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Inconsistencies of Metrics in C++ Standard

Template Library?

Zoltán Porkoláb, Ádám Sipos, and Norbert Pataki
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Abstract. Since McCabe's cyclometric measure, structural complexity
have been playing an important role measuring the complexity of pro-
grams. Complexity metrics are used to achieve more maintainable code
with the least bugs possible.
C++ Standard Template Library (STL) is the most popular library
based on the generic programming paradigm. This paradigm allows im-
plementation of algorithms and containers in an abstract way to ensure
the con�gurability and collaboration of the abstract components. STL is
widely used in industrial softwares because STL's appropriate applica-
tion decreases the complexity of the code signi�cantly.
Many new potential errors arise by the usage of the generic programming
paradigm, including invalid iterators, notation of functors, etc.
In this paper we present many complexity inconsistencies in the applica-
tion of STL that a precise metric must take into account, but the existing
measures ignore the characteristics of STL.

1 Introduction

Structural complexity metrics play important role in modern software engineer-
ing. However, the software metrics are depend on used paradigm [10]. This fact
makes hard to create multiparadigm metrics.

Generic programming is one the most untended paradigm from the view of
paradigm, because most languages do not support this feature. C++ is multi-
paradigm language that suppport this paradigm [11]. Most important incarna-
tion is the C++ Standard Template Library.

The C++ Standard Template Library (STL) is the most popular library
based on the generic programming paradigm [1]. STL is widely-used, because the
library is the part of the C++ Standard [11]. It consists of many useful generic
data structures and generic algorithms, that work together with containers. STL
is based on generalization and generalization results in simpli�ed interface.

C++ STL consists of three main parts: containers, iterators and algorithms.
Containers (e.g. vector, list, map, set, etc.) are the generalization of arrays,
so they hold elements. Iterators guarantee access to the elements in containers.

? Supported by GVOP-3.2.2.-2004-07-0005/3.0
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Iterators are nested types of containers. Iterators are a generalization of pointers,
their standard interface originates from pointer-arithmetic. Algorithms are fairly
irrespective of the used container, because they work with iterators. For instance,
we can use the for_each algorithm with all containers. The complexity of the
library is greatly reduced because of this layout. As a result of this layout we can
extend the library with new containers and algorithms simultaneously. This is a
very important feature, because object-oriented libraries do not support this kind
of extension. The C++ standard guarantees the complexity of the operations.

STL applies the generic programming paradigm, so we can expect that the
common metrics can fail on this library because of the metrics' paradigm-
dependence. As we will see, the old metric tools are not precise enough.

2 Positive e�ects

STL is a popular library, because it greatly reduces the complexity of a program
from the view of programmers. The library o�ers many positive e�ects to code,
but some of these e�ects cannot be measured by widely-used metrics.

STL makes the code more abstract, more powerful, more expressive, so pro-
grammers can avoid many mistakes [6]. STL is a standard library, many books
and online references can be found (for example [1, 6, 11]).

3 Trivial inconsistencies

Many inconsistencies can be found between the common metrics and uage of
STL. Some of these inconsistencies are quite clear.

One of the most obvious inconsistency is the widely-used object oriented
metrics fail on C++ Standard Template Library, because this library is based
on generic programming and implementing classes is unnecessary. Of course, we
use objects and classes when the STL is applied, but we can write STL-based
code without any new classes. Hence, the object-oriented metrics may fail on
STL-based programs.

Another important feature is that STL is standardized library, so names of
functions and classes in the library are well-known. The names express their
behaviour, for instance the copy algorithm copies elements, the sort algorithm
sorts a container, etc. No external library can achieve this important feature,
and no existing metric can measure this special advantage.

STL has been designed as a generic programming library, so STL has a
reduced interface: algorithms can be applied to more container types. The basic
usage of the library is easy of attainment because of the reduced interface. This
is a good feature, because beginner programmers do not shy away from STL.
But this point is also not measured.

4 Complexity inconsistencies

In this section we examine some more sophisticated problems.

3



4.1 Error diagnostics

Error diagnostics usually do not matter when measuring software complexity.
Metrics ignore syntactical and semantical errors in the code and usually examine
programs as error-free software.

A simple mistake in STL-based code causes very long and incomprehensible
error diagnostics. For example, more thousand character long error messages are
not rare and often refer to unknown and unseen types and objects. Sometimes
the errormessage points to the implementation of STL.

Some software tools help us to reduce the complexity of the messages, but
these tools depend on the compiler and STL implementation.

Modi�cation or maintain of STL-based code can be more di�cult because of
the complicate error diagnostics, so we should take it into account.

4.2 Functors

C++ functors are special objects that o�er an operator() to simulate function-
calls. Functors are quite common objects in STL-based code, because functors
can avoid the overhead of non-inline functioncalls and some problems about the
name of template functions to get the code to compile.

The problems of functors are their special requirements. Functor classes are
often inherited from special classes that only support some typedefs. The names
of these base classes are unary_function and binary_function. These base classes
do not increase the complexity of a functor from the viewpoint of STL program-
mer.

Functors are always passed by value. Polymorphism and value passing an
object do not work together, because the object would be sliced. So, polymorphic
functors are not allowed.

4.3 Sorted ranges

Many problem arise from the inadequate usage of sorted ranges. Some algorithms
have a special precondition, e.g. the input range must be sorted (for example,
binary_search, equal_range, set_union, etc.). But the compilers do knot know
what �sorted range� means, so the compiler cannot help us at this point. If
we call an algorithm of this kind to an unsorted range, it causes unde�ned
behavior. Unfortunately STLlint [12] cannot discover the improper usage of these
algorithms. Using this kind of algorithms increases the complexity of the code.

Using the same sorting predicate to the sort and algorithm is important. If
anyone violates this constraint it also leads to unde�ned behavior.

