating type checkers [6]. Yet the question
remains if the standard, text-book way to formalize type systems – inference rules
over type judgements – can be used to derive or generate type checkers.
In this paper we focus on this question and show that a well known exten-
sion of the standard way to formalize type systems, namely the extension with
constraints, can be used to derive type checking functionality. We develop an ab-
stract type checking framework utilizing the constraint-based flavor of the type
system and present the design and implementation of a Haskell library which
employs our developed ideas and algorithms for deriving type checkers.

The remainder of this report proceeds as follows. In section 2, we give a precise
overview of constraint-based type systems. Sections 3 and 4 present our two al-
gorithms for generating and solving constraints. Section 5 describes the design
and implementation of the library. Section 6 and 7 employ our framework to de-
fine type checkers for the languages Mini-ML and FeatherweightJava to give
the reader a better understanding of the usage of the library. Section 8 presents
a framework for visualizing the internals of the derived type checkers. Sections
9 and 10 describe related work and discuss some open questions regarding the
implementation.
The implementation of our library, its documentation, and all example type
checkers are available from [32].

2 Constraint-based Type Systems

Type systems provide a lightweight formal method to reason about programs
and therefore need to be formalized in an adequate manner. A typical way to
accomplish this task is to formulate type systems by inference rules.
Following notion from proof theory a typing rule consists of a sequence of
premises P1 ... Pn and a conclusion C. Each Pi and C is a typing judgement
and a rule is written with a horizontal line separating the premises from the
conclusion. Typing judgements can be modeled as a ternary relation

Γ ` e : T

between a context Γ , an expression e, and a type T [4]. The turnstile ` denotes
that the type T can be derived for the expression e under the assumptions given
by the context Γ . The judgements of rules may contain variables at meta level
which represent an arbitrary object of a given class. A rule instance is a rule
in which all meta variables have been substituted with concrete object-level
pendants.
In this setting, a deduction (or derivation) is a tree of rule instances labeled with
judgements. Each node is the conclusion of a rule instance and its children are
the premises of the same rule instance. Thus a typing relation Γ ` e : T holds if
there exists a deduction of that judgement under the given set of typing rules.
This approach to formalize type systems can be extended in various ways, one
particular – the extension with constraints – will be used as the underlying
formalism for our approach to derive type check functionality from a type sys-
tem’s specification. In a type deduction step as described above it is checked
whether all typing relations formulated in the premises of the instantiated rule
hold. Thus in each inference step a certain set of constraints (the requirement
that a typing relation holds can be seen as a constraint) is generated and directly
checked. Given a constraint-based setting, instead of checking the generated con-
straints directly they are collected for later consideration. To capture this idea
our notation for judgements in deduction rules needs to be accommodated. A
constraint typing judgement can be modeled as a ternary relation extended with
a constraint set

2

Simple Lambda
Γ ` x : T | {T = Γ (x)} (Var)

Γ, x : T1 ` e : T2 | C
Γ ` λx.e : T | C ∪ {T = T1 → T2}

(Abs)

Γ ` f : T1 | C1 Γ ` e : T2 | C2

Γ ` (f) e : T | C1 ∪ C2 ∪ {T1 = T2 → T}
(App)

Fig. 1. Simply, constraint-based typed lambda calculus.

Γ ` e : T | C

and can be read as “expression e has type T under the assumptions Γ whenever
the constraints in C are satisfied” [25]. In this constraint-based abstraction type
checking is separated in two phases, constraint generation and constraint solv-
ing. A traversal of an abstract syntax tree generates a set of constraints and the
program is well typed if and only if these constraints have a unique solution –
type checking is reduced to constraint solving.
For a better understanding of this extension let us consider the constraint-based
typing rules for the simply typed lambda calculus given in Fig. 1. Especially
the typing rules for λ-abstraction and application illustrate the benefit of a
constraint-based approach in comparison to basic inference rules: Using con-
straints as an abstraction allows the designer of a type system to formulate the
essential consistency conditions that the type system imposes on the language [6].
Additionally, a constraint-based approach provides a certain flexibility regard-
ing its expressiveness: the formalism can be custom-tailored to the type system
to be defined by choosing the right set of constraint domains while still being
strong enough to allow us to reason about the system in terms of progress and
preservation.

3 Constraint Generation

To be able to use constraint-based inference rules for automatically deriving
type check functionality from a given specification of the type system we need
to develop an algorithm which generates – given a program and a set of typing
rules – a set of constraints such that the program is well typed if and only if
these constraints have a solution.
The algorithm to be presented is a modified version of Wand’s type inference
algorithm [33]. Thus the remainder of this section introduces Wand’s algorithm
in detail and discusses the needed extensions and modifications.
Wand presented the first proof that Hindley-Milner type inference can be reduced
to unification by developing and proving an algorithm which proceeds in the

3

Input: Term t0

Initialization: E = ∅
G = {(Γ0, t0, τ0)}, where τ0 is a type variable and Γ0

maps the free variables of t0 to other distinct type
variables

Loop: If G = ∅ then halt and return E
Otherwise: choose and delete a subgoal from G and add to E

and G new verification conditions and subgoals as
specified in an action table

Fig. 2. Skeleton of Wand’s type inference algorithm.

manner of a verification-condition generator. His algorithm basically mimics the
construction of a term’s derivation tree and emits corresponding verification
conditions (equations over type terms) along the way. At every step it keeps
track of a set of subgoals G (the remaining type assertions to be proven) and a
set E of equations over type terms which must be satisfied for the derivation to
be valid. The algorithm ensures that at every stage the most general derivation
tree is generated. Figure 2 captures the algorithm’s basic functionality.
This generic definition of the algorithm can be completed in different ways by
using different tables of actions for processing the subgoals in the loop step.
Wand presented an action table for terms of the simply typed lambda calculus,
which is stated in Fig. 3. In this action table three kinds of actions are defined,
corresponding to the three kinds of lambda terms that might appear in the
selected subgoal.

Let s be the selected subgoal.

Case 1: s = (Γ, x, t) Generate the equation t = Γ (x).
Case 2: s = (Γ, (f) e, t) Let τ1 be a fresh type variable that appears

nowhere else in (E, G). Then generate the sub-
goals (Γ, f, τ1 → t) and (Γ, e, τ1).

Case 3: s = (Γ, λx. e, t) Let τ1 and τ2 be fresh type variables. Gener-
ate the equation t = τ1 → τ2 and the subgoal
((Γ, x : τ1), e, τ2).

Fig. 3. Action table for the typed lambda calculus.

Wand’s type inference algorithm is modeled in a top-down manner: the skeleton
of the algorithm describes how the construction of the derivation tree for the

4

Input: Term t0, Set of constraint-based typing rules R

Initialization: E = ∅
G = {Γ0 ` t0 : τ0}, where τ0 is a type variable and Γ0

maps the free variables of t0 to other distinct type
variables

Loop: If G = ∅ then halt and return E

Otherwise: 1. choose and delete a subgoal s from G
2. choose the best fitting rule for s from R
3. s′ ← instantiate the chosen rule with s
4. substitute all meta-level types in s′ with fresh

type variables, add all premises in s′ as new sub-
goals to G and add all constraints in s′ to E

Fig. 4. Constraint generation algorithm.

term t0 is mimicked and typing equations are collected. The so called action
table defines for a specific language which subgoals and verification conditions
(equations) are generated at each step of the algorithm.
This action table has a distinct resemblance with constraint-based formulated
type rules: based on the conclusion of the type rule premises are generated as
new subgoals and type equations (equality constraints over type terms), where all
meta level types of the typing rule have been replaced with fresh type variables,
are recorded.
Thus Wand’s algorithm is considered to form a suitable base for the library’s
constraint generation phase. But in order to do so, some modifications need to
be made. Since the equations arising from the use of a type rule are denotated di-
rectly as a constraint in this deduction rule and the new subgoals are represented
by the rule’s premises, the action table of Wand’s algorithm can be omitted. The
skeleton now needs to be modified such that new subgoals are generated based
on a rule’s premises and type equations are recorded based on the constraints
of a type rule where all meta level types have been replaced with fresh type
variables.
A revised version of Wand’s algorithm including the described modifications is
given in Fig. 4.

4 Constraint Solving

Given an algorithm generating a set of constraints for an expression we now
want to describe the semantics of a suitable constraint solver. But to do so, we
need to introduce the notion of auxiliary functions in deduction rules first. Type
systems regularly make use of auxiliary functions to define certain functionality,
such as the lookup in a context or the instantiation of a type scheme, to allow a

5

Input: Set of constraints C

Initialization: σ = ∅
(C1, C2) = partition C

Loop: If C1 = C2 = ∅ then halt and return σ

If C1 = ∅ then apply algorithm to C2 and compose arisen substitution
with σ

Otherwise: 1. choose and delete a constraint c from C1

2. evaluate all auxiliary functions in c
3. solve c and compose arisen substitution with σ
4. apply σ to all constraints in C1 and C2

Fig. 5. Constraint solving algorithm.

more concise description of a system’s type rules. These auxiliary functions are
not necessarily specified in an inference rule style which yields the designer of
a type system additional flexibility when defining deduction rules. We consider
the notion of auxiliary functions quite useful and want to extend our model
such that we allow auxiliary functions not only in a rule’s premises, but also
in constraints. We even go one step further and allow auxiliary functions in
constraints whose correct evaluation might depend on the solution of another
constraint, i.e., we allow the definition of auxiliary functions over type variables
in constraints. This requirement needs to be captured by the constraint solver
accordingly, a description of the constraint solving algorithm is given in Fig. 5.
To deal with constraints whose evaluation depends on the solution of another
constraint the algorithm performs a dependency analysis on the given constraint
set and partitions the set C such that C1 contains all the constraints which
can be solved directly and C2 consists of all the constraints depending on the
solution of one of the constraints in C1. Now the constraints in C1 can be solved
gradually and the possibly arisen substitutions are composed with σ and applied
to all remaining constraints. Finally, the constraints in C2 are solved using the
algorithm described and the resulting substitution is composed with σ.

5 Designing the Library

Having defined a formalism for automatically deriving type check functionality
from a type system’s specification we now present the design of a Haskell
library utilizing the algorithms of the previous sections and discuss some aspects
of the implementation in detail.
To determine the initial feature set of the library we used two languages as
case studies and the characteristics of these languages formed the requirements

6

regarding the expressiveness of our implementation. We chose Mini-ML [3] and
FeatherweightJava [14] due to their role as core calculi for pure functional
and class-based, object-oriented languages respectively. Additionally their type
systems contain interesting typing concepts such as strongly typed expressions
without type declarations (type inference) and let-polymorphism in Mini-ML
as well as subtyping (via single inheritance), casting, and method override in
FeatherweightJava.
The library provides a default abstract syntax for types and the user defines her
type system by deduction rules using the given components for abstract syntax
and types. Based on a set of typing rules the library’s type check function is able
to compute the most general type of an expression by interpreting the given
inference rules.

