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Abstract 

The purpose of this research is to simulate a synthe	c popula	on of the Greater Accra Metropolitan 

Region (GAMA) from the 2005 Ghana Living Standards Survey (GLSS5) for use in the Greater Accra Urban 

Simula	on System (GAUSS).  A primary goal in simula	ng the synthe	c popula	on of GAMA is to employ 

a method which generates close-to-reality popula	on data rather than repeatedly drawing samples.  In 

order to generate close-to-reality synthe	c data, combina	ons which were not represented in the 

original household survey but are likely to occur in the true popula	on must occur in the synthe	cally 

generated data.  The author es	mates the condi	onal distribu	ons with mul	nomial logis	c regression 

models in order to simulate categorical and con	nuous variables.  The simula	on of random zeros as 

opposed to structural zeros, are also reflected in the synthe	cally generated Greater Accra popula	on.  

One of the main purposes for avoiding pure replica	on of units from the underlying sample is because 

this generally leads to small variability of units within smaller subgroups, which results in an increase in 

unrealis	c model behavior when popula	on data is used as input for agent-based simula	ons of urban 

dynamics. 

Introduction 

Synthe	cally generated popula	on data is generally an important first step in running microsimula	ons 

or agent based models used to predict urban dynamics and/or transporta	on ac	vi	es.  

Microsimula	on models o)en a�empt to reproduce the behavior of individual persons, households or 

firms over the course of several years in order to quan	ta	vely and qualita	vely visualize poten	al 

scenarios which could occur as well as their associated costs and benefits.  In order to reduce poten	al 

predic	on error, using popula	on data that most closely reflects the exis	ng popula	on inhabi	ng the 
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geographic area of study is desirable.  Genera	ng this synthe	c popula	on has typically been achieved 

by either repeatedly drawing samples from sample data or using the itera	ve propor	onal fi/ng 

method (IPF), a common method employed by transporta	on models.   By simula	ng the exis	ng 

popula	on data, a realis	c framework for comparing the implementa	on of different policy cadres 

(business as usual, weak sustainability, strong sustainability) under different growth scenarios (low, 

medium or high economic or demographic growth rates) can be projected. 

One of the advantages of synthe	c data is its cost effec	veness when compared to comprehensive and 

detailed popula	on data, which is in effect nearly impossible to obtain for every living person inhabi	ng 

a significantly sized urban geographical area.  Addi	onally, genera	ng synthe	c data serves to meet the 

need for observing sta	s	cal disclosure limita	ons.  Genera	ng synthe	c data not only presents the 

researcher with the base year data needed to simulate different poten	al urban simula	on scenarios it 

also presents the public sta	s	cian with the means for releasing these base year datasets for prac	cal 

applica	on, while protec	ng rights to privacy as well as maintaining the likelihood of receiving authen	c 

data from individual survey observa	ons. (Reiter 2007) 

In order to generate a synthe	c popula	on from a sample such as the GLSS5, several condi	ons need to 

be met.  First the actual size of regions and strata must be reflected in the survey weights.  Secondly, 

marginal distribu	ons and interac	on between variables should be reflected correctly, while 

heterogenei	es between subgroups, especially regional aspects, should be allowed.  Finally, pure 

replica	on of units from the underlying sample should be avoided, as this generally leads to extremely 

small variability of units within smaller subgroups.  Following these condi	ons, the synthe	c data should 

include univariate distribu	ons overall and in subpopula	ons as well as mul	variate rela	ons among the 

variables.  In order to meet these condi	ons, mul	nomial logis	c regressions can be used to predict 

possible outcomes of a dependent variable from probabili	es derived from a given set of independent 

variables.  Also used in synthe	cally genera	ng the household structure, categorical and con	nuous 

variables for Great Accra is the condi	onal probability distribu	on which is the probability distribu	on of 

variable Y when variable X is known to be a par	cular value. (Munnich et al 2003, Alfons et al 2010) 

Application	to	Ghana	Living	Standard	Survey	5	(GLSS) 

The Ghana Living Standards Survey-Round Five (GLSS 5), like earlier ones, focuses on the household as a 

key socio-economic unit and provides valuable insights into living condi	ons in Ghana. The fi)h round of 

the GLSS was conducted by the Ghana Sta	s	cal Service (GSS) from 4th September 2005 to 3
rd

 

September 2006.  A na	onally representa	ve sample of 8,687 households in 580 enumera	on areas, 

containing 37,128 households members were covered in GLSS5. Detailed informa	on was collected on 

demographic characteris	cs of respondents and all aspects of living condi	ons including health, 

educa	on, housing, household income, consump	on and expenditure, credit, assets and savings, prices 

and employment.  For the purposes of this work, sec	ons on Demography, Educa	on and Employment 

were used.  While the ini	al intent was to simulate the en	re popula	on of Ghana from the GLSS5 for 

the chosen variables and focus on the urban popula	on of the Ghanaian capital, the total GLSS5 sample 

size of 37,128 household members overextended hardware capabili	es (par	cularly RAM), and thus the 

scope was limited to the Greater Accra Region.  The Greater Accra Region por	on of the GLSS5 is 

comprised of 4254 persons as members of 1257 households. (GSS 2008) 
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The synthe	c popula	on genera	on cannot be applied to the GLSS5 directly if the data includes missing 

a�ributes from observa	ons.  While in the univariate case the observa	ons with missing informa	on 

could simply be deleted, this can result in a severe loss of informa	on in the mul	variate case.  