4.4 Data�ow

Data�ow models measure by the parameter-passing. This means the complexity
of a program is based on parameters: how to read or write the arguments.
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A basic problem is that we cannot read all parameter�ows from an STL-
based code. For example we write a functor and we call an algorithm with this
functor as an argument. It is invisible that the code will execute the functor's
functioncall operator.

Another problem is that we cannot decide if an algorithm modi�es the con-
tainer. For instance, let us consider the following two declarations. The �nd
algorithm does not modify the container, but the sort algorithm does:

template <typename InputIter, typename T>

InputIter find(InputIter first, InputIter last, const T& t);

template <typename RanIter>

void sort(RanIter first, RanIter last);

On the other hand, the parameters are not independent. A container is passed
by two iterators that de�ne the range. If we call an algorithm usually call it with
special iterators: begin and end iterators. It is so common that the programmers
cannot make a mistake. So, iterators as parameters are very closely to count
them twice.

4.5 Invalid iterators

Probably the most serious problem is usage of invalidated iterators. The compil-
ers cannot help solve this kind of problem. Many kind of errors arise from usage
of invalid iterators.

Di�erent containers have di�erent observance of iterator invalidating. The
most trivial example of iterator invalidating is a reallocating vector, because
their iterators do not point proper element of the given vector after a reallocating
method.

This does not mean that the standard node-based containers are preferrel to
contigous-memory containers. Both have advantages and disadvantages. C++
Programmers should know the rules of invaliding iterators.

5 Some proposals

In the paper [9] a multiparadigm metric is described. AV-graph measures three
main points of a given program: the structure of the program, the data�ow in
the program, and the complexity of the used data structures.

We have seen that the data�ow model is not precise enough. Informally
speaking, the control structure also fails on STL-based code, because the usage
of STL replaces many loops and if statemens.

It is also a common problem what can we mean by complexity of the STL's
data structures. The complexity cannot be an STL implementation-speci�c value.

Complexity of STL's data structures should be based on some �semantical
concepts�: for instance, basic behaviour of the container (e.g. vector's reallocting
strategy), special parameters of a data structure, how copying works, etc..
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6 Conclusion

C++ Standard Template Library is a widely-used library based on the generic
programming paradigm. Software metrics are mostly paradigm-dependent, so we
can expect that the common metrics fail on C++ STL. In this paper we present
many inconsistencies between STL and the widely used metrics. Our aim is to
calibrate an old metric to measure STL-based code.
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Automatic Generation of Strategies for Visual
Anomaly Detection

Salima Hassaine, Karim Dhambri, Houari Sahraoui, and Pierre Poulin

Dept. I.R.O., Université de Montréal

Abstract. An important subset of design anomalies is difficult to de-
tect automatically in the code because of the required knowledge. For-
tunately, software visualization offers an efficient and flexible tool to
inspect software data searching for such anomalies. However, as main-
tainers typically do not have a background in visualization, they often
must seek assistance from visualization expert. We propose an approach
based on taxonomies of low-level analytic tasks, interactive tasks, and
perceptual rules to design an assistant that helps analysts to effectively
use a visualization tool to accomplish detection tasks.

1 Introduction

Although object-oriented programming has met great success in modeling and
implementing complex software systems, practical experience with large projects
has shown that programmers still face some difficulties with the maintenance of
their code [10]. This is especially the case for design anomaly detection and cor-
rection. Design anomalies represent deviations from good object-oriented design
that can hinder the maintenance and evolution of software projects. Anomaly
detection is difficult to automate and may generate many false positives [9].
However, it can be greatly enhanced when combined with an appropriate form
of visualization. Visualization offers powerful tools to foster a better understand-
ing of software quality. It exploits the natural pattern recognition ability of the
human brain and the knowledge of the expert to analyze data.

A number of visualization systems exist for complex software analysis [6,
8, 11, 15, 13]. However, each of these systems requires that the user explicitly
specifies the visualization parameters. Building effective visualization also re-
quires understanding some perception rules from cognitive sciences. Unfortu-
nately, software maintainers typically do not have the necessary background in
visualization, and therefore they often seek assistance from visualization experts
to help them display their data and use efficiently the available tools.

This paper presents an approach which enables the user to specify a detection
task in terms of software metrics and data analysis techniques, and then trans-
forms it into a detection strategy with interactive visualization. This strategy
assists the user in carrying on his task using a specific visualization tool. The
approach also generates for each task a mapping between metrics and graphical
representations based on perceptual rules.
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The rest of the paper is structured as follows. Section 2 presents an overview
of the approach and shows how its various components work together. Section 3
and Section 4 describe the two models involved in our approach. Section 5 details
the transformation mechanisms between the two models. Section 6 illustrates
with a concrete example how a general analysis task description can be trans-
formed by our approach to be applicable for a specific visualization tool. Finally,
Section 7 discusses some conclusions and identifies future work directions.

2 Overview

We propose a task-driven approach for software visualization in a way that sup-
ports user-defined analysis goals. We cover the entire process from the analysis
task description to the generation of a sequence of interactive visualization ac-
tions supported by a specific software visualization tool. Figure 1 illustrates the
method which consists of the following steps:

1. Analysis Task (AT) Model: This model offers a language to formally de-
scribes in terms of user goals the scenario for a detection task, based on a
known analytic task taxonomy [1]. This model is independent from visual-
ization.

2. Interactive Visual Task (IVT) Model: This model allows to describe
the interactive tasks that a software visualization application should support.

3. Analysis Task to Interactive Visual Task Transformation: This mech-
anism transforms a detection task described using the Analysis Task Model
into an interactive visual task conforming to the Interactive Visual Task
Model. It is based on a set of perceptual rules.

4. Transformation Session: A transformation session is specific to a partic-
ular tool. It instantiates the above mechanism, taking into account the tool
specification.

3 Analysis Task Model

This section presents the description of the Analysis Task Model. We start by
presenting the basic operators that can be performed to explore the code (Sec-
tion 3.1). Then we give the detection description model in terms of a goal-
oriented modeling formalism (Section 3.2).