5.1 Abstract Syntax

For rapid prototyping of type checking functionality our library ships with a
number of default components for abstract syntax and types which fulfill the
needed technical requirements to be used in deduction rules.
Typing rules reason at a meta level about the used contexts, expressions, and
types. The library’s constraint generation function instantiates such rules and
replaces all meta-level elements with their object level-pendants. Thus the defi-
nitions for expressions and types have to provide object and meta-level versions
accordingly. To ease the implementation of abstract syntax suitable for use with
our type checking framework we supply common functionality which provides
object as well as meta-level versions and fulfills all the technical requirements
arising from the constraint generation and the constraint solving algorithms.
Some of these components, namely identifiers, sets, sequences, and auxiliary
functions in type rules, are presented subsequently.
Names, or to be more precise, identifiers of elements are an essential component
of a language’s abstract syntax. Given the requirements stated earlier the data
type Identifier yields everything needed to be used in deduction rules:

1 data Identifier a = MIde String -- Meta level
2 | Ide a -- Object level
3

4 type Ide = Identifier String

Simple, String-based identifiers can be realized by instantiating the type pa-
rameter a accordingly.
The FeatherweightJava type system depends on sets and sequences over ex-
pressions, types and judgements. Consider for example a type rule for method
definitions: as part of an inference rule we have to reason about an arbitrary
number of parameters at meta level since the exact arity of the method is un-
known until the rule is instantiated. To be able to reason about such syntactical
elements in deduction rules we introduce data structures representing sets and
sequences at object and at meta level:

7

1 data ISet = MetaISet String
2 | ISet [Int]
3

4 data Sequence a = MetaSeq ISet a
5 | ObjSeq (Data.Seq.Seq a)
6

7 data Set a = MetaSet ISet a
8 | ObjSet (Data.Set.Set a)

Meta-level sets and sequences over elements e are denotated as the union ∪i∈I {ei}
and the concatenation ∧i∈I ei of indexed meta-level elements e respectively. This
notion is transformed into the Haskell data types above in a straightforward
manner. Meta-level sets and sequences consist of the element e and an index
set. This index set can be at meta level, represented by an identifier, or at ob-
ject level. Object-level index sets are encoded as simple integer lists. Meta-level
sets and sequences with an index set at object level can be transformed into
object-level sets and sequences by indexing the element e accordingly.
For convenience reasons it is useful to allow auxiliary functions in deduction
rules. Such auxiliary functions might be the lookup in a context or the calculation
of a class attribute’s type. This leads to the question how auxiliary functions,
more precisely calls to those functions, can be encoded in order to use them in
type rules. Deduction rules reason at meta level over their judgements. Thus
potential arguments for auxiliary functions might be at meta level, too. So the
function call needs to be deferred until all meta-level arguments are instantiated
with a corresponding element at object level. Since Haskell evaluates lazily,
an auxiliary function is not applied to its arguments immediately, but there is
no way to change the arguments of such an application thunk afterwards. This
problem can be handled by wrapping the function and its arguments in a certain
way:

1 data MetaFun b = forall a . (...) => MF (a -> Maybe b) a

The call to an auxiliary function is encoded in a simple wrapper data structure
containing just the function and its arguments. To deal with varying arity and
types the function will be uncurryed and the type variable capturing the argu-
ments is existentially quantified. Note that the wrapped function has to return
a Maybe value. This allows us to capture the elements of the function’s domain
for which the function is not defined, i.e., meta-level elements or type variables.
In such cases the function returns Nothing. This gives us the possibility to de-
termine during constraint solving whether a meta-level function is evaluable or
not.
In addition to several components to be used in a language’s expression syntax
the library supplies an implementation for types which covers a basic set of
standard type constructs such as base types, type variables, function and tuple
types, type constructors, and type schemes:

1 data Ty = Bottom -- Bottom type
2 | T Ide -- Base type
3 | TV Ide -- Type variable

8

4 | TF Ty Ty -- Function type
5 | TT [Ty] -- Tuple type
6 | TC Ide [Ty] -- Type constructor
7 | TS [Ty] Ty -- Type scheme
8 | TFun (MetaFun Ty) -- Type function
9 | TSeq (Sequence Ty) -- Type sequences

10 | TSet (Set Ty) -- Type sets
11 | MT String -- Meta -level type

The library’s type definition also utilizes all the items presented so far and pro-
vides type sets and sequences to be used in deduction rules as well as meta level
functions evaluating to a type.

5.2 Inference Rules

As part of our library we enhance the notion for constraint-based deduction
rules to allow the user a more convenient way to define her type system. Instead
of annotating each judgement with a constraint set and adding the constraints
arising from the use of this rule to the conclusion’s constraint set, e.g.,

Γ ` f : T1 | C1 Γ ` e : T2 | C2

Γ ` (f) e : T | C1 ∪ C2 ∪ {T1 = T2 → T}
(App)

the arising constraints will be denotated as a premise and the constraint set
annotated at each typing judgement will be omitted:

Γ ` f : T1 Γ ` e : T2 T1 = T2 → T

Γ ` (f) e : T
(App)

That is, each constraint given as a premise as well as the constraint sets of the
judgement premises will be implicitly added to the conclusion’s constraint set.
This modification employs a more compact way to define an inference rule even
if numerous constraints arise from the use of this rule.
Given this notation, deduction rules can be encoded in a straightforward manner
using the following algebraic data types:

1 data Judgement = forall a . (...) => J Context a Ty
2 | forall a . (...) => C (Constraint a)
3

4 data Rule = Rule { premises :: [Judgement],
5 conclusion :: Judgement }

The data structures for judgements and constraints as well as the algorithms
for generating and solving constraints are parametric in the used data type for
expressions. This allows the user of our framework to use her own abstract syntax
as long as the implementation fulfills certain requirements. These requirements
are formulated as type class constraints over the existentially quantified type
variable a and are omitted for readability reasons in the data type declarations

9

above. We will define some of these requirements throughout the remainder of
this section, the omitted ones are merely technical and do not need any further
discussion.
In addition to the desired genericity of the library’s data structures and algo-
rithms, more complex typing rules might need to reason about different kinds
of expressions. To allow the user to define such inference rules, judgements are
existentially quantified over their expressions.1

5.3 Constraints

Wand’s example action table for a simply typed lambda calculus helps us to de-
termine the central constraint domain to be used when formalizing type systems:
equality constraints over type expressions. In addition our library supports the
use of the logical connectives negation, conjunction, disjunction and implication
as well as the use of predicates. Last but not least we allow the user to define
solvers for new constraint domains:

1 type Unifier = (Bool , Substitution)
2

3 data Constraint a = Eq a a
4 | Not (Constraint a)
5 | And (Constraint a) (Constraint a)
6 | Or (Constraint a) (Constraint a)
7 | If (Constraint a) (Constraint a)
8 | Predicate (MetaFun Bool)
9 | Constraint (MetaFun Unifier)

Predicates are implemented using an embedded Haskell predicate. User defined
constraints are defined in a similar fashion, here the solver for the new constraint
domain is supplied as an embedded function.

5.4 Rule Instantiation

The basic technique used for the instantiation of a rule is first-order unifica-
tion [27]. A rule is instantiable if and only if there exists a most general unifier
between the rule’s conclusion and the current goal.
Based on a given list of typing rules the constraint generation algorithm tries
to instantiate each arising goal with one of the rules. If a matching rule for
the current goal has been found the remaining rules are not checked any more.
This can be described as a first-fit-rule-matching semantic where the rules are
implicitly prioritized based on their order in the list. If a matching rule for a
subgoal has been found the rule’s conclusion can be instantiated by applying the
found unifier to it. To complete the instantiation of the rule the premises and
constraints of the rule have to be instantiated, too. This task is accomplished
1 This requirement leads to the problem of defining heterogenous collections in

Haskell. Using existential types yields the solution providing the most convenient
interface for the user of the library.

10

in three steps: At first, all substitutions over index sets are applied to the rule’s
premises and constraints to be able to instantiate and unfold all meta-level sets
and sequences contained in those premises and constraints. Secondly, the found
unifier is applied to the unfolded judgements. At last, all remaining meta-level
types are instantiated with fresh type variables.
This rule instantiation algorithm formulates some of the technical requirements
regarding the used abstract syntax. Object and meta-level versions of types and
expressions have to be unifiable, the application of substitutions as well as the
unfolding of meta-level sets and sequences has to be defined, the instantiation of
the remaining meta-level types with fresh type variables has to be stated, and last
but not least all evaluable embedded Haskell functions have to be evaluated.
These requirements are captured in the type classes Evaluable, Substitutable,
Instantiable, and Unifiable and the existentially quantified type variables on
the data type declarations for judgements, constraints, and meta-level functions
are annotated with corresponding type class constraints.

1 class Evaluable a where
2 isEvaluable :: a -> Bool
3 containsMF :: a -> Bool
4 eval :: a -> a
5

6 class Substitutable a where
7 apply :: Substitution -> a -> a
8

9 class Instantiable a where
10 unfold :: a -> a
11 indexM :: a -> Int -> a
12 instMT :: a -> TypeCheckM Substitution
13

14 class Eq a => Unifiable a where
15 unify :: a -> a -> Unifier
16 occursIn :: a -> a -> Bool

The type class Evaluable provides two discriminator methods isEvaluable
and containsMF for checking whether elements are at object level or if they
contain a wrapped up auxiliary function and the method eval which evaluates
such a meta-level function. The class Substitutable captures the application
of a substitution to an element and the class Unifiable handles unification and
occurs-checks. Last but not least, the type class Instantiable defines methods
for the unfolding of meta-level sets and sequences (unfold), the indexing of
meta-level elements (indexM) as well as the instantiation of all meta-level types
contained in an expression. The method instMT runs inside a state monad to be
able to generate fresh type variables.
Experienced Haskell programmers might object that some of this functionality,
e.g. the evaluation of meta-level functions contained in an expression, the appli-
cation of a substitution to an expression and its children respectively, the unfold-
ing of meta-level sets and sequences, and the instantiation of meta-level types,
could have been implemented as part of the library using data type generic pro-

11

gramming techniques as described in Scrap your boilerplate [18] or Uniplate [21]
instead of obligating the user to define it by herself. Unfortunately, the use of
existential types for meta-level functions and judgements prevents us from using
generic programming, since the mentioned libraries can’t define generic functions
over non-Haskell-98 data types2.
Nevertheless our library provides a mechanism to save the user from writing boil-
erplate code when defining instance declarations for the four type classes stated
above. Given some essential properties of the abstract syntax, i.e., a discrimi-
nator for meta-level elements, a relation linking meta-level elements to its cor-
responding object-level pendants, as well as a function handling the indexing of
meta-level elements, we can employ Haskell’s compile-time meta-programming
facilities [29] to derive the instance declarations for Evaluable, Substitutable,
Instantiable, and Unifiable. These needed properties are covered by the type
class AST

1 class AST a where
2 index :: a -> Int -> a
3 (~=) :: a -> a -> Bool
4 isMeta :: a -> Bool

and by providing an instance declaration for AST the user can utilize the library’s
Template Haskell functionality to derive the desired instance declarations for
the four type classes capturing the requirements formulated by the constraint
generation and the constraint solving function.