Mul	variate observa	ons usually form the rows of a data matrix, and dele	ng an en	re row implies that 

cells carrying available informa	on are lost for the analysis.  Instead of dele	ng observa	ons with  
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Table 1: Variables of the GLSS5 used in simPopulation application 

Variable (missing counts) Name Type 

Region (0) region Categorical 

Enumera	on Area (0) cluster Strata 

Gender (0) sex Categorical 

Age (0) age Categorical 

Na	onality (0) nation Categorical 

Ethnicity/Tribal Affilia	on (175) ethnic Categorical 

Religion (2) religion Categorical 

Sample weights (0)  weight Continuous 

Educa	onal a�ainment (259) highest_degree Categorical 

Occupa	on (618) 

Household Income (737) 

occupation 
annual_income 

Categorical 

Continuous 

Total persons 4254 / total households 1257   

  

Map 1:  Enumeration Areas throughout Greater Accra 



5 

 

missing values, it is be�er to fill in the missing cells with appropriate values, which is possible with 

mul	variate data sets. (Hron 2008)   

Sec	on 1 addresses the primary demographic household characteris	cs for all 4254 persons, with the 

excep	on of the variables ethnic and religion.  The GLSS5 only defined tribal affilia	on for members who 

were born in Ghana, thus the 175 “missing” observa	ons were recoded to “unknown.”  This was done 

due to the fact that valid inferences can only be made if the missing data are missing completely at 

random (MCAR), which was not true in this instance. (Li�le and Rubin 1987)  Addi	onally, there were 2 

missing a�ributes for the variable religion, which were imputed from the exis	ng 4254 members in 

order to obtain a complete set of observa	ons for all Sec	on 1 variables for Greater Accra. 

Sec	on 2 of the GLSS5 addressed characteris	cs related to educa	onal achievement while Sec	on 4 was 

related to employment and household income.  Four variables from Sec	on 2 were used; with each one 

have 259 missing observa	ons from the original survey data.  This data was imputed using 9 variables 

from Sec	on 1 using the k-nearest neighbor (KNN) imputa	on method; in the same manner the 2 

missing a�ributes from the variable religion were imputed.  Once Sec	ons 1 and 2 were both complete, 

the 616 to 737 missing a�ribute data from Sec	on 4 were imputed, again using the kNN method and the 

variables from Sec	ons 1 and 2, thus resul	ng in a complete data set for all 4254 household members 
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Table 2.  Combinations of Missing data during kNN Imputation: original data (left), after imputing 
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residing in Greater Accra, and enabling applica	on of the synthe	c popula	on genera	on method. 

Many different methods for imputa	on have been developed over the last few decades.  While 

univariate methods replace the missing values by the coordinate-wise mean or median, the more 

advisable mul	variate methods are based on similari	es among the objects and/or variables.  A typical 

distance based method is k-nearest neighbor (KNN) imputa	on, where the informa	on of the nearest 

k>=1 complete observa	ons is used to es	mate the missing values using the Aitchison distance for 

measuring composi	onal datasets.  While kNN is numerically stable it has some limita	ons.  First the 

op	mal number of k nearest neighbors needs to be determined, by randomly se/ng observed cells to 

missing, es	ma	ng these values and measuring the error.  Secondly, kNN imputa	on does not fully 

account for the mul	variate rela	ons between the composi	onal parts, which are only considered 

indirectly when searching for the k-nearest neighbors.  A next step in this process will be to apply a 

model-based imputa	on procedure which relies on a more realis	c es	ma	on of the mul	variate data 

structure. (Hron et al 2008) 

Application	of	SimPopulation	to	GLSS5 

The household structure is simulated separately for each combina	on of stratum k and household size l.  