3.1 Taxonomy of Operators

In [1], Amar et al. proposes a low-level and domain-independent taxonomy of
operators that a user might perform on a data set. Building on this taxonomy,
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Fig. 1. Our proposed analysis-visualization pipeline.

we have derived a set of operators for the specific purpose of code-based data
inspection. More specifically, we characterized each operator by the parameters
required for its execution and the scope of its application. An operator is then
described as a tuple < operation, parameters > where operation is an action
to perform on the data using the specified parameters. Parameters include code
entity or set of entities (x or X), code metrics and relationships (Att or Atts),
conditions (Cond), text labels (Label) and properties (Prop or Props) such as
class name, class code, class position with respect to the package architecture,
etc. Each operator has an area of effect: global vs. local. A global operator has
to be applied to a large set of code entities (classes and interfaces), while a local
operator has to be performed on a reduced subset of entities. Our set of operators
is described in Table 1.

For example, when searching for classes that have extremely high coupling
values globally in a program P, the operator to use would be Find Extremum
with the parameters C, the set of classes in P, CBO as a coupling metric, and
HIGH as the condition. Another example that involves a local operator is when
a user needs to know the complexity of a particular class c. The appropriate
operator is Retrieve Value with parameters c and WMC as a class complexity
metric.

3.2 Modeling

Up-to-now, we have defined a set of basic operators that can be used in a detec-
tion task. The next step is to define a model that allows to describe a complete
detection task. To this end, we defined a goal-driven model [14]. According to
this model, a detection task consists of a goal, i.e., the purpose of the detection,
that can be refined into sub-goals (see Figure 2). Each sub-goal is described by
a list of steps. A step may be either one of the operators defined in Section 3.1
or a control structure (conditionals and iterators).
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Operators Scope Description

Retrieve Value〈x, Atts〉 local Find the values of attributes Atts for a code entity x.
Filter Attributes〈X, Atts, Conds〉 global Determine the subset of entity set X that satisfies the

conditions Conds on attributes Atts.
Filter Relationship〈X, Att, y〉 global Determine the subset of entity set X that are in rela-

tion Att with the entity y.
Find Extremum〈X, Att, Cond〉 global Find code entities in X possessing an extremely high

or low value (specified by condition Cond) with re-
gard to the value distribution of attribute Att.

Sort〈X, Att〉 global Rank code entities in X according to a given attribute
Att.

Determine Range〈X, Att〉 global Determine the span of values of an attribute Att for
a set of entities X.

Characterize Distribution〈X, Att〉 global Characterize the distribution of the values of at-
tribute Att over a set of code entities X.

Cluster〈X, Atts〉 global Find clusters of similar values for attributes Atts for
a set of code entities X.

Correlate〈X, Att1, Att2〉 local Determine relationships between the values of two at-
tributes Att1 and Att2 for a set of code entities X.

Verify Value 〈x, Att, Cond〉 local Verify whether a condition Cond is true for an at-
tribute Att of an entity X.

Verify Property 〈X, Prop, Cond〉 global Verify whether a condition Cond is true for a property
Prop of a set of entities X.

Inspect〈x, Props〉 local Obtain detailed information about properties Props
for an entity x.

Save〈X, Label〉 local Attach the label Label to the set of entities X.

Table 1. Analysis operators.

A detailed example of a detection task expressed using our model is given in
Section 6.

Fig. 2. Task Model.

4 Interactive Visual Task Model

This model is based on the Task by Data Type Taxonomy proposed by Shnei-
derman [12]. This taxonomy presents seven high-level interactive tasks that an
information visualization application should support, such as overview, zoom,
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filter, details-on-demand, relate, etc. These interactive tasks are task-domain
information actions that users might want to perform in a visual environment.

In a visual environment, code entities are displayed as graphical representa-
tions. Properties of these entities are mapped onto the visual attributes of their
representation. The visual attributes of a representation may change according
to the interactive task performed on it. The various interactive tasks (call them
interactors) are described as :

– Overview: Gain an overview of the entire collection of code entities.
– Zoom: Zoom in on entities of interest.
– Filter: Put emphasis on a sub-collection having certain properties, and filter

out uninteresting entities.
– Details-on-demand: Select a particular entity and get details when needed.
– Relate: View relationships among code entities such as association, gener-

alization, aggregation, etc.
– History: Memorize semantic information about a code entity, such as the

role it plays in a design.
– Selection: Select certain entities of the collection.
– Navigation: Moving around within the collection.
– Statistic Function: Display the value of a function computed from entity

attributes.

5 AT to IVT Transformation

The mapping process is a critical and challenging part of the visualization
process. It has an important influence on the user interpretation of data. The
mapping process consists of two phases. The first phase maps each analysis task
operator to one or many interactive task interactors conforming to the Inter-
active Visual Task Model. The second phase maps the attributes of the code
entities to the visual properties of their graphical representations. Our trans-
formation mechanism uses perceptual guidelines to build more effective visual
mappings.

For a given transformation session, the user provides an analysis task de-
scription, which is transformed into a description of an interactive visual task
for a specific tool. In this paper, we illustrate the mapping process using the
visualization tool VERSO [5].

5.1 Task Mapping

For a tool to be compatible with our approach, it must support every inter-
actor defined in Section 4. Table 2 presents the mapping between operators,
interactors, and the corresponding operations in VERSO.

As an example, when we apply the operator ‘Find Extremum〈X, Att, Cond〉’,
the first interactor is ‘Overview’, in order to get a global view of the data set X.
In VERSO this interactor is implemented as the ‘Zoom-out’ operation. Then a

11



‘Statistic Function’ is applied to visualize the distribution of values for attribute
Att. In VERSO, that interactor corresponds to the statistic filter. Finally, the
interactor ‘Selection’ is applied to identify classes having an extreme value for
the attribute, either high or low (depending on the condition Cond).