5.5 Heterogenous Substitutions

Unification plays an essential role as part of our framework since it is used during
rule instantiation to determine the matching rule for an expression and during
constraint solving to solve equality constraints. Both the rule instantiation phase
and the constraint solver formulate some distinct requirements on the used im-
plementation for substitutions and we want to discuss some of these technical
aspects in detail.
Instantiating a rule yields mappings from meta-level contexts to object-level
contexts, from meta-level expressions to object-level expressions, and from meta-
level types to object-level types. We want to capture all these mappings in one
substitution and therefore define substitutions as heterogenous collections of
homogenous mappings from meta-level to object-level elements.
As part of our library we implement substitutions as maps from types to collec-
tions of homogenous mappings. Since types are not values in Haskell we use
the data type for type representations instead:

1 data S = forall a . S (Map a a)
2

3 type Substitution = Map TypeRep S

2 This limitation of nearly all generic programming approaches in the Haskell uni-
verse is discussed in great detail in Alexey Rodriguez Yakushev’s PhD thesis [28].

12

Given those data structures, a substitution can be seen as a collection of key-
value pairs where the key element hints on the type the mappings in the value
element are ranging over. To capture the heterogenous nature of this collection,
the homogenous mappings are existentially quantified again. Basic operations,
such as inserting a meta-level/object-level mapping into a substitution, can now
be implemented in a straightforward manner:

1 insert :: a -> a -> Substitution -> Substitution
2 insert k v s = insertWith addKV (typeOf k) kv s
3 where
4 kv = S (singleton k v)
5

6 addKV _ (S m) =
7 case (cast m) :: Maybe (Map a a) of
8 Just m’ -> S (M.insert k v m’)
9 _ -> error "Corrupt subst."

Based on the type of the mapping we determine the corresponding entry in the
underlying map. We have to cast the wrapped up collection of mappings using
Haskell’s type safe cast operator to be able to insert the given mapping. If
mappings over the type a are not contained in the map yet, a new entry is
added to the map containing just the given mapping.
If we want to apply a substitution to an element we use the same pattern again:

1 apply :: Substitution -> a -> a
2 apply s x = maybe x (! x) (lookup (typeOf x) s)
3

4 (S m) ! x = case (cast m) :: Maybe (Map a a) of
5 Just m’ -> maybe x id (lookup x m’)
6 Nothing -> error "Corrupt subst."

We determine if a collection of mappings of type a exists in the given substitution
and lookup the corresponding value. If no mappings over a are present or x is
not stored as a key in the underlying map, apply s results to identity.

5.6 Constraint Solving

The constraint solving algorithm described in Sec. 4 performs a dependency
analysis on the input and partitions the given constraint set such that constraints
containing auxiliary functions depending on the solution of another constraint
can be postponed accordingly.
The key question at this point is: how do we determine if an auxiliary func-
tion depends on the solution of another constraint? The constraint generation
algorithm instantiates meta-level types with fresh type variables and the con-
straint solver yields a substitution containing mappings from type variables to
types. Thus an auxiliary function with type variables as arguments needs to be
postponed, if one of these type variables is bound by another constraint, too3.
3 To get an idea in which scenarios we benefit from this dependency analysis, the
reader might want take a look at the next section where we present an example type

13

This view on auxiliary functions defines one essential requirement regarding the
implementation of the dependency analysis: we need to be able to determine all
type variables bound by a constraint. We follow the strategies used so far and
define a type class Vars which covers the computation of free, bound, and all
type variables contained in an element:

1 class Vars a where
2 fv :: a -> Set Ty
3 fv x = (vs x) \\ (bv x)
4

5 bv :: a -> Set Ty
6 bv x = (vs x) \\ (fv x)
7

8 vs :: a -> Set Ty
9 vs x = (fv x) ‘union ‘ (bv x)

Our library provides instance declarations for all abstract-syntax components
described earlier, meta-level functions, types, and constraints. Thus the Vars
instance declaration for the user’s abstract syntax would just define a recursive
traversal of the syntactical elements where all type variables are collected. Again,
we do not obligate the user to write this boilerplate code and provide Template
Haskell -functionality to derive the instance declaration automatically.
Being able to select all type variables contained in a constraint the dependency
analysis can be implemented in a straightforward manner. Using the containsMF
method of the Evaluable type class we can discriminate all constraints contain-
ing an auxiliary function. Given such a constraint we select the type variables
of the auxiliary function(s) and calculate the set of type variables bound by all
other constraints. If the intersection of these two sets is not empty the auxiliary
function might depend on the solution of another constraint and the constraint
containing the auxiliary function is postponed for later consideration.

5.7 Error Messages

For real world usage our library has to provide a mechanism to define adequate
error messages. Until now, an ill-typed expression yields to the information that a
certain constraint could not be solved. This obviously does not qualify as a useful
error message and therefore our library provides more elaborate components for
error handling.
First of all it has to be stated that constraint-based type rules form an excellent
base for defining good error messages. Each constraint defines a consistency
condition on the expression(s) a type rule reasons about and the non-solvability
of a constraint represents one possible typing error which can occur for this
expression. Thus annotating each constraint in an inference rule with an error
message covers all possible error cases in a quite convenient way.

system and discuss the topic of type variable arguments in auxiliary functions on an
explicit type rule.

14

Our implementation adapts this idea in a straightforward manner and the data
type declaration for constraints is modified such that each constructor is ex-
tended with an ErrorMsg field accordingly.
A good error message does not only consist of a static message but hints on those
expressions which produced the error. Since constraints are defined at meta level,
all elements an error message could consider are at meta level, too. Given our
implementation for auxiliary functions in deductions rules, error messages can
be seen as meta-level functions evaluating to a String:

1 data ErrorMsg = ErrorMsg (MetaFun String)

This approach yields an easy and straightforward implementation of error mes-
sages and fits conveniently in the strategy used so far.

6 A Type Checker for Mini-ML

Mini-ML was developed in [3] in order to present a formal description of the
central part of the ML language in natural semantics. Mini-ML is a strongly
restricted ML, consisting basically of the simply typed lambda calculus extended
with the base types int and bool, pairs, conditionals and recursive, polymorphic
let, and can therefor be seen as a core calculus for functional programming
languages.

6.1 Syntax

Since Mini-ML is just an extended, simply Curry-style typed lambda calculus,
the syntax definition follows the regular, recursive definition of the untyped
lambda calculus in a straightforward manner:

Let V be a countable set of identifiers (variables), B = {true, false} the set
of boolean values and Z the set of integers. The set of Mini-ML terms is the
smallest set TMini−ML such that

1. x ∈ TMini−ML for every x ∈ V
2. b ∈ TMini−ML for every b ∈ B
3. n ∈ TMini−ML for every n ∈ Z
4. e ∈ TMini−ML and x ∈ V ⇒ λ x.e ∈ TMini−ML

5. e1, e2 ∈ TMini−ML ⇒ (e1) e2 ∈ TMini−ML

6. e1, e2 ∈ TMini−ML ⇒ (e1, e2) ∈ TMini−ML

7. e1, e2, e3 ∈ TMini−ML ⇒ if e1 then e2 else e3 ∈ TMini−ML

8. e1, e2 ∈ TMini−ML and x ∈ V ⇒ let x = e1 in e2 ∈ TMini−ML

9. e1, e2 ∈ TMini−ML and f, x ∈ V ⇒ letrec f = λ x.e1 in e2 ∈ TMini−ML

10. e ∈ TMini−ML ⇒ fix e ∈ TMini−ML

15

6.2 Encoding

As part of our first example type checker we want to utilize the library’s default
abstract syntax (see Appendix A) to encode Mini-ML terms and the remainder
of this section is used to describe the translation accordingly.

Variables and constants are obviously encoded in their corresponding construc-
tors. All the other syntactical features of Mini-ML are interpreted as combina-
tions of terms and therefore are encoded in a combiner:

Lambda abstraction An untyped lambda abstraction combines a variable with
an expression: λx. e ⇒ K Abs 2 [Var (Ide‘‘x’’), e]. A typed lambda
abstraction (not part of Mini-ML) will be encoded in a similar way, addi-
tionally binding a type to the variable: λx : T. e⇒
K Abs 2 [Bind (Ide ‘‘T’’) (Var (Ide ‘‘x’’)), e].

Application An application in the simply typed lambda calculus applies an
expression to another one and can therefor be seen as a combination of
terms, too: (f) e⇒ K App 2 [f, e].

Pairs Being two-ary tuples, pairs combine two Mini-ML expressions: (e1, e2)⇒
K Tuple 2 [e1, e2].

Let A let-binding combines a variable with two expressions: let x = e1 in e2 ⇒
K Let 3 [Var (Ide ‘‘x’’), e1, e2]. A recursive let is encoded in the
same manner, but uses a different tag (LetRec).

Conditionals Mini-ML’s syntax provides conditionals which range over three
expressions and will be encoded in a combiner: if c then e1 else e2 ⇒
K IfThenElse 3 [c, e1, e2].

6.3 Type system

The type rules for the extended, simply typed lambda calculus presented above
will follow standard notations [25]. Since a constraint-based type system is de-
sired, the typing constraints arising in each rule will be explicitly denotated
according to the scheme presented in Sec. 5.2.
But before being able to state Mini-ML’s type system we need to introduce the
notion of type schemes in order to define adequate type rules for polymorphic
let bindings.

Definition 1.3.1 A type scheme s = ∀α1. ... ∀αn.τ has a generic instance
t = ∀β1. ... ∀βn.τ ′ , written s � t, if there exists a substitution σ such that

τ ′ = σ(τ) with dom(σ) ⊆ {α1, ..., αn}

and all βi are not free in σ. If s and t are types rather than type schemes, then
s � t implies s = t.

Definition 1.3.2 To generalize a type over its free type variables we define

gen(Γ, τ) =

{
∀α1. ... ∀αn.τ FV (τ) \ FV (Γ) = {α1, ..., αn}
τ FV (τ) \ FV (Γ) = ∅

16

These two auxiliary functions can be implemented in a straight forward manner
using the library’s default type data structure:

1 (>=) :: Ty -> Ty -> Maybe (Bool , Substitution)
2 (MT _) >= _ = Nothing
3 _ >= (MT _) = Nothing
4 -- check if second type scheme is a
5 -- generic instance of the first one
6 (TS tvs1 t1) >= (TS tvs2 t2) =
7 let (b1,o) = unify t1 t2
8 b2 = fromList (dom o) ‘isSubsetOf ‘ fromList tvs1
9 b3 = null (bv t2 ‘intersection ‘ fv t1)

10 in Just (b1 && b2 && b3 , empty)
11 -- or instantiate type scheme
12 (TS tvs t1) >= t2 =
13 let f tv s = insert tv ((TV . Ide) (freshName "T")) s
14 o = foldr f empty tvs
15 t1 ’ = apply o t1
16 in t1’ >= t2
17 t1 >= t2@(TS _ _) = t2 >= t1
18 -- otherwise , unify types
19 t1 >= t2 = Just (unify t1 t2)
20

21

22 gen :: Context -> Ty -> Maybe Ty
23 gen (MCtx _) _ = Nothing
24 gen _ (MT _) = Nothing
25 gen ctx ty = let tvs = fv ty ‘difference ‘ fv ctx
26 tvs ’ = toList tvs
27 in if null tvs then Just ty
28 else Just (TS tvs ’ ty)

Given this notion of type schemes, a constraint-based inference system for Mini-
ML expressions can be stated in a straightforward manner as given in Fig. 6.