First, the number of households is es	mated using the Horvitz-Thompson es	mator:   

��� ∶= 	 � ��

�∈�
��

�

 

where ���

�  denotes the index set of households in stratum k of the survey data with household size l, 

and ��, ℎ ∈ ���

� , are the corresponding household weights. (Hortvitz and Thompson 1952)  To prevent 

unrealis	c structures in the popula	on households, basic informa	on from the survey households is 

resampled. (Alfons et al, 2010)  Using the R package simPopula	on, we start our analysis using the 

func	on simStructure()  and enter the following command from the R command prompt. 

gamaP <- simStructure(gamaI, hid = "hhid", w = "wei ght", 
strata = "cluster", additional = c("age","sex")) 

Addi	onal categorical variables are simulated using the simCategorical func	on which es	mates 

condi	onal distribu	ons with mul	nomial logis	c regression models for each stratum using survey 

indices to fit responses and predictors while incorpora	ng survey weights. (Alfons et al, 2010)   In order 

to reduce computa	on 	me, age categories are combined into categorical groups, before proceeding 

with the simCategorical()  func	on. The argument basic  specifies exis	ng generated variables 

found in the household structure, while the argument additional  specifies the variables to be 

simulated in this step. 

basic <- c("ageCat","sex","hsize") 

gamaP_Cat <- simCategorical(gamaI, gamaP, w = "weig ht", 
strata = "cluster", basic = basic, additional = c(“ nation”, 
”ethnic”, ”religion”, ”highest_degree”, "occupation ")) 
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Next the func	on simContinuous()  is used to simulate the variable annual income with the basic  

argument modified to include addi	onal predictor variables.  This approach is able to handle semi-

con	nuous variables, i.e. variables that contain a large amount of zeros, which is true with regard to the 

variable annual_income in the GLSS5.  Following the approach used for simula	ng categorical variables, 

the con	nuous variable is discre	zed by breakpoints and zero becoming a category of its own.  

Mul	nomial logis	c regression models are then fi�ed for every stratum k separately, as previously 

described in order to simulate the con	nuous variable.  Finally the values of the variable are generated 

by random draws from uniform distribu	ons within the corresponding categories. 

basic <- c("ageCat","sex","hsize", “nation”, ”ethni c”, 
”religion”, ”highest_degree”, "occupation") 

gamaP_Cont <- simContinuous(gamaI, gamaP, w = "weig ht", 
strata = "cluster", basic = basic, additional = 
c("annual_income")) 

Evaluation	of	the	Simulated	Synthetic	Population	of	Greater	Accra 

In this sec	on the rela	onship between categorical variables, including variables defining the household 

structure are evaluated using con	ngency coefficients.  Pearson’s coefficient of con	ngency is a 

measure of associa	on for categorical data and is defined as 

� = � ��

	 + 	��
 

where �� is the test sta	s	c of the ��test of independence and 	 is the number of observa	ons.  Tables 

3 and 4 present the con	ngency coefficients obtained from the sample as well as those from the 

synthe	c Greater Accra popula	on.  The rela	ve differences are negligible in all instances with the 

correla	on structure of the simulated popula	on being very close to that found in the GLSS5 a)er 

applica	on of kNN imputa	on. 

The result is the synthe	c genera	on of 3,111,779 persons being described by the variables for 

household size, age, sex, religion, educa	onal a�ainment and occupa	on, while the variables for 

na	onality, ethnicity and household income will be subsequently included.  This synthe	c popula	on is 

ready to be used as the base year data set in an urban simula	on system or transporta	on model.  More 

specifically, the R package simPopula on() has been applied to the Ghana Living Standard Survey 5 and 

presented as a vigne�e.  Addi	onally, the methodology of using mul	nomial logis	c regression models 

and the condi	onal probability distribu	on was presented and explained.  Descrip	ve mosaic plots, 

cumula	ve distribu	on plots, and box-and-whisker plots will also be added to further demonstrate the 

effec	veness of the employed method as further emphasis of the validity demonstrated by comparing 

the pairwise con	ngency coefficients of the GLSS5 with the Synthe	c Popula	on.  In conclusion, this 

work presents a synthe	c urban popula	on of Accra, Ghana, which is a step forward towards genera	ng 

synthe	c Close-to-Reality popula	ons with combina	ons not represented in the original household 

survey but likely to occur in the true popula	on. 
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Table 3.  Pairwise Contingency Coefficients from the GLSS5 after Imputation 

 sex      hsize   religion highest_degree occupa on 

age          0.07684275 0.3885837 0.2888835       0.7238775   0.7198963 

sex                     NA 0.1370375 0.1008813       0.1912632   0.3971899 

hsize                   NA NA 0.5395080       0.3009451   0.5537457 

religion                NA NA NA 0.3287186   0.5677181 

highest_degree         NA NA NA NA 0.8378192 

 

Table 4.  Pairwise Contingency Coefficients from the Synthetically Generated Greater Accra Population 

 sex      hsize   religion highest_degree occupa on 

age          0.07684068 0.3889738 0.2905272       0.7201150   0.7146574 

sex                     NA 0.1374701 0.1011180       0.1932895   0.3778930 

hsize                   NA NA 0.5396357       0.2947910   0.5464265 

religion                NA NA NA 0.3288038   0.5583367 

highest_degree         NA NA NA NA 0.8280430 
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