Operators Location Interactors VERSO Operations

Retrieve Value〈x, Atts〉 local Zoom Zoom-in
Details-on-demand Display metric list.

Filter Attributes〈X, Atts, Conds〉 global Overview Zoom-out
Filter
Selection Select feature

Filter Relationship〈X, Att, y〉 global Overview Zoom-out
Relate Relationship filter
Selection Select feature

Find Extremum〈X, Att, Cond〉 global Overview Zoom-out
Statistic Function Statistic filter
Selection Select feature

Sort〈X, Att〉 global Overview Zoom-out
Navigation Iterator

Determine Range〈X, Att〉 global Overview Zoom-out
Statistic Function Statistic filter

Characterize Distribution〈X, Att〉 global Overview Zoom-out
Statistic Function Statistic filter

Cluster〈X, Atts〉 global Overview Zoom-out
Filter
Selection Select feature

Correlate〈X, Att1, Att2〉 local Zoom Zoom-in
Statistic Function Statistic filter

Verify Value 〈x, Att, Cond〉 local Zoom Zoom-in
Details-on-demand Display metric list

Verify Property 〈X, Prop, Cond〉 global Overview Zoom-out
Inspect〈x, Props〉 local Zoom Zoom-in

Details-on-demand Display source code
Save〈X, Label〉 local Zoom Zoom-in

Selection Select feature
History Tag feature

Table 2. Task Mapping.

5.2 Attribute Mapping

The attribute mapping provides support for the user by mapping data onto
graphical primitives. As several mappings are possible, selecting the most ap-
propriate mapping among all alternatives for a given situation usually requires
considerable knowledge of visual perception principles, and of the data itself.

Through literature surveys [7, 4], we gathered several heuristic rules. These
rules relate to the expressiveness and effectiveness of visualization primitives,
such as color, size, etc. Expressiveness rules identify visualization primitives able
of expressing the desired information, whereas effectiveness rules identify the
most effective primitives for exploiting the capabilities of the output medium
and the human visual system. Table 3 presents an example of the effectiveness
rules proposed by Mackinlay [7].

In VERSO, each data entity is represented by a 3D box. Each representation
has five visual attributes: color, height, twist, analog clock texture, and window
texture. Figure 3 illustrates these representations.
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Visual feature Quantitative Ordinal Nominal

Position 0 0 0
Length 1 7 8
Angle 2 8 9
Slope 3 9 10
Area 4 10 11
Volume 5 11 12
Density 6 1 5
Color saturation 7 2 6
Color Hue 8 3 1
Texture N 4 2
Connection N 5 3
Containment N 6 4
Shape N N 7

Table 3. Ranking of visual features. Features without a cost are not relevant to the
corresponding measurement scale.

Fig. 3. Data entity representations in VERSO.

We can formalize the problem of generating a mapping between data at-
tributes and visual features as a valued constraint satisfaction problem. Formally
speaking, we define a 3-tuple 〈X, D,C〉 where:

– X = {X1, X2, ..., Xn} is a finite set of variables.
– D = {D1, D2, ..., Dn} is a collection of the domains of the variables in X,

such that each variable Xi has a domain Di, which is the set of possible
values.

– C is a finite set of soft constraints. A soft constraint f ∈ C is a function fS

on a set of variables S ⊆ X. S is the scope of the constraint.

For our problem, the variables are the data set to be visualized, and their
domains contain the whole set of available visual features.

Function fS(variable, operator , visualfeature), which is composed of soft con-
straints, evaluates the effectiveness of a visual feature for a given variable (i.e., if
a visual feature is the most effective for a given variable, the valuation takes the
minimum value). These functions are based on perceptual rules and the scope
(local or global) of the operator (see Section 3.1) that is parameterized by this
variable. For example, texture should be used for local operators such as retrieve
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value, because it is more effective when zooming in, but reduces its effectiveness
during overviews.

Thus, the global cost function is the cost of a complete assignment; it is the
sum of the costs expressed by each soft constraint fS . A solution to our valued
CSP is a complete assignment that has the minimal cost.

6 Case Study

In this section, we present a concrete example of a software analysis task using
our approach. The task modeled is the detection of the Blob, a well-known anti-
pattern described in [2]. The Blob is found in designs where one large class
monopolizes the behavior and the other classes primarily encapsulate data. It is
characterized by a class diagram composed of a single complex and non-cohesive
controller class associated to simple data classes.

6.1 Analysis Task Description

The first step is to express the detection of the Blob as a sequence of actions
to accomplish, as described by the Analysis Task Model (see Section 3). The
specification for the Blob detection task is presented in Table 4. This description
is based on software metrics and general data analysis techniques.

Method to accomplish Goal: Blob Detection
1: Find Extremum(wholeSystem, WMC, WMC = HIGH)
2: Filter Attributes(extremeClasses, LCOM5, LCOM5 = HIGH)
3: FOR EACH(c ∈ filteredClasses) REPEAT(Step 4 to Step 6)
4: IF(Verify Value(c, DIT , DIT = LOW )) GOTO(Step 5) ELSE(continue)
5: Inspect(c, class name, method signatures)
6: IF(Verify Property(c, type, controller class)) GOTO(Step 7) ELSE(CONTINUE)
7: Save(c, controller class)
8: FOR EACH (m ∈ controllerClasses) REPEAT(Step 9)
9: Accomplish Sub-Goal: Data Class Verification(m)

Method to accomplish Goal: Data Class Verification(class)
1: Filter Relationship(wholeSystem, Association Relationship, class)
2: Filter Attributes(associatedClasses,WMC = LOW, LCOM5 = LOW, DIT = LOW)
3: IF(Verify Property(filteredClasses, type, data class))
4: Save(class, Blob)

Table 4. Blob detection expressed using the AT model.