Having defined a suitable inference system for Mini-ML we now want to use the
remainder of this section to describe the encoding of the deduction rules given
above using our type checker library. To do so, let us define some meta-level
expressions, types, and contexts used commonly in the following type rules:

1 ctx = MCtx "Gamma" ; x = MIde "x" ; n = MConst "n"
2 e1 = MTerm "e" ; e1 = MTerm "e1" ; e2 = MTerm "e2"
3 e3 = MTerm "e3" ; f = MTerm "f" ; t = MT "T"
4 t1 = MT "T1" ; t2 = MT "T2" ; t3 = MT "T3"

17

Simple Lambda
Γ (x) � T
Γ ` x : T

(Var)

Γ, x : T1 ` e : T2 T = T1 → T2

Γ ` λx.e : T
(Abs)

Γ ` f : T1 Γ ` e : T2 T1 = T2 → T

Γ ` f e : T
(App)

Base Types
T = Int

Γ ` n : T , n ∈ Z
(Int)

T = Bool

Γ ` b : T , b ∈ B
(Bool)

T = Int→ (Int→ Int)

Γ ` ⊕ : T , ⊕ ∈ {+,-,*,/}
(Arith)

T = Int→ (Int→ Bool)

Γ ` == : T
(Compare)

Extensions
Γ ` e1 : T1 Γ ` e2 : T2 Γ ` e3 : T3

T1 = bool T = T2 T = T3

Γ ` if e1 then e2 else e3 : T
(Cond)

Γ ` e1 : T1 Γ ` e2 : T2 T = T1 × T2

Γ ` (e1, e2) : T
(Pair)

Γ ` e1 : T1 Γ, x : gen(Γ, T1) ` e2 : T2 T = T2

Γ ` let x = e1 in e2 : T
(Let)

Γ ` let x = fix (λx.e1) in e2 : T2 T = T2

Γ ` letrec x = e1 in e2 : T
(Rec-let)

Γ ` f : T1 T1 = T → T

Γ ` fix f : T
(Fix)

Fig. 6. A constraint-based inference system for Mini-ML

18

Secondly, we need to lift the two auxiliary functions to the meta level to be able
to use them in the to be defined deduction rules, i.e. ,

1 gen ctx ty = TyFun (MF "gen" (uncurry Rule.gen) (ctx ,ty))
2

3 t1 >= t2 = Constraint (MF ">=" (uncurry Type.>=) (t1,t2))
4 (mkErr "Generic instance check failed."

)

For all of our type rules we will use a default, non-specific error message:

1 err = mkErr "An error has occurred."

A more sophisticated approach for error handling will be described when defining
a type checker for FJ in the next section. Given all the needed meta-level ele-
ments we now can implement Mini-ML’s type system using the data structures
of our library.

Variables The typing rule for variable lookup utilizes our notion for calls to
auxiliary functions in deduction rules to encode the context lookup (!) and the
check, if the given type is a generic instance of the inferred one (>=).

1 var :: Rule
2 var = Rule [t1 =:= ctx ! Var x <|> err ,
3 (t1 >= t) <|> err]
4 (ctx |- Var x <:> t)

Lambda Abstraction The typing rule for λ-abstraction uses a meta-level function
to insert a typing into the context.

1 abs :: Rule
2 abs = Rule [ctx ’ |- e <:> t2 , t =:= (t1 ->: t2) <|> err]
3 (ctx |- K Abs 2 [Var x, e] <:> t)
4 where
5 ctx ’ = mInsertCtx (Var x) t1 ctx

Application The inference rule for applications can be encoded in a straightfor-
ward manner using our library’s combinators.

1 app :: Rule
2 app = Rule [ctx |- f <:> t1 , ctx |- e <:> t2,
3 t1 =:= (t2 ->: t) <|> err]
4 (ctx |- (K App 2 [f,e]) <:> t)

Base Types The deduction rules for the base types int and bool as well as the
build-in functionality on these two types can be defined as following:

19

1 int = mkT "int"
2 bool = mkT "bool"
3

4 true = Rule [t =:= bool <|> err]
5 (ctx |- Var (Ide "true") <:> t)
6

7 false = Rule [t =:= bool <|> err]
8 (ctx |- Var (Ide "false") <:> t)
9

10 const = Rule [t =:= int <|> err]
11 (ctx |- n <:> t)
12

13 add = Rule [t =:= (int ->: (int ->: int)) <|> err]
14 (ctx |- Var (Ide "+") <:> t)
15

16 sub = Rule [t =:= (int ->: (int ->: int)) <|> err]
17 (ctx |- Var (Ide "-") <:> t)
18

19 mul = Rule [t =:= (int ->: (int ->: int)) <|> err]
20 (ctx |- Var (Ide "*") <:> t)
21

22 div = Rule [t =:= (int ->: (int ->: int)) <|> err]
23 (ctx |- Var (Ide "/") <:> t)
24

25 eqi = Rule [t =:= (int ->: (int ->: bool)) <|> err]
26 (ctx |- Var (Ide "==") <:> t)

Conditionals The inference rule for conditionals can be encoded in a straight-
forward manner using our library’s combinators.

1 cond :: Rule
2 cond = Rule [ctx |- e1 <:> t1, ctx |- e2 <:> t2
3 , ctx |- e3 <:> t3, t1 =:= bool <|> err
4 , t =:= t2 <|> err , t =:= t3 <|> err]
5 (ctx |- (K IfThenElse 3 [e1,e2 ,e3]) <:> t)

Pairs The typing rule for pairs can again be encoded in a quite elegant way
using our library’s combinators.

1 pair :: Rule
2 pair = Rule [ctx |- e1 <:> t1 , ctx |- e2 <:> t2 ,
3 t =:= (t1 ** t2) <|> err]
4 (ctx |- (K Tuple 2 [e1,e2]) <:> t)

Let-Bindings The typing rules for polymorphic and recursive let-bindings uti-
lize our notion for calls to auxiliary functions in deduction rules to encode the
insertion of a typing into a context as well as the generation of a type scheme.

20

1 letpoly :: Rule
2 letpoly = Rule [ctx |- e1 <:> t1, t2 =:= gen ctx t1 <|> err
3 , mInsertCtx (Var x) t2 ctx |- e2 <:> t3
4 , t =:= t3 <|> err]
5 (ctx |- (K Let 3 [Var x,e1,e2]) <:> t)
6

7

8 letrec :: Rule
9 letrec = Rule [ctx |- (K Let 3 [Var x, fix , e2]) <:> t2,

10 t =:= t2 <|> err]
11 (ctx |- (K LetRec 3 [Var x, e1 , e2]) <:> t)
12 where
13 fix = K Fix 1 [K Abs 2 [Var x, e1]]
14

15

16 fix :: Rule
17 fix = Rule [ctx |- f <:> t1 , t1 =:= (t ->: t) <|> err]
18 (ctx |- (K Fix 1 [f]) <:> t)

6.4 Type Checker

Having encoded Mini-ML’s type system using the data structures of our li-
brary we know can derive the desired type checker by defining the functions
computeType and checkType with the help of our library. In this example we
use the default type check mode which just employs an empty initial context on
the constraint solver.

1 mlRules = [true , false , const , add , sub , mul , div , eqi
2 , and , or , var , abs , app , cond , pair , letpoly
3 , letrec , fix]
4

5 computeType :: Term -> TypeCheckResult Ty
6 computeType exp = computeTy defaultMode mlRules exp
7

8 checkType :: Term -> Ty -> TypeCheckResult Ty
9 checkType exp ty = checkTy defaultMode mlRules exp ty

Note that in this example we also could have used a non-empty initial context
which contains the typings for the build-in arithmetic and comparison functions.
In this case we could have omitted the corresponding type rules.

21

7 A Type Checker for FJ

FeatherweightJava [14] was introduced by Igarashi, Pierce, and Wadler in
order to present a lightweight version of Java which enables rigorous arguments
about key properties such as type safety. The language omits almost all features
of the full Java to obtain a small calculus for which detailed proofs of type safety
become considerably easy.
Nevertheless, it still captures the essential computational “feel”, providing classes,
methods, fields, inheritance and dynamic typecasts with a semantic closely fol-
lowing Java’s. In this sense, every FJ program is an executable Java program.

7.1 Syntax

The syntax of FJ therefore is equivalent to Java’s syntax with following omis-
sions: concurrency (threads), inner classes, reflection, assignment, interfaces,
overloading, messages to super, null pointers, base types (int, boolean, etc.),
abstract method declarations, shadowing of superclass fields by subclass fields,
access control (public, private, etc.) and exceptions. The features of Java that
FJ does model include mutually recursive class definitions, object creation, field
access, method invocation, method override, method recursion via this, subtyp-
ing and casting.
An EBNF-style syntax definition of FJ is given below. The nonterminal C ranges
over class names, f ranges over field names, m ranges over method names and
x ranges over all valid Java identifier.

L ::= class C extends C { [C f ;] * K M * }
K ::= C

(
[C f] *

)
{ super

(
f *
)
; [this . f = f] * }

M ::= C m
(
[C x] *

)
{ return e ; }

e ::= x | e . m
(
e*
)
| new C

(
e*
)
| (C) e

As part of this example we want to define abstract syntax for FJ suitable to
be used within our framework. To do so, we define data structures for classes,
methods, constructors, and expressions, but add according meta-level variants
to each type additionally:

1 -- FJ expressions
2 data FJExpr = Var Ide
3 | Invoke FJExpr FJExpr
4 | Meth Ide (Sequence FJExpr)
5 | New Ty (Sequence FJExpr)
6 | Cast Ty FJExpr
7 | Assign FJExpr FJExpr
8 | Return FJExpr
9 | MExpr String -- Meta level expression

10

22

11 -- FJ method declarations
12 data FJMethod = M { mRetTy :: Ty
13 , mName :: Ide
14 , mParams :: Sequence (Ty , FJExpr)
15 , mBody :: FJExpr
16 }
17 | MM String -- Meta level method
18

19

20 -- FJ constructor declaration
21 data FJConstructor = C { cName :: Ty
22 , cParams :: Sequence (Ty, FJExpr)
23 , super :: FJExpr
24 , assigns :: Sequence FJExpr
25 }
26 | MC String -- Meta level constructor
27

28

29 -- FJ class definition
30 data FJClass = Class { clName :: Ty
31 , superClass :: Ty
32 , attributes :: Sequence (Ty ,FJExpr)
33 , constructor :: FJConstructor
34 , methods :: Sequence FJMethod
35 }

Secondly, we give instance declarations for the type class AST by providing a func-
tion for indexing meta-level elements, a relation mapping all meta-level elements
to their corresponding object-level pendants, and a discriminator. We omit the
instance declarations for FJMethod, FJConstructor, and FJClass, their imple-
mentation follows the exact same pattern as the one for FJExpr.