6.2 Generation of Interactive Visual Task

Once the Blob detection has been specified using the Analysis Task Model, a
VERSO-specific interactive visual task is generated. Table 5 presents the at-
tribute mapping and the task mapping.
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Attribute Mapping
DIT ↔ number of windows
WMC ↔ height
LCOM5 ↔ twist

Method to accomplish Goal: Blob Detection
1: Zoom-out

Apply the statistic filter for WMC on the whole system.
Select classes having an extremely high WMC value.

2: Deselect classes that do not have a high LCOM5 value.
3: Iterate on the selected classes, for each class c REPEAT(Step 4 to Step 6)
4: Zoom-in.

Display metric list of c.
IF(c has a low DIT value) GOTO(Step 5) ELSE(continue)

5: Display source code of c.
Inspect class name and method signatures of c.

6: IF(c is of type controller class) GOTO(Step 7) ELSE(continue)
7: Tag c as controller class.
8: Iterate on the controller classes, for each class m REPEAT(Step 9)
9: Accomplish Sub-Goal: Data Class Verification(m)

Method to accomplish Goal: Data Class Verification(class)
1: Zoom-out.

Apply the association filter for class on the whole system.
Select classes associated to class.

2: Deselect classes that do not have a low WMC value.
Deselect classes that do not have a low LCOM5 value.
Deselect classes that do not have a low DIT value.

3: IF(filteredClasses are of type data class))
4: Tag class as Blob

Table 5. Blob detection expressed using the IVT model.
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6.3 Application of the Interactive Visual Task

Figure 4 shows an example of a Blob detected using the interactive visual task
guideline generated. The image on the left displays the result of the statistic filter
on WMC (corresponding to Step 1 of the Blob detection method). The circled
class was selected as a controller class. In the image on the right, the association
filter is applied on that same controller class. Classes that kept their original
color are associated with the controller class. Many of these classes are small,
straight, and have few windows. Upon inspection of the code, we confirmed that
we found a Blob occurrence.

Fig. 4. Example of a Blob found in PCGEN. (Left) Box plot filter on WMC, the
circled class is identified as a controller class. (Right) Association filter applied on the
controller class. Inspection of the associated data classes confirms it is a Blob.

7 Conclusion

A lot of work has been done on the subject of analysis task taxonomies and
interactive task taxonomies. For example, Wehrend and Lewis [16] proposed
a taxonomy of cognitive tasks, such as identify, locate, distinguish, etc. This
taxonomy has been extended by Zhou and Feiner [17] to automatically create
multimedia presentations with their tool. Shneiderman [12] proposed a taxonomy
of information-seeking visualization tasks. This work has been used in a software
visualization context by Marcus et al. [8].

Concerning perception rules, Mackinlay [7] defined effectiveness and expres-
siveness criteria for graphical languages. Hikmet et al. [4] extended these rules
for their tool Vista, using several studies on graphics, data visualization, visual
perception, and psychology. Healey et al. [3] proposed an automated visualiza-
tion assistant to help users construct perceptually optimal visualization, also
relying on perceptual rules.

16



However, to our best knowledge, existing methods fail to combine analysis
task taxonomies, interactive task taxonomies, and perceptual rules to create
efficient mapping and visualization techniques that support the needs of the
user.

In this paper, we proposed an approach to transform an analysis task de-
scription into an interactive visual task for a specific tool, using perceptual rules
to choose the most appropriate data mapping.

As future work, we plan to incorporate a taxonomy for data models, which
will allow us to extend our approach to be applicable on a larger set of visual-
ization tools. Also, we plan to extend our knowledge base of perceptual rules in
order to improve the attribute mapping generated by our approach.
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Abstract

We present a study of the impact of design patterns
on quality attributes. An empirical study is performed
by asking respondents their evaluations of the impact
of all design patterns on several quality attributes. We
present detailed results for three design patterns (Ab-
stract Factory, Composite, and Flyweight) and three
quality attributes (reusability, understandability, and
expendability). We perform a Null hypothesis test and
we conclude that, contrary to popular beliefs, design
patterns do not always improve reusability and under-
standability, but that they do improve expandability.

1 Introduction

Many studies in the literature present design pat-
terns as a promising solutions to improve the quality of
object oriented software systems during development.
It is widely claimed that they improve the quality of
systems and that every well-structured object oriented
architectures contain patterns [3].

However some studies suggested that the use of de-
sign patterns do not always results in good quality de-
sign. In particular, a tangled implementation of these
patterns in a design impacts negatively the quality that
these patterns claimed to improve [4]. Also design pat-
terns generally increase the complexity of an initial de-
sign to ease future enhancements.

Thus, to the best of our knowledge, evidence of qual-
ity improvements through the use of design patterns
consists primarily of intuitive statements and exam-
ples. There is little empirical evidence to support the
claims of improved flexibility, reusability, adaptability
as put forward in [3] when applying design patterns.
Also, the impact of design patterns on other quality
attributes is unclear.

This lack of evidence around the benefits of design
patterns and their impact on design quality led us to

carry out an empirical study on the impact of design
patterns on the quality of systems as perceived by soft-
ware developers and with respect to known principles
of the object oriented paradigm.

In this work, we present a survey carried out over
a population of experienced object-oriented developers
and its results to attempt answering the question: is
the impact of design patterns on quality attributes posi-
tive, neutral, or negative? We conclude by a discussion
on the results.

2 Related Work

Since the introduction of design patterns by Gamma
et al. [3], there has been a growing interest on the
use of design patterns, many work have been carried
out to study the potential impacts of this concept on
software systems but very few investigated empirically
the impact on quality. We present here only examples
of the main work on design patterns.

Wydaeghe et al. [6] presented a study on the con-
crete use of six design patterns when building an OMT
editor. They discussed the impact of these patterns on
quality attributes such as reusability, modularity, flex-
ibility, and understandability. They also discuss the
difficulty of the concrete implementation of these pat-
terns. They concluded that although design patterns
offer a lot of advantages, not all patterns have the same
effects on the quality attributes. However, this study is
limited to the authors’ own experience and thus their
appreciation of the impact of these patterns on quality
can hardly been generalized to any context of develop-
ment.

Tahvildari et al. [5] studied the 23 design patterns
from [3] and presented a layered classification of the
primary relationships between these patterns: use, re-
fine, and conflict, and three secondary relationships:
similar, combine, and require (that can be expressed
in terms of the primary ones). They organized the
design patterns into two abstraction levels. They dis-
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cussed how their classification can assist software engi-
neers with understanding better the complex relation-
ships between patterns, organizing existing patterns as
well as categorizing and describing new patterns and
building tools that support the application of patterns
during restructuring. However, they did not investi-
gate whether the use of these patterns really improve
the quality of designs.

McNatt and Bieman [4] examined the coupling be-
tween design patterns. They dressed a parallel be-
tween modularity and abstraction in software systems
and modularity and abstraction in patterns. They
concluded that when patterns are loosely coupled
and abstracted then maintainability, factorability, and
reusability are well supported by the patterns. They
also concluded on the need for further studies to un-
derstand effective pattern constructs and good pattern
coupling methods.

Bieman et al. [2, 1] examined common recom-
mended programming styles on several different soft-
ware systems, with and without patterns, and con-
cluded that in contrast with common claims the use of
design patterns can lead to more change prone classes
rather than less change prone classes during the evolu-
tion of the systems.

3 Problem Formulation

There are little evidence on the impact of design pat-
terns on the quality of software systems. Most of the
statements supporting the hypothesis of improvements
of the quality are intuitive.

This work aims at quantifying the impact of design
patterns on the overall quality of systems. We had the
choice between an absolute, a relative, or an empirical
quantification.

Due to the lack of a well defined framework for the
evaluation of the quality of systems, we chose an em-
pirical quantification consisting of collecting and an-
alyzing evaluations by software developers of certain
aspects of the quality of systems that design patterns
may impact.

4 Method

We built a questionnaire and carried out a survey
electronically during the period of January to May
2007.

4.1 Our Questionnaire

We chose, based on their relevance to design pat-
terns and software systems, the following golden set of

quality attributes:

• Related to architecture and design:

– Expandability: The degree to which archi-
tectural, data, or procedural design can be
extended.

– Simplicity: The degree to which the archi-
tecture of the system can be understood with-
out difficulty.

– Reusability: The degree to which a piece of
design (or a subset of a piece of design) can
be reused in another design.

• Related to implementation:

– Learnability: The degree to which the code
source of a system is easy to learn by new
developers.

– Understandability: The degree to which
the code source of the system can be under-
stood without difficulty.

– Modularity: The degree to which the im-
plementation of functions in a system are in-
dependent from one another.

• Related to runtime:

– Generality: The degree to which a system
can perform a wide range of functions at run-
time.

– Modularity at runtime: The degree to
which functions of a system are independent
from one another at runtime.

– Scalability: The degree to which the sys-
tem can cope with large amount of data and
computation at runtime.

– Robustness: The degree to which a system
continues to function properly under abnor-
mal conditions or circumstances.

Each quality attribute was evaluated using a six-
point Likert scale:

A - Very positive
B - Positive
C - Not significant
D - Negative
E - Very Negative
F - I don’t know

For every design pattern in [3] and for every qual-
ity attribute from our golden set, the respondents were
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asked to assess the impact of the pattern on the qual-
ity of a system in which the pattern would have been
used appropriately. For example, for the Composite
design pattern and Learnability, the respondents were
asked to assess the impact of the pattern on the over-
all Learnability of a system implementing the pattern
appropriately.

4.2 Data Collection

The questionnaire was sent to experienced object-
oriented developers around the world and posted on
three specialized mailing lists, refactoring, patterns-
discussion, and gang-of-4-patterns.

We asked the respondents to consider the situation
where patterns where used appropriately in programs
to solve their corresponding design problems.

Among the answers that we received, we selected the
questionnaires of 20 developers with a long experience
in the use of design patterns in software development.

Among the selected 20 questionnaires, some respon-
dents did not evaluate the quality of all design patterns.
Thus, some patterns have more evaluation than others.

4.3 Data Processing

To answer our question: is the impact of design pat-
terns on quality attributes positive, neutral, or nega-
tive? and due to the high level of variations between
answers, we chose to aggregate answers A and B and
answers D and E:

Positive = A and B
Neutral = C
Negative = D and E

Answers F were not considered to assess the impact
of design patterns on quality because we considered
that the respondent did not know how the pattern im-
pacts the quality attribute.

Using the previous three-point Likert scale, we com-
puted the frequencies of the answers on each quality at-
tribute: Positive, Neutral, and Negative and we carried
out a Null test to decide on the impact of the patterns
on the quality attributes according to the respondents.

5 Results of the Survey

We present in the following the results for three de-
sign patterns: Abstract Factory, Composite, and Fly-
weight, and the three quality attributes related to de-
sign patterns: reusability, expandability, and under-
standability. Results for all design patterns and quality
attributes will be presented in a future work.

Attributes Positive Neutral Negative
Expandability 100.0 0.0 0.0
Simplicity 69.23 15.38 15.38
Generality 76.92 15.38 7.69
Modularity 71.43 21.43 7.14
Modularity
at Runtime

53.85 38.46 7.69

Learnability 76.92 7.69 15.38
Understand-
ability

69.23 15.38 15.38

Reusability 61.54 23.08 15.38
Scalability 41.67 41.67 16.67
Robustness 8.33 91.67 0.0

Table 1. Impact of Composite on quality at-
tributes.

5.1 Qualitative Analysis

5.1.1 Design Patterns

We chose the following three design patterns to illus-
trate the opinions of our respondents about the impact
of design patterns on quality attributes firstly because
of their popularity, they are among commonly used
patterns thus we felt that their evaluation would be
more accurate, and secondly because they appeared to
be considered by our respondents as globally positive
(Composite), globally neutral (Abstract Factory), and
globally negative (Flyweight). Therefore, we felt that
they would be more representative.