1 instance AST FJExpr where
2 index (Var x) n = Var (index x n)
3 index (Invoke e f) n = Invoke (index e n) (index f n)
4 index (Meth m args) n = Meth (index m n) (indexM args n)
5 index (New c args) n = New (index c n) (indexM args n)
6 index (Cast c e) n = Cast (index c n) (index e n)
7 index (Assign l r) n = Assign (index l n) (index r n)
8 index (Return e) n = Return (index e n)
9 index (MExpr ide) n = MExpr (ide ++ show n)

10

11 (MExpr _) ~= e = case e of
12 MExpr _ -> False
13 _ -> True
14 _ ~= _ = False
15

16 isMeta (MExpr _) = True
17 isMeta _ = False

23

Now we can utilize the library’s Template Haskell based functionality to derive
code for the evaluation of the meta-level functions, the application of substi-
tutions, the instantiation of meta-level sets and sequences, the unification of
object and meta-level elements, and the collection of type variables contained
by an element.

1 $(deriveEvaluable ’’FJExpr)
2

3 $(deriveSubstitutable ’’FJExpr)
4

5 $(deriveInstantiable ’’FJExpr)
6

7 $(deriveUnifiable ’’FJExpr)
8

9 $(deriveVars ’’FJExpr)

Finally our abstract syntax for FJ classes and expressions is ready to be used
within our type checking framework.

7.2 Type rules

Having defined FJ’s syntax it becomes clear that we need to reason about possi-
bly empty sets and sequences of expressions (e.g. parameter lists), fields, meth-
ods, and even judgements and constraints in the type rules. Since deduction
rules reason at meta level about their premises and conclusion, the need for a
concise notion for sets and sequences at meta level arises. We follow standard
notion used in set theory and define the combinators∧

i∈I
ei := e1 e2 ... e|I| and

⋃
i∈I

ei := { e1, ... , e|I| }.

Explicitly annotating the index set I at each combinator allows us to reason
about the same sequences/sets in different premises. If only one index set is
used throughout all premises of a typing rule it might be omitted.

As part of our definition of a constraint-based type system for FJ we will utilize
some auxiliary functions providing commonly needed functionality (like calcu-
lating the fields of a class or the type of a method) in the deduction rules:

Field lookup:
fields(Object) = ∅

CT (C) = class C extends D {
∧
i∈I

(Ci fi;) K
∧
j∈J

Mj }

fields(C) =
⋃
i∈I
{Ci fi} ∪ fields(D)

The lookup of a class’ fields can be implemented in a straightforward manner
by folding over the fields of the desired class and its super classes.

24

1 fields :: [FJClass] -> Ty -> Maybe (Set (Ty ,FJExpr))
2 fields _ (TV _) = Nothing
3 fields [] (T (Ide "Object")) = Just $ ObjSet (Data.Set.empty)
4 fields [] _ = Nothing
5 fields prog c =
6 Just $ foldl
7 (\ s1 s2 -> fromJust (union s1 s2)) emptySet
8 (mapMaybe (flds prog) (c:(superClasses prog c)))
9

10 flds _ (T (Ide "Object")) = Just $ ObjSet (Data.Set.empty)
11 flds [] c = Just $ ObjSet (Data.Set.empty)
12 flds (cl:cls) c = if clName cl == c
13 then Just $ setFromSeq (attributes cl)
14 else flds cls c

Field type lookup:

ftype(f, C) =

{
• | C = Object

D | Df ∈ fields(C)

The implementation of the ftype function just looks up if the given field exists
in the given class and returns its type accordingly.

1 ftype :: [FJClass] -> FJExpr -> Ty -> Maybe Ty
2 ftype _ _ (TV _) = Nothing
3 ftype _ _ (T (Ide "Object")) = Nothing
4 ftype prog f c = if isNothing cls then Nothing
5 else ty
6 where
7 cls = find (\ cl -> clName cl == c) prog
8 (ObjSeq as) = attributes $ fromJust cls
9 ty = lookup f $ map swap (toList as)

Method type lookup:

CT (C) = class C extends D {
∧
j∈J

(Cj fj ;) K
∧
l∈L

Ml }

B m(
∧
i∈I

Bi xi) {...} ∈
∧
l∈L

Ml

mtype(m,C) =
∧
i∈I

Bi → B

CT (C) = class C extends D {
∧
j∈J

(Cj fj ;) K
∧
l∈L

Ml } m 6∈
∧
l∈L

Ml

mtype(m,C) = mtype(m,D)

The lookup of a method’s type can be implemented in the same style as the
lookup of a field’s type:

25

1 mtype :: [FJClass] -> Ide -> Ty -> Maybe Ty
2 mtype _ _ (TV _) = Nothing
3 mtype _ _ (T (Ide "Object")) = Just Bottom
4 mtype prog m c = if isNothing cls then Just Bottom
5 else ty
6 where
7 cls = find (\ cl -> clName cl == c) prog
8 ObjSeq ms = methods (fromJust cls)
9 mth = find (\ mth -> mName mth == m) (toList ms)

10 ty = maybe (Just Bottom) (Just . mkMT) mth
11

12 mkMT :: FJMethod -> Ty
13 mkMT (M rt _ (ObjSeq ps) _) = (extractTSeq ps) ->: rt
14 where
15 extractTSeq = (TySeq . ObjSeq) . (fmap fst)

Super class lookup:

superClass(C) =

{
• | C = Object

D | CT (C) = class C extends D { ...}

This function can be implemented straightforward by just looking up the given
class and selecting its superclass.

1 superCls :: [FJClass] -> Ty -> Maybe Ty
2 superCls _ (TV _) = Nothing
3 superCls _ (T (Ide "Object")) = Just Bottom
4 superCls [] _ = Just Bottom
5 superCls (c:cls) cl = if clName c == cl
6 then Just (superClass c)
7 else superCls cls cl

Given these auxiliary functions and a notion for sets and sequences at meta level
we now have everything at hand to define a constraint-based type system for FJ
in Fig. 7 and Fig. 8.
The constraint-based typing rules for FJ expressions are essentially adapted from
the original formalization given in [14]. Changes have been made to the Field
typing rule, where the type of a field is determined with the help of an auxiliary
function (which is similar to the way a method’s type is determined).
The rules for classes and methods needed much stronger modifications: First of
all, an additional type rule for constructors is introduced. This rule makes sure
the constructor is syntactically correct according to the FJ class specification.
Thus, this functionality is removed from the original Class rule, which now
just generates constraints verifying that constructor and methods are “Ok” in
this class. The Method typing rule follows the original definition, except that
the super class of the class which encapsulates the method is determined with

26

Method typing:
(
⋃
j∈I

xj : Cj), this : C ` e0 : E0 E0 <: C0 superClass(C) = D

if mtype(m,D) = (
∧
k∈I

Dk)→ D0, then (
∧
l∈I

Cl = Dl) and C0 = D0

T = Ok in C

Γ ` C0 m(
∧
i∈I

Ci xi) { return e0 ; } : T
(Method)

Constructor typing:

superClass(C) = D fields(C)\fields(D) =
⋃

n∈K

{En fn}

fields(C) =
⋃
l∈I

{Cl xl} fields(D) =
⋃

m∈J

{Dm xm}

T = Ok in C

Γ ` C (
∧
i∈I

Ci xi) { super(
∧
j∈J

xj);
∧

k∈K

(this.fk = xk;) } : T
(Constructor)

Class typing:

Γ ` K : Ok in C
∧

k∈J

(Γ `Mj : Ok in C) T = Ok

Γ ` class C extends D {
∧
i∈I

(Ci fi;) K
∧
j∈J

Mj } : T
(Class)

Fig. 7. FJ class, method and constructor typing.

the help of an auxiliary function. For this typing rule an additional note on
the (possibly not that intuitive) conditional constraint should be given: This
constraint defines FJ’s functionality to override base class methods in a sub
class, i.e., if a sub class uses the same name for one of its methods as used in
its base classes, then it must override this method by using the same parameter
and return types.

27

Expression typing:
T = Γ (x)

Γ ` x : T
(Var)

Γ ` e0 : C0 T = ftype(f, C0)

Γ ` e0.f : T
(Field)

Γ ` e0 : C0

∧
j∈I

(Γ ` ej : Cj) mtype(m,C0) = (
∧
k∈I

Dk)→ C∧
l∈I

(Cl <: Dl) T = C

Γ ` e0.m(
∧
i∈I

ei) : T
(Invk)

∧
j∈I

(Γ ` ej : Cj) fields(C) =
⋃
k∈I

{Dk fk}∧
l∈I

(Cl <: Dl) T = C

Γ ` new C(
∧
i∈I

ei) : T
(New)

Γ ` e : D D <: C T = C

Γ ` (C) e : T
(U-Cast)

Γ ` e : D C <: D C 6= D T = C

Γ ` (C) e : T
(D-Cast)

Fig. 8. FJ expression typing.

Having defined a set of constraint-based inference rules to cover the FJ type
system we now can start to encode these rules using the data structures of our
library. To do so, we define the needed meta-level expressions, types, contexts,
identifier, methods, and contexts again:

1 ctx = MCtx "Gamma" ; m = MIde "m" ; m_j = MM "M" ; k = MC "K"
2

3 this = Var (Ide "this") ; f = Var (MIde "f")
4 x = Var (MIde "x") ; f_i = Var (MIde "f")
5 x_i = Var (MIde "x") ; f_j = Var (MIde "f")
6 x_j = Var (MIde "x") ; f_k = Var (MIde "f")
7 x_k = Var (MIde "x")
8 e = MExpr "e" ; e0 = MExpr "e0" ; e_i = MExpr "e"
9

10 c = MT "C" ; d = MT "D" ; c’ = MT "C’"
11 c0 = MT "C0" ; d0 = MT "D0" ; ec = MT "E"
12 c_i = MT "C" ; d_i = MT "D" ; e0C = MT "E0"
13 c_j = MT "C" ; d_j = MT "D" ; t = MT "T"

28

14 c_k = MT "C" ; d_k = MT "D" ;

Secondly, we need to lift all auxiliary functions to the meta level to be able to
use them in the to be defined deduction rules, e.g.,

1 fields :: [FJClass] -> Ty -> Set (Ty,FJExpr)
2 fields prog c =
3 SetFun (MF "fields" (uncurry Auxiliary.fields) (prog ,c))

For the subtype relation we define a pair of operators yielding a convenient
notion for defining subtype constraints:

1 (==>) :: [FJClass] -> (Ty , Ty) -> Constraint Ty
2 prog ==> (s,t) =
3 Predicate (MF " <:" (uncurry (subtype prog)) (s,t))
4 (mkErr "Error: could not solve subtype constraint.")
5

6 s <: t = (s,t)
7

8 infix 6 <:
9 infix 5 ==>

All other auxiliary functions are lifted in the same way to the meta level as given
in the fields example, we omit the corresponding Haskell code.
Given the meta-level elements defined above we now have everything at hand to
encode the constraint-based type system for FJ using the data structures of our
library.

Variables

1 var :: Rule
2 var = Rule [t =:= (ctx ! x) <|> err]
3 (ctx |- x <:> t)
4 where
5 err = varError ctx x t

The inference rule for variables is encoded in a straightforward manner, except
that this time we employ more sophisticated error handling. Instead of printing
just a static message in case solving the rule’s sole equality constraint fails, we
define a function producing a message hinting on the variable as well as the error
reason. If the variable is not contained in the given context, this variable is not
defined in the current scope and a corresponding error message is generated.
Otherwise, the inferred type for the variable does not match the type given in
the conclusion’s context and a message hinting on the inferred type as well as the
expected type is generated. Last but not least, the function generating the error
messages is lifted to the meta level and can now be attached to a constraint:

1 varError :: Context -> FJExpr -> Ty -> ErrorMsg
2 varError ctx x ty =
3 ErrorMsg x (MF "" (Just . msg) (ctx ,x,ty))

29

1 msg :: (Context , FJExpr , Ty) -> String
2 msg (ctx ,x,ty) =
3 case ((ctx ! x) :: Maybe Ty) of
4 Nothing -> "Undefined variable: " ++ pprint x
5 Just ty’ -> "Type Missmatch: " ++
6 "Could not match expected type ‘" ++
7 pprint ty ++ "’ against inferred type ‘" ++
8 pprint ty’ ++ "’"

Field access
Defining the type rule for accessing an object’s fields comes easy using the corre-
sponding auxiliary function presented earlier. Again, we define an explicit error
message handling all the cases which can occur when solving the equality con-
straint fails.

1 field :: [FJClass] -> Rule
2 field prog = Rule [ctx |- e <:> d
3 , c =:= ftype prog f d <|> err]
4 (ctx |- Invoke e f <:> c)
5 where
6 err = fieldError prog (Invoke e f) f c d

1 fieldError p exp f c d =
2 ErrorMsg exp (MF "" (Just . msg) (p,f,c,d))
3

4 msg :: ([FJClass],FJExpr ,Ty,Ty) -> String
5 msg (p,f,c,d) =
6 case (ftype p f d) of
7 Nothing -> pprint f ++ " is not a field of class " ++
8 pprint d
9 Just c’ -> "Type Missmatch: " ++

10 "Could not match expected type ‘" ++
11 pprint c ++ "’ against inferred type ‘" ++
12 pprint c’ ++ "’"

Method invocation
As part of the definition of the deduction rule covering method invocations we
utilize the library’s convenience function mSeq to define meta-level sequences in a
more compact way. Additionally, we introduce a generic error message handling
type mismatch errors and use it to produce a useful error message if the inferred
and the expected return type of the method do not match. The error messages
for the constraint covering the method’s arity and its parameter types are just
static messages again. We omit more sophisticated error handling in these cases
to keep the presentation of the rule a bit more compact. The earlier examples
showed how to define useful error messages with the help of our library. For the
rest of this section we will keep the error messages short and simple and use just
static strings. Since the upcoming rule definitions are more complex than the

30

ones presented so far, this simplification is expected to help to keep the encoded
rules more compact by allowing us to focus on the interesting parts of the rule
encodings.

1 invoke prog =
2 Rule [ctx |- e <:> ec
3 , mSeq "I" (ctx |- e_i <:> c_i)
4 , mtype prog m ec =:= (mSeq "I" d_i ->: d) <|> err1
5 , mSeq "I" ((prog ==> c_i <: d_i) <|> err2)
6 , c =:= d <|> err3]
7 (ctx |- Invoke e mcall <:> c)
8 where
9 mcall = Meth m (mseq "I" e_i)

10 err1 = mkErr "Wrong number of arguments."
11 err2 = mkErr "Wrong argument types."
12 err3 = typeMissmatch (Invoke e mcall) c d

1 typeMissmatch expr t1 t2 =
2 ErrorMsg expr (MF "" (Just . msg) (t1 ,t2))
3

4 msg (t1,t2) =
5 "Type Missmatch: Could not match expected type ‘"
6 ++ pprint t1 ++ "’ against inferred type ‘" ++
7 pprint c’ ++ "’"

Constructor calls
The type rule for constructor calls follows the one for method invocations closely.
Note the difference between the two convenience functions mSeq and mseq. While
the latter one is just an abbreviation for a meta-level sequence over a meta-level
index set, mSeq is an overloaded function wrapping such a meta-level sequence in
another constructor, in this case a sequence of judgements (JSeq) and a sequence
of constraints (ConstraintSeq).

1 new prog =
2 Rule [mSeq "I" (ctx |- e_i <:> c_i)
3 , fields prog c =:= mset "I" (d_i , f_i) <|> err1
4 , mSeq "I" ((prog ==> c_i <: d_i) <|> err2)
5 , d =:= c <|> err3]
6 (ctx |- New c (mseq "I" e_i) <:> d)
7 where
8 err1 = mkErr "Wrong constructor call."
9 err2 = mkErr "Wrong argument types."

10 err3 = typeMissmatch (New c (mseq "I" e_i)) d c

31

Up and down casts
The type rules for up and down casts need some special treatment as part of their
encoding in the library’s data structures. The first-fit-rule-matching semantics
of our rule instantiation algorithm forbids the use of rules with overlapping
conclusions. Luckily, the two rules for up and down casts can be easily merged
into one rule by combining the arising constraints in a disjunction.

1 cast prog =
2 Rule [ctx |- e <:> d
3 , Or upcast downcast <|> mkErr "Cast failed."
4 , ec =:= c <|> typeMissmatch (Cast c e) ec c]
5 (ctx |- Cast c e <:> ec)
6 where
7 upcast = prog ==> d <: c
8 downcast = And (prog ==> c <: d) (c =/= d)

Method definitions
The type rule for method definitions introduces a conditional constraint to cover
the overriding facilities of FJ. If a method definition overrides the definition of a
method in one of its super classes, all parameter types must be subtypes of the
overridden method’s parameters. All other premises and constraints are encoded
in a similar fashion as the ones presented so far.

1 method prog =
2 Rule [c’ =:= OkIn c <|> mkErr "Unification error."
3 , ctx ’ |- e0 <:> e0C
4 , (prog ==> e0C <: c0) <|>
5 mkErr "Wrong return type in method body."
6 , superClass prog c =:= d <|>
7 mkErr "Superclass lookup failed."
8 , If override (And subtypes (c0 =:= d0)) <|>
9 mkErr "Wrong override."]

10 (ctx |- M c0 m params (Return e0) <:> c’)
11 where
12 params = mseq "I" (c_i ,x_i)
13 ctx ’ = insertCtx this c (ctxFromSeq params)
14 override = mtype prog m d =:= (mSeq "I" d ->: d0)
15 subtypes = mSeq "I" (prog ==> c_i <: d_i)

Constructor definitions
The type rule for constructor definitions basically covers the syntactical require-
ments formulated by the FJ language definition, i.e., all class fields are initialized
by the constructor parameters with the help of the super constructor and assign-
ments. The used auxiliary function \\ denotes set difference lifted to the meta
level and is already defined as part of the library.

32

1 constructor prog =
2 Rule [superClass prog c =:= d <|>
3 mkErr "Superclass lookup failed."
4 , fields prog c =:= mset "I" (c_i ,x_i) <|>
5 mkErr "Wrong number of parameters."
6 , fields prog d =:= mset "J" (d_j ,x_j) <|>
7 mkErr "Wrong number of args in super call."
8 , flds =:= mset "K" (e_k ,f_k) <|>
9 mkErr "Wrong number of assignments."

10 , t =:= OkIn c <|> mkErr "Type Missmatch."]
11 (ctx |- (C c ps s as) <:> t)
12 where
13 ps = mseq "I" (c_i ,x_i)
14 s = Meth (Ide "super") (mseq "J" x_j)
15 as = mseq "K" (Assign (Invoke this f_k) f_k)
16 e_k = MT "E"
17 flds = fields prog c \\ fields prog d

Class definitions
The type rule for class definitions just makes sure the constructor definition as
well as all method definitions are defined correctly in this class.

1 fjclass prog = Rule [ctx |- k <:> okInC
2 , mSeq "J" (ctx |- m_j <:> okInC)
3 , t =:= mkT "Ok" <|> mkErr "Type

missmatch."]
4 (ctx |- (Class c d as k ms) <:> t)
5 where
6 as = mseq "I" (c_i ,f_i)
7 ms = mseq "J" m_j
8 okInC = OkIn c

Using the encoded rules a type checker for FJ can be derived in the same style
as presented in the previous section.

8 Visualization

To support the user of our library during the development of the type checking
phase, we implemented functionality to visualize the constraint generation and
the constraint solving process. Using this visualization tool helps the developer
to understand the derived type checker in a more abstract way by allowing him
to trace the type derivation and the used solvers in a fine grained manner.
To implement such a tool a sufficient framework for graphical user interfaces
was needed. We wanted to implement this tool in Haskell, so the library could
be used directly without calls from another language like C, thus a Haskell
binding for this toolkit was necessary. The second important criterion was cross-
platform support.

33

Fig. 9. Rule View

Since the number of well documented, stable bindings of gui frameworks for
Haskell that work cross-platform is rather limited, the choice came down to
wxHaskell (wxWidgets) [34] and Gtk2Hs (Gtk) [8]. Both frameworks are mature
and widely used. Gtk provides the gui interface builder Glade, which tipped the
favor towards Gtk2Hs to implement the graphical user interface of the tool.
As part of the tool design we identified three main work flows which should be
supported accordingly. At first, the user should be able to get a concise overview
of the typing rules he implemented using the library’s EDSL, thus the tool must
provide a sufficient rendering of the defined deduction rules. Secondly, the tool
should allow the user to trace the library’s constraint generation algorithm by
rendering the derivation tree for a given expression and thus giving the user
the opportunity to understand which rules have been instantiated and which
constraints have been collected. Last but not least the tool should allow the user
to trace the constraint solving process step by step.
To capture these requirements we designed three main views within the tool:
the Rule View, the Type Derivation View, and the Solver View. The Rule View
provides a “pretty” rendering of the user’s type system, the Type Derivation View
renders the type derivation tree of a given expression, and the Solver View is
basically a step-by-step trace of the used solvers.
The graphical user interface of the tool was developed with the help of Gtk ’s
gui designer Glade. To gather all information needed for the visualization of
the different phases, the constraint generation and the constraint solving algo-
rithms had to be adapted slightly. The core algorithms are still the same but
the generation and solving process is documented with additional informations in
separate data structures for the visualization purpose. The constraint generation
algorithm returns a plain list of constraints, neglecting the tree structure which

34

Fig. 10. Type Derivation View

reflects the dependencies and order of the generation process. But since that is
exactly what we want to show in the Type Derivation View the implementation
now returns the normal list but also a tree in which all these informations are
stored.
In the implementation of the constraint solving algorithm we introduced a data
structure which stores in each solving step the current constraint, the solution
of that constraint, the accumulated result substitution, and the constraints jet
to be solved:

1 data IntermediateResult =
2 IRes { con :: Judgement -- current constraint
3 , res :: Result -- solution of constraint
4 , subs :: Substitution -- acc. result substitution
5 , unsolv :: [Judgement] -- remaining constraints
6 }

A list of these intermediate results is than returned along the proper result
allowing to trace step-by-step through the constraint solving process.
With these modifications we are able to visualize the inner machinery of our
framework. To get a better feeling, what such a derived tool could look like, let
us take a closer look on the gui-based inspector tool derived for our MiniML
example.
The Rule View (Fig. 9) displays the constraint-based deduction rules defined as
part of MiniML’s inference system in a more readable manner. The left side
of the view is a list, where a rule can be selected to be displayed on the right.
Under that list is a button to display all rules, one below the other, on the right
side.