Composite. Table 1 presents the evaluations by the
respondents of the impact of the Composite pattern on
the quality attributes. Looking at the table, it appears
that the Composite pattern is mostly perceived as hav-
ing a positive impact on the quality of systems. All
quality attributes are impacted positively but for the
scalability and robustness that are not positive. Given
the purpose of the Composite pattern, having a neutral
impact on scalability is rather surprising.

Abstract Factory. Table 2 presents the evaluations
by the respondents of the impact of the Abstract Fac-
tory pattern on the quality attributes. The table shows
that half the quality attributes is considered as posi-
tively impacted while the other half is not. It is not
surprising that the pattern is overall judged as neu-
tral given its purpose and complexity. However, it is
striking that both learnability and understandability
are felt negatively impacted.
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Attributes Positive Neutral Negative
Expandability 100.0 0.0 0.0
Simplicity 53.33 13.33 33.33
Generality 78.57 21.43 0.0
Modularity 85.71 7.14 7.14
Modularity
at Runtime

46.15 38.46 15.38

Learnability 35.71 28.57 35.71
Understand-
ability

38.46 30.77 30.77

Reusability 50.0 42.86 7.14
Scalability 21.43 64.29 14.29
Robustness 0.0 72.73 27.27

Table 2. Impact of Abstract Factory on quality
attributes.

Attributes Positive Neutral Negative
Expandability 22.22 44.44 33.33
Simplicity 0.0 22.22 77.78
Generality 11.11 44.44 44.44
Modularity 33.33 33.33 33.33
Modularity
at Runtime

11.11 66.67 22.22

Learnability 0.0 20.0 80.0
Understand-
ability

0.0 10.0 90.0

Reusability 37.5 12.5 50.0
Scalability 77.78 0.0 22.22
Robustness 22.22 66.67 11.11

Table 3. Impact of Flyweight on quality at-
tributes.

Flyweight. Table 3 presents the evaluations by the
respondents of the impact of the Flyweight pattern on
the quality attributes. The table reports that this pat-
terns is perceived as impacting negatively all quality
attributes but for the scalability. Given the purpose of
the pattern, it is not surprising that its impact on scal-
ability is judged positively. The negative perception
could be explained by the less frequent use of Flyweight
in comparison with Composite and Abstract Factory.

5.1.2 Quality Attributes

We chose the following three quality attributes because
it is claimed in [3] that they are improved by the use
of design patterns.

Patterns Positive Neutral Negative
A.Factory 46.15 46.15 7.69
Builder 36.36 45.45 18.18
F.Method 60.0 20.0 20.0
Prototype 63.64 0.0 36.36
Singleton 18.18 54.55 27.27
Adapter 66.67 25.0 8.33
Bridge 41.67 16.67 41.67
Composite 58.33 25.0 16.67
Decorator 36.36 18.18 45.45
Facade 36.36 45.45 18.18
Flyweight 37.5 12.5 50.0
Proxy 45.45 36.36 18.18
Ch.Of.Resp 54.55 27.27 18.18
Command 30.0 20.0 50.0
Interpreter 50.0 0.0 50.0
Iterator 72.73 9.09 18.18
Mediator 20.0 50.0 30.0
Memento 28.57 42.86 28.57
Observer 53.85 23.08 23.08
State 20.0 40.0 40.0
Strategy 41.67 33.33 25.0
T.Method 58.33 33.33 8.33
Visitor 28.57 28.57 42.86

Table 4. Impact of design patterns on
reusability.

Reusability. Table 4 presents the evaluations by re-
spondents of the impact of design patterns on reusabil-
ity. Overall, as shown in Table 8, reusability is felt as
being slightly more negatively impacted by design pat-
terns, with 12 negative patterns and 11 positive pat-
terns. This is rather surprising as the use of design
patterns is claimed to improve reusability according to
the GoF.

Expandability. Table 5 presents the evaluations by
the respondents of the impact of design patterns on
the expendability. All respondents felt that expend-
ability is improved when using design patterns, in con-
formance with what is expected of using patterns.

Understandability. Table 6 presents the evalua-
tions by the respondents of the impact of design pat-
terns on the understandability. Similarly to reusability,
respondents felt that the understandability was rather
slightly negatively impacted by the use of patterns.
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Patterns Positive Neutral Negative
A.Factory 100.0 0.0 0.0
Builder 90.91 9.09 0.0
F.Method 72.73 9.09 18.18
Prototype 63.64 27.27 9.09
Singleton 9.09 27.27 63.64
Adapter 50.0 41.67 8.33
Bridge 83.33 16.67 0.0
Composite 100.0 0.0 0.0
Decorator 90.91 0.0 9.09
Facade 58.33 16.67 25.0
Flyweight 22.22 44.44 33.33
Proxy 45.45 45.45 9.09
Ch.Of.Resp 91.67 8.33 0.0
Command 66.67 16.67 16.67
Interpreter 63.64 27.27 9.09
Iterator 90.91 9.09 0.0
Mediator 58.33 25.0 16.67
Memento 33.33 55.56 11.11
Observer 85.71 7.14 7.14
State 72.73 18.18 9.09
Strategy 76.92 15.38 7.69
T.Method 84.62 15.38 0.0
Visitor 71.43 7.14 21.43

Table 5. Impact of design patterns on expand-
ability.

5.2 Quantitative Analysis

Using the results obtained by aggregating the previ-
ous data in Tables 1, 2, 3, 4, 5, and 6, and we carried
out a Null hypothesis test to quantify the impact of
the design patterns on the quality attributes. We use
the frequencies of Positive and non-positive (combined
Neutral and Negative answers) to decide on the impact
of a given pattern on a specific quality attribute.