35

Fig. 11. Solver View

The Type Derivation View generates the internal derivation tree for an expres-
sion entered at the bottom text field. Let us consider for example the expression
“let id = \x.x in id 3”, whose derivation tree is shown in Fig. 10.
The derivation tree of our example expression is displayed right above the text
field. On the left of the tree the global information for the type checking process
are displayed, at the moment this is only the global context which is passed
on to the constraint solvers. The derivation tree contains only judgements, no
constraints. To view the constraints the user can hover with the mouse over the
rule name, to get a tooltip with the constraints or he can click on the rule name.
Clicking on the rule name will fill the right side with information about that rule
instance, namely the local context and the constraints arising from this rule.
The last view is the Solver View. In this view the user can step through the
constraint solving process. The left side lists the constraints yet to be solved. The
right side displays the current constraint considered by the solver, the solution
of that constraint and the accumulated result substitution. At the bottom right
side are the two buttons to step through the solving process.

To run this gui tool, the user needs to provide three things: a list of named
inference rules, an initial global context and a function to parse expressions. For
our MiniML example the tool could be run as following:

1 main = runGui GuiConfig { namedRules = rules
2 , globalContext = empty
3 , parseString = parse
4 }
5

6 rules :: [(String ,Rule)]

36

7 rules = [("true", true)
8 , ("false", false)
9 , ("letrec", letrec)

10 , ("varpoly", varpoly)
11 , (...)]

9 Related Work

9.1 Tools

Starting in the early 1980s, research concentrating on formal descriptions of
programming languages with the goals of generating programming environments
and reasoning formally about the specification and implementation led to various
ways of expressing type checkers in a given formalism.
Teitelbaum and Reps presented the Synthesizer Generator [31,26], a system to
generate language-specific editors from descriptions of imperative languages with
finite, monomorphic type systems like Pascal, Ada or Modula. They used at-
tributed grammars to express the context sensitive part of a language’s grammar
and the generated editors provided knowledge about the static semantics of the
language such that immediate feedback on errors could be given to the program-
mer.

Bahlke and Snelting developed the Programming System Generator (PSG) [1],
a generator for language-specific programming environments. The generated en-
vironments, focussing mainly on interactive and incremental static analysis of
incomplete program fragments, consisted of a language-based editor, an inter-
preter, and a fragment library system. Using context relations, PSG employed
a unification-based algorithm for incremental semantic analysis to be able to
immediately detect semantic errors even in incomplete program fragments.

Borras et al. introduced the logic engine Typol as part of the Centaur system [2].
The user of the system was able to state the static and dynamic semantics of
a language with the help of inference rules in Typol. Those specifications are
then compiled to Prolog for execution.

A system with similar aims is Pettersson’s Relational Meta Language (RML) [24].
RML is a statically strongly typed programming language intended for the imple-
mentation of natural semantics specifications. The basic procedural elements are
relations: many-to-many mappings defined by a number of axioms or inference
rules. Pettersson presents a compiler based on translating RML to Continuation-
Passing-Style which generates code that is several orders of magnitude faster
than Typol. RML was used for developing of a formal specification of the mod-
eling language Modelica [15].

One of the starting points for the research presented in this paper was Gast’s
Type Checker Generator (TCG) [6], a system which focusses on the generation

37

of type checking functionality exclusively. Gast presents an abstraction for type
systems based on logical systems and proposes type-checking-as-proof-search as
a suitable technique for the implementation of a type checker generator. In this
approach type systems can be understood and formalized as logical systems such
that there is a typing derivation if and only if there is a proof in the logical sys-
tem. Unfortunately this approach has one major disadvantage: deduction rules
need to be re-factored to make them suitable for proof search, i.e., the formula-
tion of a type system needs to be tailored very precisely to the used technique of
the type checker generator. This overhead is acceptable and quite wanted given
the design of the TCG tool. The generator tool does not work in a standard
compiler compiler way and instead of supplying a source file containing the type
checker, the user interface to the generated type checking functionality is actu-
ally a graphical one. This so called “inspector” layer allows the designer of a type
system to trace the type check procedure in a fine-grained manner and brings
TCG ’s intended use to light: it supports the user during the design of a type
system by providing an ad-hoc, completely traceable type checker prototype.

While TCG focusses on the generation of type checkers, Dijkstra and Swierstra’s
Ruler system [5] tries to bridge the gap between the formal description and the
implementation of a type checker. They present a domain specific language for
describing typing rules and their system is able to generate an attribute grammar
based implementation as well as a visual rendering of the system suitable for
the presentation of formal aspects. As part of their work the authors state two
problems for which the Ruler system provides a sufficient solution:
Problem 1: It is difficult to keep separate formal descriptions and implementa-
tions of a modern programming language consistent.
Ruler maintains a single description of the static semantics of a programming
language from which material which can be used as a starting point for formal
treatment as well as the implementation can be generated.
Problem 2: The Extension of a language with new features means that the in-
teraction between new and old features needs to be examined.
The Ruler language allows the user to describe type rules incrementally and
makes it easy to describe language features in relative isolation. Separate de-
scriptions of language features can be combined into a description of the com-
plete language and the system is able to check the well-formedness of such a
Ruler program.

In contrast to the generator approach used by the tools mentioned so far, Koll-
mansberger and Erwig developed the libraryHaskell Rules [17], a domain-specific
embedded language that allows semantic rules to be expressed as Haskell func-
tions. The library captures many of the thoughts presented in this report, like
meta variables in rules (which are called logical variables), unification, substi-
tution, and the lifting and delaying of functions operating on logical values.
Judgements formalize the relationship of input and output types in rules, which
allows a set of rules to be associated with a typed relationship. Inference in their

38

system is done by a non-deterministic backtracking monad which handles uni-
fication, application of substitutions, delaying of functions over logical values,
and the generation of fresh logical variables.

Our work takes on several ideas from both TCG and the Ruler system but
enhances them at several points. We chose a well know extension of the standard
inference rule based way to formalize type systems and presented a framework
which allows us to derive type checking functionality from such type systems.
This allows the user to formalize her type system in a standard way and requires
minimum overhead when encoding the type rules to be used with our library.
From a software engineering point of view we liked Ruler ’s idea to provide a
specific language to define typing rules but we were aiming at a closer integration
of our system into the host language so we rejected the generator approach used
in TCG and Ruler in favor of deploying our system as a library such as Haskell
Rules. Thus our library provides a domain-specific embedded language [13] for
defining constraint-based inference rules and a framework for interpreting such
rules.

9.2 Constraint-based Typing

Glynn, Sulzmann, and Stuckey presented a general framework for type class
systems based on Constraint Handling Rules (CHRs) [7]. Constraint handling
rules are a multi-headed concurrent constraint language for writing incremental
constraint solvers. CHRs define transitions from one constraint to an equivalent
constraint and those transitions are used to simplify constraints and detect sat-
isfiability and unsatisfiability. As part of the author’s work CHRs are used to
define constraint relations among types as an extension to Herbrand (equational)
constraints and the CHR constraint solving process is an extension of Herbrand
constraint solving to arbitrary newly defined constraint relations. The authors
introduce decidable operational checks which enable type inference and ambi-
guity checking. By type inference for type classes they consider the individual
tasks of ensuring that class and instance declarations are compatible, constraints
arising in programs are satisfiable, and type schemes provided by the user are
valid.

Sulzmann, Odersky, and Wehr introduced a general framework HM(X) for Hind-
ley/Milner style type systems with constraints [23,30]. Particular type systems
can be obtained by instantiating the parameter X to a specific constraint system.
The Hindley/Milner system itself is obtained by instantiating X to the trivial
constraint system over a one point domain.
Following the lead of constraint programming they treat a constraint system as
a cylindric algebra with a projection operator. This allows them to formulate
a logically pleasing and pragmatically useful rule for quantifier introduction.
Additionally, projection is an important source of opportunities for simplifying
constraints. As part of the HM(X) framework, simplifying means changing the
syntactic representation of a constraint without changing its denotation.

39

Two of the main strengths of the Hindley/Milner system are the existence of
a principal types theorem and a type inference algorithm. The authors state
sufficient conditions on the constraint domain X so that the principal types
property carries over to HM(X). Based on these conditions they present a generic
type inference algorithm that will always yield the principal type of a term and
discuss some typing features like extensible records, type classes, overloading,
and subtyping as part of their framework.

As part of the Helium project Heeren, Hage, and Swierstra used constraint-
based type inferencing in a compiler covering a significant subset of the Haskell
language [11]. The major motivation of this project was to yield understandable
and appropriate type error messages for novice functional programmers. Instead
of using a single deterministic type inference process which works best in all
cases for everybody, they advocate the use of a more flexible system that can
be tuned by the programmer. To obtain the desired flexibility the authors chose
a constraint-based approach and divided the type inference process into three
distinct phases:

1. the generation of constraints in the abstract syntax tree,
2. the ordering of constraints in the tree into a list, and
3. the solving of constraints.

This separation has resulted in the Top framework, a Haskell library for build-
ing program analysis that offer high quality feedback to users [10]. The generality
of their framework allows the simulation of well-known type inference algorithms
such as W [4] andM [19], by choosing an appropriate order in which the type
constraints should be solved.

10 Conclusion and Future Work

We presented the design and implementation of a library capable of deriving
type check functionality from a type system’s formal description. We proposed
constraint-based inference rules to form a suitable formalism to accomplish this
task and implemented a library which works in the fashion of an interpreter
for typing rules. The initial feature set of our library was determined by two
languages chosen as case studies. Their type systems could be adapted to our
constraint-based setting in a straightforward manner and we were able to derive
type checkers for both languages.
Nevertheless, the library is still more a proof-of-concept implementation than a
production quality tool. We tried to take many “real world” requirements such as
error messages and the use of auxiliary functions in deduction rules into account
but the implementation still carries some non-negligible limitations.
One major drawback of the current version of the framework is the fixed type
representation. As with the abstract syntax for expression, the abstract syntax
for types is typically custom-tailored for the language to be implemented and a
production quality tool should provide certain means to allow the user to define

40

her own type representation. This shortcoming is merrily do to technical reasons,
namely the use of existential types for judgements and meta-level functions pre-
vents us from making the type class Var polymorphic in its used data structure
for types.
Additionally, there still is certain overhead for the user to make her abstract
syntax ready to be used within our type checking framework. To some extend
we managed to prevent the user from writing boilerplate code when it comes
to defining instance declarations for some type classes by providing Template
Haskell functions accomplishing this task. But even so we provide this function-
ality to the user one flaw still remains: these parts of the “internal machinery”
are visible to her and from a software engineering point of view this should be
considered bad style. This limitation could be overcome easily by using data type
generic programming to accomplish tasks like instantiating meta-level elements,
first order unification, or collecting type variables contained in certain elements.
Unfortunately there is no data type generic programming library available in
the Haskell universe which provides means to handle existential types without
requiring any additional information by the user.
To be able to turn the current prototype implementation into a production qual-
ity tool, these two crucial limitations need to be taken care of. Since these flaws
could not be overcome in the current host language of the project, the only way
to handle them would be to port our library to a language providing mechanism
or language features to handle these drawbacks accordingly. For a number of rea-
sons, the functional, object-oriented multi paradigm language Scala [22] seems
to be a promising language to implement the library described in this report
without the limitations stated earlier. First of all, subtyping is a great language
feature for writing frameworks, especially when it comes to defining algorithm
templates where the user can hook her own data structures in. Additionally,
the Scala language processing library Kiama [16] ships with a term rewrit-
ing library which provides functionality similar to the ones found in common
data type generic programming libraries. And since Scala 2.10 will introduce a
macro/template system, algorithmic program construction for the generation of
boilerplate code is still possible. Furthermore Scala’s notion of implicit conver-
sions will allow a more convenient use of auxiliary functions in deduction rules
since the lifting of such a function call into the corresponding wrapper data
structure can be done “under the hood”. Last but not least, Scala’s syntactical
features make it a great host language for embedding domain specific languages.
Besides the mentioned modifications on the current implementation, future work
should include several enhancements providing the user of the framework more
flexibility when developing type checkers with the help of our library.
On the one hand it might be discussed whether the first-fit-rule-matching se-
mantic of the constraint generation function limits the expressiveness of our
library in a notable form. When instantiating the first matching rule during the
constraint generation phase our library formulates one distinct requirement to
the type rules in order to be able to derive type checking functionality from
them: the rules must be syntax-directed, i.e., the conclusions of the formulated

41

rules cannot be overlapping.4 Thus a type system needs to be re-factored in two
ways in order to derive a type checker from it with the help of our library: its
type rules need to be formulated constraint-based and syntax-directed. To han-
dle rules with overlapping conclusions the techniques used by the library need to
be adjusted slightly. At the moment, one constraint set is generated for a given
program and the program is well typed, if and only if these constraints have
a solution. Allowing declarative typing rules, the constraint generation phase
needs to mimic the backtracking in the type derivation by computing a set of
constraint sets for a given program and the program is well typed, if and only
if at least one constraint set has a solution which is equal to the solutions of all
other solvable constraint sets.
Additionally, the framework could be enhanced at several points providing more
flexibility for the user when defining type checkers. Following the ideas presented
in the TOP framework [10], our constraint-based setting should be adapted such
that three phases are used instead of just two:

1. Collecting Constraints
2. Ordering Constraints
3. Solving Constraints

In this setting, the constraint generation phase would yield a tree labeled with
constraints. This tree is flattened in the next phase using tree walks or tree
transformers. The library should provide a default set of flattening strategies
(like top-down or bottom-up), but the user should still be able to define her
own ordering strategies. Last but not least the constraint solving phase should
be improved by allowing the user to employ different solving techniques, e.g., a
greedy solver or even more sophisticated approaches like type graphs for global
analysis [12,9].
In addition with some more infrastructure for error messages (positions, etc.)
these improvements and modifications should push the implementation towards a
level of expressiveness and flexibility which should enable us to define production
quality type checkers with the help of our library.

4 Pierce calls such rules algorithmic and discusses this matter in the context of sub-
typing [25].

42

References

1. Bahlke, R., Snelting, G.: The PSG System: From Formal Language Definitions
to Interactive Programming Environments. ACM Transactions on Programming
Languages and Systems 8(4), 547–576 (Oct 1986)

2. Borras, P., Clement, D., Despeyroux, T.: Centaur: The System. In: 3rd ACM SIG-
SOFT/SIGPLAN Software Engineering Symposium on Practical Software Devel-
opment Environments (SDE 3). pp. 14–24. ACM New York (1988)

3. Clément, D., Despeyroux, T., Kahn, G., Despeyroux, J.: A Simple Applicative
Language: Mini-ML. In: Proceedings of the 1986 ACM Conference on LISP and
Functional Programming. pp. 13–27. New York, USA (Aug 1986)

4. Damas, L., Milner, R.: Principal type-schemes for functional programs. In: Pro-
ceedings of the 9th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages. pp. 207–212 (Jan 1982)

5. Dijkstra, A., Swierstra, S.D.: Ruler: Programming type rules. In: Functional and
Logic Programming: 8th International Symposium (FLOPS 2006). vol. 3945/2006,
pp. 30–46. Springer-Verlag, Fuji-Susono, Japan (Apr 2006)

6. Gast, H.: A Generator for Type Checkers. Phd thesis, Eberhard-Karls-Universität
Tübingen (2004)

7. Glynn, K., Stuckey, P.J., Sulzmann, M.: A General Type Class Framework. Tech.
rep., Dept. of Computer Science and Software Engineering, Univerity of Melbourne
(2001)

8. GTK+: http://www.gtk.org/
9. Hage, J., Heeren, B.: Heuristics for type error discovery and recovery. In: 18th

International Symposium on Implementation and Application of Functional Lan-
guages (IFL ’06). pp. 199–216. Springer Berlin/Heidelberg, Budapest, Hungary
(2005)

10. Heeren, B.: Top Quality Type Error Messages. Phd thesis, Universiteit Utrecht
(Sep 2005)

11. Heeren, B., Hage, J., Swierstra, S.D.: Constraint Based Type Inferencing in Helium.
In: Workshop Proceedings of Immediate Applications of Constraint Programming.
pp. 59–80. Cork, Ireland (2003)

12. Heeren, B., Hage, J., Swierstra, S.D.: Scripting the Type Inference Process. In:
8th ACM SIGPLAN International Conference on Functional Programming (ICFP
’03). pp. 3–13. ACM New York, Uppsala, Sweden (Sep 2003)

13. Hudak, P.: Modular Domain Specific Languages and Tools. In: Proceedings of the
Fifth International Conference on Software Reuse. pp. 134–142. Victoria, BC ,
Canada (1998)

14. Igarashi, A., Pierce, B.C., Wadler, P.: Featherweight Java: A Minimal Core Calcu-
lus for Java and GJ. ACM Transactions on Programming Languages and Systems
23(3), 396–450 (May 2001)

15. Kagedal, D., Fritzson, P.: Generating a Modelica compiler from natural seman-
tics specifications. In: Summer Computer Simulation Conference (SCSC ’98). No.
Modelica, Reno, Nevada, USA (1998)

16. Kiama: http://code.google.com/p/kiama/
17. Kollmansberger, S., Erwig, M.: Haskell Rules: Embedding Rule Systems in Haskell.

Draft Paper (Jun 2006)
18. Lämmel, R., Peyton Jones, S.: Scrap Your Boilerplate: A Practical Design Pattern

for Generic Programming. In: Proceedings of the 2003 ACM SIGPLAN Interna-
tional Workshop on Types in Languages Design and Implementation (TLDI ’03).
vol. 38, pp. 26–37 (2003)

43

19. Lee, O., Yi, K.: Proofs about a Folklore Let-Polymorphic Type Inference Algo-
rithm. ACM Transactions on Programming Languages and Systems 20(4), 707–723
(Jul 1998)

20. Levin, M.Y., Pierce, B.C.: TinkerType: A Language for Playing with Formal Sys-
tems. Journal of Functional Programming 13(02), 295–316 (Mar 2003)

21. Mitchell, N., Runciman, C.: Uniform Boilerplate and List Processing. In: Proceed-
ings of the ACM SIGPLAN Haskell Workshop. pp. 49–60. Freiburg, Germany (Sep
2007)

22. Odersky, M., Spoon, L., Venners, B.: Programming in Scala. Artima Press, 1st
edn. (2008)

23. Odersky, M., Sulzmann, M., Wehr, M.: Type Inference with constrained Types.
Theory and Practice of Object Systems 5(1), 35–55 (1999)

24. Pettersson, M.: RML - A New Language and Implementation for Natural Semantics
Mikael. In: 6th International Symposium on Programming Language Implementa-
tion and Logic Programming (PLILP ’94). pp. 117–131. Springer-Verlag, Madrid,
Spain (Sep 1994)

25. Pierce, B.C.: Types and Programming Languages. The MIT Press, 1st edn. (2002)
26. Reps, T., Teitelbaum, T.: The Synthesizer Generator: A System for Constructing

Language-Based Editors. Springer-Verlag, New York, NY, USA (1989)
27. Robinson, J.A.: A Machine-Oriented Logic Based on the Resolution Principle.

Journal of the ACM 12(1), 23–41 (Jan 1965)
28. Rodriguez Yakushev, A.L.: Towards Getting Generic Programming Ready for

Prime Time. Phd thesis, Utrecht University (2009)
29. Sheard, T., Peyton Jones, S.: Template meta-programming for Haskell. ACM SIG-

PLAN Notices 37(12), 60–75 (Dec 2002)
30. Sulzmann, M.: A General Framework for Hindley-Milner Type Systems with Con-

straints. Doctoral dissertation, Yale University (2000)
31. Teitelbaum, T., Reps, T.: The Cornell Program Synthesizer: A Syntax-Directed

Programming Environment. Communications of the ACM 24(9), 563–573 (Sep
1981)

32. The Type Checker Library: https://projects.uebb.tu-berlin.de/typechecklib/trac/
33. Wand, M.: A Simple Algorithm and Proof for Type Inference. Fundamenta Infor-

maticae 10, 115–122 (1987)
34. wxWidgets: http://www.wxwidgets.org/

44

Appendix A: Default Abstract Syntax

For rapid prototyping of type checking functionality the libary provides abstract
syntax ready to use with our type checking framework. This abstract syntax
consists of terms, definitions, and combiners. Terms allow the user to encode
variables, constants, characters, binder, and tagged combiner. Definitions bind
identifier to terms and container encapsulate sub-containers and definitions. All
data structures provide corresponding meta-level elements and allow the user to
define sets, sequences, and meta-level functions over these elements.

1 data Tag = Let -- Let binding
2 | LetRec -- Recursive let binding
3 | App -- Application
4 | Abs -- Lambda abstraction
5 | IfThenElse -- Conditional
6 | Fix -- Fixpoint combinator
7 | Tuple -- n-ary tuple
8 | Tag String -- ’String ’-based tag
9

10 data Term = Nil -- Empty term
11 | Var Ide -- Variable
12 | Const Integer -- Constant
13 | Char Char -- Character
14 | Bind Ide Term -- Object level binder
15 | K Tag Int [Term] -- Tagged combiner
16 | TSeq (Sequence Term) -- Sequence of terms
17 | TSet (Set Term) -- Set of terms
18 | TFun (MetaFun Term) -- Embedded function
19 | MConst String -- Meta -level constant
20 | MChar String -- Meta -level character
21 | MTerm String -- Meta -level term
22

23 data Def = Def Ide Term -- Definition
24 | DSeq (Sequence Def) -- Sequence of definitions
25 | DSet (Set Def) -- Set of definitions
26 | DFun (MetaFun Def) -- Meta -level function
27 | MDef String -- Meta -level definition
28

29 data C = C [C] [Def] -- Container
30 | CSeq (Sequence C) -- Sequence over container
31 | CSet (Set C) -- Set over container
32 | MC String -- Meta -level container

45

	RoteReihe.pdf
	Folie 1
	Folie 2