For a given question about the impact of a pattern
on a quality attribute, we considered the random vari-
able X, that takes the value 0 when the impact of the
pattern on the attribute is positive and 1 when the
impact is not positive. We defined P as the proba-
bility that the pattern does not impact positively the
attribute. The probability that the pattern impacts
positively the attribute is therefore 1−P . Considering
the N respondents j = 1, ..., N answering the question,
we viewed their answers as occurrences of the random
variable X and noted them: X1, X2, .....XN . Then,
we set our Null hypothesis to be H0: The impact of
the pattern on the quality attribute is positive, which
yields, in terms of probability, to P ≤ 1

2 . The alter-

Patterns Positive Neutral Negative
A.Factory 38.46 30.77 30.77
Builder 81.82 9.09 9.09
F.Method 45.45 27.27 27.27
Prototype 58.33 16.67 25.0
Singleton 91.67 8.33 0.0
Adapter 50.0 25.0 25.0
Bridge 50.0 33.33 16.67
Composite 75.0 16.67 8.33
Decorator 45.45 9.09 45.45
Facade 81.82 18.18 0.0
Flyweight 0.0 10.0 90.0
Proxy 33.33 50.0 16.67
Ch.Of.Resp 33.33 33.33 33.33
Command 33.33 33.33 33.33
Interpreter 63.64 0.0 36.36
Iterator 50.0 41.67 8.33
Mediator 58.33 25.0 16.67
Memento 33.33 55.56 11.11
Observer 42.86 35.71 21.43
State 54.55 0.0 45.45
Strategy 69.23 23.08 7.69
T.Method 38.46 38.46 23.08
Visitor 21.43 21.43 57.14

Table 6. Impact of design patterns on under-
standability.

native hypothesis is then H1: The pattern does not
impact positively the attribute, i.e., P > 1

2 . Hence,
our decision rule is:

• We confirm H0 if fN is not high enough;

• We confirm H1 if fN is high enough.

where fN is the frequency of the respondents who an-
swered that the pattern impacts negatively or does not
impact the attribute.

The risk we encountered by rejecting the Null hy-
pothesis H0, i.e, the pattern positively impacts the
quality attribute, is then: 1−F (fN ), where F is the cu-
mulative density of the Bernoulli distribution β(N, 1

2 ).
The Null hypothesis test yields the results summa-

rized in Tables 7 and 8. The analysis of the results of
our survey revealed that in contrary to what is com-
monly admitted in the literature (which is that the
use of design patterns yields to architectures that are
reusable, simple and more understandable), the reality
of the use of patterns is different. Developers consider
that although patterns are useful to solve design prob-
lems, they do not always improve the quality of systems
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in which they are used. Some patterns like Flyweight
are even considered bad for the quality of systems. A
large number of respondents consider that they sensibly
decrease simplicity, learnability, and understandability.

6 Conclusion

In this paper, we presented a study of the impact
of design patterns on quality attributes. This empir-
ical study was performed by asking respondents their
evaluations of the impact of all design patterns on sev-
eral quality attributes. We concluded that, contrary
to popular beliefs, design patterns do not always im-
prove reusability and understandability, but that they
do improve expendability.

However this study stands only on the opinion of
a surveyed population of experienced developers and
we cannot consider its results as free from uncertainty.
In particular, some design patterns received no eval-
uations from some respondents because they are less
known and used or, possibly, because they are judged
up-front as impacting negatively quality as one respon-
dent suggested. Moreover, the 20 respondents may not
be representative of the general population of software
developers.

In future work, we plan to carry out a wider sur-
vey by detailing our questionnaire and broadcasting
it to more respondents. The questionnaire is avail-
able on the Internet at http://www.iro.umontreal.
ca/~ptidej/Questionnaire.pdf or http://ptidej.
dyndns.org/downloads/ (it may take some minutes
to load as it weighs 4 MB). We are looking forward
receiving your kind contributions.
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Attributes Composite A.Factory Flyweight
E R(%) E R(%) E R(%)

Expendability + 0.0 + 0.0 - 1.76
Simplicity + 5.92 + 30.36 - 0.0
Generality + 1.76 + 1.76 - 0.15
Modularity + 5.92 + 0.37 - 5.92

Modularity at Runtime + 30.36 - 30.36 - 0.15
Learnability + 1.76 - 15.09 - 0.0

Understandability + 5.92 - 15.09 - 0.0
Reusability + 15.09 + 50.0 - 15.09
Scalability - 30.36 - 1.76 + 1.76
Robustness - 0.15 - 0.0 - 1.76

8 + / 2 - 5 + / 5 - 1 + / 9 -

Table 7. Estimation of the impact of the three design patterns on quality attributes.

Design Patterns Expendability(%) Understandability(%) Reusability(%)
E R(%) E R(%) E R(%)

A.Factory + 0.0 - 15.09 + 50.0
Builder + 0.15 + 0.37 - 15.09

F.Method + 1.76 - 30.36 + 15.09
Prototype + 30.36 + 30.36 + 30.36
Singleton - 0.15 + 0.15 - 0.37
Adapter + 30.36 - 30.36 + 5.92
Bridge + 0.37 + 50.0 - 30.36

Composite + 0.0 + 5.92 + 15.09
Decorator + 0.15 - 30.36 - 5.92
Facade + 30.36 + 1.76 - 5.92

Flyweight - 1.76 - 0.0 - 15.09
Proxy - 30.36 - 5.92 + 50.0

Ch.Of.Resp + 0.15 - 5.92 + 30.36
Command + 5.92 - 5.92 - 5.92
Interpreter + 5.92 + 5.92 + 30.36

Iterator + 0.15 + 50.0 + 5.92
Mediator + 30.36 + 30.36 - 1.76
Memento - 5.92 - 30.36 - 15.09
Observer + 0.15 - 30.36 + 50.0

State + 5.92 + 30.36 - 1.76
Strategy + 1.76 + 15.09 - 30.36

T.Method + 0.37 - 15.09 + 30.36
Visitor + 5.92 - 1.76 - 1.76

19 + / 4 - 11 + / 12 - 11 + / 12 -

Table 8. Estimation of the impact of design patterns on the three quality attributes
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